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Abstract

In substructuring approaches in the field of acoustics, subdomains are mostly
characterized by impedance or mobility at their interfaces with other subdo-
mains. This allows handling large systems broken down into smaller, easier
to solve subdomains and reaching higher frequency ranges. When a subdo-
main is characterized by experiments, the impedances are often measured
on a dedicated setup aimed at uncoupling the subdomain from the other
subdomains. This is often hardly feasible and the setup is insufficiently ver-
satile. In the present article, an inverse method is proposed to experimentally
identify the surface impedance of a passive acoustic (or vibro-acoustic) sub-
domain by means of measurements performed on the whole coupled system.
An analytical study illustrates the ability of the approach to identify the
impedance matrix of a passive subdomain with accuracy. Nevertheless, as
many inverse methods, the system of equations to solve is ill-conditioned.
To address this issue, an original approach for tackling the ill-posedness of
the problem is proposed. It is based on a statistical analysis of different
versions of the matrix to identify. Finally, an experimental validation of the
proposed approach is detailed and shows a good agreement when comparing
to an available analytical solution.
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1. Introduction

In the field of noise vibration and harshness (NVH), dynamic substruc-
turing is often used to solve large problems or to reach higher frequencies.
D. de Klerk listed [1] several advantages of a component-wise vision over a
global method where the full system is handled as a whole:

• Handling large structures. Handling a large and complex system as
a whole might be problematic due, for example, to the huge number
of degrees of freedom when the system is modeled by a finite element
model.

• Modification of a part of the structure without recomputing the re-
sponse of the whole system. In substructuring approaches, there is no
need to recompute the response of subdomains that are not affected by
a structural modification, considerably reducing computation time and
the pre-design process.

• Coupling different approaches. Each subdomain can be modeled sepa-
rately by the most appropriate method. This can guarantee confiden-
tiality when combining substructures from different actors.

Historically, in the late 19th century the impedance and mobility methods
were developed to manage the complexity of electrical networks [2]. At the
beginning of the 20th century, the discovery of the mechanical-electrical anal-
ogy allowed adapting this framework in the field of NVH [3].
More recently, Cacciolati and Guyader adapted the impedance and mobility
method to the needs of acoustics and vibro-acoustics [4]. The continuous
coupling interface was divided into elementary surfaces called patches defin-
ing the basis of the "patch-mobility method". The method has been further
developed and applied to different cases [5–7]. Maxit proposed an alterna-
tive method, based on "patch-impedance" [8] which was further developed
by Ouisse et. al. [9].
In the framework of this so-called PTF (Patch Transfer Functions) method,
a coupled system can be considered as several subdomains connected by sets
of patches. In terms of methodology, large and complex problems can be bro-
ken down into simpler sub-problems. Various methods can then be applied
to compute the vibro-acoustical behavior of each subdomain. Once these
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individual vibro-acoustical responses have been obtained, the response of the
fully coupled system can be predicted by reassembling the subdomains using
continuity relations.
The matrices of condensed impedances involved in a PTF model are much
smaller than a full FEM or BEM model of the whole system. Consequently,
the vibro-acoustical response of the system can be predicted with less com-
putational effort. Therefore, the method is perfectly suitable for running an
optimization algorithm [10].
The term "hybrid model" is used when different methods are used to obtain
the PTF of the subdomains of a complex system. An example can be found
in "A Combined Computational-Experimental Approach for Modelling Cou-
pled Vibro-Acoustic Problems" experimented by Rejlek et. al. [11].
In some situations, an experimental characterization of the PTF is preferred
over computation with a numerical model. This choice is generally due to
the difficulty of obtaining a reliable model of complex subdomains (mainly in
the case of vibro-acoustic subdomains like a car compartment with trim). In-
deed, for some cases, the experimental identification of the patch impedance
is the only means of introducing a subdomain in a vibro-acoustic computa-
tion.
A direct measurement of the PTF of a subdomain was proposed by Du [12].
In this case, the system was physically isolated with an interface discretized
into mobile pistons (equivalent to patches). Each piston (patch) was acti-
vated separately to measure the blocked pressure on each patch. A similar
method was proposed by Veronesi [13] to characterize poroelastic liners. In
both cases, the impedance measurement was performed on an uncoupled sub-
domain, that is to say, in a particular setup. In the present work, an inverse
method is proposed for the identification of the patch impedances of a passive
subdomain. The originalities of this work are twofold and comprise:

• an experimental identification of the patch impedance using acoustic
measurements on the whole system without uncoupling the subdomain
being characterized from it.

• a regularization process based on the median of a set of identified ma-
trices.

The theoretical basis of this approach is first described using an illustra-
tive example and the proof of concept is given for a simple numerical test
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case. Finally, an experimental validation is proposed to demonstrate that
the present approach can be relevant in real measurement conditions.

2. Vibroacoustic solving using the Patch Transfer Functions (PTF)
method

2.1. System under study
As an illustrative example, let us consider a closed cavity Ω filled with

air and delimited by a rigid surface ∂Ω presented in Fig. 1. A point source
S is active in the cavity. The acoustic pressure at point M is denoted p(M).
According to the PTF method [9, 10], the whole domain Ω can be arbitrarily
divided into coupled subdomains. In the case of Fig. 1, the acoustic cavity
Ω is divided into two subvolumes ΩA and ΩB (Ω = ΩA ∪ ΩB) delimited by
surfaces ∂ΩA∪Γ and ∂ΩB∪Γ (∂Ω = ∂ΩA∪∂ΩB), respectively. The coupling
surface Γ is arbitrary and has no physical meaning. This surface is divided
into N elementary surfaces called patches.

2.2. Coupling pressures and coupling acoustic velocities
In this section, a summary of equations derived in [9] and [14] is presented

for sake of clarity. Considering subdomain A, the averaged pressure (defined
as 1

Γi

∫
Γi
p(M) dM) on the surface Γi of patch i is

pA
i = p̃A

i +
N∑
j=1

ZA
ijV

A
j (1)

and for all the N patches

pA = p̃A + ZAvA (2)

where p̃A is the direct pressure field due to the source S and ZAvA is the
contribution of the acoustic velocities of the N patches. ZA is the N × N
acoustic impedance matrix of subdomain A.
Considering subdomain B, the averaged pressure on patch i is

pB
i =

N∑
j=1

ZB
ijV

B
j (3)

and for all the N patches
pB = ZBvB (4)
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where ZBvB is the contribution of the acoustic velocities of the N patches
(no source is acting in this subdomain). ZB is the N×N acoustic impedance
matrix of subdomain B.
When the two subdomains A and B are coupled, the following coupling con-
ditions occur

pA = pB = pcoupl (5)

and
−vA = vB = vcoupl, (6)

according to the outward normals of the subdomains and where pcoupl and
vcoupl are the coupling pressures and the coupling acoustic velocities.
The coupling acoustic velocities are deduced from Eqs. (2), (4) and (5) as

vcoupl = (ZA + ZB)−1p̃A (7)

and the coupling pressures are obtained from either Eq. (2) or Eq. (4) and
coupling conditions (5) and (6). From Eq. (4), we obtain:

pcoupl = ZBvcoupl. (8)

The acoustic velocities are the primary unknowns of the PTF method. Once
they are determined, the pressure can be computed at any point of the whole
domain Ω, as illustrated in [9].

2.3. Subdomain characterization
Let us consider that the coupling pressures pcoupl and the coupling acous-

tic velocities vcoupl can be experimentally measured for a particular position
of the source S. In this case, Eq. (8) still occurs. If another experiment
(a k-th experiment) is performed with another position of the source S, the
coupling pressures and the coupling acoustic velocities are changed to pcoupl

k

and vcoupl
k and Eq. (8) writes

pcoupl
k = ZBvcoupl

k . (9)

It should be emphasized that in Eq.(9), the ZB matrix does not change as it
is independent of the source position. Thus, if N experiments are performed,
the N vectors pcoupl

k and vcoupl
k can be stacked in two matrices Pc and Vc,

each of them having dimensions N ×N . This gives:

Pc = ZBVc. (10)
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Therefore, the impedance matrix ZB of subdomain B can be characterized
by

ZB = Pc(Vc)−1 (11)

and experiments performed only on the whole system.
However, attention must be given to the fact that this approach relies on
the special case represented by Eq. (4) where no source is considered in the
subdomain to be characterized.

3. Proof of concept of subdomain characterization

Let us consider the simple system presented in Fig. 2. It consists of a
rectangular box with rigid walls having dimensions Lx, Ly and Lz. This box
is divided virtually into two subdomains: A and B (Ω = ΩA ∪ ΩB) coupled
through the coupling surface Γ at x = 0.5 m. This coupling surface is divided
in this simple test case into only two square patches of the same dimension
0.2×0.2 m as presented in Fig. 2(b). The characteristics of the whole system
and of subdomains A and B are listed in Table 1.
For the k-th experiment and according to section 2.3, the coupling pres-

Whole system Subdomain A Subdomain B
(Lx; Ly; Lz) [m] (0.8; 0.4; 0.2) (0.3; 0.4; 0.2) (0.5; 0.4; 0.2)

ρ [kgm−3] 1.29
c [ms−1] 340
η [-] 0.01

Table 1: Characteristics of the whole simple system and the subdomains A and B. ρ, c
and η are the density of air, the sound speed and the damping ratio, respectively.

sures and coupling acoustic velocities are linked by Eq. (8). In this case,
no source acts in subdomain B and pcoupl

k and vcoupl
k are quantities averaged

on the surface of the patches. In this case of two patches, only two different
experiments are required. An experiment consists of the "measurement" of
the averaged pressures and particle velocities on the surface of the patches
for two different positions of the source. In the present case, the positions of
the source are located in subdomain A at (0.6; 0.05; 0.13) m and (0.7; 0.35;
0.08) m in the global coordinate system.
With these two experiments, matrices Pc and Vc (of size 2×2) can be built
and Eq. (11) can be applied to retrieve the complete acoustic impedance
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matrix (including off-diagonal terms) of subdomain B. The terms Zij of the
identified matrix are compared to a reference solution based on modal sum-
mation as described in [9] (some details can be found in AppendixA). The
comparison is shown in Fig. 3.

As can be seen in Fig. 3, the proposed approach is able to efficiently
predict the surface impedance of a subdomain measuring data only in the
whole system when the sources are successively acting outside the subdomain
under investigation. This is a remarkable property as the identified curves
shown in Fig. 3 present several peaks that do not correspond to the natural
frequencies of the whole system but to the natural frequencies of the subdo-
main B with rigid walls.
Some discrepancies appear above the λ/2 criterion for which the length of
the patches (here 0.2 m) is larger than half of the acoustic wavelength λ.
This frequency limit occurs in the present case at 850 Hz. This corresponds
to the criterion stated by Ouisse et al. for the application of the PTF method
[9] and by Forget et al. for the application of the inverse PTF method [14].
Finally, the pressure at pointM (see Fig. 2) can be computed using the PTF
approach and the identified impedance matrix ZB,id of the passive subdomain
B using Eqs. (7) and (2) even if the excitation of the active subdomain A is
different from those used to identify the impedance matrix. This pressure can
be compared to the one obtained by the PTF approach using the reference
impedance matrix ZB,ref (obtained by modal summation, see AppendixA for
more details). Ultimately, these pressures can also be compared to that ob-
tained using a classical modal summation on the whole cavity volume Ω (see
AppendixA for more details). This last comparison allows distinguishing er-
rors due to the identification process to those due to the PTF approach itself.
In Fig. 4, the pressure at listening point (0.72; 0.28; 0.15) m when a point
source is acting at (0.75; 0.06; 0.07) m is computed with the three ap-
proaches. As can be seen in Fig. 4, the three curves (reference, PTF with
identified impedance matrix and PTF with reference matrices) are almost
superimposed, demonstrating that the slight discrepancies on the identified
impedance matrix ZB observed in Fig. 3 have rather no influence on the
quality of the results. In addition, the PTF approach with the identified
impedance matrix obeys the same "λ/2" criterion as that using the refer-
ence impedance matrix. This result clearly validates the proof of concept of
the identification method proposed to characterize a passive vibro-acoustic
subdomain.
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4. Conditioning issues and regularization

4.1. Errors due to ill-conditioning
Although the proof of concept shows that the proposed identification

method is capable of performing efficiently, it is obviously not free of errors.
Like many inverse methods, the proposed process can be ill-posed as the
condition number can reach high values at certain frequencies, as shown in
Fig. 5(a). The condition number of a matrix A measures how much the
output value b of a system of equations Ax = b can change for a small
change in the input vector x. A problem with a low condition number is
said to be well-conditioned, while a problem with a high condition number
is said to be ill-conditioned [15]. A high value of the condition number can
then indicate at which frequencies inversion problem might occur, without it
being possible to define a threshold.
The curve of Fig. 5(a) exhibits peaks of condition number coinciding with
the natural frequencies of the whole system (green square symbols) and the
natural frequencies of passive subdomain B (red triangle symbol). Indeed,

• at the resonance frequencies of the whole system, the position of the
source has little impact on the pressure distribution on the coupling
surface. At these frequencies, this distribution is mostly driven by the
mode shape of the resonant mode. In this case, each position of the
source leads to almost the same pressure distribution on the coupling
surface, causing the condition number to increase considerably.

• at the resonance frequencies of subdomain B (with rigid walls), a form
of "anti-resonance" occurs in subdomain A. Subdomain A somehow
acts as a blocked surface on subdomain B. At these frequencies the ve-
locity is low in subdomain A, thereby increasing the condition number.

Conversely, the natural frequencies of the active subdomain A with rigid
walls do not appear to have any influence on the condition number.
The Mean Quadratic Error (MQE) between the identified and the reference
impedance matrices is defined as

MQE(ω) =
1

N2

N∑
i=1

N∑
j=1

|ZB,id
ij (ω)− ZB,ref

ij (ω)|2, (12)

where ZB,id
ij (ω) and ZB,ref

i,j (ω) are the (i, j) elements of the identified and the
reference matrices ZB, respectively, at the angular frequency ω. It is worth
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noting that the Mean Quadratic Error shown in Fig. 5(b) is affected only
by the natural frequencies of subdomain B with rigid walls. Indeed, it can
be seen that the mean quadratic error is low for the natural frequencies of
the whole system which do not coincide with those of subdomain B. The
mean quadratic error is only significant at the resonance frequencies of the
subdomain under investigation (the passive subdomain).

4.2. Regularization effects of the median of the experiments
When solving Eq. (10), two difficulties can occur. The first is associated

with the singularity of matrix Vc to be inverted. This can be due to non-
independent experiments used to build the matrix, that is to say, the use
of different points of excitation. Of course, using different but overly close
excitation points leads to bad inversion and polluted results.
The second difficulty appears when a term of the impedance matrix has a
negligible influence on the pressure and velocity field produced by the dif-
ferent excitations to build the matrix equation (10). In this situation, a
considerable uncertainty appears on the matrix term of negligible influence,
producing an ill-posed problem and a polluted result.
To solve ill-conditioned problems the standard approach is to use an a-priori
regularization technique based for example on the standard Tikhonov and
L-curve approaches [16]. Here we explore an a-posteriori technique, based on
the observation that situations producing ill-conditioned problems are par-
ticular. Therefore, when observing several different identified impedance ma-
trices, namely several solutions obtained from different sets of experiments,
the solution observed most is the right one.
Consequently, the technique proposed to identify an impedance matrix of
rank N consists in solving the problem without any regularization for P sets
of the N experiments necessary to build the matrices. Thus, an ensemble of
P identified impedance matrices is obtained. The regularization is performed
by computing the median of the P results. This a-posteriori regularization
technique is very easy and straightforward to implement.
In the proof of concept described in Sec. 3, two successive experiments
(N = 2) and thus two different positions of the source are needed. Applying
Eq. (11) yields an identified impedance matrix ZB,id. By changing the posi-
tions of the two sources to obtain another set of two experiments and again
applying Eq. (11) yields a slightly different version of ZB,id. This process can
be reproduced P times to obtain P versions of the impedance matrix ZB,id.
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Source setup 1
Source ID Coordinates [m]

S1
1 (0.76; 0.28; 0.14)
S1

2 (0.74; 0.34; 0.04)
S1

3 (0.72; 0.38; 0.08)
S1

4 (0.74; 0.18; 0.08)
S1

5 (0.62; 0.12; 0.08)
S1

6 (0.68; 0.3; 0.12)

Source setup 2
Source ID Coordinates [m]

S2
1 (0.62; 0.34; 0.14)
S2

2 (0.68; 0.36; 0.08)
S2

3 (0.72; 0.22; 0.10)
S2

4 (0.68; 0.20; 0.04)
S2

5 (0.66; 0.20; 0.14)
S2

6 (0.68;0.22; 0.04)

Table 2: Source positions for two different source setups.

To regularize this inverse problem, one solution would be to average the P
versions of the impedance matrices ZB,id

p (p ∈ [1...P ]) obtained with the P
sets of N experiments.
In the following, P = 15 sets of N = 2 experiments (one experiment=one
position of the source) are used to identify 15 versions of the impedance ma-
trix ZB,id

p . P different configurations can be obtained arranging N source
positions among L possible positions. In that case, P is given by

P =
L!

N !(L−N)!
(13)

where •! stands for the factorial of •. Considering the L = 6 possible posi-
tions of the source of setup 1 described in Table 2, there are P = 15 different
combinations of N = 2 different source positions. Therefore, only 6 source
positions can lead to the identification of 15 different versions of ZB,id.
The average of the P = 15 versions of the identified impedance matrix is

plotted in Fig. 6(a-b). As can be seen, although several discrepancies ap-
pear at low frequency (mostly around 180 Hz and 400 Hz), the results are
satisfactory in amplitude as well as in phase. This is definitely not the case
when considering the L = 6 source positions of setup 2 described in Table 2.
By changing only the L = 6 source positions of the setup, the quality of the
results is changed dramatically. Indeed, in the case of setup 2 the results are
simply not reliable. In fact, in the P = 15 versions of the impedance matrix,
we are faced with an inversion problem (no regularization is done here). Tak-
ing the mean of the P = 15 versions of the impedance matrices then leads to
an erroneous estimation of the matrix. The presence of only one outlier in
the P = 15 versions (here due to the inversion problem) causes the mean to
be ill-adapted to the process described to avoid classical regularization. This
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problem is even more important considering the fact that no rule was found
to explain the poor results obtained when using setup 2. Indeed, positions of
sources in setup 2 are not so different from those of setup 1. This sensitivity
to source positions makes the use of the mean not reliable.
The median of the identified impedance matrices can be used to avoid the
problems encountered with the use of the mean. The results obtained with
the median of the matrices are presented in Fig. 6(c-d). Contrary to the re-
sults obtained with the mean, the estimation of the impedance matrix ZB,id

is very close to the reference computation whatever the source setup. This
demonstrates the stability of the median regarding the possible presence of
outliers in the P versions of the identified impedance matrix. In addition,
the discrepancies that appear at low frequency (180 Hz and 400 Hz) are
completely removed when using the median instead of the mean. It is note-
worthy that the mean and the median are obviously applied here to the same
population of impedance matrices.

5. Experimental validation

In this section, the first experiment is performed to characterize the sur-
face impedance of a rectangular box open on a "quiet" room, as shown in
Fig. 7. The coupling surface between the box and the room is divided into
20 rectangular patches of size 0.164 × 0.152 m. The rectangular box has
dimensions Lx = 0.82 m, Ly = 0.608 m and Lz = 0.53 m. Compared to the
"proof of concept" case, this application:

• deals with many more patches (20 versus 2). In this case, the dimension
of the impedance matrix to be identified is 20×20 for each frequency
under investigation. The minimal number of source positions is thus
20. In the following, 25 source positions are used (see Fig. 7(b)) to
create P = 53130 sets of N = 20 experiments (Eq. 13).

• implies the presence of background noise on the measurement of pres-
sure and velocity on patches.

• implies replacing the integral of the spatial average of pressure and
velocity on the surface of the patches by the value of pressure and
velocity at the center of the patches. This approximation is valid when
the size of the patches is small compared to the wavelength.
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From the practical viewpoint, pressure and particle velocity at the center of
each patch are measured by an array of 20 PU probes (Microflowns sensors
able to measure pressure and particle velocity, see Fig. 7(a)) for each of the
L = 25 source positions described in Fig. 7(b). The source positions are
obviously outside the subdomain (the box) to be characterized. The low fre-
quency monopole sound source was a LMS Qsources device fed with a white
noise. The omni-directionality frequency range of this source is [20:2000] Hz.
However, one has to notice here that any type of source might be used for
this experiment and a monopole source is not mandatory. The measurements
were performed in the [0:1000] Hz frequency band. In this frequency band,
the proposed approach should be reliable considering the size of the patches
and the λ/2 criterion stated previously.
The results of the identification process using the median on 21 over the
P = 53130 possible combinations of N = 20 source positions are presented
in Fig. 8 for components ZB,id

1,1 and ZB,id
3,16 of the impedance matrix. The am-

plitude as a function of frequency of these two components is compared to
a reference analytic computation assuming a rectangular idealized box filled
with air with a sound speed of c0 = 340 ms−1, a density ρ0 = 1.29 kgm−3

and a damping η0 = 0.01 (see AppendixA for more details). The chosen
parameters are usual ones without any tuning. Especially, damping was not
measured and a constant value was chosen.
As can be seen in Fig. 8, the identification process is able to characterize
the surface impedance of a passive acoustic subdomain without uncoupling
it from the whole system and without classical regularization of the inversion
of the matrix Vc. However, two comments are needed: (i) PU probes are
not designed to measure pressure and particle velocity below 100 Hz. Below
this frequency, the coherence between signals was poor and the results are
thus unreliable. (ii) The damping of the air cavity seems higher than the one
used in computations (some peaks are smoother on the identified curve than
on the computed one). However, the damping parameter was already chosen
quite high. This might point out that the process of the proposed approach
has a smoothing effect on the results even if this was not noticed in numerical
simulations. This aspect will be investigated in further experiments.

6. Conclusion

In this article, an experimental characterization of the surface impedance
of a passive acoustic (or vibro-acoustic) subdomain was proposed. It is based
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on the Patch Transfer Functions (PTF) formulation and an inverse approach.
A proof of concept demonstrated that this approach is able to estimate the
complete "patch-to-patch" surface impedance matrix of the passive subdo-
main without uncoupling it from the whole system. The quality of the results
was limited by the λ/2 criterion as observed previously in the literature for
the PTF approach. Since the impedance matrix is intrinsically independent
of the coupling, the subdomain characterized can be then used in any nu-
merical simulation to test different configurations.
The proposed approach is theoretically applicable to both acoustic and vibro-
acoustic subdomains of any shape. However, as this approach characterizes
only surface impedance, the subdomain must be passive (no source inside).
The initial experimental validation was performed and demonstrated that
the approach proposed gives satisfactory results in real conditions.
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AppendixA. Reference computation for a rectangular box

Let us consider a rectangular box (dimensions Lx × Ly × Lz) with rigid
walls filled with air (sound speed c0, density ρ0 and damping factor η0). A
unit acoustic point source is active in the cavity at point Q. Pressure p(M,ω)
at angular frequency ω can be expressed on the basis of mode shapes φn(M)
as

p(M,ω) = c2
0

∞∑
m=1

∞∑
n=1

∞∑
p=1

φmnp(M)φmnp(Q)

(ω2 − ω2
mnp + iη0ωωmnp)Λmnp

(A.1)

where Λmnp is the norm of mode of indices (m,n, p). The mode shape
φmnp(M) (M being a point of coordinates (x, y, z)) is given by

φmnp(x, y, z) = cos

(
mπ

Lx

x

)
cos

(
nπ

Ly

y

)
cos

(
pπ

Lz

z

)
(A.2)
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and the angular Eigen-frequency is given by

ωmnp = c0

√(
mπ

Lx

)2

+

(
nπ

Ly

)2

+

(
pπ

Lz

)2

. (A.3)

The norm Λmnp is given by

Λmnp =
LxLyLz

8
2d (A.4)

where d is the number of null indices among m, n and p.
The surface impedance between a patch i and a patch j is given by [9]

Zij(ω) = iωρ0c
2
0

∑
m=1

∑
n=1

∞∑
p=1

〈φmnp(L)〉L∈Γi
〈φmnp(N)〉N∈Γj

Γj

(ω2 − ω2
mnp + iη0ωωmnp)Λmnp

(A.5)

where 〈φmnp(L)〉L∈Γi
denotes the spatial average of mode shape φmnp(L) on

the patch surface Γi.
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Figure 1: (a) the whole system Ω under study excited by an acoustic source S and delimited
by a boundary surface ∂Ω (here considered as rigid); (b) subdomain A delimited by surfaces
∂ΩA ∪Γ; (c) subdomain B delimited by surfaces ∂ΩB ∪Γ. ~nA and ~nB are respectively the
outward normals of subdomains A and B. The coupling surface Γ is divided into patches
referenced by indices i and j.
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Figure 2: (a) the whole system Ω under study excited by an acoustic source S; (b) subdo-
mains A and B coupled through the coupling surface Γ divided into 2 square patches.
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Figure 3: Amplitudes of terms Zij of the reference matrix (solid lines) and of the matrix
identified (dashed-dotted lines) as a function of frequency. (a) Z11; (b) Z12; (c) Z21; (d)
Z22. The vertical dashed line represents the "λ/2" criterion. �: positions of the natural
frequencies of the whole system; O: positions of the natural frequencies of the subdomain
B with rigid walls.
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Figure 4: Pressure at point M as a function of frequency. Solid line: reference computation;
dashed line: PTF computation using reference impendance matrices; dotted line: PTF
computation using identified impedance matrices. The vertical dashed line represents the
"λ/2" criterion.
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Figure 5: (a) Condition number of the velocity matrix Vc as a function of frequency; (b)
Mean Quadratic Error between the identified and the reference matrices as a function of
frequency. �: positions of the natural frequencies of the whole system; O: positions of
the natural frequencies of the active subdomain A with rigid walls; 4: positions of the
natural frequencies of the passive subdomain B with rigid walls.
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Figure 6: (a) amplitude and (b) phase of the component ZB,id
11 obtained averaging the

P = 15 versions of the impedance matrix ZB,id. (c) amplitude and (d) phase of the
component ZB,id

1,1 obtained taking the median of the P = 15 versions of the impedance
matrix ZB,id. Solid curve: reference computation; dashed-dotted line: using source setup
1; dotted line: using source setup 2.
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Figure 7: (a) Picture of the subdomain (the box) to characterize coupled to a large "quiet"
room. The pressure and particle velocity at center of each patch are measured using an
array of 20 PU probes. The point source is moved at 25 different positions. (b) Sketch of
the patches, the positions of the centers of N = 20 patches and the positions of the L = 25
sources.
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Figure 8: Comparison of impedances obtained from experimental identification and from
an analytic solution. (a) ZB

1,1 (b) ZB
3,16. Solid line: reference analytical solution; dashed-

dotted line: experimental identification.
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