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Abstract

In this paper, we consider survival analysis with right-censored data
which is a common situation in predictive maintenance and health field.
We propose a model based on the estimation of two-parameter Weibull
distribution conditionally to the features. To achieve this result, we de-
scribe a neural network architecture and the associated loss functions that
takes into account the right-censored data. We extend the approach to a
finite mixture of two-parameter Weibull distributions. We first validate
that our model is able to precisely estimate the right parameters of the
conditional Weibull distribution on synthetic datasets. In numerical ex-
periments on two real-word datasets (METABRIC and SEER), our model
outperforms the state-of-the-art methods. We also demonstrate that our
approach can consider any survival time horizon.

1 INTRODUCTION

Time-to-event analysis, also called survival analysis, is needed in many ar-
eas. This branch of statistics which emerged in the 20th century is heavily
used in engineering, economics and finance, insurance, marketing, health field
and many more application areas. Most previous works and diverse literature
approach time-to-event analysis by dealing with time until occurrence of an
event of interest; e.g. cardiovascular death after some treatment intervention,
tumor recurrence, failure of an aircraft air system, etc. The time of the event
may nevertheless not be observed within the relevant time period, and could
potentially occur after this recorded time, producing so called right-censored
data. The main objective of survival analysis is to identify the relationship



between the distribution of the time-to-event distribution and the covariates of
the observations, such as the features of a given patient, the characteristics of
an electronic device or a mechanical system with some informations concerning
the environment in which it must operate. The Weibull distribution could be
used as lifetime distributions in survival analysis where the goal would be to es-
timate its parameters taking account the right-censored data. Several previous
works focused on the estimation of a Weibull distribution with right-censored
data (see Bacha and Celeux [1], Ferreira and Silva [5], Shuo-Jye Wu [14], etc.)

Among the first estimators widely used in this field is the Kaplan-Meier
estimator [8] that may be useful to estimate the probability that an event of
interest occurs at a given point in time. However, it is limited in its ability
to estimate this probability adjusted for covariates; i.e. it doesn’t incorporate
observations’ covariates. The semi-parametric Cox proportional hazards (CPH)
[3] is used to estimate covariate-adjusted survival, but it assumes that the sub-
ject’s risk is a linear function of their covariates which may be too simplistic
for many real world data. Since neural networks can learn nonlinear functions,
many researchers tried to model the relationship between the covariates and the
times that passes before some event occurs, including Faraggi-Simon network [4]
who proposed a simple feed-forward as the basis for a non-linear proportional
hazards model to model this relationship. After that, several works focused on
combining neural networks and survival analysis, notably DeepSurv [9] whose
architecture is deeper than Faraggi-Simon’s one and minimizes the negative
log Cox partial likelihood with a risk not necessarily linear. These models use
multi-layer perceptron that is capable to learn non-linear models, but it is sen-
sitive to feature scaling which is necessary in data preprocessing step and has
limitations when we use unstructured data (e.g. images). There is a number
of other models that approach survival analysis with right-censored data using
machine learning, namely RandomForest Survival [7], dependent logistic regres-
sors [15] and Liao’s model [11] who are capable of incorporating the individual
observation’s covariates.

This paper proposes a novel approach to survival analysis: we assume that
the survival times distribution are modeled according to a finite Mixture of
Weibull distributions (at least one), whose parameters depends on the covari-
ates of a given observations with right-censored data. As Luck [12], we propose
a deep learning model that learns the survival function, but we will do this by
estimating the Weibull’s parameters. Unlike DeepHit [10] whose model con-
sists on discretizing the time considering a predefined maximum time horizon.
Here, as we try to estimate the parameters, we can model a continuous survival
function, and thus, estimate the risk at any given survival time horizon. For
this purpose, we construct a deep neural network model considering that the
survival times follow a finite mixture of two-parameter Weibull distributions.
This model, which we call DeepWeiSurv tries to estimate the parameters
that maximizes the likelihood of the distribution. To prove the usefulness of
our method, we compare its predictive performance with that of state-of-the art
methods using two real-world datasets. DeepWeiSurv outperforms the previous
state-of-the-art methods.



Figure 1: Weibull distribution right-censored at tc = 2 with x ∈ [0, 1] uniformly
distributed. In this figure, the parameters of the law are independent with
regard to x.

2 Weibull Mixture Distribution for survival anal-
ysis

2.1 Survival Analysis with right-censored data

Let X = {(xi, ti, δi)|i ≤ n} be a set of observations with xi ∈ Rd, the ith

observation of the baseline data (covariates), ti ∈ R its survival time associated,
and δi indicates if the ith observation is censored (δi = 0) or not (δi = 1).
As can be seen in Figure 1, a blue point represents an uncensored observation
(xi, ti, δi = 1) and a red point represents a censored observation (xi, ti, δi = 0).
In order to characterize the distribution of the survival times T = (ti|xi)i≤n, the
aim is to estimate, for each observation, the probability that the event occurs
after or at a certain survival time horizon tSTH defined by:

S(ti|xi) = P (ti ≥ tSTH |xi).

Note that, tSTH may be different to the censoring threshold time tc. An alter-
native characterization of the distribution of T is given by the hazard function
λ(t) that is defined as the event rate at time t conditional on survival at time t or

beyond. Literature has shown that λ(t) can be expressed as follows: λ(t) = f(t)
S(t) ,

f(t) being the density function.

Instead of estimating the S(ti|xi), it is common to estimate directly the
survival time t̂i. In this case, we can measure the quality of estimations with



the concordance index [6] defined as follows:

Cindex =

∑
i,j 1ti>tj .1t̂i>t̂j .δj∑

i,j 1ti>tj .δj
. (1)

Cindex is designed to calculate the number of concordant pairs of observations
among all the comparable pairs (i, j) such that δi=δj=1. It estimates the prob-
ability P(t̂i > t̂j |ti > tj) that compares the rankings of two independent pairs
of survival times ti,tj and associated predictions t̂i,t̂j .

2.2 Weibull distribution for censored data

From now, we consider that T follows a finite mixture of two-parameter
Weibull (at least a single Weibull) distributions independently from xi (i.e.
S(ti|xi) = S(ti)). In this case, we have the analytical expressions of S and λ
with respect to the mixture parameters. This leads to consider a problem of
parameters estimation of mixture of Weibull distributions with right-censored
observations.

2.2.1 Single Weibull case

Here, we are dealing with a particular case where T follows a single two-
parameter Weibull distribution, W (β, η), whose parameters are β > 0 (shape)
and η > 0 (scale). We can estimate these parameters by solving the following
likelihood optimization problem:

(β̂, η̂) = argmax
β,η

{LL(β, η|(ti, δi)i} =

n∑
i=1

δilog[(Sβ,η.λβ,η)(ti)]+(1−δi)log[Sβ,η(tc)]

where:

Sβ,η(y) = exp[−(
y

η
)β ],

λβ,η(y) = (
β

η
)(
y

η
)β−1

and tc being the censoring threshold time. LL is the log-likelihood of Weibull
distribution with right-censored data. To be sure that the LL is concave, we
make a choice to consider that the shape parameter β is greater than 1 (β ≥ 1).

2.2.2 Mixture case.

Now, we suppose that T follows Wp = [(W (βk, ηk)), (αk)]k=1..p a mixture of
p Weibull distributions with its weighting coefficients (

∑
k αk = 1, αk ≥ 0). In

statistics, the density associated is defined by:

fWp
=
∑
k

αkfβk,ηk=
∑
k

αkSβk,ηkλβk,ηk .



Thus, the log-likelihood of Wp can be written as follows:

LL(β, η, α|y) =

n∑
i=1

δilog
[∑

k αk(Sβk,ηk .λβk,ηk)(ti)
]

+(1− δi)log
[∑

k αkSβk,ηk(tc)
]
.

(2)

In addition to the mixture’s parameters (βk, ηk)k=1..p, we need to estimate the
weighting coefficients (αk) considered as probabilities. Therefore, we estimate
the tuple (α, β, η) by solving the following problem:

(β̂, η̂, α̂) = argmax
β,η,α

{LL(β, η, α|(ti, δi)i}

Knowing Weibull’s mean formula µ and given that the mean of a a mixture is a
weighted combination of the means of the distributions that form this mixture
(more precisely, µ =

∑
k αkµk), the mean lifetime can thus be estimated as

follows:

µ = α̂.diag(η̂).Γ(1 +
1

β̂
)T (3)

where Γ is the Gamma function. µ can be used as the survival time estimation
for the computation of the concordance index (with t̂i = µi = µ when the
parameters of the distribution are independent from xi).

3 Neural network for estimating conditional Weibull
mixture

We now consider that the Weibull mixture’s parameters depend on the covari-
ates x=(xi). We propose to use a neural network to model this dependence.

Model description

We name gp the function that models the relationship between xi and the pa-
rameters of the conditional Weibull mixture:

gp : Rd → Rp×3
xi 7→ (α, β, η)

where α = (α1, ..αp) and (β, η) = ((β1, .., βp), (η1, .., ηp)). Note that, when
p = 1, it is no more required to estimate α. This function is represented by
the network named DeepWeiSurv described in Figure 2. Hence, our goal is
to train the network to learn gp and thus (β̂, η̂) the vector of parameters that
maximise the likelihood of the time-to-event distribution (α̂ as well if p > 1).
DeepWeiSurv is therefore a multi-task network. It consists of a common sub-
network, a classification sub-network (clf ) and a regression sub-network (reg)
The shared sub-network takes as an input the baseline data x of size n and
compute a latent representation of the data z. When p > 1, clf and reg take z



Figure 2: The architecture of DeepWeiSurv

as an input towards producing α̂ and (β̂, η̂) respectively. For reg sub-network,
we use ELU (with its constant = 1) as an activation function for both output
layers. We use this function to be sure that we have enough gradient to learn
the parameters thanks of the fact that it becomes smooth slowly unlike ReLU
function. However the codomain of ELU is ]−1,∞[, which is problematic given
the constraints on the parameters mentioned in the previous section (β ≥ 1 and

η > 0). To get around this problem, the network will learn β̂off = β̂ + 2 and
η̂off = η̂ + 1 + ε. The offset is then applied in the opposite direction to recover
the parameters concerned. For the classification part we need to learn α ∈ Rp.
To ensure that

∑
k αk = 1 and αk ∈ [0, 1], we use a softmax activation in the

output layer of clf. For each 1 ≤ k ≤ p, clf produces, αk = (α1k, ..αnk) where
αik is such that: P̂ ({Y = ti}) = αik with Y ∼ W (βk, ηk) and P̂ a probability
estimate, whereas reg outputs βk = (β1k, ..βnk) and ηk = (η1k, ..ηnk). Otherwise,
i.e. p = 1, we have α1 = 1, thus we don’t need to train clf.
To train DeepWeiSurv, we minimize the following loss function:

Loss = −LL(β, η, α|y) =
(2)
LL1.∆

T + LL2.(1Rn −∆)T ,

where ∆ is the vector of event indicators and:

LL1 = log[α̂.SΛβ̂,η̂(T )] and LL2 = log[α̂.Sβ̂,η̂(tc)]

with:

SΛβ̂,η̂(t) =

(Sβ1,η1 .λβ1,η1)(t1) ... (Sβ1,η1 .λβ1,η1)(tn)
... ... ...

(Sβp,ηp .λβp,ηp)(t1) ... (Sβp,ηp .λβp,ηp)(tn)





Figure 3: Computational graph of Loss

Figure 4: −LLpred and −LLreal values for each studied case

and

Sβ̂,η̂(tc) =

Sβ1,η1(tc)
...

Sβp,ηp(tc)


LL1 exploits uncensored data, whereas LL2 exploits censored observations

by extracting the knowledge that the event will occur after the given censoring
threshold time tc. Figure 3 is an illustration of the computational graph of our
training loss: the inputs are the covariates x, the real values of time and event
indicator (t,∆) and the outputs are the estimates (α̂, β̂, η̂).

Experiment on SYNTHETIC dataset

The main objective in this section is to validate mathematically DeepWeiSurv,
that is, to show that this latter is able to estimate the parameters. For this
purpose, we perform an experiment on a simulated data. In this experiment,
we treat the case of a single Weibull distribution (αp=1 = 1) and a mixture of
2 Weibull distributions (αp=2 = (0.7, 0.3)) using three different functions: f1



(linear), f2 (quadratic), f3 (cubic). For each function fi we generate T ip=1 ∼
W (βi1, η

i
1) and T ip=2 ∼ Wp=2(βi0.7, η

i
0.7, β

i
0.3, η

i
0.3). We compare the predicted

likelihood with the real, and optimal one. These two likelihoods are equal when
the estimated parameters correspond to the real ones. LetX be a vector of 10000
observations generated from an uniform distribution U[0,1]. Here we select 50%
of observations to be right censored at the median of survival times tm (δi = 0
if ti > tm). We set the parameters to be the following functions:

β1
1

η11
β1
0.7

η10.7
β1
0.3

η10.3

 =


3 2
2 1
2 1
1 2
1 2
3 1

 .

(
X
1

)


β2
1

η21
β2
0.7

η20.7
β2
0.3

η20.3

 =


2 1 1
1 2 1
2 2 1
1 3 1
1 1 2
1 0 2

 .

X2

X
1



β3
1

η31
β3
0.7

η30.7
β3
0.3

η30.3

 =


2 0 1 1
1 1 0 1
2 0 1 1
1 1 0 1
1 2 0 1
3 2 0 1

 .


X3

X2

X
1


The bar plot in Figure 4 displays the predicted likelihood −LLpred of each

distribution and their real one −LLreal. We notice that the real value and
predicted one of each case are very close to each together which means that the
model can identify very precisely the parameters of the conditional distributions.
Now, we test DeepWeisurv on the real-world datasets.

4 Experiments

We perform two sets of experiments based on real survival data : METABRIC
and SEER. We give a brief descriptions of the datasets below; Table 1 gives
an overview on some descriptive statistics of both real-word datasets. We train
DeepWeiSurv on real survival datasets. We compare the predictive performance
of DeepWeiSurv with that of CPH[3] which is the most-widely used model in the
medical field and DeepHit[10] that seems to achieve outperformance over previ-
ous methods. These models are also tested in the same experimental protocol
as DeepWeiSurv.



Datasets No. Uncensored No. censored No. Features
Qualitative Quantitative

METABRIC 888 (44.8%) 1093 (55.2%) 15 6
SEER BC 9152(42.8%) 12221 (57.2%) 23 11
SEER HD 12014 (49.6%) 12221 (50.4%) 23 11

Table 1: Descriptive Statistics of Real-World Datasets

4.0.1 METABRIC

METABRIC (Molecular Taxonomy of Breast Cancer International Consortium)
dataset is for a Canada-UK project that aims to classify breast tumours into
further subcategories. It contains gene expressions profiles and clinical features
used for this purpose. In this data, we have 1981 patients, of which 44.8%
were died during the study and 55.2% were right-censored. We used 21 clinical
variables including tumor size, age at diagnosis, Progesterone Receptor (PR)
status etc (see Bilal et al. [2]).

4.0.2 SEER

The Surveillance, Epidemiology, and End Results (SEER1)[13] Program pro-
vides information on cancer statistics during 1975-2016. We focused on the pa-
tients (in total 33387) recorded between 1998 and 2002 who died from a breast
cancer BC (42.8%) or a heart disease HD (49.6%), or who were right-censored
(57.2% and 50.4% respectively). We extracted 30 covariates including gender,
race, tumor size, number of malignant of benign tumors, Estrogen Receptor
status (ER), PR status, etc. For evaluation we separated the data into two
datasets with respect of the death’s cause (BC & HD) while keeping censored
patients in both of them.

Network Configuration

DeepWeiSurv is consisted of three blocks: the shared sub-network which is
a 4-layer network, 3 of which are fully connected layers (128, 64, 32 nodes
respectively) and the remain is a batch normalization layer, the second and the
third block (reg, clf respectively) consisted of 2 fully connected layers (16, 8
nodes) and 1 batch normalization layer. Added to that, the network finishes
by one softmax layer and two ELU layers as outputs. The hidden layers are
activated by ReLU function. DeepWeiSurv is trained via Adam optimizer and
learning rate of 10−4. DeepWeiSurv is implemented in a PyTorch environment.

4.0.3 Experimental Protocol

We applied 5-fold cross validation: the data is randomly splitted into training
set (80% and 20% of which is reserved for validation) and test set (20%). We

1https://seer.cancer.gov



Algorithms METABRIC SEER BC SEER HD

CPH 0.658 0.833 0.784
(0.646 - 0.671) (0.829 - 0.838) (0.779 - 0.788)

DeepHit 0.651 0.875 0.846
(0.641 - 0.661) (0.867 - 0.883) (0.842 - 0.851)

DeepWeiSurv(p = 1) 0.805 0.877 0.857
(0.782 - 0.829) (0.864 - 0.891) (0.85 - 0.866)

DeepWeiSurv(p = 2) 0.819 0.908 0.863
(0.812 - 0.837) (0.906 - 0.909) (0.86 - 0.868)

Table 2: Comparison of Cindex performance tested on METABRIC and SEER
(mean and 95% confidence interval)

use the predicted values of the parameters to calculate the mean lifetime µ and
then Cindex defined by equation (1). This latter is calculated on the validation
set. We tested DeepWeiSurv with p = 1 and p = 2 (we tested higher values of
p, but without better performances).

4.0.4 Results

Table 2 displays the Cindex results of the experiments realized on SEER and
METABRIC datasets. We can observe that, for METABRIC, DeepWeiSurv’s
performances exceed by far that of DeepHit and CPH. For the SEER data,
DeepWeiSurv with p=1 outperfoms CPH (in BC and HD cases) and has a
slight improvement over DeepHit especially for SEER HD data but without
a significant difference (their confidence intervals did overlap). However, the
improvement of DeepWeiSurv with p=2 over all the other methods is highly
statistically significant. We suspect that the good performances of DeepWeiSurv
comes from its ability to learn implicitly the relationship between the covariates
and the parameters without making any restrictive assumption.

4.0.5 Censoring threshold sensitivity

In the previous experiments the survival time horizon and the censoring thresh-
old coincide, but it is not always the case. Since DeepWeiSurv predicts the
conditional Weibull distributions with respect to the covariates, it is able to
consider any survival time horizon given a censoring threshold. We add another
experiment on METABRIC2 dataset where we assess DeepWeiSurv (p = 2)
performance with respect to censoring threshold time tc. The aim of this exper-
iment, is to check if DeepWeiSurv can handle data in highly censored setting
for different survival time horizons. For this purpose, we apply the same ex-
perimental protocole as before, but changing the censoring threshold. We do
this for some values of tc far below than that used in the previous experiment

2We have chosen METABRIC dataset because of its small size compared to that of SEER
dataset in order to avoid long calculations.



Figure 5: The average of Cindex w.r.t survival time horizon tSTH for every
selected threshold tc.

tc No. uncensored No. censored Added portion (w.r.t ref)

q0.5 1026 558 160
q0.45 1127 457 261
q0.35 1248 336 382
q0.25 1338 246 472

Table 3: Distribution of training set’s observations (censored/uncensored) for
each selected censoring threshold.

(tc = tMETABRIC = 8940). This values, expressed in quantiles3, are carefully
selected in order to have a significant added portion (compared to that of the
adjacent value that precedes) of censored observations. As an observation may
change from a censored status to an uncensored status by changing the thresh-
old of censorship and vice versa, for each value of censoring threshold time tc we
therefore have a new set of observed events OEtc = {(ti, δi)‖δi = 1 if ti < tc else
0 } (i.e. comparable events, and this contributes to the calculation of Cindex).
The training set, as it is selected, contains ref = 866 censored observations.
Table 3 gives the number of censored and uncensored observations of each se-
lected value of tc. For each value of tc, we apply the 5-fold cross validation and
then calculate the average Cindex for every survival time horizons tSTH . The
results are displayed in Figure 5.

Each curve in Figure 5 represents the scores calculated for a given censoring

3We choose this values by using the quantiles of the survival times vector T .



threshold tc in different survival time horizons tSTH in x-axis. We can notice
that the average score decreases when tc decreases which is expected because
we have less and less of uncensored data which means that it becomes more
and more difficult to model the distribution of survival times. However, Deep-
WeiSurv still performing well in highly censored setting.

5 Conclusion

In this paper, we described a new approach, DeepWeiSurv, to the survival anal-
ysis. The key role of DeepWeiSurv is to predict the parameters of a mixture of
Weibull distributions with respect to the covariates in presence of right-censored
data. In addition to the fact that Weibull distributions are known to be a good
representation for this kind of problem, it also permits to consider any survival
time horizon given a censoring threshold. Experiments on generated databases
show that DeepWeiSurv converges to the real parameters when the survival time
data follows a mixture of Weibull distributions whose parameters are a simple
function of the covariates. On real datasets, DeepWeiSurv clearly outperforms
the state-of-the-art approaches and demonstrates its ability to consider any sur-
vival time horizon.
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