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ABSTRACT
The observation of the transient sky through a multitude of astrophysical messengers has led to several scientific breakthroughs
in the last two decades, thanks to the fast evolution of the observational techniques and strategies employed by the astronomers.
Now, it requires to be able to coordinate multiwavelength and multimessenger follow-up campaigns with instruments both in
space and on ground jointly capable of scanning a large fraction of the sky with a high-imaging cadency and duty cycle. In the
optical domain, the key challenge of the wide field-of-view telescopes covering tens to hundreds of square degrees is to deal
with the detection, identification, and classification of hundreds to thousands of optical transient (OT) candidates every night in a
reasonable amount of time. In the last decade, new automated tools based on machine learning approaches have been developed
to perform those tasks with a low computing time and a high classification efficiency. In this paper, we present an efficient
classification method using convolutional neural networks (CNNs) to discard many common types of bogus falsely detected in
astrophysical images in the optical domain. We designed this tool to improve the performances of the OT detection pipeline of
the Ground Wide field Angle Cameras (GWAC) telescopes, a network of robotic telescopes aiming at monitoring the OT sky
down to R = 16 with a 15 s imaging cadency. We applied our trained CNN classifier on a sample of 1472 GWAC OT candidates
detected by the real-time detection pipeline.

Key words: methods: data analysis – surveys – (transients:) neutron star mergers – transients: supernovae.

1 IN T RO D U C T I O N

The time-domain astronomy aims at studying transient phenomena
with a wide variety of flux and time-scales detected within a very
broad range of localization accuracies in the sky depending on
the astrophysical messengers emitted [electromagnetic, gravitational
waves (GWs), and high-energy particles]. For several centuries, the
main observed transient phenomena were the supernovae (SNe) in
the optical domain, tracing the violent fate of the most massive
stars undergoing a core collapse or the thermonuclear explosion of
white dwarfs accreting the matter of a companion star (see e.g. Gal-
Yam 2017, about the SNe classification). In the last century, the
SNe were detected only at a rate of few per year,1 mainly because
the observational techniques and strategies were not optimized

� E-mail: dturpin@nao.cas.cn, damien.turpin@cea.fr
1See e.g. http://www.rochesterastronomy.org/snimages/snactive.html

to frequently detect such rare events.2 Therefore, the workload
pressure on the detection pipelines and classification tasks were
easily manageable by involving human actions in several steps,
especially knowing that SNe can be observed during several days
to months after the initial explosion with a 1-m class telescope.

A first major revolution, in the so-called time-domain astronomy,
came with the development of the high-energy X-ray and gamma-
ray telescopes and the detection of new classes of transients such
as the gamma-ray bursts (GRBs; Klebesadel, Strong & Olson 1973;
Kumar & Zhang 2015) or the flaring blazars (Brown et al. 1986;
Robson et al. 1988; Hartman et al. 1992). In addition to the high-
energy emission, those transients also produce low-energy broad-
band emission up to the radio wavelengths. Hence, multiwavelength
follow-up observations across the whole electromagnetic spectrum
became crucial to get a global picture of the physical processes

2The observed local (within 100 Mpc) SNe rate is about
10−4 SNe yr−1 Mpc−3 (Horiuchi et al. 2011).
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at work. The GRBs certainly represent one of the most extreme
observational challenges for the follow-up telescopes. First, the
short-living initial gamma-ray signal can be very poorly localized
within up to several tens of square degrees depending on the trigger
instrument. Then, a race against time is engaged to catch the so-called
multiwavelength afterglow emission that is fading very quickly so
that it usually becomes unreachable for a detection few days after the
trigger time by any X-ray or optical facility. This kind of transient
event has definitely led to the birth of a new type of astronomy where
different kinds of electromagnetic facilities have to work together in
near real time to complete the scientific data sets. Two decades ago,
in the optical domain, several groups started to develop networks of
small aperture robotic telescopes (e.g. ROTSE, TAROT, BOOTES,
and MASTER) that were3 capable of responding to any alert and
monitoring a large fraction of the night sky continuously with a high
cadence (Marshall et al. 1997; Boër et al. 1999; Castro-Tirado et al.
1999; Akerlof et al. 2003; Klotz, Vachier & Boër 2008; Lipunov
et al. 2010). The multiplication of the synergies between the space
and ground-based telescopes, all broadcasting alerts about a large
variety of transient sources, has largely contributed to increase the
flow of data to be analysed in real time (photometry, spectroscopy,
and polarimetry).

Currently, the increasing pressure on the data processing of the
follow-up telescopes studying the transient sky is significantly accel-
erating with the recent birth of the multimessenger (MM) astronomy
(see e.g. Abbott et al. 2017; IceCube Collaboration 2018; Keivani
et al. 2018) adding the high-energy neutrinos and the GW events in
the global alert broadcasting system.4 With the constant sensitivity
improvements of the electromagnetic and the MM facilities, one can
now regularly deal with the reception of several valuable transient
alerts of any astrophysical type every night. In the next decade, the
multiplication of the facilities dedicated to the study of the transient
sky and being able to make an all-sky monitoring at even deeper
sensitivities will continue to progress, e.g. the Rubin Observatory
Legacy Survey of Space and Time (LSST; Ivezic et al. 2008, 2019),
the Square Kilometer Array (SKA; Taylor 2000), KM3NeT (Adrián-
Martı́nez et al. 2016), SVOM (Wei et al. 2016), or the next generation
of GW detectors LIGO/Virgo and Kagra (Abbott et al. 2018). Those
projects will definitely make the time-domain astronomy enter into
the big data era. As an example, the LSST project (Ivezić et al. 2019)
will produce 20 TB of data every night with the possibility of having
several millions of alerts per night starting from 2021 and running
over 10 yr of operation. It should extend the known SNe catalogue
by more than three billion of new entries (more than two orders of
magnitude in terms of detection rate compared to any current survey).

In the optical domain, several groups already developed synoptic
surveys, like the Catalina Real-time Transient Survey (CRTS; Drake
et al. 2009), PTF (Law et al. 2009), ASAS-SN,5 PanSTARRS (Cham-
bers et al. 2016), ATLAS (Tonry et al. 2018), ZTF (Bellm et al. 2019),
DES (Goldstein et al. 2015), or Gaia (Gaia Collaboration 2018).
They quite naturally explore the optical transient (OT) sky and also
participate in various MM follow-up campaigns (see e.g. Abbott et al.
2017). The data flows generated by those surveys and the subsequent
processing to detect transients are already no longer manageable in a
reasonable amount of time by the standard techniques previously

3Most of them are still in operation.
4Most of the current MM alerting systems use the Global Coordinates
Network (GCN) to broadcast alerts in real time; see the GCN archive:
https://gcn.gsfc.nasa.gov/gcn3 archive.html
5http://www.astronomy.ohio-state.edu/∼assassin/index.shtml

used for narrow field-of-view telescopes (FoV ≤1◦) as shown,
for example, by the ZTF Collaboration (Mahabal et al. 2019). In
general, the transient detection pipelines are based on the point spread
function (PSF)-matching and the catalogue cross-matching methods
for the detection of new sources, followed by a human validation
of each transient candidate for the classification task. The growing
alert rates and data flows now force the astronomers to develop new
observational strategies and techniques to quickly detect, identify,
and classify the numerous uncatalogued sources they catch every
night in their extensive searches.

New techniques using machine learning algorithm are developed
to perform robust automated classifications of hundreds up to
thousands of sources every night in real time. The classification task
is usually split into two steps independently performed. First, the goal
is to filter out the bogus sources from the real uncatalogued sources
of interest (e.g. Masci et al. 2017; Jia et al. 2019; Mahabal et al. 2019;
Sánchez et al. 2019) immediately after the detection. The second step
goes deeper in the classification procedure by associating an astro-
physical category to an identified transient based on its photometric
and/or spectral properties and their temporal evolutions (e.g. Morii
et al. 2016; Narayan et al. 2018; Muthukrishna et al. 2019). Among
the zoo of machine learning algorithms, convolutional neural net-
works (CNNs) are known to be well adapted to ingest data containing
multiple arrays like images (Bishop 2006; Lecun, Bengio & Hinton
2015). As the interest in using CNNs for image recognition purposes
had rapidly grown in a large diversity of research domains during
the last few years, extensive studies have been undertaken to explore
their fields of applications and lead to very encouraging classification
performances (see e.g. Simonyan & Zisserman 2014; Szegedy et al.
2014; Tompson et al. 2014). Generally speaking, CNNs have truly
opened new perspectives for performing image recognition and
detection tasks to such an extent that they are now the dominant deep
machine learning methods used for such a work (see the review of
Lecun et al. 2015, and the references therein). The CNNs are now also
widely used in astronomy for performing classification tasks and es-
pecially the identification of real point-like sources and bogus. They
employ multiple interconnected layers, similar to a neuronal network,
to efficiently identify patterns in images that make them particularly
suitable for the time-domain astronomy needs (Gieseke et al. 2017).

In this paper, we investigate the possibility of using CNNs for the
vetting of the OT candidates that will be detected by the Ground
Wide field Angle Cameras (GWAC) network. The GWAC system
is a synoptic optical survey that is currently able to instantaneously
cover 2000 deg2 on the sky with a high-imaging cadency of one
frame every 15 s. In operation since 2017, GWAC is a part of the
ground-based follow-up system of the SVOM mission (Wei et al.
2016), the next generation of space mission dedicated to the study
of the multiwavelength transient sky. It already provides a large data
flow that must be smoothly digested by the real-time data processing
pipeline as well as a significant amount of OT candidates sometimes
well identified as real transients such as dwarf novae outbursts
recently discovered in the GWAC survey (Wang et al. 2019). The
GWAC network is a perfect example of the evolution of the optical
facilities that emerge nowadays to study the transient phenomena. It
brings new observational challenges that have to be solved in order
to exploit the full capabilities of the instruments.

In Section 2, we will describe the GWAC system and the transient
detection pipeline that is currently running. Then, in Section 3, we
will introduce the deep machine learning classifier we set up for the
vetting of the GWAC OT. The classification results and performances
will be presented in Section 4, and we finally draw our conclusions
and perspectives for this work in Section 5.
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Figure 1. The GWAC telescope network at the Xinglong Observatory in
China. Currently, 4 mounts are operational among 10 at completion. Each
mount is equipped with four JFoV cameras (18 cm) and one FFoV camera
(3.5 cm) located at the centre of the mount. The total FoV of the current
GWAC network is about 2000 deg2.

Table 1. Characteristics of the GWAC JFoV cameras.

Parameter Value

Field of view 150 deg2

Diameter 18 cm
CCD pixel size 13 μm
Pixel scale 11.7 arcsec
Readout noise 14 e−
Rlim (single 10 s/stack frame 1.5 h) 16/18

2 TH E G WAC T E L E S C O P E S

2.1 Instrumentation set-up

Since the end of 2017, the GWAC telescopes are under development
in China at the Xinglong Observatory. Each GWAC telescope mount
is equipped with five cameras: four JFoV cameras (4k × 4k CCD
E2V camera with an aperture of 180 mm) and 1 FFoV camera (3k ×
3k CCD camera with an aperture of 35 mm) mainly used to monitor
the sky seeing and brightness conditions (see Fig. 1). The main
scientific instruments, the JFoV cameras, cover a field of view of
about 12.4◦ × 12.4◦ per camera (∼150 deg2 per camera), for more
characteristic details see Table 1. Taking into account the overlaps
between the fields of view of the 4 JFoV cameras, a GWAC mount
finally covers 500 deg2 on the sky. Each JFoV camera is designed
to reach an unfiltered limiting magnitude of about 16 in a dark night
for 10 s of exposure. A stacking analysis of the single frames can be
performed in real time to reach a maximum limiting magnitude of R
∼ 18 in clear and dark night as shown in Turpin et al. (2020).

2.2 The GWAC OT detection pipeline

The search for OT in GWAC data is made through several steps
from the detection of candidates to their identification as being real
variable/transient sources. The raw images are first pre-processed
camera per camera to correct them from the dark and the bias offsets
and to make the WCS (World Coordinate System) calibration. Those
calibrated images are then automatically and independently analysed
by two pipelines to search for OT candidates. These two pipelines
make use of standard methods, comparing the scientific images with
reference images taken much earlier, such as the catalogue cross-
matching and the differential image analysis (DIA). Concerning the

Figure 2. A schematic view of the current GWAC detection pipeline set-up
to detect and identify the OT sources in both single and stacked images.

GWAC system, more details can be found in Turpin et al. (2020)
and Wang et al. (2019) but typically a new source is detected once it
fulfils the following criteria:

(i) The source has a signal-to-noise ratio (SNR) ≥ 5 and is not
detected down an SNR = 5 in the reference images.

(ii) The source is detected in several successive images.
(iii) The PSF of the source shall be stellar-like profile, i.e. a 2D

Gaussian profile.
(iv) No CCD defect is detected in a region of 6 pixels around the

source.

The uncatalogued sources extracted from those analysis form
the preliminary OT candidate list named OT1 candidates. Then,
several filters are applied on the source candidate parameters (the
full width at half-maximum, the SNR, the optical peak flux, the
source position, etc.) on at least five successive images. Practically
speaking, these filters aim to clean the OT1 candidates from most
of the spurious sources like the hot pixels or cosmic ray tracks. If
at least 2/5 images pass the selection criteria, the OT candidates is
kept otherwise it is rejected. A catalogue cross-matching filter using
deeper catalogues is then applied to the OT1 candidates that passed
the first selection criteria (see Fig. 2). Catalogues such as Gaia DR2
(Gaia Collaboration 2018), PanStarrs DR1 (Chambers et al. 2016),
2MASS (Skrutskie et al. 2006), Galex DR5 (Bianchi et al. 2011), or
public data bases on Solar system objects such as the Minor Planet
Center6 are used to perform this task.

After passing all of those filters, the remaining candidates are
grouped in the OT2 candidates. Subimages are then cropped from
each initial 4k × 4k JFoV image and subtracted from the sky
background contribution to make 100 × 100 pixel-sized finding
charts centred at the position of each selected OT2 candidate. These
finding charts are then checked one by one by a human visual
inspection. Simultaneously, two 60-cm robotic telescopes (GWAC-
F60A and GWAC-F60B) located beside the GWAC telescopes at the
Xinglong Observatory automatically perform follow-up observations

6https://minorplanetcenter.net/iau/mpc.html
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of any source found by the GWAC system in order to help the
GWAC scientist on duty to finally confirm the genuineness of a
given OT2 candidate. The GWAC-F60 telescopes can perform about
300 individual pointings every night at maximum. Once the OT
candidates are confirmed as being real transient sources, additional
follow-up observations can be triggered with larger telescopes and
public alerts can be released. This kind of detection pipeline is
commonly used in the time-domain astronomy. However, while it
is robust enough for telescopes with a very limited field of view
(typically few tens of arcmin), it turns to be no longer the optimal
solution for telescopes covering hundreds of square degrees in the
sky like the GWAC system as explained in the next section.

2.3 Data flow and false detection rate

The GWAC telescope network is operated in a sky survey mode
following a pre-defined sky grid pointing strategy to search for
bright OT events with a minimum of a subminute time-scale. Since
the beginning of 2019, four GWAC mounts (16 JFoV cameras) are
operational, but at completion, the full system will be composed of
10 mounts. This set-up implies the collection of a huge amount of
data every night with typically between 6000 and 8000 images taken
each night for a single telescope mount. When the observational
conditions are optimum, the current network can generate as a whole
as many as 24 000 images per night (up to 80k images per night for
the complete network).

When using the detection pipeline described above and in Fig. 2,
the difficulties encountered with the GWAC telescopes system
mainly come from the data flow and, subsequently, the large false
detection rate it can produce. The data flow is generated by the
image cadency (the exposure time) and the number of operated
cameras. The false detection rate is partly due to the data flow itself,
but it is also strongly dependent on the optical sensitivity of the
instruments, their field of views, and the strictness of the transient
selection criteria. In addition, the large field of view of the single
GWAC cameras (150 deg2) combined with the limited size of the
CCD detectors produces a large pixel scale of 11.7 arcsec per pixel
and image distortion effects (while corrected in our images). These
two factors make the use of the catalogue cross-matching and the
differential image analysis even more complicated. This usually
results in the production of additional fake detections populating the
OT1 candidates category. While the standard filtering algorithms are
able to clean many fake OT1 candidates, there is still a large fraction
of them that pass through the filters. On average, each night with
good observational conditions yields the discovery of around several
hundreds up to thousands of OT2 candidates for one GWAC mount.
As the number of OT2 candidates is still large, we then manually
reduce this number to several tens (up to one hundred) to be vetted
both by humans and by further follow-up observations.

Multiplying this task to the number of GWAC mounts, one can
easily understand that this ‘true or false’ classification task becomes
no longer manageable both by the GWAC-F60 follow-up telescopes
and by the GWAC scientists in a reasonable amount of time.
Therefore, our GWAC-F60 telescopes can be rapidly unable to ingest
the quantity of GWAC triggers and additionally they can no longer
smoothly follow their own observation plans independently of the
GWAC activities. Moreover, the increasing workload pressure on the
scientists on duty naturally prevents them from focusing their efforts
on the most promising events. The identification and classification
processes of a genuine transient source then may undergo a long
delay that is not compatible with the scientific purposes of the GWAC
system that aim to quickly identify short-living OT sources.

3 A DEEP LEARNI NG CLASSI FI ER

Our goal is to improve the current detection pipeline of the GWAC
system, especially in easing the OT1 candidates classification and
making the human decision-taking process more responsive. As
shown previously, there is a crucial need for a classification task
that distinguishes the astrophysical sources from the bogus within
the GWAC alert stream prior to building the OT2 candidates list.
Before going deeper into the details, we start to define few acronyms
that we will use all along the paper:

(i) ROS: real optical sources in an image.
(ii) FOS: fake optical sources in an image.
(iii) ROT: real optical transients. An ROT is actually an ROS

present in a series of images and showing a significant flux variation.
(iv) FOT: fake optical transients.
(v) TP: true positives, i.e. the OT candidates well classified as

ROT or ROS.
(vi) TN: true negatives, i.e. the OT candidates well classified as

FOT or FOS.
(vii) FP: false positives, i.e. the OT candidates classified as ROT

or ROS while there are actually FOT or FOS.
(viii) FN: false negatives, i.e. the OT candidates classified as FOT

or FOS while there are actually ROT or ROS.

One immediately understands that our classifier must minimize
the number of FP and FN to limit the contamination of the OT2
candidates sample by any bogus on one hand and to avoid too many
losses of ROT because of misclassifications on the other hand. The
final goal is to obtain a classification accuracy greater than 90 per cent
with an FN classification not as great as 2 per cent. Indeed, we prefer
to keep more false positives (FP) instead of losing too many transients
falsely classified as bogus (FN) in the classification process. To
perform this task, we used a CNN algorithm.

This choice is first motivated by the fact that CNNs are very well
adapted for pattern recognition in images (Bishop 2006; Krizhevsky,
Sutskever & Hinton 2012; Lecun et al. 2015) as we previously
mentioned. In addition, the CNNs have demonstrated excellent
image classification performances compared to other deep machine
learning methods, like the random forest (RF) algorithms, with
a minimum of implementation (Gieseke et al. 2017). However,
compared to RF algorithms, the CNNs require a very large data set to
be efficiently trained and a high computational cost for the training
steps (a graphics processing unit, GPU, is usually required for such
a work). We also point out the fact that one of the great advantages
of the CNNs is their ability of classifying on their own once the
image features have been learned during the training steps. In other
words, our trained CNN will not require any more input information
than an image to perform its classification task. On the contrary,
the RF algorithms analyse features extracted from the images (data
and metadata) before making the classification task. This requires a
systematic pre-processing analysis of the images that might bring too
much complexity and latency in the overall data processing pipeline.
Therefore, the use of the CNN allows us to avoid such an issue and
to keep our data processing architecture almost unchanged. Finally,
during the last few years, CNNs have been also robustly tested in
astronomy with success for many different classification purposes
(de la Calleja & Fuentes 2004; Bloom et al. 2012; du Buisson et al.
2015; Mahabal et al. 2019), which reinforces our choice to use them
for our astronomical classification purpose.

MNRAS 497, 2641–2650 (2020)
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Table 2. The CNN structure used in this work.

Layers Sizes Characteristics

Convolution 32 × 32 3 × 3 kernels
Activation: Relu

Max pooling 32 × 32 2 × 2
Convolution 32 × 32 3 × 3 kernels

Activation: Relu
Max pooling 32 × 32 2 × 2
Dense 15 Activation: Relu
Dense 2 Activation: Softmax

3.1 The CNN model architecture and implementation

While this kind of ‘true or false’ classification game does not require
in principle a very deep and complex network structure, a too basic
network may also have limited performances even considering such
a ‘simple’ task as noticed by Gieseke et al. (2017). We therefore built
a CNN code using an architecture composed of two convolutional
layers, two pooling layers, and one ReLu and one softmax hidden
layer (see the details in Table 2). The pooling layers were kept to
2 × 2 bin size due to the small size of some objects projected in
the large GWAC pixel scale. The cross-entropy function was used as
a loss function to give a high weight for very confident FP, which
we strongly want to avoid. The CNN was implemented in PYTHON

v3.6, using the KERAS7 package with TENSORFLOW2.8 The KERAS

package has the advantages to provide built-in diagnostic tools and a
compact code writing that allow for a relative ease of use. A KERAS

Adam optimizer was used with a low learning rate (lr = 0.0001) after
witnessing disappointing convergence properties.

As an input, our CNN algorithm uses background-subtracted
finding charts (100 × 100 pixels) of the OT1 candidates. We then
select only the central part of those images (35 × 35 pixels) for the
classification. This choice is made to have a high learning rate as the
CNN requires to be trained on an extensive amount of data (typically
of the order of a minimum of 105 images) while keeping enough
information (background and a minimum number of sources) in the
subimages for the pattern recognition. Before being able to give any
classification on our OT candidates, the CNN must be trained to
recognize patterns in our images. When a CNN layer receives an
input, an output is then produced to feed the next layer. As long as
the inputs are transformed into outputs, a series of several weights
is produced to finally converge and build a final probabilistic rank
between 0 and 1. The training phase contains several epochs of test
to make the final convergence. The CNN ranking is then compared
to the image labelling previously made by our expert scientists,
which consists in giving either a mark ‘1’ to subimages containing an
ROS or ‘0’ if they contain FOS. Therefore, this comparison method
gives an idea on the level of agreement or disagreement of the CNN
decision with the human classification. If a disagreement is frequently
observed, it means either the CNN architecture is not optimized for
our classification purpose or the human labelling is not correct. In
such case, the CNN architecture and/or the labelling have to be
revised until a good agreement is found.

At the end of the training, we build a KERAS python model of our
CNN to be used later to classify any OT candidate detected by the
GWAC real-time detection pipeline. Before using the CNN model in

7https://keras.io/. See also Géron (2019) for a review of the usages of KERAS.
8https://www.tensorflow.org/

https://github.com/tensorflow/tensorflow

production, a final test of the classification performances is usually
performed on an image sample that has never been used previously.
If the CNN model reaches the classification requirements, i.e. if
the number of misclassified sources is consistent with our scientific
requirements, it can then be used to classify the genuineness of any
GWAC OT candidates. On the contrary, if the classification is not
good enough, a new training, with a data set more representative
of the GWAC OT candidate images, must be performed until the
classification requirements are fulfilled.

We illustrate, in Fig. 3, the implementation we set up for both
the training and the validation of the CNN algorithm as well as how
it should be integrated in the detection pipeline of GWAC during
real-time data taking.

3.2 Training data set

The classification of the sources into different astrophysical cate-
gories can be challenging. Indeed, transient sources are rare events
and one might not have collected enough images of transient sources
for the training. Some techniques can be used for the augmentation
of the training data set such as simulating images of transient sources
with a physical or empirical model or adding rotated images of real
transient sources, which artificially produces a new background and
source distribution compared to the initial images as suggested by
Gieseke et al. (2017). Typically, several tens of thousands of images
are needed to obtain a well-trained CNN model.

Classifying our detected transients into several astrophysical
categories based on additional information such as the spectral and
flux time evolution is actually beyond the scope of this work. For our
purpose, our bogus/real source classification tasks are independent
of the nature of the transient as long as it is supposed to be a point-
like source in the images. As a consequence, we avoid the problem
of having too few images of real GWAC transients to train the
CNN. Instead, we can directly extract point-like sources in GWAC
images to build our sample of ROS images. Our training data set is
finally composed of 200 000 subimages (35 × 35 pixels) with an
equal distribution between FOS and ROS. Among them, 180 000
are directly used to train the algorithm while the 20 000 remaining
images are used to validate each training epoch.

3.2.1 Details on the ROS image sample

The ROS subimage sample is built from several 4k × 4k GWAC
images taken from the same camera during 1 yr of operation.
Therefore, we have at our disposal a complete overview of the
observational and sky background conditions we can encounter at
the GWAC site. The 4k × 4k initial images are chosen randomly
and background-subtracted to follow the GWAC detection pipeline
process previously described in Section 2.2. In each of the selected
images, we extracted the position of the point sources detected
by the SEXTRACTOR software (Bertin & Arnouts 1996) at the 3σ

confidence level. From this list of sources, we then randomly cropped
35 × 35 pixel subimages around the SEXTRACTOR positions of
100 randomly chosen sources. However, we make a selection cut
on the instrumental magnitudes estimated by SEXTRACTOR as we
want to avoid very bright or ‘saturated’ stars that may produce
artefacts such as blooming effect. During the source extraction
process and the creation of the finding charts, we noticed that the
current GWAC detection pipeline can sometimes shift the centroid
of the OT candidate from the centre of the finding charts from 1 pixel
at maximum in any direction. To be as close as possible to the GWAC
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Figure 3. Schematic view of the implementation of the classifier tool from the training of the CNN algorithm (left-hand side) to the use of the CNN KERAS

model to make the vetting of the GWAC OT1 candidates in real time. We used a large data set of N = 200 000 images to train the CNN.

pipeline output, we also reproduced this trend for each of our ROS
subimages. The centroid of each extracted ROS is therefore shifted
in position in all the direction possible by an increment (uniformly)
randomly chosen in the range of [-1; 1] pixels. We reproduced this
operation on 1000 different 4k × 4k images to obtain a final sample
of 100 000 images of ROS. We show, in Fig. 4, a subsample of ROS
images we used for the training of our CNN.

3.2.2 Details on the FOS image sample

While the ROS should all have a similar 2D Gaussian profile (in
the ideal case with negligible distortion effects), it is no longer the
case for FOS. Indeed, a large variety of bogus can lead to false
detections such as cosmic ray tracks, hot pixels, bad pixels, crosstalk
artefacts, dusts, irregularities in the sky background contribution,
etc. Therefore, our FOS training data set must reproduce as close as
possible such bogus shape distribution.

As it is actually very complicated to exactly mimic all the types
of bogus we may encounter, we finally divided our bogus into
several categories that are easily reproducible and correspond to
the most frequent type of the bogus we encounter in GWAC images:
hot pixels, background noise, bad column of pixels, dark pixels,
and a sky background with a significant light gradient. To reach
the same statistics as the ROS training sample, we had to use
data augmentation techniques as we did not get enough images
of all the categories of bogus. We simulated 100 000 images of
bogus (50 per cent of the full training data set) in equal proportions
between our five categories defined above. Our bogus simulator starts
with the same process as for extracting ROS from the 4k × 4k
GWAC images. From the background-subtracted initial images, we
extract 35 × 35 pixel subimages and add a bogus in the central
position similarly as we did for the ROS. Then, the differences in
the process come; depending on the bogus to simulate, we crop
different parts of the 4k × 4k images according to the following
criteria:

Figure 4. Example of some subimages (35 × 35 pixels) centred (± 2 pixels)
at the position of point-like sources (ROTs) extracted from the GWAC 4k × 4k
images. 100 000 images similar to these ones are produced to build our ROT
training data set. Note that we extract point-like source with no prescription
relative to their position in the original image (close to the edge or not, located
in a dense star field, etc.).

(i) For the hot pixel subimages: no Sextractor sources should have
a position (X, Y) in the subimage consistent within a region of at least
6 pixels around the central pixel (X0, Y0): (X − X0)2 + (Y − Y0)2 ≥
36.
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(ii) For the noisy subimages: no Sextractor sources should be
present in the subimages, only the background residual noise.

(iii) For the bad pixel columns subimages: any subimage randomly
chosen is suitable.

(iv) For the dark pixel subimages: any subimage randomly chosen
is suitable.

(v) For the non-uniform sky background subimages: we select
only the position of brightest stars (estimated by SEXTRACTOR), even
the saturated stars, that produce a light gradient in the surrounding
pixels. The distance from the centre of the image to the position of
bright star centroid can span d ∈ [6; 15] pixels.

For the hot pixels, we actually choose to randomly put a single
or a group of hot pixels (2 × 2 pixels at maximum) at the central
position of the subimages following the pixel intensities we observed
from real data. We also add a random increment spanning [-1; 1]
pixels to slightly shift the position of the bogus from the centre. The
bad column of pixels was simulated as an excess of light observed
normalized to the pixel intensities we observed for this kind of bogus
in real data. Also according to the real data, the number of bad
columns ranges from 1 to 3 either in the X or in the Y direction of the
image. In Fig. 5, we compare the typical bogus we simulated with
the observed ones in the OT1 candidates finding charts.

4 A NA LY SIS A ND RESULTS

The analysis of the classification performance of our CNN is made
in two steps: the training to build the KERAS model and the validation
step of the classification procedure on a previously unseen image
sample. For the training, the ROS images are labelled ‘1’ while the
FOS are labelled ‘0’. We then compared this labelling with the CNN
model probabilistic prediction spanning in the range PCNN ∈ [0; 1].
Therefore, a source in a given image is considered as an FOS if PCNN

< 0.5 and as an ROS if PCNN ≥ 0.5. The mid-value 0.5 represents a
perfect random guess by the CNN model between the two categories.

4.1 The training

We trained our CNN algorithm on the 200 000 simulated images
(50 per cent ROS, 50 per cent FOS) making 10 training epochs
to build the final KERAS model. Based on the PCNN criteria, we
can build the normalized confusion matrix for a quick look of the
classification results. The normalized confusion matrices allow to
display the fraction of the well-classified instances as TN and TP,
and the fraction of the misclassified ones in the FN and FP categories,
as shown in Fig. 6. The normalized values of TN, TP, FN, and FP
obey the following relations:

TN + FN

NFOS
= 1, NFOS = 105 ;

TP + FP

NROS
= 1, NROS = 105. (1)

Based on the training data set, the normalized confusion matrix
shows that the CNN algorithm has been well trained to recognize
bogus and real sources with classification performances close the
ideal case. Indeed, the TP and the FP instances are almost maximized
up to a normalized value of ‘1’ (i.e. all instances are well classified)
while the FP and the FN are close to the minimum ‘0’. To better
characterize the classification response of our CNN model, we also
computed three diagnosis:

(i) The receiver operating characteristic (ROC) curve that dis-
plays the true positive rate (TPR) as a function of the false positive
rate.

Figure 5. The five categories of bogus simulated for the FOS training data
set (a) compared with (b) the same kind of bogus we indeed observed in the
GWAC OT1 finding charts (100 × 100 pixels).

(ii) The area under the ROC curve (AUC) that corresponds to the
integral of the ROC curve ∈ [0; 1]. ‘0’ or ‘1’ corresponds to an ideal
case where 100 per cent of the instances are mis- or well classified.

(iii) The accuracy coefficient (AC) ∈ [0; 1]. ‘0’ or ‘1’ corresponds
to an ideal case where 100 per cent of the instances are mis- or well
classified.

AC = TN + TP

TN + FP + FN + TP
. (2)

The ROC curve of the CNN model applied to the training data
set also shows that we obtain a very high TPR (close to the

MNRAS 497, 2641–2650 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/2641/5871208 by C
N

R
S user on 07 July 2023



2648 D. Turpin et al.

Figure 6. The normalized confusion matrix produced after the training of
the CNN algorithm on 200 000 simulated images of bogus and real sources.
The numbers in each blue square indicate the fraction of the total instances
correctly classified as FP (top left) and TP (bottom right) while in the white
squares are shown the misclassified instances as TN (top right) and FN
(bottom left). For a perfect classifier, the dark blue squares would indicate ‘1’
while the white squares would indicate ‘0’.

Figure 7. The ROC curve of our CNN model applied to the training data set.
The AUC value is also indicated at the bottom.

maximum value ‘1’) while keeping an extremely low FPR (close
to ‘0’; see Fig. 7). This trend is a very convincing proof that a
classifier is behaving well as it falsely classifies a very few number
of detected events. Finally, the corresponding AUC and AC are 0.99
and 0.986, respectively, and also point out a very good classification
performance of our CNN model. All these diagnosis confirm that the
architecture of our trained CNN model is well adapted to distinguish
bogus from real sources.

However, while it allows to confirm that the architecture of the
CNN is robust enough to perform this kind of classification task, it
does not guarantee at all that our CNN model will have the same
performance on real GWAC images as our implementation has a
limitation. Indeed, we could not simulate all the types of bogus
we encounter in the real GWAC images as it would require a too
large amount of data for the simulation that translates in a higher
computational cost and a severe complexification of the simulation.
Nevertheless, our FOS simulations and the architecture of our CNN
are expected to be generic enough to deal with unseen bogus that
may share the same properties as our simulated ones. As an example,
we did not simulate any cosmic ray track in our bogus sample but
we simulated some groups of defective pixels that share common
properties with those of cosmic ray tracks (elongated shape with no
PSF model or having a very sharp PSF model).

Table 3. The different categories of the image sample used to validate the
classification performances of our CNN.

Category Nimages Nobject Typical label

Moving objects 878 29 1 (real)
Hot pixels 1798 862 0 (bogus)
Flaring stars 102 20 1 (real)
Variable stars 3909 23 1 (real)
Bad pixels 267 95 0 (bogus)
Dark pixels 333 166 0 (bogus)
Bad pixel columns 554 277 0 (bogus)
Total 7841 1472 –

Table 4. The results of the CNN classification in the different categories of
real/bogus sources tested during the validation step.

Category TP TN FP FN AC diag.
(%) (%) (%) (%)

Moving objects 0.96 0.01 0.02 <0.01 0.97
Hot pixels <0.01 0.93 0.06 <0.01 0.94
Flaring stars 0.82 0.09 0.09 0.0 0.91
Variable stars 0.93 <0.01 0.06 <0.01 0.94
Bad pixels <0.01 0.94 0.05 0.0 0.94
Dark pixels 0.09 0.83 0.07 0.01 0.91
Bad pixel columns 0.02 0.69 0.29 <0.01 0.71

4.2 The validation

To finally validate the classification performances of our CNN, we
confront it with a new sample of images representative of the zoo
of bogus and real sources that the GWAC pipeline generally detects.
Each of those images has been previously labelled by our expert
scientists following the same labelling rule described in Section 3.1.
In addition to this labelling, each image has been manually classified
into representative categories such as real moving objects, hot pixels,
flaring stars, variable stars, bad pixels, dark pixels, and incorrectly
processed columns of pixels. This categorization fits the different
groups of bogus used in the simulated training data set and is the most
common bogus encountered in GWAC images. For the validation,
our image sample is finally composed of 7841 images of 1472 objects
detected by the GWAC transient search pipeline in 2017 and 2018.
The details of the object distribution into each source category are
shown in Table 3.

As for the training sample, the probability given by the CNN on
each image, PCNN, is compared with the image labelling to make
the diagnosis of the classification performance. When we applied
our trained CNN model on those images, we finally found that the
overall accuracy of the classifier is AC = 0.94 with a very low number
of FN classification, around 2 per cent of the total sample. Around
only 4 per cent of the images containing a bogus are misclassified
as ROS (FP) as shown in Fig. 8. These classification performances
are in good agreement with our scientific requirements mentioned in
Section 3; hence, we consider that our generic deep learning classifier
is robust enough to be automatized in the transient detection pipeline
as a tool to vet the GWAC OT candidates. In Table 4, we give more
details on the classification performance for each source category
used in the validation sample.

In addition, we also explored the capabilities of our generic CNN
model in classifying bogus images that were not included in the
simulation of the training sample. We added to our initial validation
samples around 1700 images (a data augmentation of ∼20 per cent)
of completely new bogus types such as dust obstructions, suspected
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Figure 8. The confusion matrix and the ROC curve of our trained CNN
model applied on a complete unseen data set of 7841 images of bogus and
real astrophysical sources. The classification diagnosis AUC is around 0.95
in good agreement with our scientific classification requirements.

ROS or low SNR candidates, and a large variety of bad pixels. While
the addition of those new bogus makes the classification accuracy
drop to AC = 0.91, we found that the performances are still good
enough with respect to our scientific requirements. It reinforces the
validation test and overall shows how powerful and generic are the
CNN algorithms, even with relatively simple layer architectures, in
distinguishing any type of bogus from real point-like sources.

4.3 Analysis of the bogus rejection and false positive detections

The analysis presented above only considered the classification of
the individual images of bogus and real sources. However, the vetting
of the OT candidates must also include the image time series of the
source candidates. The rejection of bogus is made by analysing the
evolution of the CNN scores across several images. The mean of the
CNN probabilities that tracks the stability of the CNN classification
over the image time series is used as a criterion of rejection. Playing
on this criterion allows to determine the final rate of FP and FN
the system will tolerate. The current GWAC pipeline is taking a
decision about the genuineness of the candidates after analysing five
consecutive images. For comparison, we used the same number of
images to take a decision with the CNN. If we have less than five
images for a given candidate we computed the mean of PCNN on
a minimum of two images. As shown in Equation (3), we choose
different rejection criteria in order to analyse the evolution of the FP

Table 5. The evolution of the false positives (FP) and false negatives (FN)
as a function of the rejection criterion R ≥ 0.99, 0.95, 0.90.

R FP FN
(%) (%)

≤5σ 4.6 2.9
≤3σ 7.2 1.7
≤2σ 8.9 1.0
≤1σ 10.9 0.7

and FN as a function of the strictness of our rejection:

R =
N=5∑

i=0

PCNN,i

N
≤ 5σ, 0.997 (3σ ), 0.95 (2σ ), and 0.68 (1σ ). (3)

A candidate is finally classified as a bogus if it satisfies the rejection
criterion, otherwise it is classified as a real point-like source. We
applied these criteria to the full validation sample of candidates (1861
candidates including the bogus not simulated in the training data set)
and show, in Table 5, the evolution of FN and FP. The goal is to
find the good trade-off in the rejection criterion in order to minimize
both FP and FN. A too strict rejection may enhance too much the FN
while keeping the FP very low; i.e. we miss some real events but do
not get any fake. On the contrary, a too shallow rejection will go into
the opposite direction; i.e. we would keep many bogus by ensuring
to keep all the real events.

We find that a rejection criterion at R = 3σ confidence level is
finally a good trade-off with less than 2 per cent of ROT loss and
about 7 per cent of false positive detections (∼ 91 per cent of OT
candidates well classified as bogus or real sources). We noticed that
the FN candidates are actually sources having brightness very close
to the detection threshold with an SNR ≤ 3, which make them hard
to be clearly identified by our CNN algorithm trained on securely
detected OT. We find that this ratio of false positives is manageable
on a whole night by the GWAC data processing pipeline, the scientist
on duty, and the GWAC-F60 telescope schedulers.

5 C O N C L U S I O N

The fast identification and classification of the transient sources
are the major challenges to take up for the current and the near
upcoming wide field angle facilities dedicated to the time-domain
astronomy. In this paper, we have presented a method to distinguish
real astrophysical sources from many types of bogus detected by
the GWAC survey telescopes (FoV = 25◦, Rlim = 16 in 10 s)
based on a deep machine learning approach. The machine learning
methods are usually easy to set-up, cost-effective, time-effective, and
bring a valuable automated classification procedure to any transient
detection pipeline. The first ‘true or false’ classification step is now
unavoidable to obtain efficient transient search pipeline and quick
human reaction to validate the OT candidates. To solve the problem
of OT vetting in the GWAC images, we used a convolutional neural
network classifier trained on computationally enhanced data relying
on the GWAC data base to generate images of real sources and bogus.

The CNN classifier proved to be very efficient in filtering out
many types of bogus using a few number of images for the decision.
The final false positive alarm ratio is about 4 per cent when it is
applied to the individual images (94 per cent of OT candidates well
classified). When applying the CNN classifier on the image time
series of each OT candidate, we end up with about 7 per cent of FP
OT classifications at the level of the OT1 candidate sample. The great
advantage of our classifier is that it keeps the loss of real OT (FN)

MNRAS 497, 2641–2650 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/497/3/2641/5871208 by C
N

R
S user on 07 July 2023



2650 D. Turpin et al.

as low as 2 per cent of the total transient candidate sample. This is
a key parameter to maintain a high level of transient detection rate
every night.

Including such classifier tool in the transient detection pipeline
of GWAC will significantly lighten the workload pressure of the
pipeline itself and the GWAC duty scientists. These performances
are in well agreement with the scientific requirements of the GWAC
system that aim at detecting and quickly identifying OT sources.
Therefore, the output CNN score is a precious information for the
scientists who will have to take important decisions and actions with
respect to any detected OT candidate. Our classifier is generic enough
so that a quick configuration of the CNN parameters can also make
it usable for other kind of optical facilities.

This work, among others, shows how it is important now for wide
field angle telescopes studying the transient sky to use such machine
learning techniques to deal with huge data flows and big data analysis.
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