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NUMERICAL RESOLUTION OF AN ANISOTROPIC NON-LINEAR

DIFFUSION PROBLEM ∗

STÉPHANE BRULL † , FABRICE DELUZET ‡ , AND ALEXANDRE MOUTON §

Abstract. This paper is devoted to the numerical resolution of an anisotropic non-linear dif-
fusion problem involving a small parameter ǫ, defined as the anisotropy strength reciprocal. In this
work, the anisotropy is carried by a variable vector function b. The equation being supplemented
with Neumann boundary conditions, the limit ǫ→0 is demonstrated to be a singular perturbation of
the original diffusion equation. To address efficiently this problem, an Asymptotic-Preserving scheme
is derived. This numerical method does not require the use of coordinates adapted to the anisotropy
direction and exhibits an accuracy as well as a computational cost independent of the anisotropy
strength.

Key words. Anisotropic diffusion problems; Singular perturbation; Asymptotic-Preserving

schemes.

AMS Subject Classification: 35J60, 35J62, 65M06, 65M12, 65N06, 65N12.

1. Introduction

The aim of this paper is to build an efficient numerical method for solving an
anisotropic diffusion problem where the anisotropy is carried by a vector b. This
work is motivated by investigations of strongly magnetized plasmas, more specifically
the study of the Euler-Lorentz model in a low Mach number regime and in the pres-
ence of a large magnetic field. This framework is characteristic of the magnetically
confined plasma fusion [18, 29, 36]. In this context, the asymptotic parameter ǫ rep-
resents the gyro-period of particles as well as the square root of the Mach number,
the vector field b being the magnetic field direction. Therefore the ǫ values can be
very small in some sub-regions of the computational domain where the magnetic field
is large, inducing then a severe anisotropy of the medium, while being large in other
sub-domains for intermediate and small strength of the magnetic field. Another im-
portant property of this system is the time dependence of the magnetic field defining
the anisotropy direction. These two main characteristics define the framework of the
present paper whose purpose is to design a numerical scheme for anisotropy ratios
ranging from ǫ≪1 to ǫ∼O(1) and for a time varying anisotropy direction. In order
to address efficiently these requirements, the numerical method should not rely on a
coordinate system adapted to this anisotropy direction. The use of adapted coordi-
nates would imply mesh modifications accordingly to the evolution of b, an intricate
and expensive procedure we wish to avoid. Thus, the numerical method introduced
here will carry out the anisotropic non-linear diffusion problem on a mesh independent
of the anisotropy direction.
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2 Numerical resolution of an anisotropic non-linear diffusion problem

This scheme will be detailed on the following model problem






















−∇x ·

(

Hǫ (b⊗b)
∇xpǫ−Sǫ

ǫ

)

+gǫ(pǫ)=fǫ , in Ω,

(

Hǫ (b⊗b)
∇xpǫ−Sǫ

ǫ

)

·ν≡0, on ∂Ω.

(1.1)

In this system, Ω is a bounded subset of Rd (d=1,2,3), ǫ≥0 is a fixed constant pa-
rameter and, for any x∈∂Ω, ν=ν(x) stands for the unit outward normal vector. ∇x

and ∇x· stand for the gradient and the divergence operators with respect to the space
variable x. We assume that Hǫ :Ω→R

∗
+, b :Ω→R

d−{0}, fǫ :Ω→R, Sǫ :Ω→R
d are

given and the unknown of the problem is the function pǫ :Ω→R. The tensor product
of two vectors u and v is denoted u⊗v. Finally, we assume that, for any ǫ, the
function p 7→gǫ(p) is strictly increasing and can be non-linear. This equation is well
suited for the plasma fusion context above depicted. It allows the computation of the
plasma pressure in order to guarantee that the forces vanish in the low Mach regime
for strongly magnetized plasma. The function denoted gǫ defines the internal energy
of the fluid with respect to the pressure. This relation may be non-linear, which moti-
vates the investigation of non-linear anisotropic problems. However, the derivation of
this equation is out of the scope of the present paper and we refer to related works (see
[6, 5, 18]) for detailed explanations. Furthermore, we wish to present the numerical
method in a context wider than the strict plasma context, since anisotropic diffusion
problem are encountered in many applications. Good examples of these applications
are, for instance, image noise filtering, convection dominated diffusion equations and
more generally diffusion problem with strong medium anisotropies. The model equa-
tion (1.1) is representative of a large enough variety of problems, up to slight changes,
and will be considered to detail the numerical method. Note that the same model
problem is considered in [37, 38] but this work is devoted to the derivation of an
efficient numerical method for heterogeneous media with data that undergoes large
gradients. The anisotropy ratios considered are moderate (103 while the physical val-
ues for applications to fusion plasmas, for instance, may be as large as 109) and the
limit ǫ→0 is not addressed at all. The purpose here is different and consists in deriv-
ing an efficient numerical method to compute the solution of this diffusion problem,
regardless of ǫ values.

This is a rather intricate task, since the limit ǫ→0 is singular, the problem (1.1)
degenerating into the following one

{

−∇x ·(H0 (b⊗b)(∇xp̃0−S0))=0, in Ω,
(H0 (b⊗b)(∇xp̃0−S0)) ·ν≡0, on ∂Ω.

(1.2)

The system (1.2) is ill-posed, its solution being non-unique. More precisely, if p̃0 is
a solution of (1.2) and c :Ω→R is a function verifying b ·∇xc=0 on Ω, then p̃0+c
defines a new solution of (1.2). However, p0 the limit of pǫ solution of (1.1) is uniquely
defined by the limit problem as demonstrated in Section 2, but a direct discretization
of the diffusion problem (1.1) gives rise to a linear system with a conditioning number
that blows up for vanishing ǫ as depicted on Figure 1.1. This dramatically deteriorates
the precision of the approximation for large anisotropy strength.

To tackle this difficulty, an Asymptotic-Preserving (AP) scheme is introduced to
compute the solution of the anisotropic diffusion problem for ǫ=O(1) and to capture
p0, the solution of the limit problem, for small ǫ values. This property should be
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provided without any limitations on the discretization parameters related to the value
of ǫ. These requirements are compliant with the properties of AP-schemes originally
introduced in [30] and developed in [33] for diffusive regimes of transport equations.
These techniques have received numerous extensions to other singular perturbation
problems: relaxation limits of kinetic plasma descriptions [15, 26, 27], quasi-neutral
limit of fluid and kinetic plasma models [2, 11, 12, 13, 14, 20, 23, 24], hydrodynamic
low Mach number limit [25, 31], radiative hydrodynamics [7, 8], fluid and particle
flows [9] and strongly magnetized plasmas as well as heterogeneous media [4, 5, 6, 16,
17, 18, 21, 22].

The Asymptotic-Preserving property of the presented method is obtained thanks
to a decomposition of the solution, introduced in [21] and also used in [4, 5, 16]. It
consists of the following identity pǫ=πǫ+qǫ, πǫ being the solution mean part, with
respect to the anisotropy (b) direction, qǫ the fluctuating part. These two components
verify πǫ∈K and qǫ∈K⊥, K defining the functions constant along the b-direction,
K⊥ the functions of zero mean value along b. This decomposition was first developed
for meshes adapted to the anisotropy direction [4, 21], for which, the discretization
of K is straightforward. A direct discretization of the sub-space K⊥ is, on the other
side, much more intricate. This difficulty is overcome thanks to the introduction of
a Lagrangian multiplier, in order to penalize the zero mean value property of the
functions belonging to K⊥. The method is extended in [16] for computations with
meshes independent of the anisotropy direction. This is achieved by introducing two
more Lagrangian multipliers to discretize the sub-spaces. The size of the linear system
providing the problem solution is then significantly enlarged. However, this drawback
may be corrected thanks to a slightly different decomposition. In [17] the solution is
decomposed in two non-orthogonal parts which allows the definition of two sub-spaces
whose direct discretization is readily obtained without any Lagrangian multipliers.
The size of the linear system obtained with this approach is considerably lowered
compared to the previous method [16]. This method has been extended in [35, 34]
to non-linear diffusion equations. The path followed in the present paper still relies
on the decomposition in K and K⊥. However, the discretization of these sub-spaces
is achieved using a differential characterization, similar to the one introduced in [5].
This finally allows the computation of the solution thanks to a second-order problem
for πǫ and a fourth-order problem for qǫ. This latter problem, in the framework of
Neumann boundary conditions considered in this paper, can be recast into two elliptic
problems.

The method introduced in this paper finally reduces to three standard elliptic
problems giving rise to linear systems with a condition number almost independent
of the anisotropy strength. A first illustration of this property is outlined thanks to
Figure 1.1 and will be documented further in the sequel. Note that, for the former ap-
proaches [16, 17], the singular perturbation problem is transformed into a saddle point
problem, which requires the solution of an augmented linear system. The resolution of
this linear system requires sophisticated solvers to secure a good efficiency (see [3] for
a review). One contribution of this this paper is to offer the Asymptotic-Preserving
property thanks to classical elliptic problems for which very efficient numerical meth-
ods (for instance multi-grid or standard preconditionned Krylov methods) may be
readily used. An other contribution of the present work is to set this new asymptotic
preserving formulation in the framework of Finite-Volume methods while previous
achievements were limited to the Finite-Element method.

Moreover, we also investigate non-linear reaction diffusion problems, and pro-
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pose an extension of the AP-scheme to this class of problems that has never been
investigated in previous works.
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Fig. 1.1. An illustration of the properties of the discretized singular perturbation problem (1.1)
compared to that of the Asymptotic-Preserving scheme introduced in this paper: condition number
(left) and ℓ2-norm of the solution relative error (right) for computations carried out on a 100×100
mesh with an anisotropy direction aligned to the x-axis and different anisotropy strengths. The
condition number related to the AP-scheme is defined as the largest condition number of the elliptic
problems solved for this method. The setup of the test case is precised in Section 4.1.

The paper is organized as follows: in Section 2, the decomposition methodology
is presented. The linear case, i.e. with gǫ(p)(x)=Gǫ(x)p(x) where Gǫ :Ω→R

∗
+ is a

given function sequence, is first investigated: more precisely, we describe the decom-
position procedure in the specific case where Gǫ is a strictly positive constant denoted
λǫ, then we generalize this procedure to any function Gǫ :Ω→R

∗
+ by using well-chosen

Sobolev spaces. Finally the non-linear problems are addressed by invoking Gummel’s
iterative algorithm. Section 3 is devoted to presentation of the discretization. Finally,
the efficiency of the numerical method is demonstrated in Section 4.

2. Scale separation and solution decomposition

In this section a scale separation is introduced to ensure the Asymptotic-
Preserving property of the scheme. This is achieved by transforming the singular
perturbation problem (1.1) into an equivalent system for which the limit ǫ→0 is reg-
ular. For simplicity reasons, the linear case with constant Gǫ is first considered for
detailing the decomposition method. In this framework, the singular nature of the
limit ǫ→0 is outlined and the limit problem, providing p0=limǫ→0pǫ, is stated. A
development to linear cases with variable positive functions Gǫ is then presented and
finally, thanks to Gummel’s iterative method [28], the non-linear case is addressed by
using a sequence of linear problems.

2.1. AP-scheme derivation for linear problems

2.1.1. A simplified framework: constant Gǫ

We assume here that the given sequence (gǫ)ǫ≥0 is of the form

gǫ(p)(x)=λǫp(x) ,

where λǫ>0 is a known constant for any ǫ≥0. Then the diffusion problem (1.1)
writes

{

−∇x ·(Hǫ (b⊗b)(∇xpǫ−Sǫ))+ǫλǫpǫ= ǫfǫ , in Ω,
(Hǫ (b⊗b)(∇xpǫ−Sǫ)) ·ν≡0, on ∂Ω .

(2.1)
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The limit solution p0 of the singular perturbation problem (2.1) verifies the limit
problem











− lim
ǫ→0

∇x ·

(

Hǫ (b⊗b)
∇xpǫ−Sǫ

ǫ

)

+λ0p0=f0 , in Ω,

(H0 (b⊗b)(∇xp0−S0)) ·ν≡0, on ∂Ω.

(2.2)

This algebraic equation admits a unique solution under the assumption

Hǫ (b⊗b)(∇xpǫ−Sǫ)=O(ǫ) , (2.3)

a requirement that must be fulfilled by the numerical method. To ensure this property,
the methodology consists in using a decomposition similar to that of [5, 6, 14, 16, 21].
The solution is decomposed into πǫ its mean part with respect to the anisotropy
direction and qǫ the fluctuating part, which exhibits the property to have a zero mean
value along the anisotropy direction. These two functions verify πǫ∈K and qǫ∈K⊥,
K being the kernel of the elliptic operator defined by equation (1.2). These properties
are capitalized on, to isolate in the problem 2.1 the macro scale (providing πǫ) from
the micro scale (giving qǫ) and thereby, build the Asymptotic-Preserving scheme. The
main difficulty of the procedure lies in the characterization of the sub-spaces associated
to the different scales. In [4, 14, 16, 21] the property of the functions populating K
or K⊥ are imposed by a penalization technique. The methodology developed in
this paper operates a similar decomposition on to K and K⊥, but with a different
characterization of these sub-spaces. Here, we shape the technique introduced in [5]
for a very specific framework, in order to discriminate the functions in K and K⊥

thanks to differential properties, providing thus, an easy discretization.
With this aim, we introduce the following Sobolev spaces:

V =
{

p∈L2(Ω) : b ·∇xp∈L2(Ω)
}

,

W =
{

q∈L2(Ω) :∇x ·(bq)∈L2(Ω)
}

,

W0={q∈W : (bq) ·ν≡0 on ∂Ω} ,

and we define K⊂V as

K={π∈V : b ·∇xπ=0on Ω} .

The goal is to reproduce the function decomposition into its mean and fluctuating
parts. The functions of K correspond to the mean part and the complementary part
is demonstrated to belong to K⊥. This is the purpose of the following theorem:
Theorem 2.1. We denote by ∇x ·(bW0) the subspace of functions θ∈L2(Ω) such

that

∃χ∈W0 , θ=∇x ·(bχ) , (2.4)

and we equip it with the usual norm on L2(Ω). Then:

• W0 equipped with the norm ‖p‖W0
=‖∇x ·(bp)‖L2 is a Hilbert space,

• ∇x ·(bW0) is a closed subspace in L2(Ω),
• K is a closed subspace in L2(Ω).
• We have the orthogonal decomposition

L2(Ω)=K⊕K⊥ , with K⊥=∇x ·(bW0) . (2.5)
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The demonstration of this theorem will be omitted. It can be readily adapted from
that of Theorem 2.1 from [5]. As a consequence of this theorem, the decomposition

pǫ=πǫ+qǫ , πǫ∈K, qǫ∈K⊥ , (2.6)

exists and is unique for any ǫ≥0. Therefore finding the particular solution p0 which
is exactly the limit of (pǫ)ǫ>0 is equivalent to find π0 and q0 as the respective limits of
(πǫ)ǫ>0 and (qǫ)ǫ>0. Then, our goal is now to find some equations for πǫ and qǫ which
are well-posed for any value of ǫ, including ǫ=0. For this purpose, the decomposition
(2.6) is introduced into (2.1), yielding

{

−∇x ·(Hǫ (b⊗b)(∇xqǫ−Sǫ))+ǫλǫ (πǫ+qǫ)= ǫfǫ , in Ω,
(Hǫ (b⊗b)(∇xqǫ−Sǫ)) ·ν≡0, on ∂Ω.

(2.7)

The variational formulation on V writes
∫

Ω

Hǫ (b ·∇xqǫ)(b ·∇xθ)dx+ǫλǫ

∫

Ω

(πǫ+qǫ)θdx

= ǫ

∫

Ω

fǫθdx+

∫

Ω

Hǫ (b ·Sǫ)(b ·∇xθ)dx ,

(2.8)

for any test function θ∈V .

In order to exhibit the equation providing πǫ∈K, the variational formulation
(2.8) is tested against θ∈K giving

∫

Ω

(λǫπǫ−fǫ)θdx=0,

which means that λǫπǫ−fǫ∈K⊥ for any ǫ≥0. According to Theorem 2.1, there exists
a function hǫ∈W0 such that

λǫπǫ−fǫ=∇x ·(bhǫ) . (2.9)

This equation furnishes a means of computation for πǫ. Firstly, applying the differ-
ential operator b ·∇x onto (2.9) leads to an equation for hǫ

{

−b ·∇x (∇x ·(bhǫ))=b ·∇xfǫ , in Ω,
(bhǫ) ·ν≡0, on ∂Ω,

(2.10)

then, πǫ is retrieved thanks to

πǫ=
1

λǫ
[fǫ+∇x ·(bhǫ)] . (2.11)

Note that the system (2.10)-(2.11) is well-posed and does not degenerate for any value
of ǫ≥0, including ǫ=0. It provides a means of computing the macro component of
the solution regardless to ǫ values.

To derive an equation for qǫ∈K⊥, we now assume that the test function θ in
(2.8) is in K⊥. According to Theorem 2.1, there exist two functions χ and lǫ in W0

such that

qǫ=∇x ·(blǫ) , (2.12)
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and

θ=∇x ·(bχ) .

As a consequence, the variational formulation of (2.7) can be rewritten as follows:

∫

Ω

Hǫ (b ·∇x (∇x ·(blǫ))) (b ·∇x (∇x ·(bχ))) dx+ǫλǫ

∫

Ω

(∇x ·(blǫ)) (∇x ·(bχ)) dx

= ǫ

∫

Ω

fǫ (∇x ·(bχ)) dx+

∫

Ω

Hǫ (b ·Sǫ)(b ·∇x (∇x ·(bχ))) dx .

We recognize the variational formulation of















b ·∇x (∇x ·(Hǫ (b⊗b)∇x (∇x ·(blǫ))))−ǫλǫb ·∇x (∇x ·(blǫ))
=−b ·∇x (ǫfǫ−∇x ·(Hǫ (b⊗b)Sǫ)) , in Ω,

(Hǫ (b⊗b)∇x (∇x ·(blǫ))) ·ν≡ (Hǫ (b⊗b)Sǫ) ·ν , on ∂Ω,
(blǫ) ·ν≡0, on ∂Ω.

(2.13)

Therefore, coupling this system with (2.12), we recognize a complete definition of qǫ
which is well-posed for any ǫ≥0, including ǫ=0. Moreover this computation of qǫ is
totally compliant with the condition (2.3) and guarantees the Asymptotic-Preserving
property of the scheme.

At this point, we have established a system of equations for πǫ and qǫ which is
well-posed for any ǫ>0 but also for ǫ=0. Then, solving the well-posed equations
(2.10), (2.13), (2.11) and (2.12) provides π0 and q0 as the respective limits of (πǫ)ǫ>0

and (qǫ)ǫ>0 when ǫ→0. As a consequence, the sum π0+q0 is exactly the solution p0 of
(2.2). Furthermore, we can remark that the limit ǫ→0 is regular for the reformulated
model (2.10)-(2.13)-(2.11)-(2.12).

2.1.2. Case with variable Gǫ

In this paragraph, we extend the method we have presented to the general linear
case, i.e. to cases where gǫ is of the form

gǫ(p)(x)=Gǫ(x)p(x) .

Gǫ :Ω→R is given for any ǫ≥0, and is supposed to be strictly positive on Ω. In such
a case, the diffusion problem (1.1) writes

{

−∇x ·(Hǫ (b⊗b)(∇xpǫ−Sǫ))+ǫGǫpǫ= ǫfǫ , in Ω,
(Hǫ (b⊗b)(∇xpǫ−Sǫ)) ·ν≡0, on ∂Ω.

(2.14)

The study of these cases is motivated by the fact that the use of Gummel’s algorithm
on the non-linear case leads to the resolution of a sequence of linearized problems
which are similar to (2.14). We refer to Section 2.2 for more details about the
linearization procedure.

In order to solve the linear problem (2.14) for any value of ǫ, we use the method
presented in the previous paragraph. Firstly, we define L2(Ω;Gǫ) by

L2(Ω;Gǫ)=

{

p :Ω→R, ‖p‖2L2(Ω;Gǫ)
=

∫

Ω

Gǫ(x) |p(x)|
2
dx<+∞

}

.
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Then we introduce the following weighted Sobolev spaces:

Vǫ=
{

p∈L2(Ω;Gǫ) : b ·∇xp∈L2(Ω;Gǫ)
}

,

Wǫ=
{

q∈L2(Ω;Gǫ) :∇x ·(Gǫbq)∈L2(Ω;Gǫ)
}

,

W0,ǫ={q∈Wǫ : (Gǫbq) ·ν≡0 on ∂Ω} ,

and the set representing the functions constant along the magnetic field lines

Kǫ={π∈Vǫ : b ·∇xπ=0on Ω} .

Following the methodology presented in the previous paragraph and in [5], we deduce
Corollary 2.2. W0,ǫ equipped with the norm ‖p‖W0,ǫ

=‖∇x ·(Gǫbp)‖L2(Ω;Gǫ)
is a

Hilbert space and ∇x ·(GǫbW0,ǫ) is a closed space in L2(Ω;Gǫ). Furthermore, Kǫ is

also a closed space in L2(Ω;Gǫ) and we have the orthogonal decomposition

L2(Ω;Gǫ)=Kǫ⊕K⊥
ǫ , with K⊥

ǫ =
1

Gǫ
∇x ·(GǫbW0,ǫ) . (2.15)

From the orthogonal decomposition (2.15), the solution pǫ of (2.14) can be
uniquely decomposed as

pǫ=πǫ+qǫ , πǫ∈Kǫ, qǫ∈K⊥
ǫ . (2.16)

Then, if we identify the limits π0 and q0 of the sequences (πǫ)ǫ>0 and (qǫ)ǫ>0, we will
find the limit p0 of (pǫ)ǫ>0 by taking p0=π0+q0.

In order to identify a set of equations satisfied by πǫ and qǫ, we follow the same
procedure as in the previous paragraph: we multiply (2.14) by a test function θ∈Vǫ

and we integrate over Ω. By choosing θ in Kǫ or in K⊥
ǫ , we prove that πǫ and qǫ are

respectively of the form

πǫ=
1

Gǫ
[fǫ+∇x ·(Gǫbhǫ)] , qǫ=

1

Gǫ
∇x ·(Gǫblǫ) , (2.17)

where hǫ and lǫ are solutions of










−b ·∇x

(

1

Gǫ
∇x ·(Gǫbhǫ)

)

=b ·∇x

(

fǫ

Gǫ

)

, in Ω,

(Gǫbhǫ) ·ν≡0, on ∂Ω,

(2.18)

and






































































b ·∇x

(

1

Gǫ
∇x ·

(

Hǫ (b⊗b)∇x

(

1

Gǫ
∇x ·(Gǫblǫ)

)))

−ǫb ·∇x

(

1

Gǫ
∇x ·(Gǫblǫ)

)

=−b ·∇x

(

1

Gǫ
(ǫfǫ−∇x ·(Hǫ (b⊗b)Sǫ))

)

, in Ω,

[

Hǫ (b⊗b)∇x

(

1

Gǫ
∇x ·(Gǫblǫ)

)]

·ν≡ (Hǫ (b⊗b)Sǫ) ·ν , on ∂Ω,

(Gǫblǫ) ·ν≡0, on ∂Ω.

(2.19)
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As in the previous paragraph, we observe that the equations (2.17)-(2.18)-(2.19) re-
main well-posed for any ǫ≥0. As a consequence, the particular solution p0 of the limit
problem we are looking for is exactly the sum π0+q0 where π0 and q0 are computed
by solving (2.17)-(2.18)-(2.19) with ǫ=0.

Furthermore, the resolution of the fourth order problem (2.19) can be replaced
by the successive resolution of two homogeneous Dirichlet type problems which are











−b ·∇x

(

1

Gǫ
∇x ·(HǫbLǫ)

)

+ǫLǫ=−ǫb ·

[

∇x

(

fǫ

Gǫ

)

−Sǫ

]

, in Ω,

(HǫbLǫ) ·ν≡0, on ∂Ω,

(2.20)

and










−b ·∇x

(

1

Gǫ
∇x ·(Gǫblǫ)

)

=Lǫ−b ·Sǫ , in Ω,

(Gǫblǫ) ·ν≡0, on ∂Ω.

(2.21)

2.2. AP-scheme derivation for non-linear problems

Finally, we consider the general model (1.1) given in the introduction when the
function p 7→gǫ(p) is non-linear. When ǫ goes to 0, the model becomes

{

−∇x ·(H0 (b⊗b)(∇xp̃0−S0))=0, in Ω,
(H0 (b⊗b)(∇xp̃0−S0)) ·ν≡0, on ∂Ω.

(2.22)

Due to the non-linearity of the function p 7→gǫ(p) the orthogonal decomposition
method cannot be used. Then we choose to linearize the diffusion equation (1.1)
by using Gummel’s algorithm developed in [28]. This iterative method consists in the
approximation of the solution pǫ by a sequence (pǫ,N )N≥0 defined by

pǫ,N+1=pǫ,N +δǫ,N , (2.23)

and initialized with an arbitrary pǫ,0. In this method, each δǫ,N is viewed as a small
correction of pǫ,N in order to obtain pǫ,N+1. Then, assuming that pǫ,N+1 is a solution
of (1.1), it holds that































−∇x ·

(

Hǫ (b⊗b)
∇xpǫ,N +∇xδǫ,N −Sǫ

ǫ

)

+gǫ(pǫ,N )+δǫ,N g′ǫ(pǫ,N )+O(δ2ǫ,N )=fǫ , in Ω,
(

Hǫ (b⊗b)
∇xpǫ,N +∇xδǫ,N −Sǫ

ǫ

)

·ν≡0, on ∂Ω.

(2.24)

Then, neglecting second order terms in δǫ,N , we obtain a linear diffusion problem for
δǫ,N which writes

{

−∇x ·(Hǫ (b⊗b)(∇xδǫ,N −Sǫ,N ))+ǫGǫ,N δǫ,N = ǫfǫ,N , in Ω,
(Hǫ (b⊗b)(∇xδǫ,N −Sǫ,N )) ·ν≡0, on ∂Ω,

(2.25)

where Gǫ,N , fǫ,N and Sǫ,N are defined by

Gǫ,N =g′ǫ(pǫ,N ) , fǫ,N =fǫ−gǫ(pǫ,N ) , Sǫ,N =Sǫ−∇xpǫ,N .
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For each value of N , the problem (2.25) is of the same kind as (2.14). So we can solve
it by applying the method described in the paragraph 2.1.2.

This sequence of linearized problems can also be obtained from Newton’s iterative
method to solve

Fǫ(pǫ)=0, (2.26)

where the differential operator Fǫ is defined as

Fǫ(p)=−∇x ·

(

Hǫ (b⊗b)
∇xp−Sǫ

ǫ

)

+gǫ(p)−fǫ .

Indeed, Newton’s method for solving (2.26) writes

DFǫ(pǫ,N )(pǫ,N+1−pǫ,N )=−Fǫ(pǫ,N ) ,

where DFǫ(p) is the derivative in p of the differential operator Fǫ(p) and is of the
form

DFǫ(p)(δ)=−∇x ·

(

Hǫ (b⊗b)
∇xδ

ǫ

)

+g′ǫ(p)×δ .

3. Numerical method

In this section, we present a numerical method which allows to solve the diffusion
problems (2.14) and (1.1) by using the decomposition approaches we have presented.
First, we introduce some notations which will be used for the construction of the
scheme, then we present the scheme itself for the general linear case (2.14). Finally,
we present the discretized version of Gummel’s algorithm for the non-linear case.

3.1. Notations and definitions

We consider a uniform mesh (xi,yj) defined by

xi=xmin+ i∆x, yj =ymin+j∆y ,∆x=
xmax−xmin

Nx+1
, ∆y=

ymax−ymin

Ny+1
,

and we assume that the simulation domain is Ω=[x−1/2,xNx+1/2]× [y−1/2,yNy+1/2].
We also consider the following subsets of Z2:

I={0, . . . ,Nx}×{0, . . . ,Ny},

I={−1, . . . ,Nx+1}×{−1, . . . ,Ny+1},

I∗={0, . . . ,Nx−1}×{0, . . . ,Ny−1},

I∗={−1, . . . ,Nx}×{−1, . . . ,Ny},

and we consider the notation

h=max(∆x,∆y) . (3.1)

Since the decomposition method we have presented in paragraph 2.2 is based
on variational formulations of the diffusion problem for pǫ and uses the dual-
ity between the operators p 7→b ·∇xp and p 7→∇x ·(bp), we choose to approach
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these differential operators by ∂h and ∂h,∗ respectively such that the duality prop-
erty is preserved at the discrete level. In [5], the authors considered this mo-
tivation for choosing the discreted operators associated to p 7→b ·∇xp and p 7→
∇x ·(bp). Then, following the same methodology, we define the cells Pi,j =
]xi−1/2,xi+1/2[×]yj−1/2,yj+1/2[ and Di+1/2,j+1/2=]xi,xi+1[×]yj ,yj [ and the meshes
P=∪(i,j)∈IPi,j , D=∪(i,j)∈I∗Di+1/2,j+1/2. Then, considering the functional spaces
LP and LD of the piecewise constant functions on P and D respectively, we define
∂h :LP →LD and ∂h,∗ :LD→LP such that

(∂hθ)i+1/2,j+1/2=bi+1/2,j+1/2 ·









θi+1,j+1−θi,j+1+θi+1,j−θi,j

2∆x
θi+1,j+1−θi+1,j+θi,j+1−θi,j

2∆y









, (3.2)

and

(∂h,∗χ)i,j =
∑

α∈{±1}

(bxχ)i+1/2,j+α/2−(bxχ)i−1/2,j+α/2

2∆x

+
∑

α∈{±1}

(byχ)i+α/2,j+1/2−(byχ)i+α/2,j−1/2

2∆y
.

(3.3)

3.2. Linear problems

We assume that the function p 7→gǫ(p) is given by

gǫ(p)(x,y)=Gǫ(x,y)p(x,y) ,

where Gǫ is analytically known. We also assume that the functions b, Hǫ, fǫ and Sǫ

are analytically known and we consider the following notations:

fǫ,i,j =fǫ(xi,yj) ,

Gǫ,i,j =Gǫ(xi,yj) ,

Gǫ,i+1/2,j+1/2=Gǫ(xi+1/2,yj+1/2) ,

Hǫ,i+1/2,j+1/2=Hǫ(xi+1/2,yj+1/2) ,

Sǫ,i+1/2,j+1/2=Sǫ(xi+1/2,yj+1/2) ,

bi+1/2,j+1/2=b(xi+1/2,yj+1/2) .

Then, the diffusion problem (2.14) can be discretized under the following form:
{

(−∂h,∗(Hǫ (∂hpǫ,app−b ·Sǫ)+ǫGǫpǫ,app)i,j = ǫfǫ,i,j , ∀(i,j)∈ I ,

(Hǫ(∂hpǫ,app−b ·Sǫ)(b ·ν))i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ ,
(3.4)

and the approximation of pǫ,app of pǫ is computed at the points (xi,yj)∈Ω.
Since ∂h and ∂h,∗ have been chosen to be dual operators, we follow the decompo-

sition approach we have presented in Section 2.1.2 at a discrete level by using some
discrete variational formulations of (3.4). Writing

pǫ,app,i,j =πǫ,app,i,j+qǫ,app,i,j ,

with πǫ,app satisfying

(∂hπǫ,app)i+1/2,j+1/2=0, ∀(i,j)∈ I∗ ,
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πǫ,app and qǫ,app are completely defined by

πǫ,app,i,j =
1

Gǫ,i,j

[

fǫ,i,j+(∂h,∗(Gǫhǫ,app))i,j

]

, (3.5)

qǫ,app,i,j =
1

Gǫ,i,j
(∂h,∗(Gǫ lǫ,app))i,j ,

where hǫ,app=(hǫ,app,i+1/2,j+1/2)(i,j)∈I∗
and lǫ,app=(lǫ,app,i+1/2,j+1/2)(i,j)∈I∗

are
computed by inverting the following systems:































−

(

∂h

(

1

Gǫ
∂h,∗(Gǫhǫ,app)

))

i+1/2,j+1/2

=

(

∂h

(

fǫ

Gǫ

))

i+1/2,j+1/2

, ∀(i,j)∈ I∗ ,

hǫ,app,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ ,

(3.6)































(

−∂h

(

1

Gǫ
∂h,∗(HǫLǫ,app)

)

+ǫLǫ,app

)

i+1/2,j+1/2

=−ǫ

(

∂h

(

fǫ

Gǫ

)

−b ·Sǫ

)

i+1/2,j+1/2

, ∀(i,j)∈ I∗ ,

Lǫ,app,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ ,

(3.7)

and


















−

(

∂h

(

1

Gǫ
∂h,∗(Gǫ lǫ,app)

))

i+1/2,j+1/2

=(Lǫ,app−b ·Sǫ)i+1/2,j+1/2 , ∀(i,j)∈ I∗ ,
lǫ,app,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ .

(3.8)

3.3. Non-linear problems

In this paragraph, we detail the discretized version of Gummel’s algorithm pre-
sented in Section 2.2. In order to initialize the loop, we compute the following initial
datas:

pǫ,0,i,j = pǫ,0(xi,yj) , ∀(i,j)∈ I ,
Sǫ,i+1/2,j+1/2 = Sǫ(xi+1/2,yj+1/2) , ∀(i,j)∈ I∗ ,

fǫ,i,j = fǫ(xi,yj) , ∀(i,j)∈ I ,
Hǫ,i+1/2,j+1/2 = Hǫ(xi+1/2,yj+1/2) , ∀(i,j)∈ I∗ .

Then, the N -th iteration of Gummel’s algorithm is set as follows:
• Step 1: assuming that

pǫ,N,i,j , ∀(i,j)∈ I ,

are known, we have

(b ·Sǫ,N )i+1/2,j+1/2 = (b ·Sǫ−∂hpǫ,N )i+1/2,j+1/2 , ∀(i,j)∈ I∗ ,
fǫ,N,i,j = fǫ,i,j−gǫ(pǫ,N,i,j) , ∀(i,j)∈ I ,
Gǫ,N,i,j = g′ǫ(pǫ,N,i,j) , ∀(i,j)∈ I ,

Gǫ,N,i+1/2,j+1/2 = g′ǫ(pǫ,N,i+1/2,j+1/2) , ∀(i,j)∈ I∗ ,
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where pǫ,N,i+1/2,j+1/2=
1

4
(pǫ,N,i+1,j+1+pǫ,N,i+1,j+pǫ,N,i,j+1+pǫ,N,i,j).

• Step 2: we compute hǫ,N,i+1/2,j+1/2 and lǫ,N,i+1/2,j+1/2 for all (i,j)∈ I∗ by
solving































−

(

∂h

(

1

Gǫ,N
∂h,∗(Gǫ,N hǫ,N )

))

i+1/2,j+1/2

=

(

∂h

(

fǫ,N

Gǫ,N

))

i+1/2,j+1/2

, ∀(i,j)∈ I∗ ,

hǫ,N,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ ,































(

−∂h

(

1

Gǫ,N
∂h,∗(HǫLǫ,N )

)

+ǫLǫ,N

)

i+1/2,j+1/2

=−ǫ

(

∂h

(

fǫ,N

Gǫ,N

)

−b ·Sǫ,N

)

i+1/2,j+1/2

, ∀(i,j)∈ I∗ ,

Lǫ,N,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ ,

and



















−

(

∂h

(

1

Gǫ,N
∂h,∗(Gǫ,N lǫ,N )

))

i+1/2,j+1/2

=(Lǫ,N −b ·Sǫ,N )i+1/2,j+1/2 , ∀(i,j)∈ I∗ ,
lǫ,N,i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ .

• Step 3: we compute δǫ,N,i,j for all (i,j)∈ I by using

δǫ,N,i,j =
1

Gǫ,N,i,j

[

fǫ,N,i,j+(∂h,∗ (Gǫ,N (hǫ,N + lǫ,N )))i,j

]

,

and we obtain pǫ,N+1,i,j for all (i,j)∈ I.

• Step 4: we compute pǫ,N+1,i,j for all (i,j)∈ I\I by using the boundary con-
dition

(∂hpǫ,N+1)i+1/2,j+1/2−(b ·Sǫ)i+1/2,j+1/2=0, ∀(i,j)∈ I∗\I∗ .

4. Numerical investigations of the AP-scheme

This section is devoted to numerical investigations of the Asymptotic-Preserving
scheme derived in Sections 2 and 3. The validation procedure consists in manufac-
turing pǫ, an analytic solution of the model problem (1.1) which is compared to the
numerical approximation pǫ,app carried out thanks to the AP-scheme. These experi-
ments are performed in two dimensions using a uniform Cartesian mesh independent
of the anisotropy direction. For simplicity purpose, the first numerical experiments
are performed in the framework on the linear model, but the conclusions drawn from
these investigations apply to the general non-linear problem.
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4.1. Numerical convergence of the scheme

The first numerical tests aim at demonstrating the convergence of the AP-scheme
regardless to the asymptotic parameter values. With this aim, an analytic solution
is manufactured for the problem (1.1) in the linear case, i.e. with gǫ(p)=Gǫ(x)p(x).
First, the expression for the anisotropy direction b and the functions Gǫ and Hǫ are
defined on Ω=[1,2]× [1,2] thanks to

Gǫ(x,y)=Hǫ(x,y)=1+sin2(x) sin2(y) , (4.1)

b=(sinθ,−cosθ) with θ(x,y)=arctan

(

y

x

)

. (4.2)

Then the expression of pǫ, as defined by

pǫ(x,y)=
1

1+x2+y2
,

is used to analytically compute fǫ and Sǫ with

fǫ=Gǫpǫ , Sǫ=∇xpǫ . (4.3)

These definitions are inserted in the numerical method described in Section 3.2 to
compute the numerical approximation pǫ,app finally compared to the exact solution
pǫ. The relative errors denoted ep, p∈{2;∞}, are defined by

e2=
‖pǫ−pǫ,app‖ℓ2(I)

‖pǫ‖ℓ2(I)
, e∞=

‖pǫ−pǫ,app‖ℓ∞(I)

‖pǫ‖ℓ∞(I)

.

These quantities are displayed on Figure 4.1(a) as functions of the space step h and
for different anisotropy strengths ǫ=10−1, ǫ=10−9 and ǫ=0. A linear decrease of
the errors is observed with the mesh refinement, the slope being equal to 2, which is
consistent with the definitions (3.2) and (3.3) of ∂h and ∂h,∗ as second order accurate
approximations of the differential operators b ·∇x and ∇x ·(b ·). Furthermore, this
property holds for all considered values of ǫ, including ǫ=0. This demonstrates the
ǫ-invariance of the numerical scheme second order accuracy with respect to the space
step h.

The ability of the scheme to compute a solution component πǫ with no gradi-
ent in the anisotropy direction is also investigated. The numerical approximation
of πǫ, πǫ,app provided by (3.4)-(3.5), should verify a discrete analogous of the prop-
erty b ·∇xπǫ=0. This is analyzed thanks to Figure 4.1(b), where the evolution of
‖∂hπǫ,app‖ℓp(I∗)/‖pǫ‖ℓp(I) as a function of the space step is displayed for p=2,∞,

ǫ=10−1, ǫ=10−9 and ǫ=0. Note that the quantity ∂hπǫ,app is the residual of the
linear system solved to compute the solution of (3.4), and consequently characterizes
the precision of the linear system solver. For these test cases, a sparse direct solver
being used [1], the accuracy is very close to the computer arithmetic precision, at
least for small linear system sizes. This precision is observed to deteriorate moder-
ately with the increase of the system size which explains the growth of the error with
vanishing mesh steps. However this does not affect the precision of the scheme, as
demonstrated by the results of Figure 4.1(a).
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(b) ep=‖∂hπǫ,app‖ℓp(I∗)/‖pǫ‖ℓp(I).

Fig. 4.1. Relative error ‖pǫ−pǫ,app‖ℓp(I)/‖pǫ‖ℓp(I) (left) and parallel gradient

‖∂hπǫ,app‖ℓp(I∗)/‖pǫ‖ℓp(I) (right) in ℓ2 and ℓ∞ norms as functions of the space step h for non-

uniform data Gǫ, Hǫ and b defined by (4.1)-(4.2), and different anisotropy strengths ǫ=1, ǫ=10−9

and ǫ=0.

4.2. Anisotropy angle influence on the method accuracy

In this section, we quantify the sensitivity of the numerical method with respect
to the anisotropy direction variations. More precisely, we wish to analyze the accuracy
of the method as a function of α, the angle measured between the anisotropy direction
and the first direction (associated to the first coordinate). The anisotropy direction
b is assumed to be uniform and defined as

b=(sinα,−cosα) , α∈ [0,
π

2
].

In order to manufacture an analytic solution for the problem, we introduce a
system of coordinates which is adapted to b. These coordinates are denoted (X,Y )
and are deduced from (x,y) by the relations

X=x cosα+y sinα, Y =x sinα−y cosα. (4.4)

In these coordinates, the linear diffusion problem (2.14) writes

{

−∂Y (Hǫ∂Y Pǫ)+ǫGǫPǫ= ǫFǫ−∂Y (HǫB ·Sǫ) , in Ω,
∂Y Pǫ=B ·Sǫ , on ∂Ω,

(4.5)

with Pǫ(X,Y )=pǫ(x,y), Hǫ(X,Y )=Hǫ(x,y), Gǫ(X,Y )=Gǫ(x,y), Fǫ(X,Y )=fǫ(x,y),
Sǫ(X,Y )=Sǫ(x,y) and B(X,Y )=b(x,y). It is straightforward to verify that the func-
tion Pǫ given by

Pǫ(X,Y )=sin(X)+
1

Gǫ(X,Y )
∂Y (GǫLǫ) ,

is the solution of (4.5) provided that Fǫ and Sǫ satisfy

Fǫ=GǫPǫ , B ·Sǫ=∂Y Pǫ ,
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Fig. 4.2. Relative error ‖pǫ−pǫ,app‖ℓp(I)/‖pǫ‖ℓp(I) (p=1,2,∞) as a function of α: case with

Gǫ(x,y)=Hǫ(x,y)=1+sin2(x) sin2(y) and ǫ=10−3 (left) and ǫ=10−8 (right).

and where Lǫ(X,Y )= lǫ(x,y) with lǫ|∂Ω
=0. This requirement is met by the following

definition

lǫ(x,y)=sin

(

2π (x−x−1/2)

xNx+1/2−x−1/2

)

sin

(

2π (y−y−1/2)

yNy+1/2−y−1/2

)

,

which ensures lǫ(xi+1/2,yj+1/2)=0 for any (i,j)∈ I∗\I∗. The problem is stated in
Cartesian coordinates thanks to the change of variables (4.4) yielding to pǫ(x,y)=
πǫ(x,y)+qǫ(x,y) with

πǫ(x,y)=sin(x cosα+y sinα) , qǫ(x,y)=
1

Gǫ(x,y)
∇x ·(Gǫ(x,y)b(x,y)lǫ(x,y)) ,

the other coefficients being manufactured similarly with Gǫ and Hǫ given by (4.1).
In the following tests, the computation domain Ω=[1,2]× [1,2] is discretized

thanks to a uniform mesh constituted of 200×200 cells. The relative approximation
error as a function of the angle α is displayed on Figure 4.2 for different norms. The
numerical method accuracy is observed to be moderately altered by the anisotropy di-
rection changes. More precisely, we observe a variation of the relative errors in norms
ℓ1 and ℓ2 lower than 4% and a variation of ℓ∞ lower than 7%. The minimum of the
error is obtained for α=π/4, the direction of the solution gradients being thus equally
projected on the two directions defining the mesh. Furthermore, these observations
are redundant for several values of ǫ: in Figure 4.2, we have considered ǫ=10−3 and
ǫ=10−8 and the obtained error curves are very close. Note that other experiments
have been carried out for anisotropy strengths ranging from ǫ=0 to ǫ=1 and with
other definitions of Gǫ and of Hǫ, with comparable results. The curves being very
similar to that of Figure 4.2, these plots are omitted.

These observations confirm one of the main ideas of the present paper: the accu-
racy of the method is almost independent of the anisotropy direction relatively to the
grid, i.e. the mesh over Ω can be constructed whatever the anisotropy direction and
strength, without a significant loss of accuracy.
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4.3. Convergence of Gummel’s loop

The third test sequence is devoted to the convergence of the linear problems
sequence defined in Sections 2.2 and 3.3 for solving the non-linear model (1.1). The
process detailed in the preceding sections is again implemented to manufacture an
analytic solution for the non-linear problem.

The computational domain remains Ω=[1,2]× [1,2], the anisotropy direction b is
a function of the space variables whose expression is given by equation (4.2), Hǫ and
gǫ being defined as

Hǫ(x,y)=1+cos2(x) cos2(y) , gǫ(p)=p6 . (4.6)

Note that this choice of gǫ(p) introduces a severe non-linearity in the problem. Several
tests have also been performed with other definitions of gǫ(p), for instance

gǫ(p)= c1 ln(1+p)+c2p, c1,c2>0 fixed,

for p≥0, which defines an anisotropic diffusion-reaction equation inspired by the work
of Kornhuber & Krause [32] or Cherfils & Pierre [10] on problems derived from Allen-
Cahn equation. These tests produce results almost identical to the results which are
obtained when gǫ(p)=p6 so we only consider the strongly non-linear reaction term
defined in (4.6) within the presentation of the numerical results in the next lines.

The solution pǫ is constructed thanks to a cubic spline S, precisely

pǫ(x,y)=1+S

(

x−xmid

Lx

)

S

(

y−ymid

Ly

)

, (4.7)

with S(z)=0 for |z| /∈ [0,2] and

S(z)=

{

1
6 (2−|z|3) , if 1≤|z|≤2,
2
3 −|z|2+ 1

2 |z|
3 , if 0≤|z|<1,

(4.8)

with (xmid,ymid)=( 32 ,
3
2 ) and Lx=Ly =1/10. To analyze the convergence with re-

spect to the number of Gummel’s iterations, the sequence is initiated with pǫ,0, a
perturbation of the non-linear problem solution, reading

pǫ,0(x,y)=pǫ(x,y)+ηmax
(

0,1−µ(x−xmid)
2−µ(y−ymid)

2
)

, (4.9)

where µ and ηµ are parameters controlling the support and the magnitude of the
perturbation. Since Gummel’s method is constructed on a linearization of the problem
its convergence cannot be guaranteed with a poor estimation of the solution as initial
guess. It means that the parameters µ and η cannot be chosen completely arbitrarily:
indeed, several simulations have been performed, all with the same parameters except
η ranging in {0,10,20,40,60,100,1000} and µ ranging in {1,10,60,100}, and Gummel’s
method is observed to converge as N→∞ for perturbation magnitude (η) as large as
102 the magnitude of the exact solution. Concerning the parameter µ, the simulation
sequence reveals that the convergence of Gummel’s method is almost not affected by
the amplitude of this paramater.

The successive relative errors measured between the iterates of the Gummel’s loop
and the exact solution are plotted on Figure 4.3(a). The computations are carried out
on two different meshes,M100 andM1000 with 100×100 and 1000×1000 cells, with η=
0.1 and µ=60 and for anisotropy strengths including ǫ=0. Along with the graphical
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Fig. 4.3. Gummel’s iteration convergence: evolution in log10-scales of the relative error
E2,N =‖pǫ−pǫ,Nf ,app‖ℓ2(I)/‖pǫ‖ℓ2(I) (left) and of ‖δǫ,N,app‖ℓ2(I)/‖pǫ‖ℓ2(I) (right) as functions
of th iteration number N for the non-linear problem. The simulations are performed with the uni-
form meshes M100 and M1000 composed of 100×100 and 1000×1000 cells (for the corrector norm,
the values being very similar for both meshes, only those of the coarsest one are displayed).

ǫ Error M100 M200 M500 M1000

E1,Nf
3.9452×10−5 9.8116×10−6 1.5673×10−6 3.9166×10−7

10−1 E2,Nf
1.0446×10−4 2.6188×10−5 4.1988×10−6 1.0505×10−6

E∞,Nf
6.0730×10−4 1.5793×10−4 2.5942×10−5 6.5451×10−6

E1,Nf
3.9796×10−5 9.8969×10−6 1.5808×10−6 3.9504×10−7

10−12 E2,Nf
1.0496×10−4 2.6311×10−5 4.2184×10−6 1.0554×10−6

E∞,Nf
6.1098×10−4 1.5885×10−4 2.6087×10−5 6.5815×10−6

E1,Nf
3.9796×10−5 9.8969×10−6 1.5808×10−6 3.9504×10−7

0 E2,Nf
1.0496×10−4 2.6311×10−5 4.2184×10−6 1.0554×10−6

E∞,Nf
6.1098×10−4 1.5885×10−4 2.6087×10−5 6.5815×10−6

Table 4.1. Relative error Ep,Nf
=‖pǫ−pǫ,Nf ,app‖ℓp(I)/‖pǫ‖ℓp(I) (p=1,2,∞) for the non-

linear problem defined by gǫ(p)=p6. The computations are carried out on uniform meshes Mk

constituted of k×k cells (k=100,200,500,1000) with several values of ǫ and after a number of
iteration of Gummel’s loop Nf large enough for the convergence to be effective.

representation of the solution approximation error, the evolution of the corrector norm
relative to that of the solution, namely the quantity ‖δǫ,N,app‖ℓ2(I)/‖pǫ‖ℓ2(I), is also
plotted in Figure 4.3(b). These last results being almost identical for both meshes,
the plot related to the finest mesh is omitted in this figure.

In spite of the large perturbation amplitude, Gummel’s iterative method converges
in a small number of iterations, for both meshes and for all ǫ-values. The corrector
term δǫ,N,app rapidly decreases to reach the computer precision threshold (10−15) after
4 iterations. In the same time, the relative error also decreases but the approximation
is not improved by subsequent iterations, the error remaining constant for iteration
numbers greater than 4. At this stage, the precision of the approximation is not limited
by the linearization process of the Gummel’s loop anymore, but by the discretization
error of the linearized problem, explaining the plateau described by the error. To
document this analyzis further, we summarize in Table 4.1 the values of the relative
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error measured between the exact solution and the approximation obtained after Nf

iterations of the Gummel’s loop. This quantity is referred to as Ep,Nf
(p=1,2,∞) and

computed for Nf large enough to ensure that the plateau above mentioned is reached.
For the investigations carried out, this requirement is met as soon as Nf ≥4. The
approximation error Ep,Nf

is observed to quadratically decrease with the space mesh:
the error norms related to the computations performed on a 1000×1000 mesh are for
instance 102 times as small as those carried out on a mesh with 100×100 cells. This
is a consequence of the second order accurate discretization of the spatial operator
already outlined in section 4.1. Finally, the results of Table 4.1 also demonstrate
the independence of the numerical method precision with respect to the anisotropy
intensity.

4.4. Highlight of the scheme Asymptotic-Preserving property

These last experiments are devoted to illustrate the Asymptotic-Preserving prop-
erty of the numerical method, i.e. its ability to compute an accurate approximation of
p0, the solution of the limit problem (2.2). The solution of the problem is constructed
as a sequence (pǫ)ǫ>0 defined by

pǫ=p0+ǫp̃1ǫ ,

with

p0(x,y)=1+S

(

x−xmid

Lx

)

S

(

y−ymid

Ly

)

, (4.10)

p̃1ǫ(x,y)=max

(

0,cos

(

2π (x−xmid)

Lx

)

cos

(

2π (y−ymid)

Ly

))

. (4.11)

The functions gǫ, Hǫ and b are defined as in the previous test sequence, the initial
guess for Gummel’s loop being constructed following (4.9) using the same pertur-
bation. We now wish to evaluate the error measured between the exact solution of
the limit problem p0 and the approximation computed thanks to the AP-scheme for
vanishing ǫ. This error, denoted Eǫ and defined as

Eǫ=‖pǫ,app−p0‖ℓ2(I)/‖p0‖ℓ2(I) ,

is plotted on Figure 4.4(a) as a function of ǫ. The data represented on this figure are
obtained after convergence of the Gummel’s loop. Two regimes can be identified. The
first one is related to the largest values of ǫ for which a linear decrease of the error is
observed. The second one is a plateau whose value depends on the mesh step h, this
value being lower for refined meshes. Precisely we note a quadratic decrease of this
value with the mesh size. To explain these features, we use the following identity

pǫ,app−p0=pǫ,app−p0,app+p0,app−p0 .

This yields Eǫ≤Eǫ,app+e0 where e0=‖p0,app−p0‖ℓ2(I)/‖p0‖ℓ2(I) represents the ap-

proximation error of p0, p0,app being the numerical approximation of p0 provided by
the AP-scheme with ǫ=0, and Eǫ,app=‖pǫ,app−p0,app‖ℓ2(I)/‖p0‖ℓ2(I). The error Eǫ

linearly decreases with ǫ as long as the approximation error e0 is negligible compared
to Eǫ,app (see Figure 4.4(b)). Below a given ǫ-value, varying with the mesh size, the
total error can be assimilated to e0 and the decrease of ǫ is ineffective. The discrete
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Fig. 4.4. Evolution in log10-scales of Eǫ=‖pǫ,app−p0‖ℓ2(I)/‖p0‖ℓ2(I) (left) and of Eǫ,app=

‖pǫ,app−p0,app‖ℓ2(I)/‖p0‖ℓ2(I) (right) as functions of ǫ computed on uniform meshes constituted of

200×200 cells (M200) and 1000×1000 cells (M1000) are considered. The simulations are performed
with b, Hǫ, gǫ defined by (4.6) and (4.2).

operators being second order accurate e0 is quadratically decreasing with the mesh
step h.

As a consequence, we can conclude that pǫ,app converges to p0 when ǫ converges
to 0 alongwith h. This is exactly the Asymptotic-Preserving property of the scheme
we intended to validate.

5. Conclusions and perspectives

In this paper we have presented an Asymptotic-Preserving numerical method
for singular perturbation of non-linear anisotropic reaction-diffusion problems. The
Asymptotic-Preserving property of the scheme is ensured thanks to a solution decom-
position explained in full details in the most simple framework of a linear problem.
This method is then generalized to non-linear problems thanks to Gummel’s lineariza-
tion method.

In a second part, several two-dimensional numerical investigations of the AP-
scheme are performed. These tests reveal a very weak dependence of the scheme
accuracy with respect to the anisotropy direction, demonstrating the relevance of the
use of non-adapted coordinates. The Asymptotic-Preserving property of the scheme
is also validated for vanishing ǫ on linear as well as non-linear problems. The solution
of the limit problem is accurately captured with no restrictions on the anisotropy
strength. Furthermore, the computational efficiency of the method, in terms of mem-
ory as well as CPU usage, does not depend on this anisotropy strength.

Several applications of the present work can be investigated: at present time, the
method has been used for the resolution of linear anisotropic diffusion problems for
a two-fluid Euler-Lorentz model (see [6]) and the non-linear version of the method
will be coupled to an Asymptotic-Preserving scheme for a one-fluid full Euler-Lorentz
model (see [19]).
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