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Abstract 

In vibration-based diagnosis of rolling element bearings, the complexity of the signals 
requires an expert to use advanced signal processing tools and to interpret the results based on 
his/her experience. Recently, a few autonomous methods have been proposed to alleviate the 
demand on the user’s expertise, yet they have been mainly focused on fault detection. This 
paper follows a similar direction but with wider objectives: it aims to develop an indicator 
that is able to detect, identify and classify typical faults on rolling elements, inner and outer-
race. The indicator is based on the recently developed Fast Order-Frequency Spectral 
Coherence, a key tool of the theory of second-order cyclostationary processes: it condenses 
the whole information initially displayed in three dimensions into a scalar and provides an 
interpretation in terms of a probability of presence of a fault. In addition, the proposed 
indicator is able to return information for different levels of damages in both stationary and 
non-stationary operating conditions. It takes into consideration uncertainties in the bearing 
characteristic frequencies, which is crucial in bearing diagnosis. A new pre-processing step is 
provided to ensure an efficient and constant statistical threshold. The proposed indicator is 
intended to be used in an autonomous process without the need for visual analysis and human 
interpretation. The proposed indicator is compared with a recent indicator based on the 
Envelop Spectrum, in terms of classification and detection performance. Several applications 
using real and simulated data eventually illustrate the capability for self-running diagnosis.  

Keywords: Scalar indicator, Probability of presence of a fault, Fast Order-Frequency Spectral Correlation. 

1 Introduction 

Rotating machinery is the major component of an industrial environment. In turn, rolling 
element bearings (REB) are among the most crucial elements in rotating machinery [1]–[3]. 
They are designed to reduce the shaft rotational friction for transferring loads to stationary 
housings and for supporting radial and axial loads. REB failure is one of the most common 
problems that occur with a high probability [4], up to 90% in small machines [5]. Its 
corresponding faults, such as rolling element, inner and outer-race faults, should be diagnosed 
at an early stage to minimize the repair time and to avoid equipment and personnel potential 
damage. 
Many monitoring techniques depend on the visual human ability to identify the presence of 
faults. In the last two decades, some autonomous methods have been developed to reduce the 
reliance on human intervention. Since it has been reported that the majority of mechanical 
failures are preceded by noticeable clues [6], several studies have been published on the use 
of vibration and acoustic-based indicators for the detection and diagnosis of bearing fault [6]–
[8]. 
These methods can be classified into three categories based on indicators with one, two and 
three-dimensions, respectively. The one-dimensional methods are based mainly on the 
computation of the root-mean-square, the crest factor and the kurtosis[9], [10]. Unfortunately, 
those indicators are essentially confined to the detection of potential abnormalities but cannot 
identify a specific fault. Two-dimensional methods such as the spectrum, the cepstrum, and 
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the envelope spectrum (ES) [11]–[13] are based on transforming the signal to the frequency 
domain or other auxiliary domain. Their advantage over time-domain analysis is their ability 
to identify and isolate certain frequency components of interest, yet their interpretation is 
often visual. Examples of three-dimensional methods are the spectrogram [14], the scalogram 
and the Wigner-Ville distribution [15], which aim at displaying a signal in both the time and 
the frequency domains. They usually suffer from a high demand on the user expertise for both 
their application and in their interpretation.  
Beside the above classical methods, the diagnosis of REB has been significantly improved in 
the last decades thanks to the theory of cyclostationary processes. Vibration signals from REB 
exhibit high levels of cyclostationarity (CS) – a certain type of nonstationarity characterized 
by periodic statistics – especially in the presence of localized faults. The exploitation of this 
property has been proved extremely fruitful to conceive diagnostics tools, with the advantage 
of allowing synchronization with a given fault frequency [16], [17]. It has been shown that 
second-order CS (periodicity of the autocorrelation function) is often sufficient to fully detect 
bearing faults, thus leading to the use of spectral quantities such as the spectral correlation 
(SC), which is a 3D quantity [18]. Since the 90’s, several indicators have been proposed to 
resume the information contained in the SC signature into a scalar quantity. For instance, the 
degree of cyclostationarity (DCS) theoretically introduced by Zivanivic and Gardner in Ref. 
[19] is based on the measurement of a quadratic distance between the cyclostationnary and 
stationary signal spectrum. Some applications dedicated mainly to gear fault detection are 
found in Refs. [20], [21]. When it comes to bearing diagnosis, DCS has shown limitation due 
to the random slip phenomena [22]–[24], which slightly desynchronizes the fault frequency 
with respect to its theoretical value. Pennacchi et al. [23] tried to overcome this problem by 
identifying the dependency of the fault frequency deviations on the different operating 
conditions. Following a different route, Klausen et al. [25] proposed a method that is 
inherently based on a scalar cyclostationary indicator, yet without mentioning the CS 
framework. Their indicator summarizes the information contained in the envelope spectrum – 
whose connection with the SC is given in Ref. [12]. Moreover, the interpretation of that 
indicator may differ from one application to another because of the absence of a predefined 
threshold. In addition, the calculation of the indicator requires a bandpass filtering step for 
searching the most suitable frequency band for demodulation, which is achieved without 
guarantee of optimality. Finally, the method is conceived under the assumption of constant 
speed with only possibility of slight fluctuations.  
The current work aims to remediate drawbacks of the previous methods by providing a scalar 
indicator that eliminates as much as possible the human intervention in REB diagnosis. The 
idea is to condensate in a scalar quantity the information provided by the Order-Frequency 
Spectral Coherence (OFSCoh) proposed in Ref. [26]. The latter is a three-dimensional display 
of all modulation patterns existing in a signal as a function of the carrier frequency in Hertz 
and the modulation frequency (also called cyclic frequency) in machine order, which 
generalizes the SC to nonstationary operations. It is thus considered optimal for revealing 
bearing fault signatures under stationary and nonstationary speed regimes. The OFSCoh 
comes with a fast algorithm, the Fast-OFSCoh, which offers new possibilities to quickly 
compute new indicators. In order to condense its information into a scalar indicator, different 
steps are followed in the paper. The first one is to integrate the OFSCoh magnitude over the 
frequency axis, thus leading to an equivalent 2D envelope spectrum. The second step is to 
standardize the EES in order to force it to have a constant probability distribution with respect 
to the cyclic order α. The latter is an original and crucial step as it allows a constant statistical 
threshold to be set. The third step is to convert the envelope spectrum into a scalar quantity 
interpreted as a probability of the presence of a fault; this will be achieved through the design 
of a nonparametric - i.e. without an exact distribution - hypothesis test. 
The remaining part of the paper is organized as follows. Section 2 reviews the REB fault 
signatures and their optimal analysis with the OFSCoh. A non-parametric hypothesis test is 
introduced in section 3. Section 4 illustrates the use of the hypothesis test for autonomous 
diagnosis and compares it to a competing method of the literature. Experimental validations 



are also made on three benchmark databases in this section. Conclusions and perspectives are 
given at the end of the paper. 

2 REB diagnosis exploiting cyclostationarity  

2.1 Bearing fault spectral signature 

The expected spectral signatures of REB faults depend on whether the fault is located on a 
rolling element, the cage, the inner or the outer ring. This allows the expert to easily identify a 
damage and its location within the bearing components by looking for particular patterns of 
peaks. The theoretical fault frequencies are calculated in function of the rotational speed and 
the bearing geometry (the number of rolling elements, contact angle, REB diameter and pitch 
circle diameter) using well-known formulas (e.g. see Ref [22]).  

Although the theoretical fault frequencies are calculated assuming a perfect rolling of the 
elements, the latter are actually allowed to slip to some extent, which produces a random 
frequency deviation [22]–[24]. In details, the angle of contact varies with the position of each 
rolling element, since the ratio of the radial load to the evolution of the axial load changes. 
Thereby, each rolling element will be located at a different distance from the bearing center 
and will try to roll at a different speed; while the cage limits the deviation of the rolling 
elements from their mean position, they are forced to slip [22]. Random frequency deviation, 
despite being small, compromises the fault follow-up on a frequency basis. Consequently, it 
implies tracking the fault frequency in a narrow band, typically having a width of a few 
percent of its central frequency.  

The inner-race fault (respectively outer-race and rolling element fault) involves a periodic 
amplitude modulation characterized by harmonics at the BPOI (respectively BPOO and 
BSO). Contrary to the outer race fault, the inner-race fault (resp. rolling element fault) has a 
periodic variation of the transmission path between the fault and the sensor location, which 
produces side-bands at the shaft frequency �� (resp. cage frequency) (Fig. 1). The presence of 
a radial load has a similar effect. 

This section introduces the strategy developed for tracking bearing faults by exploiting their 
spectral signatures in the OFSC.  



 

Figure 1. Typical signals and envelope signals from a local REB fault [27]. 

2.2 Bearing Diagnosis using Fast-OFSC 

It has been explained in Ref. [28] that classical spectral analysis may fail to detect bearing 
fault because of masking noise and the marked randomness of the vibrations. Yet, since REB 
vibrations are cyclostationary, the diagnostic information rises up intact in the cyclic 
frequency domain in the form of a symptomatic discrete spectral signature. In this work, the 
Fast-OFSC is used to transform the signal in the cyclic domain. The SC is optimal in the 
sense that it displays at once, in the form of a bi-spectral map, the whole structure of 
modulations over the cyclic order �	and of carriers over the classical frequency f (strictly 
speaking, it is statistically optimal to describe Gaussian cyclostationary signals, and therefore 
to design techniques for detection, identification, and possibly quantification of faults 
endowed with that property). Reference [28] demonstrated the optimality of the SC and its 
normalized version, the Spectral Coherence (SCoh), not only to evidence the presence of a 
fault in high levels of background noise but also to return a relative measure of its severity. 
The Order-Frequency Spectral Correlation (OFSC) is an extension of the SC to account for 
possible speed variations; it aims at widening the range of applications of classical 
cyclostationary methods which have been conceived under the assumption of constant speed. 
Finally, the Fast-OFSC has been recently proposed to reduce the high computational cost of 
classical estimators of the SC, which may hinder its uses in real-time application.  

The Fast-OFSC which considered optimal for revealing bearing fault signatures under 
stationary and nonstationary speed regimes [26] is used in this paper. This method provides a 
high-resolution version of the envelope spectrum, from which a scalar indicator will be 
constructed. Therefore, the authors hypothesize that the indicators developed from the latter 
will provide a more robust result than that obtained from the envelope spectrum. The 
mathematical details are given as follows.  

First of all, the angle-time autocorrelation function is defined as: 
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where ���
 is the angle of rotation (in radian) of the reference shaft at time t and symbol � 
denotes the ensemble average. Next, the OFSC ������, �
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where, in the first line, ������, �
 stands for an angle-frequency spectrum (akin to a time-
frequency representation) and, in the second line, the limit is taken with respect to the total 
angular sector ( � 2 /� � 2 �3��
/�4&  covered during the recording time 5. The (squared 

magnitude) OFSCoh is defined by the normalized quantity, 
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Being bounded between 0 and 1, the OFSCoh serves as a useful measure of CS. As explained 
in Ref. [27], the OFSCoh is interpreted as the OFSC of the whitened signal, which tends to 
equalize regions with different energy levels and therefore to magnify weak cyclostationary 
signals. Finally, a high-resolution envelope spectrum – hereafter referred to as the enhanced 
envelope spectrum (EES) ;���
 – is obtained from the integration of the Fast OFSCoh over a 
given frequency band B, as follows 
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In practice, the theoretical OFSC ������, �
	is replaced by its estimate �>�����?, �?
 provided 
by the Fast-OFSC, from which estimates 6@���? 	, �?
 and ;>���?
 of the OFSCoh and EES are 
obtained. When it comes to estimators, it is noteworthy that the axis of the carrier frequency f 
and of the modulation frequency � are discretized as follows: �? � A	∆�and	�? � A∆� where 
index k refers to k-th discrete frequency/order and ∆� and ∆� are the frequency resolution (in 
Hz) and the cyclic order resolution (in order), respectively. The integral in Eq. (5) is replaced 
by discrete sums over the discrete frequencies �?. The EES summarizes the information 
contained in the OFSC; a shown later in the paper, it will serve as the basis to design a scalar 
indicator used in statistical test. 

In order to detect the cyclostationary signature of REB fault, several strategies have been 
proposed in the literature. Most of them rely on the direct visual inspection of the above 
quantities in the order-frequency domain (�, �). Obviously, the sensitivity of such an 
approach is rather subjective as it strongly relies on the human expertise. The idea of this 
paper is to reduce the reliance on human intervention by devising an indicator named “PPF” – 
which stands for the Probability of Presence of a Fault – rooted on the estimated EES, which 
summarizes the diagnosis information into a scalar value. Contrary to the derivation of the 
DCS or of the scalar indicator provided in Ref. [25], a probabilistic approach is followed here; 
this will provide the indicator with an interpretation in terms of probability of the presence of 
a fault. The approach is formulated in the next section by means of a hypothesis test. 

3 Hypothesis testing 

3.1 Principle 



This section intends to formulate the diagnosis of REB as a statistical hypothesis test to be 
used in automated diagnosis. The statistical test compares the null hypothesis H0 against the 
alternative hypothesis H1: 

H0: ‘‘The vibration signal does not contain the characteristic fault signature” 
H1: ‘‘The vibration signal contains the characteristic fault signature’’. 

Hypothesis H0 is rejected in favor of H1 at the level of significance �1 � C
 if a given “test 
statistic” (i.e. a quantity derived from the data) exceeds a threshold with a probability of false 
alarm p. The challenge is here to design the test statistic of the above hypothesis test, based on 
the EES of section 2.  
Incidentally, a few works have approached the diagnosis of REB from similar statistical tests 
based on spectral quantities close to those used in the present paper, such as the (classical) 
envelope spectrum [28], the cyclic polyspectrum [27], the (classical) spectral coherence [29], 
the Fourier transform of the logarithm of the spectral correlation [30], or the integral of the 
spectral coherence [28].  
In these references, the spectral quantities of interest are usually assumed to follow a chi-
square distribution under the null hypothesis test, which holds true asymptotically when H0 
coincides with the assumption of stationarity. In the context of variable regime considered in 
this paper, many sources of non-stationarity exist even under the null hypothesis. 
Consequently, the exact distribution of the test statistics is unknown; it is proposed to address 
it in a nonparametric way (i.e. independently of a specific distribution law) by considering the 
histogram of the standardized EES ;>�D��?
, from which a constant statistical threshold is then 
returned by the 100(1-p)% percentile. This is detailed in the next subsection. 

3.2 The test statistics 

The aim of this part is to construct the statistics of the hypothesis test introduced in the 
previous subsection, based on the estimated EES ;>���?
 of section 2.2. Under the null 
hypothesis EF, the random field ;>���?
, seen as a function of the order variable �?, can be 
shown that have zero probability of being nil at any position (�?). Under the alternative 
hypothesis EG, the difference is that the random field will have higher magnitudes along �H ∈ 

B ; where B is the union of the bands that contain the P harmonics of interest. The objective is 
to keep only these values and to zero all the other ones. The following empirical steps are 
proposed. The first step is to standardize the EES in order to force it to have a constant 
probability distribution with respect to the cyclic order α, under the null hypothesis EF. In 
principle, the transformation reads 
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where Ε ⋯ |EF! stands for the ensemble averaging operator taken under EF. One issue is to 
replace Ε;>���?
|EF� and Ε;>���?
7|EF� in the above equation by estimates obtained from a 

realization of ;>���?
 which may either pertain to EF or EG. Since the difference in ;>���?
 
under the null and alternative hypotheses is essentially marked by the presence of peaks, it is 
proposed to estimate Ε;>���?
|EF� from a running median of ;>���?
, say PQRS��?
, and 

Ε;>���?
7|EF� from the running median of the absolute deviation, say TQ�S��?
. The 
rationale for using a running median is to leave unaffected informative peaks in the spectral 
coherence. Therefore, the standardized EES reads  
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which returns a “pivotal” statistics (i.e. whose probability distribution does not depend on any 
unknown parameter). Figure 2 illustrates the process of subtracting the running median (Fig. 2 
(b)) and of equalizing by dividing by the running median absolute deviation (c) in order to 
transform the initial EES ;>���?
 (Fig. 2 (a)) into its standardized version ;>�D��?
 (Fig. 2 (d)). 
It is verified in Fig. 2e that ;>�D��?
 is distributed around a constant baseline, which represents 
the expected value of the indicator under H0. The presence of a few high peaks is the only 
difference under H1. Therefore, if the fraction of the expected number of peaks in the EES 
under H1 is less than say pmax (as counted after discretizing the cyclic order α), the 100p % 
percentile of ;>�D��?
 will be the same under H0 and H1 for any C < Cmax. This makes it 
possible to compute a threshold Y1−C for the statistical test based on the histogram of ;>�D��?
 
(see Fig. 2 (d)) as the level under which are found 100p% of the values. Thanks to the 
standardization applied in Eq. (7), the threshold is constant with respect to cyclic frequencies, 
as illustrated by the red horizontal line in Fig. 2 (e). The above threshold will be used to detect 
the presence of peaks, as explained in the next subsection.  

Figure 2. a) The estimated enhanced envelope spectrum (EES) ;>���?
 of the simulated vibration signal and its running median PQRS��?
 in dashed red line. b) Centered EES after subtraction of PQRS��?
 together with the running median absolute deviation ϭQ�S��?
 shown in dashed red line, c) Equalization after division by ϭQ�S��?
 d) histogram of standardized EES ;>�D��?
, e) 
threshold λ0.9 (red line). 

3.3 Design of the test statistic 

The next step in the design of the hypothesis test is to detect peaks at the expected fault 
frequencies in the EES under H1 and to devise a measure of their intensity. It is expected that 
such a measure increases with the magnitude of the peaks and with their number (incipient 
faults are likely to produce several harmonics). Besides, the fact that the fault frequencies are 
subject to random jitter should be taken into account. To do so, a band B1 is first defined, 
centered at the theoretical fault characteristic order �[\, with a deviation tolerance of 100X%, 

typically between 5% and 10%. The lower and upper bounds �G] and �Ĝ  of band B1 are thus 
defined as  



_�G] �	�[G � `�[G	�Ĝ �	�[G + `�[G �8
 

The highest peak in the band is theoretically defined as  

cG �	max	[? ;>�D��?
. f<\��?
]	; 	hG � [�G]; 	�Ĝ ] �9
 

where the symbol f<\��?
 denotes the indicator function defined on hG having the value 1 for 
all elements of �? in B1 and the value 0 for all elements of �?  not in B1. 

In practice, the fact that the EES is computed on a grid of cyclic frequencies might introduce a 
bias in the estimation of the peak magnitude (the so-called “peak-fence effect”). In order to 
alleviate it, a well-known solution used in the spectral analysis is to interpolate ;>�D��?
, for 
instance by using zero-padding and/or by using a spectral window such as the flattop in the 
Fast-OFSC. 
Once cG	is identified, a measure that represents the probability of the presence of the first 
harmonic of the fault, PPF1, is calculated based on the statistical threshold 	YG+H as follows, 

jjkG � l cG � 	YG+H	cG 																							cG ≥ 	YG+H0																																												cG < 	YG+H. �10
 

With the objective of keeping only the indicative values at 	YG+H% and setting all the others to 
zero. The rationale of this equation is to return a zero probability whenever cG is less than the 
threshold 	YG+H and, otherwise, a value that tends to unit probability when cG grows to 
infinity. In the case of the non-zero value of jjkG, the algorithm then searches for the 
presence of the second harmonic in a new band B2. In order to properly define B2, the center 
of the first band is first corrected to account for the possible mismatch between the actual and 
the theoretical fault order by defining �[\[o�� such that cG � ;>�D��[\[o���. Thus, the second band 

B2 is centered on �[p � 2�[\[o�� and is given the same bandwidth as B1 (i.e. with deviation 

tolerance of 100(X/2)% around �[p). The second harmonic is detected if the highest peak m2 

in band B2 is above the threshold 	YG+H; it thus yielding a non-zero value of PPF2. The 

algorithm then searches for the presence of the third harmonic in a band B3 centered on �[q �3�[\[o�� + �3 2
⁄ �[p[o�� where �[p[o�� is such that c7 � ;>�D��[p[o���, etc. 

The general formulas describing the algorithm are resumed hereafter: 
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where �[z is the center of the band h} around the n-th harmonic. 



Once the jjk|� in all concerned bands have been calculated, an overall indicator PPF is 
calculated as the mean value 

jjk �	1{yjjk|
}

|~G 	 �15
 

in order to take a final decision. In some cases, where a rolling element fault (or the inner-race 
fault) need to be searched, two additional left and right probabilities (jjk|�and jjk|�) of the 
possible side-bands around each harmonic order must be calculated. For each harmonic and if 
the fault characteristic order is amplitude modulated by a sub-band order, there should be at 
least one prominent peak at the ±�D�� away from �[w	. In the same way as jjk|, jjk|�and jjk|� are calculated for each harmonic in a narrow band centered at �[w	 ± �D��.  

The reason to calculate two different probabilities for the left and the right possible sub-bands 
is that the two sub-bands are not necessarily symmetrical, and the existence of the one does 
not mean the existence of the other. Thus, the combination of these two values can cause 
damage to the information.  

Nevertheless, PPF is a normalized indicator that can take any value between zero and one. 
PPF it is the probability of the presence of a REB fault (with risk of p%). Based on the above 
information, it is easy to perform a statistical test: any value of PPF that is greater than the 
constant threshold 	YG+H will point out the emergence of the fault signature in 100(1-p)%.  

But in order to make a final and definitive decision PPF is compared with a global measure of 
CS in the whole spectrum, which can give a decisive conclusion. This global measure of CS 
called ‘T’ is the relative error between the median of all peaks along the order axis that 
exceeds the statistical threshold and the constant statistical threshold 	YG+H.  

The median of all peaks along the order axis that exceeds the statistical threshold called 
“���K” –the abbreviation for Global Measure of CS- is defined as:  

���K � ∑ ;>K��?
	.?���?~G f��>�� �.�
	�	�\����� 	 �16
 

Then the normalized version of the global version of CS called “the threshold T” is defined 
as: 

5 � 	���K � YG+H���K 	 �17
 

where �� is the number of points exceeding Y1−p all over order axis, AG and A��� are the first 
and the last order indices in the order axis. The T-threshold value is a normalized version of 	���K which resembles, in its way of calculation, the DCS in Ref. [19], but only with the 
addition of the indicator function f[�>�� �.�
	�	�\��] , to compute only the peaks greater than 

constant statistical threshold 	YG+H	. 
Once the T-threshold is calculated, a comparison is made with PPF in order to detect the 
sought fault. If PPF has a higher value than 5, the peaks are quite significant with respect to 
the noise and other peaks along the order axis, hence the fault exists. 

The null hypothesis test relative to our case originating from the comparison between PPF 
and T can be written as: 



“Reject the null hypothesis H0 if: 

jjk ≥ 5 �18
 

with T given by Eq. (17) and PPF by Eqs. (14-15). Eq. (18) eventually takes the following 
form (see Appendix A):   

1�y 1c| 	≤ 1���K
�

|~G �19
 

It easily allows performing a statistical test: according to the decision rule, any value of PPF 
that is greater than the T-threshold will indicate that the signature of the fault is detected. 

The proof of Proposition Eq. (19) is based on observing that under the null hypothesis test H0 
the quantity asymptotically follows a nonparametric distribution that has a constant bias and 
variance all over the cyclic order axis. It also remembers that this test is true almost 
everywhere. 
In this hypothesis test ���K appears directly in the rejection region whereas the threshold 	YG+H does not figure directly but it is important to choose c| that are greater than 	YG+H	. 
 
The complete flow diagram for the algorithm described in this section is shown in Fig.3 

 
Figure 3. Complete algorithm flowchart 

4 Experimental validations 

The ability of any method to detect a bearing fault must be validated on real signals. In the 
present paper, four benchmarks are used. The first one is provided by NASA, from the 
Intelligent Maintenance Systems (IMS), University of Cincinnati [31], the second one is 
provided by the CRWU Bearing Data Center [32] while the third one is provided as 
supplementary material in Ref. [33]. These databases are widely used to test new algorithms 
by comparing their efficiency with existing techniques, similarly to those cited in reference 
[24]. The NASA database is a run-to-failure test, used to reflect how the proposed indicator 
works with the development of a fault. The second database provides multiple fault types, i.e. 
rolling element, cage inner-race, and outer-race fault, and it is used to illustrate the proposed 
method and to compare the proposed algorithm to those existing in the literature. The third 
and fourth databases are used to illustrate the diagnostics of rolling element bearings under 
the varying regime. 



4.1 Constant speed case  

4.1.1 Algorithm illustration 

To illustrate the proposed algorithm, a simple case is considered wherein the four 
characteristic fault orders are already known. This analyzed signal is the record 105DE of the 
(CRWU) Bearing Data Centre, which contains an inner-race fault. The sampling frequency is 
12 kHz and the record duration is 10 s. The rotations speed is assumed constant, about 29.95 
Hz. As explained in Ref. [24], this signal is easily diagnosable and it should, therefore, be 
considered as a preliminary test for the proposed algorithm. A visual inspection of the signal 
in Fig. 4 shows a symptomatic series of impulses at BPOI, as expected from the model of 
section 2. Based on the bearing geometry, the characteristic inner-race fault order is 5.4152. 
From now on, the coefficient 5.4152 will be denoted as the BPOI (ball-pass order on the 
inner-race). 

As explained before, the first step of the algorithm starts with the computation of the Fast-
OFSC [26]. In what follows, the window length in the Fast-OFSC is set to �� = 27 to achieve 
a frequency resolution Δf of 100 Hz. The maximum cyclic order �c��=20 is selected to 
include at least three harmonics of the BPOI since the number of harmonics provides an 
indication of the fault severity. The standardized EES is computed over the full frequency 
range [0;6000Hz], hence referred to a “wideband” envelope spectra. In this application only 
three narrow bands (n=3) with deviation tolerance of X=5% are used. Since the reference [24] 
reported a deviation from the calculated frequency up to 1-2% for this database, a deviation 
tolerance equal to 5%(2.5% around the characteristic fault frequency) is used.  

 

Figure 4. Raw time signal of record 105DE, and its zoomed portion 

As seen in Fig. 5, the standardized EES displays the expected symptomatic fundamental and 
harmonics of the inner-race fault (αBPOI=5.4152) with sidebands spaced at the shaft order 
(αfr=1); the shaft speed fundamental order is also present. The statistical threshold Y1−C (red 
dashed horizontal line) with a rate of false alarm p = 0.01 (0.1%), is found equal to 0.18. It is 
noteworthy that this method perfectly preserves the diagnostic information that nicely appears 
with a significant overrun of the 0,1% statistical threshold. This figure illustrates how the 
algorithm next tracks the first (resp. second and third) harmonic of the inner-race fault as well 
as the shaft rotation sidebands. In order to perform the nonparametric approach, any value of 
the jjk that is greater than or equal to the constant threshold YG+H will point out the 
emergence of the harmonic i of the fault signature in 100(1-p)% of the cases. Then, the fault 
probability PPF assigned to the inner-race fault order and the left and right probabilities, jjk 	and jjk�, assigned to the side-bands are calculated; their values are respectively 0.9, 
0.87 and 0.8.  

Since the detection threshold T is equal to 0.5, the inner-race fault is detected according to the 
decision rule provided by Eq. (18).  



 
Figure 5: Standardized EES ;>�K��?
 of the raw signal together with the Y0.99 threshold (red dashed line). Bands (in red line) and 
side-bands (in vertical red dashed line) used for the calculation of PPF (harmonics of the inner-race race fault order) and PPFl 

and PPFr (side-bands at shaft rotation) 

4.1.2 Performance Evaluation of IMS Database in Order to Reflect Fault Severity 

Response 

This subsection illustrates the application of the autonomous diagnosis method to a run-to-
failure test case. The test is performed at a constant speed of 2000 rpm driven by an AC motor 
on a test rig under a radial load of 6000 lbs. The bearing test rig hosts four identical bearings 
of type Rexord ZA-2115 in the same shaft (see Fig. 6). Based on their characteristics (16 
rollers, pitch diameter of 7.15 cm, roller diameter of 0.84 cm and the contact angle of 15.170), 
the four fault characteristic orders are calculated in Table 1. 

The second dataset from those provided in the download file has been used. It is composed of 
984 files, and each file is composed of 20,480 samples. A one-second acquisition has been 
made every ten minutes. The sampling frequency is 20.48 kHz.  

 

Figure 6. Bearing test rig and sensors placement [34]. 

Table 1. Bearing fault characteristics orders. 

Ball pass order on the outer-race (BPOO) 7.08 

Ball pass order on the inner-race (BPOI) 8.91 



Ball spin order (BSO) 8.34 

Fundamental train (cage) order (FTO) 0.45 

Table 2. Dataset description 

  Files 
number  

Channels 
number  

Endurance 
duration  

Signals 
duration  

Announced damages  

Dataset 2  984  4  9840 min  
6 days 20h  

16 min  
  

Bearing 1: outer 
race  

Table 2 summarizes the information of the used dataset. A detailed explanation of this dataset 
is given in [35]. 

Assuming that the type of fault is unknown, the autonomous algorithm is run to calculate the 
probability of the presence of the four possible faults listed in Table 1. The parameters to 
calculate the Fast-OFSC are as in section 4.1, i.e. �c�� is equal to 36 orders. The EES ;>�K��
	is 
computed over the full frequency range [0;10.24	 kHz], the rate of false alarm p = 0.001 
(0.1%), and only three narrow bands (n=3) with deviation tolerance of X=5% are used. 

Figure 7 (a) displays the EES ;>�K��
 estimated on accelerometer #1 for the 984 signals 
recorded during the run-to-failure test (from the beginning to the failure). It is seen that the 
fundamental order of the BPOO is present form the beginning of the test (probably due to 
close distance between accelerometer #1 and the bearing), yet its related harmonics appear 
after approximately 3.4 days, which is more likely to be indicative of a fault. 

The four PPF probabilities associated with each bearing fault are displayed in Fig. 7(b). It is 
seen that they are all stationary in the first half of the test and all remain well below the T-
threshold. Therefore, the probability of the presence of a REB fault is found to be zero in this 
stage (with risk 0.01). Next, except for the FTO which remains stationary, all probabilities 
show a marked increase after 3.4 days. However, this is also the case for the threshold T - a 
global measure of the fault existence-- and only the probability of the outer-race fault exceeds 
the decisive threshold. This indicates a high probability of having an outer-race fault and zero 
probability of having other types of faults.  

This result matches the visual interpretation already provided. The short-term fluctuation of 
the BPOO’s probabilities as a function of measurement time (Fig. 7 (b) in blue) is due to the 
varying number and varying magnitudes of the peaks in the EES. 

Figure 8 displays the fault detection probabilities of each bearing fault type calculated for 
each accelerometer after thresholding the values below the significance level T –zeros all the 
PPF under the T-threshold. The outer-race fault – and only this fault -- is detected in all 
accelerometers, but at different dates which are reported in Table 3. Without surprise, the 
initiation of the fault is first detected on accelerometer #1 which is located on the faulty 
bearing. The chronology of detection for the other sensors is less obvious, since for instance 
the farthest accelerometer #4 is the second one to detect the fault; this might be explained by 
the fact that accelerometer #4 is placed on the same frame as accelerometer #1, whereas 
accelerometers #2 and #3 are on a different frame and with an opposite direction (thus with 
inverted radial load) as indicated in Fig. 8. Overall, accelerometers #1 and #4 also reach 
higher probability than accelerometers #2 and #3. Nevertheless, the presence of an outer-race 
fault is detected on all sensors with a high probability.  



In conclusion, the goal is reached and the indicator prosperously matched the visual 
interpretation extracted from the EES map and reflected the fault severity. As a summary, the 
results are quoted in Table 3. 



 

 

Figure 7. a) Evolution of the enhanced envelope spectrum ;>�K��
 and b) of the detection probability PPF of BPOO, BPOI, BSO 
and FTO during the test. Also shown in (b) T, the global measure of CS  



 
Figure 8. Fault detection probabilities PPF of each bearing fault after thresholding the values below the T-threshold calculated for 

accelerometer : a) #1 b) #2 c) #3 d) #4 as numbered in Figure 6. 

Table 3. Dates of the first detection of outer race fault using PPF for accelerometer: #1, #2, #3 and #4 

 Acc#1 Acc#2 Acc#3 Acc#4 
Results 3.4 days 4.5 days 5.4 days 4.1 days 

4.1.3 Performance Evaluation in the CWRU database. 

The performance of the proposed indicators is now evaluated on the bearing signals provided 
by the CWRU database. The CWRU database has been used in many references (e.g. [24], 
[26], [36]) and can be considered as a reference to test newly proposed algorithms and 
compare them against the state-of-the-art; this is despite several drawbacks of the database 
that have been highlighted in Ref. [24]. The experimental setup consists of a 1.4914 kW, 
reliance electric motor driving a shaft on which a torque transducer and encoder are mounted. 
Torque is applied to the shaft via a dynamometer and electronic control system. Four types of 
vibration signals are collected (normal, ball fault, inner-race fault, and outer-race fault), 
acquired by accelerometer sensors under different operating loads and speeds. The bearing 
type is a deep groove ball bearing SKF6205-2RS JEM; its fault characteristic orders are given 
in Table 4. 

In this study, the drive end data-set category with sampling frequency 12 kHz have been 
analyzed and compared with results provided by Ref. [24], which presents a critical analysis 
of the CWRU database. Information for all 64 data sets used is shown in Table 5. 

Table 4. Bearing fault characteristics orders. 

Ball pass order on the outer-race (BPOO) 3.584 
Ball pass order on the inner-race (BPOI) 5.415 
Ball spin order (BSO) 4.713 
Fundamental train (cage) order (FTO) 0.398 



Table 5. The 12 kHz drive end bearing faults data sets used besides the normal data (48 kHz). 

Fault types  Data sets name 

Inner-race 105,106,107,108,169,170,171,172,209,210,211,212,3001,3002,3003,3004 

Ball  118,119,120,121,185,186,187,188,222,223,224,225,3005,3006,3007,3008 

Outer-race (centred) 130,131,132,133,197,198,199,200,234,235,236,236 

Outer-race (orthogonal) 156,158,159,160,258,259,260,261 

Outer-race (opposite) 144,145,146,147,246,247,248,249 

Normal data 97,98,99,100 

Two methods have been applied to the 64 data sets in this study. Since in the present work the 
nature of the fault is assumed unknown, it is necessary to systematically test, for each data set 
in Table 5, the possibility of existence of faults on the inner-race, the outer race, and on the 
balls. 

The tables in Appendix B (Table B.1, Table B.2 and Table B.3) collect the results of the 
proposed method and the one proposed by Klausen et al. in Ref.[25]. Included in these tables 
are the estimated probabilities or values of the presence of faults as well as the T-threshold 
value, of each raw data-set. 

In the following, results are summarized in confusion tables (tables 6, 7 and 8) to facilitate 
comparisons with results provided in Ref. [24]. To do so, the following strategy is used: for 
each data set, only the faults with the highest probability (for the proposed method) or score 
(for Ref.[25]) are considered. 

4.1.3.1 Analysis with a concurrent method 

In order to verify the efficiency of the proposed method, it is compared to a recently 
autonomous method recently proposed by Klausen et al. in Ref. [25]. The method consists of 
the following steps. First, the signal is bandpass filtered in several bands defined by local 
maxima in the spectrum. Next, the ES in each sub-band signal is calculated. Finally, a score 
S(H) is calculated in a predefined narrow band of the ES centered at the expected fault 
frequency. The score is defined as follows: 

��E
 � ¤¥�¦	3�§ × E7
0,	otherwise

,			�¦ > 3�				 �20
 

where �¦ is the maximum spectral amplitude in the band, H is the harmonic number of the 
expected fault frequency and N is the noise level estimated from 

� �	 1{ � 1©yª�x
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where Y(i) is the amplitude of the ES of the raw signal, f(i) is the frequency variable at the i-th 
bin, Y(I) is the amplitude of the most prominent harmonic peak in the ES, �}Gand �}7 are 
respectively the upper and lower bound of the search band. 
The detailed results obtained after application of this algorithm to the CWRU dataset are 
presented in Appendix B (Table B.3) and a summary is given hereafter in Table 6. It is worth 
noting that the parameters of the algorithm are very similar the ones in Ref.[25]. 



Table 6. Percentage of detection of the method of Ref. [25] applied to the DE 48 kHz files in CWRU dataset. 

            Classified as 
Detected 

Inner-race Outer-race Ball 

Outer-race 6.25 78.57 56.25 

Inner-race 75 7.1429 43.75 

Ball 6.25 0 0 

No fault detected 12.5 14.2857 0 

The percentages obtained by the autonomous detection of the BPFO, BPFI, and BSF are 
respectively 78.57%, 62.5% and 0% as shown in Table 6, while it was respectively 92%, 75% 
and 56% obtained by visual human analysis reported in Ref. [24]. It is clear that the rate of 
autonomous detection is lower than that given by the human analysis (visual inspection of the 
ES provided in Ref.[24]).  

It is believed that the reasons for this discrepancy are due to several factors mainly related to 
the preprocessing of the signals. In order to improve the diagnosis results, a few modifications 
have been applied to the original algorithm. First of all, the Kurtogram has been found useful 
to better identify the optimal band-pass filter. Next, the squared ES has been used instead of 
the (amplitude) ES for the reasons already cited in section 2. Finally, the predefined detection 
threshold provided by the proposed method will be used since it is essential for analyzing the 
results. After applying these modifications, the diagnosis results showed some improvements 
as shown in Table 7. 

Even though, this score may be misleading in case of coarse frequency resolution when a 
peak in the ES appears in multiple frequency bins instead of one frequency.  

Table 7. Percentage of detection of the method in Ref. [25] applied to data sets in Table 5, after minor modifications of the 
method. 

             Classified as 
Detected 

Inner-race Outer-race Ball 

Outer-race 6.25 82.1429 50 
Inner-race 81.25 3.5714 43.75 
Ball 0 0 6.25 
No fault detected 12.5 14.2857 0 

4.1.3.2  Analysis with the proposed algorithm 

The proposed method is now applied to the same dataset. The parameters of the Fast-OFSC 
are as given in section 4.1. The maximum cyclic order �c�� is equal to 21, the rate of false 
alarm p = 0.001 (0.1%), the deviation tolerance of 5% of the theoretical fault characteristic 
order. Table  in Appendix B gives the detailed diagnosis results. 

 The obtained results reported in the Table 8 show a significant improvement over the results 
shown in Table 6 and Table 7. This is due to the use of the spectral coherence (which has 
been verified to never performed worse than the reference methods of Ref. [24], as verified in 
Ref. [26]) and of the resulting ESS, ;>�K��
; the latter clearly highlights the dominant 
harmonics of the BPOO, BSO, and BPFO with sidebands at the FTO and at the shaft rotation, 
contrary to the classical SES that has a poorer SNR [26]. 

Table 8 Percentage of detection of the proposed algorithm in the CWRU database. 

             Classified as Inner-race Outer-race Ball 



Detected 
Outer-race 0 96.4286 18.75 
Inner-race 93.75 0 12.5 
Ball (and Cage) 0 0 50 
No fault detected 6.25 3.5714 18.75 
 
The proposed indicator causes much higher percentage of 'no fault detected' for the rolling 
element faults than the indicator of Ref.[25] and that refers to the presence of a possible bias 
(as typically produced by transient disturbances in the signal or the presence of unexplained 
nonstationarities) in the squared envelope spectrum lead to false indication when using the 
method of Ref. [25] (Revise figures in Ref. [24] of the following cases:  record 125DE, record 
174DE, record 191DE, record 203DE). while in the proposed method the false alarm was 
avoided by standardizing the EES using Eq. (7), in order to force the EES to have a constant 
probability distribution with respect to the cyclic order. For the latter reason the proposed 
method indicates much higher percentage of 'no fault detected' for the rolling element faults. 
It is noteworthy that in the cases of rolling element fault in the CWRU database, the 
automated methods did not show the expected results. This is probably due to the fact that 
these signals are either misclassified in the database or very noisy (some signals exhibit 
BPFO or of BPFI signatures as presented in the tables) or that the fault did not produce the 
expected signature (several peaks appear in the spectral coherence which do not represent any 
of the known faults). The same issues are mentioned in Ref. [24], where the visual inspection 
led to similar results. In conclusion, the success of our indicator is consistent with to the 
visual inspection. 

4.2 Varying speed case 

4.2.1 Real-world signal provided by Ref.[33] 

The methodology is now applied on real vibration signals in three cases associated with three 
distinct REB faults. The dataset used in this paragraph is provided as supplementary materials 
in Ref. [33]. Vibration signals were collected using a Ploytec laser vibrometer from a small 
test rig with three distinct pre-fabricated bearing faults (in outer-race, inner-race and ball). 
The test rig consists of an induction motor of 0.372 kW with speed controller, followed by a 
simple power transmission chain which includes faulty REBs. The duration of signals is 21 s 
with a sampling frequency of 50 kHz. The rotating speed was manually controlled in order to 
keep the resulting profile varying between 10 and 20 Hz during the 21 s record. The bearing 
fault characteristic orders are reported in Table 9. More details about the experimental 
protocol can be found in the reference source [33]. 

In the present paper, the same portion of signals (from t =5 s to t =15 s) and the same 
parameters calculate the Fast-SC as in Ref. [37] have been used in order to allow a fair 
comparison of results. The standardized EES is computed over the full frequency range, �c�� 
is equal to 17 orders, and three narrow bands (n=3) with deviation tolerance of X=5% are 
used. 

The speed profiles and acceleration signals for experiment 1, 2 and 3 are displayed in Fig. 9. 
The EES of the proposed method are displayed in Fig. 10 (a, b, c) and its zoomed version 
Fig.11 for experiments 1-3. The outer-race fault signature is clearly presented in the EES 
through three spectral lines located at the outer-race fault order. The inner-race fault also 
shows distinctly the BPOI, with several sidebands at the shaft speed which correspond 
identically to the description of such a fault in section 2. As previously mentioned in many 
references [26], [33], [37], the BSO is missing in the ball fault signature, yet the ball fault 



signature is present in the EES through several visible harmonics of the cage order. The 
average computational time of the algorithm was about 5.63s. According to the decision rule 
given in Eq. (18), any value of the PPF greater than the decision threshold T (global measure 
of SC) will point out the emergence of the fault signature in the EES. The returned results are 
as follows: 
• for experiment 1: only the outer-race is detected with PPF(BPOI)= 0.5934 and T = to 

0.2931.  
• for experiment 2: only the inner-race is detected with PPF(BPOO) = 0.6984 and T = to 

0.2931.  
• for experiment 3: only the ball fault is detected with PPF(FTO) = 0.8759 and T = 0.2931.  
 

The fault detection probabilities for each fault type and for each experiment are displayed in 
Table 10. In conclusion, the obtained results match identically those provided with the visual 
inspection in Ref [37] confirming the efficiency of the proposed method.  

Table 9 Bearing fault characteristics orders. 

Ball pass order on the outer-race (BPOO) 3.592 

Ball pass order on the inner-race (BPOI) 5.409 

Ball spin order (BSO) 2.376 

Fundamental train (cage) order (FTO) 0.399 

Table 10. Fault detection probabilities for each fault type calculated for experiments 1, 2 and 3. 

 PPF 
(BPOO) 

PPF 
(BPOI) 

PPF (BSO) PPF (FTO) T 

Experiment 1 0.6980 0 0.1586 0.2701 0.2709 

Experiment 2 0.1355 0.5934 0 0.0274 0.2931 

Experiment 3 0.2773 0.0684 0.2649 0.8759 0.2807 



 

Figure 9. Experiment 1: (a) speed profile, (b) acceleration signal. Experiment 3: (c) speed profile, (d) acceleration signal. 
Experiment 2: (e) speed profile, (f) acceleration signal. 

 
Figure 10. Standardized EES ;>�K��?
 of the raw signal together with the Y0.999 threshold (in red horizontal line). Bands (in red 

vertical line) used for the calculation of PPF for a) experiment 1 b) experiment 2 c) experiment 3. 



 

Figure 11. A zoomed version of figure 10 

4.2.2 Real-world signals collected from the test rig located at LVA 

 

 

Figure 12. Test rig located at LVA. 

Experimental tests have been conducted on the simple test rig of Fig. 12 that is located at 
LVA1. The test rig comprises an electrical motor (spindle motor iSA 3600) supplied by a 
variable-speed drive to control the motor speed, followed by a shaft line with three bearings. 
One of those bearings (denoted as #3) has an outer-race fault. Values of fault characteristic 
orders are given in Table 11. An optical keyphasor of type “Brawn” is fixed close to bearing 2 
to measure the rotational shaft position. In addition, three accelerometers are respectively 
mounted on bearings #1, #2 and #3 in the Z-direction to measure the produced vibrations. The 
sampling rate is set at 52.1 kHz.  

                                                      
1 Laboratoire Vibrations Acoustique, University of Lyon, France. 



Two experimental tests are taken into account to test and to compare the proposed method 
with that proposed in Ref. [25]. First, experimental tests are conducted wherein three different 
constant speeds are imposed by the speed drive during 10 s. Figure 13 illustrates the EES of 
the raw signal measured by accelerometers Acc3 at the chosen speeds 800, 1500 and 3500 
rpm. Almost the same results are obtained from the SES; hence only the EES is provided. In 
the second experiment, a run-up (from 500 to 3500 rpm), a random speed profile (between 
500 to 3500 rpm) and a run-down (3500 to 500rpm) are imposed to the electric motor over 
10s; the acquired acceleration signals are displayed in Fig. 13 together with their 
corresponding speed profiles. 

In what follows, the window length in the Fast-OFSC is set to �� = 27, the maximum cyclic 
order to �c��=17, the EES is computed over the full frequency range and three narrow bands 
(n=3) with deviation tolerance of X=5% are used as parameters of the proposed method. 

For the first experimental test, the outer race bearing fault signature appears clearly in the 
EES and the SES at the expected fault order with a significant overrun compared to the other 
orders. As expected, both the proposed method and the one proposed in Ref. [25] successfully 
detect the presence of the outer-race fault. When applied to the signal of 800 rpm, the 
proposed method gives a PPF equal to 0.871 while T is equal to 0.512; therefore, the outer 
race fault exists relating to the decision rule given in Eq. (18). The method of Ref. [25] gives 
a value equal to 255.034 which is higher than the value obtained on the healthy bearing signal 
with the same speed (56.0682). Table 12 summarizes the diagnosis results on signals of test 1. 

For the second experimental test, only the EES succeeds in detecting the outer race fault 
symptoms while the ES used in Ref. [25] fails for the three signals. The obtained results are 
reported in Fig. 15 and Fig. 16. Peaks at the BPOO and its harmonics appear only in the EES 
while they are absent from the ES (See Fig.16). This is due to the high variability of the speed 
in this test. Those are cases where the ES is insufficient to accurately detect the REB fault. 
Therefore, it may give poor results in the case of modest speed variations and fails in large 
speed variations. On the other hand, the outer race fault signature appears clearly in the EES 
and consequently, the proposed method returns a correct diagnosis. These results are reported 
in Table 13. Based on these results and the decision rule of Eq. (18), the outer race fault is 
declared present in all signals of this test. 

In conclusion, choosing the optimal representation that reveals the diagnostic information of 
bearing failure is crucial because the success of automated diagnostic methods strongly 
depends on it. 

Table 11. Bearing fault characteristics orders. 

Ball pass order on the outer-race (BPOO) 3.592 

Ball pass order on the inner-race (BPOI) 5.409 

Ball spin order (BSO) 2.376 

Fundamental train (cage) order (FTO) 0.399 

 

Table 12. Constant speed outer race bearing fault analysis results using the method of Ref.[25] and the proposed method. 

 800 rpm 1500 rpm 3500 rpm 

Proposed method PFI=0.871 

T=0.512 

PFI=0.901 

T=0.868 

PFI=0.692 

T=0.489 



Method of Ref. [25] 167.1694 172.4593 120.4593 

 

Table 13. Variable speed outer race bearing fault analysis results using the proposed method. 

 Run-up Random Run-down 

Proposed method PFI=0.698 

T=0.242 

PFI=0.593 

T=0.301 

PFI=0.5901 

T=0.289 

 

 

Figure 13. Standardized EES ;>�K��?
 of the raw signal together with the Y0.999 threshold (in red doted horizontal line). Bands (in 
red vertical line) used for the calculation of PPF for signals at a) 800rpm b) 1500rpm c) 3500rpm. 

 

 



Figure 14. (a) Run-up speed profile and (b) its corresponding acceleration signal. (c) Random speed profile and (d) its 
corresponding acceleration signal. (e) Run-down speed profile and (f) its corresponding acceleration signal. 

 

Figure 15.Standardized EES ;>�K��?
 of the raw signals of the Figure 14 together with the Y0.999 threshold (in red horizontal line). 
Bands (in red vertical line) used for the calculation of PPF for a) run-up b) random and c) run-down. 

 

Figure 16. ES of the raw signals of Figure 14 for a) run-up b) random and c) run-down. 

 

5 Conclusion 
This paper aims at introducing an autonomous method for bearing diagnosis. It relies on the 
introduction of a new scalar indicator, which gives the probability of the presence of a fault in 
a given component of the bearing. The indicator results from a post-processing of the spectral 
coherence, as computed by the Fast-OFSC algorithm.  

All factors that are likely to impede the autonomous diagnosis have been addressed; this 
includes the consideration of the slip phenomenon by probing the characteristic fault 



frequencies into narrow bands rather than at a specific value, but also the standardization of 
the estimated envelope spectrum to remove bias and frequency dependence in the estimation 
variance. The method comes with a robust threshold, which is crucial for decision making. 

The proposed method has been validated on several databases, where it has been checked to 
be able to systematically replace human inspection of the envelope spectrum to efficiently 
complete the diagnosis of bearings.  

Despite the good results obtained from the application of the proposed method on signals with 
constant or variable speed, this method has a limitation in the case of high-speed fluctuations. 
This limitation is due to the fact that the Fast-OFSC fails to evidence clearly the presence of a 
fault in this case. As perspective to this work, the speed profile could be sliced into several 
speed intervals and the Fast-OFSC calculated for each of them. Future work could also 
consider the optimization of the selection of the different parameters of the proposed method 
such as the band width size, the number of the used harmonics and the statistical threshold. 

 

Appendix A. Proof of Eq. (19): 

 Let us start by expressing the comparison of PPF with the threshold T that can give a 
decisive conclusion, ; ≥ 5 , where T and PPF are given respectively in Eqs. (17) and (15): 

5 � 	Y¯J°J[° � YG+H	Y¯J°J[°  and jjk �	1{yjk;|.}
|~G 									 

Inserting the above formulas into the decision rule Eq. (18), one has 

1�yjk;|�
| ≥ 1�y �c�| �	Y��oo�
 +c�|

�
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the next step is to replace jk;| with its value provided in Eq. (14): 

1�y²1 � Y��oo�c�| ³	�
| ≥ 	1 � Y��oo�	Y¯J°J[° 	 �±. 2
 

After rearranging the above inequality, we obtain the final form introduced in Eq. (19): 

1�y 1c| 	≤ 1Y¯J°J[° .
�

|~G  

Appendix B. Table of results of section 4.1.3 

Table B.1 48 kHz normal baseline data analysis results 

 The proposed method Method provided in Ref. [25] 

Data Set BPOO BPOI BSO T BPOO BPOI BSO 

97 0.5578 0.2887 0.4217 0.6937 65.0582 48.8305 36.7805 

98 0.4030 0.3156 0.0351 0.7245 53.8356 35.5319 19.9288 

99 0.5831 0.6696 0.3142 0.6756 75.7591 23.5026 17.8074 



100 0.4115 0.4308 0.5880 0.6756 54.7381 62.2203 22.9488 

 

Table B.2 12 kHz drive end bearing fault analysis results using the proposed method 

Inner race faults Ball Fault 

Data 
set 

BPOO BPOI BSO T Data 
set 

BPOO BPOI BSO T Cage 

105 0.9484 0.9996 0.9845 0.969 118 

119 

120 

121 

0.9061 0.8618 0.5841 0.6957 0.476 

106 0.9015 0.9993 0.9724 0.966 0.9345 0.9221 0.7314 0.6881 0.493 

107 0.8947 0.9994 0.9675 0.965 0.8250 0.8078 0.7404 0.7059 0.847 

108 0.8760 0.9994 0.9741 0.962 0.8871 0.8926 0.7324 0.636 0.676 

169 0.7595 0.9877 0.7377 0.901 185 

186 

187 

188 

0 0 0.4996 0.4812 0.397 

170 0.7975 0.9825 0.8516 0.852 0 0 0 0.4675 0.837 

171 0.7357 0.9810 0.7577 0.852 0 0 0.1285 0.4243 0.893 

172 0.7779 0.9860 0.5176 0.865 0.1178 0 0.1275 0.5064 0.922 

209 0.8886 0.9982 0.9477 0.938 222 0.2962 0.8633 0.6088 0.6069 0.367 

210 0.6721 0.9961 0.6875 0.939 223 0.0294 0.0294 0.3723 0.5023 0.107 

211 0.7869 0.9964 0.9097 0.925 224 0.0204 0.0175 0.1672 0.3220 0.532 

212 0.6684 0.9948 0.9151 0.933 225 0.0330 0.0389 0.1011 0.1427 0.263 

3001 0.4648 0.6904 0.7336 0.369 3005 0 0.2705 0.3134 0.7171 0.088 

3002 0.1433 0.4849 0.8409 0.433 3006 0.2831 0.1356 0.0801 0.7144 0.094 

3003 0.2715 0.8351 0.5530 0.423 3007 0.7181 0.6930 0.4268 0.7105 0.355 

3004 0.1315 0.2342 0.3047 0.246 3008 0.3154 0.1144 0.9306 0.6899 0.933 

Outer race faults (centered) Outer race faults (orthogonal) 

Data 
set 

BPOO BPOI BSO T Data 
set 

BPOO BPOI BSO T 

130 0.9969 0.5193 0.5123 0.899 156 0.9902 0.7702 0.6928 0.8476 

131 0.9987 0.7606 0.7971 0.913 158 0.8763 0.8762 0.9203 0.8725 

132 0.9988 0.8713 0.6630 0.908 159 0.9963 0.8879 0.9011 0.9384 

133 0.9985 0.7272 0.7076 0.916 160 0.9935 0.7943 0.8220 0.9035 

197 0.4502 0.8111 0.3728 0.489 - - - - - 

198 0.7809 0.9255 0.7344 0.569 - - - - - 

199 0.5943 0.8422 0.4437 0.512 - - - - - 

200 0.7622 0.9463 0.7355 0.560 - - - - - 



234 0.9665 0.3202 0.4635 0.810 258 0.9965 0.9188 0.9626 0.9709 

235 0.9804 0.6164 0.5840 0.828 259 0.9966 0.9219 0.9660 0.9614 

236 0.9823 0.4207 0.6522 0.829 260 0.9910 0.8739 0.9263 0.9329 

237 0.9873 0.4459 0.6998 0.868 261 0.996
5 

0.953
4 

0.975
9 

0.961
0 

Outer race faults (opposite) 

Data 
set 

BPOO BPOI BSO T 

144 0.9959 0.3777 0.3637 0.931 

145 0.9926 0.2520 0.3163 0.904 

146 0.9945 0.2987 0.2319 0.886 

147 0.9940 0.7034 0.5235 0.907 

246 0.9937 0.3777 0.3637 0.904 

247 0.9793 0.2520 0.3163 0.867 

248 0.9855 0.2987 0.2319 0.874 

249 0.9807 0.7034 0.5235 0.861 

 

Table B.3 12 kHz drive end bearing fault analysis results using the method provided in Ref. [25] 

Inner-race fault Ball Fault 

Data 
set 

BPOO BPOI BSO Data 
set 

BPOO BPOI BSO 

105 80.13074 154.6154 100.2518 118 262.3606 261.3103 82.2886 

106 59.95864 243.0025 218.3986 119 325.5937 368.3331 128.4190 

107 58.64396 238.7624 105.4183 120 332.0724 303.1483 78.3495 

108 127.1694 231.9285 28.0704 121 384.1542 306.9658 116.9734 

169 63.92758 122.6963 124.0035 185 183.5029 160.7559 115.2002 

170 95.5765 109.465 19.92854 186 183.2837 152.7714 102.9671 

171 167.9405 134.8354 74.29297 187 172.4535 143.3505 103.7485 

172 65.30441 125.9451 65.72323 188 119.1233 123.4360 101.6748 

209 116.503 195.0341 86.0356 222 275.0671 337.7956 147.7960 

210 94.13695 189.5171 110.9834 223 251.0303 286.1039 132.0914 

211 30.72399 199.0607 23.45356 224 320.6273 348.5367 162.8276 

212 95.78816 178.4996 31.8321 225 277.2431 381.4757 93.4585 



3001 25.40582 38.88305 23.78085 3005 164.0249 219.3683 103.5734 

3002 20.88356 29.58319 21.92808 3006 188.2123 149.9673 122.3248 

3003 25.75691 23.50026 21.80714 3007 234.8507 144.4594 63.3005 

3004 24.73811 22.22053 22.94868 3008 146.6482 144.6468 78.8738 

Outer-race faults (centred) Outer-race faults (orthogonal) 

Data 
set 

BPOO BPOI BSO Data 
set 

BPOO BPOI BSO 

135 319.9929 328.7147 116.5747 156 147.8647 128.8476 26.91156 

136 315.2896 186.095 171.9141 158 139.7767 96.85972 69.24428 

137 376.921 219.4763 191.3679 159 255.0334 120.4593 126.4856 

138 363.1219 207.1254 196.6495 160 135.5325 119.5861 48.90483 

201 35.30707 22.45357 17.84789 - - - - 

202 44.22257 34.38921 32.01002 - - - - 

203 85.8417 65.8291 55.75688 - - - - 

204 25.8978 34.28595 25.65946 - - - - 

238 162.8417 65.8291 55.75688 258 120.1833 102.0976 51.75411 

239 282.1088 91.51633 86.96609 259 120.7183 70.88305 78.02365 

240 250.0348 84.19078 74.3066 260 119.1585 63.04126 82.42401 

241 112.4019 67.7288 50.63768 261 104.3268 19.1576 30.5906 

Outer race faults (opposite) 

Data 
set 

BPOO BPOI BSO 

144 77.00214 27.98118 34.53967 

145 107.4983 37.72 63.25877 

146 77.73364 107.7459 48.70744 

147 98.76796 44.71517 57.28507 

246 60.39568 43.75295 28.73693 

247 52.50831 41.1433 37.33983 

248 79.40718 53.97463 34.45013 

249 81.11029 49.31261 33.4713 
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