
HAL Id: hal-02483993
https://hal.science/hal-02483993

Submitted on 23 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A nine nodes solid-shell finite element with enhanced
pinching stress

Mouhamadou Dia, Nahiene Hamila, Mickaël Abbas, Anthony Gravouil

To cite this version:
Mouhamadou Dia, Nahiene Hamila, Mickaël Abbas, Anthony Gravouil. A nine nodes solid-shell finite
element with enhanced pinching stress. Computational Mechanics, 2020, �10.1007/s00466-020-01825-
1�. �hal-02483993�

https://hal.science/hal-02483993
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


A nine nodes solid-shell finite element with enhanced pinching stress

Mouhamadou Dia1,2 · Nahiene Hamila2 ·Mickaël Abbas1 · Anthony Gravouil2

Abstract

In this paper we present a low-order solid-shell element formulation—having only displacement degrees of freedom (DOFs),

i.e., without rotational DOFs. The element has an additional middle node, that allows efficient and accurate analyses of shell

structures using elements at extremely high aspect ratio. The formulation is based on the Hu–Washizu variational principle

leading to a novel enhancing strain and stress tensor that renders the computation particularly efficient, with improved in-

plane and out-of-plane bending behavior (Poisson thickness locking). The middle-node is endowed with only one degree

of freedom, in the thickness direction, allowing the assumption of a quadratic interpolation of the transverse displacement.

Unlike solid-shell finite elements reported previously in the literature and formulated under the hypothesis of plane stress

or with enhanced assumed strain parameter, the new solid-shell element here mentioned uses a complete three-dimensional

constitutive law and gives an enhanced pinching stress, thanks to the middle-node. Moreover, to handle the various locking

problems that usually arise on solid-shell formulation, the reduced integration technique is used as well as the assumed

shear strain method. Finally to assess the effectiveness and performance of this new formulation, a set of popular benchmark

problems, involving geometric non-linear analysis as well as elastic-plastic behavior has been investigated.

Keywords Solid-Shell · 3D Constitutive law · Improved normal stress · Robust stabilization

1 Introduction

Shell-like structures are largely present in most engineer-

ing design and process control. To model such structures,

engineers generally use classical shell element based on the

degenerated shell concept or classical shell theories. These

elements perform well for the simulation of bending prob-

lems; in linear as well as for some nonlinear problems.

However in certain engineering problems, like sheet metal

forming in case of hemming, bottoming, ironing, hydro-
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forming or simply V-type bending, those elements can show

some inadequacy related to the hypothesis they are embed-

ded with. The main limiting hypothesis being the plane stress

state, which literally means that the normal transverse stress

is negligible. Under such assumption, one must modify the

3D nonlinear constitutive law to be numerically integrated.

This is very often a laborious work particularly when the

material law is intrinsically three dimensional.

There are several approaches used to overcome the prob-

lem of plane stress state in shell element and they can be

divided into two main groups or methodologies. The first

group is based on hexahedral elements, the so-called ‘solid-

shell’, where modifications are introduced to enforce flexural

behavior that permits stretching through a given thickness

direction (see, for instance, References [1–14] to name just a

few contributions). The second group, which could be called

‘shell-solid’, is based mainly upon Mindlin–Reissner shell

elements with three displacements and two local rotational

degrees of freedom at each node while the three-dimensional

(3D) constitutive behavior is enforced via additional degrees

of freedom giving the so-called 5, 6 or 7-parameters shell

models, see for example [15–29], among many others. The

5-parameter shell models have been enriched by a desired

number of parameters at nodes to permit a representation
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of through-thickness stretching. Several shell elements have

been developed which explicitly account for the thickness

change as an additional degree of freedom leading to 6-

parameter models. But due to the coupling with the Poisson

ratio in bending dominated cases, the linear displacement

field in thickness direction gives a constant strain which in

turn causes an artificial normal stress. As a remedy, either

the coupling terms have to be removed from the constitutive

law by a plane stress state or the shell formulation has to be

extended by a linear normal strain, leading to a 7-parameter

model. This is achieved by a quadratic variation of the normal

displacement field and the details can be found in References

[15–18,20–22,24]

In a recently published paper [30], Sansalone et al. have

proposed a third approach where an additional node is

introduced in the center of three-node and four-node shell ele-

ments with only two through-thickness translational degrees

of freedom of the upper and lower surfaces of the shell. Then

a full 3D constitutive strain-stress behavior can be used. For

triangles in bending state, either based on Kirchhoff’s or on

Mindlin’s assumptions, it has been shown that the results are

exactly the same as those given by the initial formulation of

these elements using a plane stress hypothesis. For quadri-

laterals, the results are slightly different but many numerical

examples including nonlinear computations prove that those

differences are not significant.

Therefore, the aim of this paper is to extend this methodol-

ogy by using an additional node at the center of an eight-node

brick element in a specific solid-shell formulation. Bassa et

al. [31] have proposed a similar approach. Nevertheless the

studies have shown a low convergence performance of that

formulation in a implicit code, specially in nonlinear prob-

lems, due to the three-parameters stabilization procedure.

The shear strain adopted in the SB9γ 25 was interpolated

following the work of Dvorking and Bathe [32–34]. The

Reissner multiplicative function was used as interpolation

through the thickness direction to ensure a static admissibility

condition. However such interpolation is only valid in linear

situations. It is then essential to realize that in this paper, the

third approach proposed by Sansalone [30] is here applied to

a brick element. An additional node is then introduced with

only one through-thickness translational dof with a robust

stabilisation procedure that performs well in implicit code.

This new method goes beyond the EAS approach. In fact

the EAS parameter is often added to solve Poisson thickness

locking and volumetric locking by transforming a linear nor-

mal strain into a quadratic normal strain. However the value

of this parameter is so low that it does not improve the pinch-

ing stress that much. In a problem with a shell structure under

pressure in one or both side, the solid-shell element with EAS

parameter alone gives a normal stress that is almost constant,

and do not verify the Neumann boundary conditions. The aim

of the solid-shell here proposed is to overcome that limitation

by enhancing the normal stress thank to a additional node.

Moreover, only reduced integration is practically interesting

for this element, for further non-linear computations. There-

fore, all the results given in this paper correspond to this

specificity.

Since this approach differs significantly from the previous

two ones, only the main features of the solid-shell concept are

recalled. The so called solid-shell elements are very attrac-

tive and are still the subject of many researches. As standard

elements, solid-shell elements can incorporate the normal

stress along thickness direction if the pinching is correctly

handled. General 3D-constitutive material can be used with-

out any assumption on the normal stress. These elements

have only translational degrees of freedom (DOF) which

make their formulation very simple. The difficulties asso-

ciated with complex shell formulation with nodal rotation

are then avoided. Moreover, since they have only transla-

tional DOF, solid-shell elements can easily be connected with

standard solids elements when there is coexistence of three-

dimensional and structural zones. All theses advantages have

lead to develop a set of solid shell element in the last decades:

[3,7,10,24,35–41].

Now, for a solid-shell to perform accurately, it must

avoid the amount of locking phenomena that low-order

elements encounter when modeling shell structures. If not

handled conveniently, solid-shell elements suffer from lock-

ing pathologies that lead the elements to give poor results,

specially in case of out-of-plane bending load analysis or

isochoric plasticity.

The first locking pathology that low order solid-shell ele-

ment encounter is volumetric locking which arises when the

material is incompressible or nearly-incompressible, as for

rubber like material (see the work of Reese and Wriggers

[42]) or for metal plasticity (see Simo and Taylor [43], Miehe

[44] to name just a few). In such material the non-vanishing

volumetric strain makes the element stiffer, resulting in

excessively small deformations. Several solutions have been

proposed to solve volumetric locking. There are, among oth-

ers, The reduced or selective integration technique proposed

by Zienkiewicz [45], the B-bar approach of Hughes [46],

applied for solid elements in the work of Belytschko [47]

and the enhanced assumed strain initially proposed by Simo

et al. [15,48,49]. These methods are largely applied in many

solid-shell formulations. See for example the work of Mas-

sud et al. [14], Alves de Souza [37,50,51], Cardoso et al

[12,24], Sze and Yao [5], Klinkel et al. [38]. It’s worth noting

that the reduced integration or selective integration technique

are not cost-free. Indeed appropriate hourglass stabilization

techniques are necessary to prevent the spurious deforma-

tions modes that may arise and ensure a correct rank of the

element stiffness matrix. It’s well known that the spurious

patterns or hourglass modes correspond to the kernel vectors

of the stiffness matrix, aside from the rigid body modes. Dif-
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ferent techniques have been proposed to deal with the rank

deficiency due to selective or reduced integration technique.

One can see the remarkable work of Belytschko et al. [52–

54], Reese et al. [10,36] as well as Combescure et al. [7,41].

Poisson thickness locking is due to resulting incorrect-

constant distribution of the normal stress in the thickness

direction. To avoid this locking phenomenon it is necessary

to assure that the normal stress varies linearly along the thick-

ness direction in bending situation. It can be done using a

quadratic interpolation or the compatible normal displace-

ment e.g. Parisch [1]. Another and most often used method

is to enrich the transverse normal strain by mean of the

enhanced-assumed stress method [10,37,48].

A further locking effect observed for solid-shell element

is the phenomenon of a so called curvature locking or some-

time “trapezoidal locking”. This phenomenon is found in

structures where the out of plane element edges are not per-

pendicular to the mid-layer, which is the case for originally

curved or heavily deformed structures. This locking effect

can be overcomed by using the naturally assumed interpola-

tion of the normal strain as proposed by Bischoff and Ramm

[18] or Betsch and Stein [17].

Another commonly encountered locking pathology in

solid-shell is the transverse shear locking. This happens

because normal strains of linear element are coupled by shear

strain. Low order elements do not have pure bending modes to

behave correctly for pure bending load cases. Hence, there are

parasitic shear strains that appear and become more impor-

tant than normal strain. This makes the element stiffer than

necessary resulting in a poor bending behavior. An interest-

ing remedy is the Assumed Natural Strain (ANS) method first

proposed by Hughes and Tezduyar[55], followed by Wemp-

ner [56] then by Dvorkin et al. [34,57,58] for shell elements.

The approach has since then been applied in solid-shell for-

mulation by many authors. See e.g. [3,12,13,24,38,59].

In this paper the third approach proposed by Sansalone et

al. [30] to eliminate plane stress-state in classical shell ele-

ment is extended to a brick element. A nine nodes solid-shell

element is then proposed. The first eight nodes are those

of a classical hexahedral element and have three transla-

tion degrees of freedom each. The ninth node is a additional

node that have only one translation degree of freedom, in

the element-thickness direction. The latter node is added

to create a quadratic interpolation of the transverse dis-

placement and consequently enrich the element pinching

strain. This way the element can accurately work with a

three dimensional constitutive law without the common plane

stress hypothesis. Poisson thickness locking is then natu-

rally avoided. But not only that, the additional DOF allows

to enrich the element pinching stress and further match the

upper and lower boundaries condition of the shell. We adopt

the ANS technique with 4 tying points for the shear strain

as well as the normal transverse strain. Since the reduced

integration technique is adopted we use the stabilization tech-

nique following the work of Belytschko [54] and Schwartz

[13]. This new element has a wide range of applications,

showing very good convergence, robustness and accuracy

in nonlinear problems. The element is implemented into the

quasi-static implicit software code_aster [60] developed by

the French energy and electricity company (eDF).

2 Variational formulation

The ninth node of this solid-shell aims to enhance the ele-

ment displacement gradient and further improves volumetric

and Poisson thickness locking. The Hu–Washizu principle is

the starting point for this element formulation. As being pro-

posed by Simo and Rifai [61], the displacement field u ∈ V ,

the conjugated Green–Lagrange strain tensor E ∈ E and the

second Piola–Kirchhoff stress S ∈ S are treated as indepen-

dent variables. V ,E and S being respectively the space of

admissible displacement, strain and stress. The Hu–Washizu

principle is written as follows:

π H W (u, E, S) =

∫

�0

W (E) d�0

+

∫

�0

S :

[
1

2

(

FT F − I
)

− E

]

d�0 − πext(u) (1)

where W is the strain energy, F the deformation gradient

depending on the displacement field u, I the metric tensor

and π ext (u) the external force power. As being advocated

first by Andelfinger and Ramm [62] and further by Bischoff

and Ramm [18] for large deformation with (EAS) method,

the approach proposed herein is also based on an enrichment

of the Green–Lagrange strain tensor.

E = EH + E9 with EH =
1

2

(

FT F − I
)

(2)

This means that the eight vertices nodes displacement-

dependent strain tensor EH of the element is enriched by an

additional enhanced assumed strain E9 ∈ E 9 thanks to the

ninth node. The variation of the above functional is obtained

from the directional derivative and leads to

δπ H W (u, E9, S) =

∫

�0

[
∂W

∂E
: δEH +

∂W

∂E
: δE9

]

d�0 − δπext

−

∫

�0

S : δE9d�0 −

∫

�0

δS : E9d�0

(3)

As in many researches, the three-field functional is

reduced to a two field functional as suggested by Simo and

Rifai [61], by choosing the interpolation such that S and E9

become orthogonal. A slightly different approach is applied

in this new formulation. If the element is not pinched, in a

3



sense that there is no pressure applied above or below the ele-

ment, the formulation goes with the orthogonality condition.

Otherwise, if the element is pinched, let’s say by an upper

pressure Pu and a lower pressure Pl , the second Piola Kirch-

hoff stress S is chosen such that the corresponding Cauchy

stress be linearly dependent to the applied pressure:

σ33 = −
1

2
(1 − ζ ) Pl −

1

2
(1 + ζ ) Pu (4)

ζ being the element thickness parameter, in the covariant

frame. This way, the element normal stress is statically

enhanced so that a correct pinching stress is derived.

Assuming a nil body force, the Euler–Lagrange equations

[18] associated with Eq. (3) are the standard equilibrium

equation of the domain:

div

(

F
∂W

∂E

)

= 0

S −
∂W

∂E
= 0

E9 = 0

(5)

Although E9 = 0 for the continuum problem, in general

E9
h �= 0, when we introduce finite element approximations.

By denoting D the domain occupied by the body, we can

observe that the space of enhanced strain field is in [L2(D)]6

(see Simo [61]). Hence, no inter-element continuity on the E9

need be enforced when construction finite element approxi-

mation. Note also that the enhanced strain interpolation E 9
h

and the standard strain interpolation defined by ▽SVh are

independent in the sense that: E 9
h ∩ ▽SVh = ∅

3 Kinematics

The SB9 element has nine nodes, one in-plane integration

point and the ability to accommodate several integration

points along the thickness direction of the element. Figure 1

represents the element topology with the order of node num-

bering (related to the isoparametric coordinate system of the

element, defined by the natural coordinates ξ , η, ζ ). Also,

in the same figure, the distribution of Gauss-Lobatto inte-

gration points is given. Compared with the other eight-node

‘solid-shell’ bricks, the presence of a supplementary node has

two main aims. First getting a linear normal strain compo-

nent which, along with a full three-dimensional constitutive

strain–stress behavior, allows to achieve similar results in

bending cases as those obtained with the usual plane stress

state hypothesis. For that, the ninth node DOF plays the role

of an extra parameter essential for a quadratic interpolation

of the displacement in the thickness direction. The second

advantage is that this DOF has a physical meaning and, for

1 2

65

4 3

78

9

ζ

Fig. 1 Location of the Gauss-Lobatto integration points for the SB9

element

instance, a strength equivalent to a normal pressure can be

prescribed to improve the normal stress when the shell struc-

ture is moderately thick. In this section we focus on the

interpolation of the 8 vertices nodes, we will give more details

about the ninth node in the Sect. 6.

The location of nodes in the isoparametric coordinate sys-

tem is given by the following isoparametric vectors:

a I
1 = {−1, 1, 1,−1,−1, 1, 1,−1}

a I
2 = {−1,−1, 1, 1,−1,−1, 1, 1}

a I
3 = {−1,−1,−1,−1, 1, 1, 1, 1}

(6)

where I means node number. Auxiliary vectors are defined

from previous combinations of the isoparametric vectors:

h I
1 = {−1,−1, 1,−1, 1,−1, 1,−1}

h I
2 = {1, 1,−1,−1,−1,−1, 1, 1}

h I
3 = {1,−1,−1, 1,−1, 1, 1,−1}

h I
4 = {−1, 1,−1, 1, 1,−1, 1,−1}

(7)

These vectors form the basis for the interpolation field of the

nodal displacements. The shape functions NI (ξ, η, ζ ) are

obtained from a linear combination of the above-mentioned

isoparametric vectors:

NI =
1

8
(1 + ξa I

1 + ηa I
2 + ζa I

3 + ξηh I
1 + ηζh I

2

+ ξζh I
3 + ξηζh I

4) (8)

The derivatives of the shape functions with respect to the

isoparametric coordinates are also spanned by the isopara-

metric vectors in the form:
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NI ,ξ =
1

8
(a I

1 + h I
2ζ + h I

3η + h I
4ηζ )

NI ,η =
1

8
(a I

2 + h I
1ζ + h I

3ξ + h I
4ξζ )

NI ,ζ =
1

8
(a I

3 + h I
1η + h I

2ξ + h I
4ξη)

(9)

One of the advantages of the SB9 element is the use of only

translational degrees of freedom. Therefore the position of a

point inside the element in the initial (X) or the current (x)

state is obtained from the interpolation of the nodal transla-

tional degrees of freedom:

X(ξ, η, ζ ) = NI (ξ, η, ζ )XI (10)

x(ξ, η, ζ ) = NI (ξ, η, ζ )xI (11)

where xI and XI are the nodal coordinates in the current and

initial positions. The displacement field is also obtained from

nodal values after a proper interpolation with shape functions

u(ξ, η, ζ ) = NI (ξ, η, ζ )uI (12)

where uI are the nodal displacement. Keep in mind that the

effect of the ninth node will be discussed in a later sec-

tion. The derivatives of displacements in the isoparametric

coordinate system are interpolated from the shape functions

derivatives as

u,ξ (ξ, η, ζ ) = NI ,ξ (ξ, η, ζ )uI

u,η(ξ, η, ζ ) = NI ,η(ξ, η, ζ )uI

u,ζ (ξ, η, ζ ) = NI ,ζ (ξ, η, ζ )uI

(13)

From Eq. (9) the Jacobian matrix can be decomposed into

constant, linear and bi-linear components depending on

ξ, η, ζ, ξη, ζη, ζ ξ

J = J0 + ξJξ + ηJη + ζJζ + ξηJξη + ηζJηζ + ξζJξζ (14)

This procedure is required for the construction of the

hourglass strain field that stabilizes the SB9 element. The

components of Eq. (14) are given in “Appendix”.

4 Strain field

The deformation gradient is written as follows:

F =
∂x

∂X
=

∂x i

∂ξ k
ei ⊗

∂ξ k

∂ X j
e j = gi ⊗ Gi (15)

F is a tensor which maps the reference basis Gi to the current

one gi (Fig. 2). ei is the Cartesian base vector. For simplicity,

the superscript H will be omitted and EH will be written as

E. Further the Green Lagrange strain tensor is represented

by it’s Cartesian and covariant components as follows

E =
1

2
(gi · g j − Gi · G j )G

i ⊗ G j

= Ei j ei ⊗ e j = Êi j G
i ⊗ G j

=
1

2

(

Gi ·
∂u

∂ξ j
+

∂u

∂ξ i
· G j +

∂u

∂ξ j
·

∂u

∂ξ i

)

Gi ⊗ G j

(16)

Ei j and Êi j being respectively the components of the Green

Lagrange tensor in the Cartesian and covariant frame. In

Voigt notation the Cartesian and covariant Green–Lagrange

strain are related as follows

E = TÊ (17)

with

E = {E11, E22, E33, 2E12, 2E23, 2E13}
t and

Ê = {Êξξ , Êηη, Êζ ζ , 2Êξη, 2Êηζ , 2Êξζ }
t (18)

and T a second-order matrix which contains the terms of the

inverse of the jacobian J matrix as follows

T =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

J
2

11 J
2

21 J
2

31 J 11 J 21 J 21 J 31 J 11 J 31

J
2

12 J
2

22 J
2

32 J 12 J 22 J 22 J 32 J 12 J 32

J
2

13 J
2

23 J
2

33 J 13 J 23 J 23 J 33 J 13 J 33

2J 11 J 12 2J 21 J 22 2J 31 J 32 J 12 J 21 + J 11 J 22 J 22 J 31 + J 21 J 32 J 12 J 31 + J 12 J 32

2J 12 J 13 2J 22 J 23 2J 32 J 33 J 13 J 22 + J 12 J 23 J 23 J 32 + J 22 J 33 J 13 J 32 + J 12 J 33

2J 11 J 13 2J 21 J 23 2J 31 J 33 J 13 J 21 + J 11 J 23 J 23 J 31 + J 21 J 33 J 13 J 31 + J 11 J 33

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(19)

From the variation of the first line of Eq. (16) we can write

the covariant strain-displacement B̂I at the node I (I =

1, . . . , 8), such that δ Ê I = B̂I δUI as follows

B̂I =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

NI ,ξ gt
1

NI ,ηgt
2

NI ,ζ gt
3

NI ,ξ gt
2 + NI ,ηgt

1

NI ,ξ gt
3 + NI ,ζ gt

1

NI ,ηgt
3 + NI ,ζ gt

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(20)
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e2

e3

Fig. 2 Configuration of the SB9 element

By considering the Eqs. (8) et (14), B̂I can be decomposed

into the reduced integrated part B̂ri
I and a stabilization part

B̂stab
I as follows:

B̂I = B̂ri
I + B̂stab

I (21)

With

B̂ri
I = B̂0

I + ζ B̂
ζ
I (22)

And

B̂stab
I = ξ B̂

ξ
I + ηB̂

η
I + ξηB̂

ξη
I + ηζ B̂

ηζ
I + ξζ B̂

ξζ
I (23)

The components of Eqs. (22) and (23) are the basic build-

ing blocks of all solid-shell elements and are detailed in

“Appendix”.

5 Assumed natural strain

5.1 Assumed shear strain

One way to reduce shear locking is to use the ANS concept

following the work of Bathe and Dvorkin [32,34]. The trans-

verse shear strain is evaluated in the four-middle edges points

of the mid-surface of the solid-shell. To interpolate through

the volume certain authors multiplied the mid-plane shear

strain with the well known Reissner function [30,31]. This

kind of interpolation ensures a systematic respect of the stat-

ical condition of shear stress in the element upper and lower

faces. However in non-linear problem involving material non

linearity and large deformation, that interpolation becomes

obsolete since it does not guarantee the satisfaction of stat-

ical condition in the shell faces. Beside, such interpolation

does not allow the element to naturally handle frictional con-

tact problems since the shear deformation is assumed to be

nil in the element upper and lower faces. Also it has been

Fig. 3 Positions of ANS tying points

shown that such interpolation lead to a ill conditioned rigid-

ity matrix. To avoid those inconveniences we applied the

ANS technique following the work of Cardoso [12], Alves

de Souza [37,51], Schwarze [10]. In the covariant frame,

each of the shear deformation Êηζ and Êξζ are interpolated

using the equivalent shear deformation from four different

tying points (Fig. 3). E(−1, 0,−1), F(1, 0,−1), G(1, 0, 1)

and H(−1, 0, 1), for Êηζ and J(0,−1,−1), K(0, 1,−1),

L(0, 1, 1) and M(0,−1, 1) for Êξζ . Hence the assumed shear

deformations of the element is computed as follows

ÊANS
ξζ =

1

4
(1 ∓ ζ )((1 − η)Ê J

ξζ + (1 + η)Ê K
ξζ

+ (1 + η)Ê L
ξζ + (1 − η)Ê M

ξζ )

ÊANS
ηζ =

1

4
(1 ∓ ζ )((1 − ξ)Ê E

ηζ + (1 + ξ)Ê F
ηζ

+ (1 + ξ)ÊG
ηζ + (1 − ξ)Ê H

ηζ )

(24)

5.2 Assumed normal strain

In order to eliminate the curvature thickness locking, we fol-

low the assumed pinching strain as suggested by Bischoff

and Ramm [18], Betsch and Stein [17], Schwatz and Reese

[13].

ÊANS
ζ ζ = NA Ê A

ζ ζ + NB Ê B
ζ ζ + NC ÊC

ζ ζ + ND Ê D
ζ ζ (25)

Nk =
1

4
(1 + ξkξ)(1 + ηkη) for k = A, . . . , D (26)

6 Introduction of the enhancement

As assessed in Sect. 3 the presence of the additional node has

two main aims. First getting a linear normal strain compo-

nent which, along with a full three-dimensional constitutive

strain–stress behavior, allows to achieve similar results in

bending cases as those obtained with the usual plane stress

state hypothesis. For that, the ninth node DOF plays the role

of an extra parameter essential for a quadratic interpolation

of the displacement in the thickness direction. In this case the

extra DOF is similar to the EAS parameter seen in many solid-

shell finite element. The main goal of the EAS parameter is

6



to enrich the normal deformation so that to avoid Poisson

thickness locking. However what we have discovered is that

even though this parameter allows to enhanced the element

deformations, its contribution to the pinching stress is little to

none. When a shell structure under one or double sided pres-

sure load, solid shell elements proposed in the literature can

give accurate results for the displacement thanks to the EAS

parameter however when we look at the stresses, mainly the

normal stress, we can see that they are less accurate. The nor-

mal stress do not respect the Neumann boundary condition

when the shell is under pressure load. One should put more

elements through the shell thickness direction to improve

the normal stress accuracy, which is limiting since the main

goal of solid-shell element is to put only one element in the

shell thickness direction. Hence, The second advantage of

the additional DOF is that it has a physical meaning and, for

instance, a strength equivalent to a normal pressure can be

prescribed to improve the normal stress.

6.1 The ninth node

The additional central node is endowed with only one trans-

lation degree of freedom in the element thickness direction ζ .

The enhanced normal displacement in the thickness direction

is written as follows

uζ (ξ, η, ζ ) = u H
ζ (ξ, η, ζ ) + (1 − ζ 2)u9

ζ (27)

u9
ζ being the one and only relative displacement of the ninth

node, in through the thickness direction g3 as proposed by

ahmad [63], u H
ζ the normal displacement of the eight node

element considered alone. A new column is then added to

the covariant matrix B̂
H

making it a 6 by 25 matrix B̂

B̂ =
[

B̂H B̂9
]

(28)

with

B̂9 = [0 0 − 2ζ 0 0 0]T

One can then write the variation of the pinching strain in the

covariant basis as follows:

δEζ ζ = B̂H
3 δu H

ζ − 2ζ δu9
ζ (29)

B̂H
3 being the third line of matrix B̂H .

6.2 Equivalent generalized nodal pressure forces

The advantage of having real extra degrees of freedom (DOF)

instead of simple parameters is the possibility to physically

act on them. For example, the nodal forces equivalent to a

normal pressure are prescribed at the apexes but also on the

extra node in order to get the proper normal stress distribu-

tion. This has been previously done for the element Q5TTS

[30] and a similar method is presented here for the 9-node,

25-DOF, solid-shell element SB9. To easily find the distri-

bution of the required forces at each node, let us consider a

hexahedral element (Fig. 4) on which are defined two normal

pressures Ps in the upper face and Pi in the lower face. From

Eq. (29), assuming a small change of direction of covariant

vector g3 we can deduce the variation of the actual normal

strain, in the Ahmad base frame as follows

δE33 =
δu+

9 − δu−
9

h
− 4ζ

δu9

h
(30)

where δu+
9 and δu−

9 are respectively the variation of the

average normal displacement of the upper and lower face

of the element, h the element average thickness and δu9 the

variation of the ninth node displacement [31]. Assuming the

pinching stress S33 is linear through the element thickness:

S33 =
1

2
(ζ − 1) Pi −

1

2
(ζ + 1) Ps (31)

the virtual equilibrium condition in the thickness direction

can then be written and the equivalent nodal force distribution

deduced as follows:

8
∑

i=1

Fiδui + F9δu9

=

∫

S0

(Pi − Ps) δui dS0 +

∫

�0

δE33 · S33d�0 (32)

Fi =
1

4
Pi Ai , i = 1, 2, 3, 4

F j =
1

4
Ps As, j = 5, 6, 7, 8

F9 =
2

3
(Ps As − Pi Ai )

(33)

with Ai and As being the element lower and upper surface

area. It is well known that solid-shells with only one layer

of elements over the thickness are not able to reproduce a

transverse normal stress state which is equal to the applied

facials pressures. The new formulation herein (33) improves

this lack, so the normal stress gives the accurate values cor-

responding to the applied pressures in the boundaries with

only one element in the thickness direction.
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Fig. 4 Projected view of the SB9 under pressure

7 Stabilization procedure

7.1 Green Lagrange strain stabilization

The goal of the stabilization procedure is to correct the rank

deficiency of the stiffness matrix coming from the adopted

reduced integration scheme. The reader is refered to the

important work in this subject by Liu, Belytschko and al

[47,52], Cardoso et al. [12,24], Alves de Souza [37,51],

schwarze [13]. In some solid-shell formulation, the Jacobian

matrix and it’s inverse are only evaluated at the element cen-

ter, see for example [31,40,41]. Such approximation assumes

that the real element can be represented by it’s equivalent

parallelepiped. And this is quite accurate for thin and not

very distorted meshes. However for highly initially distorted

meshes that assumption shows lack of accuracy [13]. In

order to take into consideration the realistic shape of the ele-

ment and stabilize properly the stiffness matrix, a polynomial

decomposition of the inverse Jacobian matrix is derived fol-

lowing the work of schwarze and Reese [13]. The matrix T

of Eq. (19) is decomposed into constant and linear terms as

follows

T ≈ T0 + ξTξ + ηTη + ζTζ (34)

It has been shown in [13] that a very good accuracy is reached

just using the constant and linear terms of T. Hence, the

bilinear terms are ignored. In the same way, the covariant

Green Lagrange strain tensor can be split into it’s constant,

linear and bilinear terms and the Cartesian Green Lagrange

strain can then be derived as follows:

E ≈
(

T0 + ξTξ + ηTη + ζTζ
)

(

Ê0 + ζ Êζ + ξ Êξ + ηÊη + ξηÊξη + ξζ Êξζ + ηζ Êηζ
)

≈ E0 + ζEζ + ζ 2Eζ2

︸ ︷︷ ︸

Eri

+ ξEξ + ηEη + ξηEξη + ξζEξζ + ηζEηζ

︸ ︷︷ ︸

Estab

(35)

and

E = Eri + Estab (36)

The strain-displacement gradient can be split the same way

B ≈
(

T0 + ξTξ + ηTη + ζTζ
)

(

B̂0 + ζ B̂ζ + ξ B̂ξ + ηB̂η + ξηB̂ξη + ξζ B̂ξζ + ηζ B̂ηζ
)

≈ B0 + ζBζ + ζ 2Bζ 2

︸ ︷︷ ︸

Bri

+ ξBξ + ηBη + ξηBξη + ξζBξζ + ηζBηζ

︸ ︷︷ ︸

Bstab

(37)

so that B can be written as

B = Bri + Bstab (38)

Estab and Bstab represent the terms cancelled in the reduced

integration. The process of stabilization consists in ana-

lytically restoring those terms into the stiffness matrix.

Furthermore to eliminate volumetric locking, the B-bar

approach [64] is adopted. Hence the hourglass counterpart

of the stabilized strain end strain-displacement operators are

split into there volumetric and deviatoric components, and

only the deviatoric part are kept

Bstab = Bstab
dev (ξ, η, ζ ) + Bstab

vol (0, 0, 0) (39)

Since no constant term is present in the expansion of Bstab

(see Eq. 37)

Bstab
vol (0, 0, 0) = 0 (40)

and

Bstab = Bstab
dev (ξ, η, ζ ) (41)

The stabilization components of the strain and strain-

displacement matrices being well identified, a similar appro-

ach is used to identify the stabilization stress.

7.2 Second Piola Kirchhoff stress stabilization

From Eq. (36), since the two parts of the Green Lagrange

strain tensor are orthogonal, the internal energy is split like

W (E) = W ri(Eri) + W stab(Estab) (42)

Since second Piola Kirchhoff tensor is the derivative of the

internal energy with respect to Green–Lagrange strain, the

stabilization counterpart can be identified by simply writing

the derivative:

S =
∂W (E)

∂E
(43)

=
∂W ri(Eri)

∂Eri

∂Eri

∂E
+

∂W stab(Estab)

∂Estab

∂Estab

∂E
(44)

= Sri(Eri) + Sstab(Estab) (45)
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Sri(Eri) is Piola Kirschhoff obtained from the integration of

constitutive law and Sstab(Estab) Piola Kirchhoff stress for

stabilization. The key point of the stabilization is to find an

optimal way to evaluate that stabilization stress without inte-

grating it so that the computation time is minimized. Now

just as being explained before, to avoid volumetric locking,

only the deviatoric part of the Piola Kirchhoff stabilization

tensor is kept. Doing so, the stabilization of the stress is given

as

Sstab = Cstab : Estab (46)

Cstab being the deviatoric part of St Venant Kirchhoff material

given as follows

Cstab = μstab

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

4
3

−2
3

−2
3

0 0 0
−2
3

4
3

−2
3

0 0 0
−2
3

−2
3

4
3

0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(47)

With μ the shear modulus evaluated, in elastic material

behavior, as μstab = E/2(1 + ν), in which E and ν are

respectively the Young’s modulus and the Poisson ratio. For

inelastic materials, using the elastic shear modulus lead to an

overestimation of the stabilization stress. To overcome such

problem the secant modulus as defined in Belytschko and

Bindeman [54] is used:

2μstab =

√
πS

πE

, (48)

where

πS =
1

2
Sdev : Sdev , πE =

1

2
Edev : Edev (49)

These ways of evaluating the stabilization parameter μstab

is very convenient because there is no need for consistent

linearization of stabilization constitutive matrix, which is

very interesting in terms of computation time. Moreover, the

proposed definition of Cstab ensures an efficient and robust

stabilization.

8 Linearization of the weak form

In order to solve the nonlinear variational equation, we use

a Newton–Raphson iterative method through a sequence of

linearization. Assuming that the external energy is displace-

ment independent, we only give details of the linearization

of the internal energy.

L [δπint] =

∫

�0

(�S : δE + S : �(δE))d�0 (50)

with

�S =
∂S

∂E
: �E = D : �Eri + D : �Estab

�E = �Eri + �Estab = Bri�U + Bstab�U

δE = δEri + δEstab = BriδU + BstabδU

�(δE) = δUt (Bri + B
stab)�U

(51)

Equation (50) can be split into a material stiffness and a

geometrical stiffness.

∫

�0

�S : δEd�0

= δU

(∫

�0

(Bri)t DBrid�0 +

∫

�0

(Bstab)t DBstabd�0

)

�U

= δUt
(

Kri
m + Kstab

m

)

�U

(52)

and

∫

�0

S : �(δE)d�0

= δU

(∫

�0

B
riSrid�0 +

∫

�0

B
stabSstabd�0

)

�U

= δUt
(

Kri
g + Kstab

g

)

�U

(53)

With

Kri
m = 4J0

∫ 1

−1

(B0 + ζBζ + ζ 2Bζ 2

)t D(B0 + ζBζ + ζ 2Bζ 2

)dζ

Kstab
m = J0

[

Bηt DBη + Bξ t DBξ
] 8

3

+ J0

[

Bξηt DBξη + Bξζ t DBξζ + Bηζ t DBηζ
] 8

9

Kri
g = J0

∫ 1

−1

(B0 + ζB
ζ + ζ 2

B
ζ 2

)Sridζ

Kstab
g = J0

[

B
ξ Sξ + B

ηSη
] 8

3

+ J0

[

B
ξηSξη + B

ηζ Sηζ + B
ξζ Sξζ

] 8

9

(54)

Kri
m and Kstab

m are respectively the integrated stiffness matrix

and its stabilization counterpart, Kri
g and Kstab

g respectively

the geometrical stiffness matrix and it’s counterpart. J0 is the

determinant of the Jacobian matrix. Note that the stabiliza-

tion matrices are computed analytically without numerical

integration. In the same way, one can write the internal force

and it’s stabilization counterpart as

9



Fri
int = 4J0

∫ 1

−1

(B0 + ζBζ + ζ 2Bζ 2

)T Sdζ

Fstab
int = J0

[

Bξ t Sξ + Bηt Sη
] 8

3

+ J0

[

Bξηt Sξη + Bξζ t Sξζ + Bηζ t Sηζ
] 8

9

(55)

9 Numerical implementation

In this section, the main features of the element implementa-

tion is briefly described. The element has been implemented

in the implicit nonlinear finite element code Code_aster. In

this process, the total Lagrangian formulation is adopted

making it obsolete the use of a co-rotational formulation.

The equilibrium equations are solved step by step using an

iterative procedure based on the Newton–Raphson scheme.

These iterations are performed until the residual load vec-

tor is sufficiently small, using a constant tangent stiffness

matrix built at the beginning of the current time step. It’s

worth noting that the stabilization process borrowed from

the work of Schwarze and Reese [13] shows a very good

robustness allowing some structural instabilities problems

involving either a load-limit point (’snap-through’) or a

deflection-limit point (‘snap-back’) to be overcomed simply

with a Newton–Raphson algorithm without adopting arc-

length control parameter. The first two tests intend to show

the importance of the enhancement of the normal stress which

is possible thank to the additional middle node. The fol-

lowing tests are classical tests available in the literature to

show the performance of the element in bending problems,

in large deformation with or without material non-linearity.

The different finite elements used as reference for compari-

son are:

– Q1STs: Reduced integrated solid-shell element with EAS

and ANS by Schwarze [13]

– Q5TTS: 5-nodes quadrilateral with through thickness

stress by Sansalone [30]

– SHB8PS: Reduced integrated solid-shell with ANS by

Abed Meraim and Combescure [40]

– S4R: ABAQUS’s four-node shell element models [65]

9.1 Circular clamped plate

The goal of this test is to show the main advantage of the ninth

node compared to a EAS parameter alone. We consider a disk

of radius R = 100 mm and of thickness t = 1 mm. The mate-

rial is isotropic. The Young modulus is E = 2×105 MPa and

the Poisson ratio ν = 0.3. Two studies have been done. In the

first study a uniform normal pressure Pu = 0.01172 N/mm2

is applied in the upper side of the plate. In the second

study two normal pressures Pu = 2 × 0.01172N/mm2 and

Pl = 0.01172 N/mm2 have been respectively applied in the

upper and lower faces of the circular plate. The theoretical

displacement of the plate center (C in Fig. 5) is (U )C = 1mm

according to Kirchhoff’s theory. Tables 1 and 2 show respec-

tively the results for study 1 and study 2 from different finite

elements. It is interesting to notice that all different finite

elements give good result if we look at the plate center dis-

placement. However the interesting thing to notice is the

pinching stress given by the different elements. The SHB8PS

and the S4R of abaqus give a nil value for the pinching stress,

which is normal since they work with plane stress state. The

EAS-only (here used with 5 Gauss points) and the SB9 are

both using a full 3D constitutive law but we can see a non

negligible difference in the pinching stress. In Tables 3 and 4

the pinching stress for the two elements are detailed in order

to have a broad view of what is happening in the shell thick-

ness. The pinching stress is almost constant in the thickness

direction for the EAS solid-shell, while for the SB9 element

we have a better normal stress which satisfy the boundary

condition. This is the main benefice of utilizing a additional

node compared to a simple EAS parameter. It allows to split

the applied pressure so that the pinching stress is more accu-

rate.

Thanks to their additional nodes the Q5TTS and the

SB9 use a 3D constitutive law and give a pinching stress

that is very accurate, on the contrary of the other ele-

Fig. 5 Circular clamped plate

10



Table 1 Center displacement and normal stress

Q5TTS S4R SHB8PS SB9 EAS only

Uc 0.9874 0.995 0.995 0.995 0.995

σ

∣
∣
∣
∣

top

bottom

0.0 0.0 0.0 0.0 − 0.0058

− 0.01172 0.0 0.0 − 0.01172 − 0.0058

Table 2 Center displacement and normal stress

Q5TTS S4R SHB8PS SB9 EAS only

Uc 0.9874 0.995 0.995 0.995 0.995

σ

∣
∣
∣
∣

top

bottom

0.0 0.0 0.0 0.0 − 0.0058

− 0.01172 0.0 0.0 − 0.01172 − 0.0058

Table 3 Pinching stress at Gauss point: study 1

σ at Gauss points EAS-only SB9

1 −0.00585 −0.000000

2 −0.00585 −0.002021

3 −0.00585 −0.005857

4 −0.00585 −0.009693

5 −0.00585 −0.011717

Table 4 Pinching stress at Gauss point: study 2

σ at Gauss points EAS-only SB9

1 −0.01757 −0.01171

2 −0.01757 −0.01373

3 −0.01757 −0.01757

4 −0.01757 −0.02140

5 −0.01757 −0.02343

ments that use the plan stress assumption or only the EAS

parameter.

9.2 Under pressure cylinder

This test case, like the previous one, is designed to study the

pinch response of the SB9 element but this time with a curved

structure. We consider a cylinder under internal and external

pressure and evaluate the normal stress (pinching stress). For

symmetry reasons only one eighth of the cylinder is meshed,

the Fig. 6 being obtained by several reflections relative to

the axes of symmetries. The geometric and material charac-

teristics of the test are displayed in Table 5. The results are

compared to an approximate analytical solution. The results

are compared to an approximate analytical solution:

Table 5 Geometric and material characteristics

Radius R 1

Thickness t 0.01

Young modulus E 1 × 107

Poisson ratio ν 0.0

Internal pressure Pi 2

External pressure Pe 1

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

σrr (r) =

(

P
R

2t
− P

)

− P
R

2t

(
R

r

)2

P = Pi − Pe

P =
1

2
(Pi + Pe)

(56)

Pi and Pe are the pressures applied on the inner and outer

walls of the cylinder. R and t represent the radius and thick-

ness of the cylinder. In Table 6 we can observe the values of

the normal stress, compared to those given by the analytical

solution of Eq. 56.

In this test also, we find the static admissibility σrr =

[σ · n] · n = −p, where σ is the stress field, n the normal on

the face and p the applied pressure. We can thus see the inter-

est of the additional term compared with a EAS parameter

alone without enhancing the pinching stress.

9.3 Bending of a cantilever beam

In this test we investigate the out-of-plane bending of a can-

tilever beam under a tip load. The problem has been analyzed

by many authors [8,10,48,59,66,67]. As shown in Fig. 7,

the beam has a side length of L = 10 mm and a rectan-

gular cross section of width B = 1 mm and a thickness

t = 0.1 mm. The material is isotropic and has a Young mod-

ulus E = 107N/mm2 and a Poisson ratio ν = 0.3. The

total load is Fmax = 40N introduced in ten time increments.

The Beam is discretized by one element along the width

and thickness direction and 16 elements along the length.

The numerical integration is performed with Gauss points

through the thickness direction. A first study has been made

to assess the convergence of the SB9 for this test, using a reg-

ular mesh and then a highly distorted mesh. Figure 8a gives

the load displacement path for the two different meshes. The

displacement at convergence is in agreement with the analytic

solution given in [68]. The load displacement path is identical

for both the regular and distorted mesh, proving that the SB9

is very insensitive to mesh distortion. In a second time the

behaviour of the element in the near quasi-incompressible sit-

uations is investigated. The regular mesh is kept but this time

the Poisson ratio is varied between ν = 0.0 and ν = 0.4999.

The element still gives good result showing no sign of volu-

metric locking, see Fig. 8b.
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Table 6 Pinch stress on the 5

Gauss points
Pts Gauss 1 2 3 4 5

σrr Analyt − 2.00378 − 1.82894 − 1.5 − 1.17427 − 1.00373

σrr SB9 − 1.99915 − 1.82648 − 1.49915 − 1.17183 − 0.99915

Erreur (%) 0.04 0.00 0.05 0.02 0.45

Fig. 6 Cylinder’s mesh

Fig. 7 Bending of a cantilever beam

9.4 Spherical shell with 18 degree hole

In this example the hemispherical shell with an 18 degree

circular cut out at it’s pole is studied. The shell is loaded by

an alternating radial point forces F at 90 degree intervals, see

Fig. 9. This is a well known problem as it has been considered

by many authors [10,15,69–71], to name just a few. Thanks

to symmetry, only one-quater of the shell is modeled with

a 16 × 16 mesh. The geometrical parameters used are the

same used by [71] with a radius of R = 10.0 mm and a

thickness of t = 0.04 mm which give a ratio R/t = 250. So

this is a relatively severe test more likely to exhibit locking

effects. The structure is subdued to two concentrated force

F = 100N as shown in Fig. 9. The material parameters are

the Young modulus E = 6.825×107N/mm2 and the Poisson

ratio ν = 0.3. The total number of increment to reach the
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(a) Distortion analysis
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(b) near-incompressibilty analysis

Fig. 8 Evolution of the cantilever beam’s free-edge displacement

maximum load is 10. In Fig. 10, the deformation path of the

points A and B are plotted and compared to the values given

by Sze [71]. The results given by the SB9 element is in good

agreement with the reference solutions.
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Fig. 9 Pinched hemisphere with

hole
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Fig. 10 Evolution of displacement of hemisphere

9.5 Stretched cylinder with free edge

Loaded by two opposite singles forces, see Fig. 11, the

cylinder undergoes a significantly large rotation combining

bending and membrane effects. The geometric is defined

by a length L = 10.35, a radius R = 4.953 and a thick-

ness T = 0.094 mm. The material properties are given by

the Young modulus E = 10.5 × 106N/mm2 and the Pois-

son ratio ν = 0.3125 and the applied load in each side is

F = 40K N . Due to the symmetry of the problem, only

one eighth of the system is discretized. In order to investi-

gate the convergence several meshes refinements are tested

including 8 × 12, 16 × 24 and 20 × 30, with only a single

element through the thickness. Using the present formula-

tion of the SB9 the problem is modeled using a 16 × 24

mesh and the results are compared to those tabulated in Sze

et al [71]. Figure 12 shows the results in term of load versus

radial displacements at points A, B and C. Point A corre-

sponds to the point under the loading, while point B and C are

on the side of the cylinder and undergo horizontal displace-

ments see Fig. 12. As it can be seen in the load-displacement

curves, the overall response exhibits two regimes : a first stage

dominated by bending effect and characterized by large dis-

placements and rotations, and a second phase dominated by

membrane effects, which may cause locking. It’s also impor-

tant to note the snap-through phenomenon arising when the

loading reaches the critical value of around 20K N . This can

be seen through the displacement reversal that occurs on the

Fig. 11 Stretched cylinder with

free edge
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Fig. 12 Evolution of displacement of stretched cylinder

load displacement curve of point C. This new formulation of

the SB9 element gives results in very good agreement with

the reference solution, with no locking effect.

9.6 Pinched cylindrical shell mounted over rigid
diaphragms

This problem and its variations have been considered by

many authors [3,69–71], among others. The cylinder shell is

mounted on a rigid diaphragms and is subjected to two pinch-

ing forces load Pmax = 12000 as shown is the Fig. 13a. The

dimensions of the cylinder are a length of L = 200, a radius

R = 100 and a thickness h = 1. The material properties are

Young Modulus E = 30×103 and the Poisson ratio ν = 0.3.

Thanks to symmetry, one-eighth of the shell is modeled. A

commonly employed mesh of 40 × 40 solid-shell elements

is used in this test. Figure 14 shows the displacement of the
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Fig. 14 Evolution of displacement of pinched cylinder

points A and B, compared with those given in [71] with the

Abaqus S4R element.

9.7 Simply supported plate

In this example the simply supported plate under pressure is

addressed. The problem has been treated by many authors

[8,10,59,72,73] among others. The geometric parameters of

the plate are represented by the side length L = 508 mm

and the thickness t = 2.54. Thanks to symmetry only one

quarter of the plate is represented, Fig. 15b being obtained by

reflexion. As boundary conditions, the outer lower side edge

of the plate is fixed in the vertical direction (u3 = 0), hence

the rotation around these axes is possible. A uniform pressure

p = λp0 with p = 0.01N/mm2 is applied. The maximum of

the load factor is λmax = 40. The material is taken ideally

elastic-plastic with E = 6.9 × 104N/mm2, ν = 0.3 and the

yield stress σy = 248N/mm2. Figure 16 gives the evolution

of the normal displacement of the plate center compared to

the results given in [10].

Fig. 13 Pinched cylindrical

shell mounted over rigid

diaphragms

14



Fig. 15 Simply supported plate
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Fig. 16 Evolution of the normal displacement of the plate center

9.8 Stamping of a sheet by a cylindrical punch

This test represents a calculation of the drawing of a square

sheet metal by a rigid cylindrical punch in the presence of

large plastic deformations. This test is useful in the simulation

of sheet metal forming. The sheet metal is modelled in SB9

elements. The punch and die are rigid elements. The contact

between the different elements is modelled by a continuous

formulation. The side length of the sheet is L = 160 mm

and thickness e = 2 mm. the die is h = 35 mm deep with
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Fig. 18 Hardening law

a diameter of D = 100 mm. The geometric details of the

tools are visible in the Fig. 17 The elastic parameters are

the Young modulus E = 200,000 MPa and the Poisson ratio

ν = 0.3 and the hardening law is plotted in Fig. 18. To stamp

the sheet, the punch is imposed with a vertical displacement

from 0 to 35 mm. Figure 19 shows the deformation state of

the sheet. This concludes that for these kind of problems the

SB9 element is very robust, gives excellent results and is

quite efficient.

Fig. 17 Stamping of a sheet by

a cylindrical punch, tools

geometry
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Fig. 19 Stamping of a sheet by a cylindrical punch, deformation state

10 Conclusion

In this paper we have presented a nine nodes solid-shell

finite element with a improved pinching stress. A ninth

node, with one translational degree of freedom through the

element thickness, is added in the middle of the classical

hexahedral solid-shell to allow the unrestricted use of 3D con-

stitutive law without encountering Poisson thickness locking.

Furthermore the adjunction of this middle node allows a

redistribution of a pinching pressure force between a sur-

face contribution and a volume contribution. This improves

considerably the normal stress and gives better results than

elements with the EAS parameter alone, without pinching

stress enrichment. In addition to eliminating pinching and

volumetric locking thanks to the middle node, transverse and

trapezoidal shear locking are reduced by the assumed strain

method applied to both transverse shear and pinch strain. To

avoid zero energy modes, the stabilization terms are isolated

and analytically integrated considering only their deviatoric

part following the B-bar method. The finite element for-

mulation has been subjected to a number of representative

numerical assessments and the results are very accurate.

The SB9 finite element is implemented into the quasi-static

implicit software code_aster developed by the French energy

and electricity company (eDF).
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11 Appendix

J0 =
1

8

⎡

⎢
⎣

a I
1 x I

1 a I
1 x I

2 a I
1 x I

3

a I
2 x I

1 a I
2 x I

2 a I
2 x I

3

a I
3 x I

1 a I
3 x I

2 a I
3 x I

3

⎤

⎥
⎦ (57)

Jξ =
1

8

⎡

⎢
⎣

0 0 0

h I
1x I

1 h I
1x I

2 h I
1x I

3

h I
3x I

1 h I
3x I

2 h I
3x I

3

⎤

⎥
⎦ (58)
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1

8
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1 h I
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2 h I
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3
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h I
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3

⎤

⎥
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1
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2 h I
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0 0 0

⎤

⎥
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Jξη =
1
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h I
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1 h I
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2 h I
4x I

3
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Jξζ =
1

8
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h I
4x I

1 h I
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2 h I
4x I
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0 0 0
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Jηζ =
1

8

⎡

⎢
⎣

h I
4x I

1 h I
4x I

2 h I
4x I

3

0 0 0

0 0 0

⎤

⎥
⎦ (63)

Here are given the in-plane part of the parameter of equa-

tions (22) and (23). The normal and shear part being sorted

from Sect. 5.
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B̂0
m I =

⎡

⎢
⎣

a1I J0
1

a2I J0
2
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2 + g2I J0
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J1, J2, J3 being the rows of the Jacobian matrix in the cur-

rent configuration. Note that the rows of the jacobian matrix

contrain the coordinates of the covariant gi vectors.

11.1 Decomposition of T

The Inverse of the Jacobian matrix is decomposed keeping

only the constant and linear terms as follows

J−1 ≈ J−1|ξ=0 +

3
∑

i=1

J−1
,ξi

|ξ=0ξi (71)

The constant term being easily determined, the work will be

to determine the linear terms with very limited resources.

To do so, the Eq. (72) is simply derived with respect to the

corresponding convective parameter and gives the Eq. (73).

JJ−1 ≈ (JJ−1)|ξ=0 +

3
∑

i=1

(JJ−1),ξi
|ξ=0ξi (72)

0 = (JJ−1),ξi
|ξ=0 = J,ξi

|ξ=0J−1|ξ=0 + J|ξ=0J−1
,ξi

|ξ=0

(73)

From Eq. (73) one can easily determine the linear Jacobian

terms, as follows, all terms being known or determined easily.

J−1
,ξi

|ξ=0 = −(J0)−1Jξi (J0)−1 (74)

Hence, a good representation of the inverse Jacobian matrix

is known and one can simply insert these terms into Eq. (19)

to sort the taylor decomposition of the matrix T

J−1 ≈ J−1|ξ=0 −

3
∑

i=1

(J0)−1Jξi (J0)−1ξi (75)
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