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Abstract

Stochastic gradient algorithm is a key ingredient of many machine learning methods,
particularly appropriate for large-scale learning. However, a major caveat of large
data is their incompleteness. We propose an averaged stochastic gradient algorithm
handling missing values in linear models. This approach has the merit to be free
from the need of any data distribution modeling and to account for heterogeneous
missing proportion. In both streaming and finite-sample settings, we prove that
this algorithm achieves convergence rate of O( 1

n ) at the iteration n, the same as
without missing values. We show the convergence behavior and the relevance of
the algorithm not only on synthetic data but also on real data sets, including those
collected from medical register.

1 Introduction

Stochastic gradient algorithms (SGD) [20] play a central role in machine learning problems, due to
their cheap computational cost and memory per iteration. There is a vast literature on its variants,
for example using averaging of the iterates [19], some robust versions of SGD [18, 11] or adaptive
gradient algorithms like Adagrad [6]; and on theoretical guarantees of those methods [16, 1, 5, 22,
8, 17]. More globally, averaging strategies have been used to stabilize the algorithm behaviour and
reduce the impact of the noise, giving better convergence rates without requiring strong convexity.

The problem of missing values is ubiquitous in large scale data analysis. One of the key challenges in
the presence of missing data is to deal with the half-discrete nature of the data which can be seen as a
mixed of continuous data (observed values) and categorical data (the missing values). In particular
for gradient-based methods, the risk minimization with incomplete data becomes intractable and the
usual results cannot be directly applied.

Context. In this paper, we consider a linear regression model, for i ≥ 1,

yi = XT
i: β

? + εi, (1)

parametrized by β? ∈ Rd, where yi ∈ R, εi ∈ R is a real-valued centered noise and Xi: ∈ Rd stands
for the real covariates of the i-th observation. The (Xi:)’s are assumed to be only partially known,
since some covariates may be missing: our objective is to derive stochastic algorithms for estimating
the parameters of the linear model, which handle missing data, and come with strong theoretical
guarantees on excess risk.

Related works. There is a rich literature on handling missing values [13] and yet there are still
some challenges even for linear regression models. This is all the more true as we consider such
models for large sample size or in high dimension. There are very few regularized versions of
regression that can deal with missing values. A classical approach to estimating parameters with
missing values consists in maximizing the observed likelihood, using for instance an Expectation
Maximization algorithm [3]. Even if this approach can be implemented to scale for large datasets
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see for instance [2], one of its main drawbacks is to rely on strong parametric assumptions for the
covariates distributions. Another popular strategy to fix the missing values issue consists in predicting
the missing values to get a completed data and then in applying the desired method. However matrix
completion is a different problem from estimating parameters and can lead to uncontrolled bias and
undervalued variance of the estimate [13]. In the regression framework, Jones [10] studied the bias
induced by naive imputation.

In the settings of the Dantzig selector [21] and LASSO [14], another solution consists in naively
imputing by 0 the incomplete matrix and modifying the algorithm used in the complete case to account
for the imputation error. Such a strategy has also been studied by Ma and Needell [15] for SGD in the
context of linear regression with missing values and with finite samples: the authors used debiased
gradients, in the same spirit as the covariance matrix debiasing considered by Loh and Wainwright
[14] in a context of sparse linear regression, or by Koltchinskii et al. [12] for matrix completion.
This modified version of the SGD algorithm [15] is conjectured to converge in expectation to the
ordinary least squares estimator, achieving the rate of O( logn

µn ) at iteration n for the excess empirical
risk, assumed to be µ-strongly convex in that work. However, their algorithm requires a step choice
relying on the knowledge of the strong-convexity constant µ which is often intractable for large-scale
settings.

Contributions.

• We develop a debiased averaged SGD to perform (regularized) linear regression either streaming or
with finite samples, when covariates are missing. The approach consists in imputing the covariates
with a simple imputation and using debiased gradients accordingly.
• Furthermore, the design is allowed to be contaminated by heterogeneous missing values: each

covariate may have a different probability to be missing. This encompasses the classical homoge-
neous Missing Completely At Random (MCAR) case, where the missingness is independent of
any covariate value.

• This algorithm comes with theoretical guarantees: we establish convergence in terms of generaliza-
tion risk at the rate 1/n at iteration n. This rate is remarkable as it is (i) optimal w.r.t. n, (ii) free
from any bad condition number (no strong convexity constant is required), and (iii) similar to the
rate of averaged SGD without any missing value.

• In terms of performance with respect to the missing entries proportion in large dimension, our
strategy results in an error provably several orders of magnitude smaller than the best possible
algorithm that would only rely on complete observations.

• We show the relevance of the proposed approach and its convergence behavior on numerical
applications and its efficiency on real data; including the TraumaBase R© dataset to assist doctors
in making real-time decisions in the management of severely traumatized patients. The code to
reproduce all the simulations and numerical experiments is available on https://github.com/
AudeSportisse/SGD-NA.

2 Problem setting

In this paper, we consider either the streaming setting, i.e. when the data comes in as it goes
along, or the finite-sample setting, i.e. when the data size is fixed and form a finite design matrix
X = (X1:| . . . |Xn:)

T ∈ Rn×d (n > d). We define Dn := σ ((Xi:, yi), i = 1, . . . , n) the σ−field
generated by n observations. We also denote 4 the partial order between self-adjoint operators, such
that A 4 B if B −A is positive semi-definite.

Given observations as in (1) and defining fi(β) := (〈Xi:, β〉 − yi)2 /2, the (unknown) linear model
parameter satisfies:

β? = arg min
β∈Rd

{
R(β) := E(Xi:,yi) [fi(β)]

}
, (2)

where E(Xi:,yi) denotes the expectation over the distribution of (Xi:, yi) (which is independent of i
as the observations are assumed to be i.i.d.).

In this work, the covariates are assumed to contain missing values, so one in fact observes XNA
i: ∈

(R∪{NA})d instead of Xi:, as XNA
i: := Xi:�Di: +NA(1d−Di:), where� denotes the element-wise

product, 1d ∈ Rd is the vector filled with ones and Di: ∈ {0, 1}d is a binary vector mask coding for
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the presence of missing entries in Xi:, i.e. Dij = 0 if the (i, j)-entry is missing in Xi:, and Dij = 1
otherwise. We adopt the convention NA × 0 = 0 and NA × 1 = NA. We consider a heterogeneous
MCAR setting, i.e. D is modeled with a Bernoulli distribution

D = (δij)1≤i≤n,1≤j≤d with δij ∼ B(pj), (3)

with 1− pj the probability that the j-th covariate is missing.

The considered approach consists in imputing the incomplete covariates by zero in XNA
i: , as X̃i: =

XNA
i: �Di: = Xi: �Di:, and in accounting for the imputation error in the subsequent algorithm.

3 Averaged SGD with missing values

The proposed method is detailed in Algorithm
1. The impact of the naive imputation by 0 di-
rectly translates into a bias in the gradient. Con-
sequently, at each iteration we use a debiased
estimate g̃k. In order to stabilize the stochastic
algorithm, we consider the Polyak-Ruppert [19]
averaged iterates β̄k = 1

k+1

∑k
i=0 βi.

Lemma 1. Let (Fk)k≥0 be the following σ-
algebra,Fk = σ(X1:, y1, D1: . . . , Xk:, yk, Dk:).
The modified gradient g̃k(βk−1) in Equation (4)
is Fk-measurable and a.s.,

E [g̃k(βk−1) | Fk−1] = ∇R(βk−1).

Algorithm 1 Averaged SGD for Heterogeneous
Missing Data

Input: data X̃, y, α (step size)
Initialize β0 = 0d.
Set P = diag

(
(pj)j∈{1,...,d}

)
∈ Rd×d.

for k = 1 to n do

g̃k(βk) = P−1X̃k:

(
X̃T
k:P
−1βk − yk

)
− (I− P )P−2diag

(
X̃k:X̃

T
k:

)
βk (4)

βk = βk−1 − αg̃k(βk−1)

β̄k = 1
k+1

∑k
i=0 βi = k

k+1 β̄k−1 + 1
k+1βk

end for

Lemma 1 is proved in Appendix S2.1. Note that in the case of homogeneous MCAR data, i.e.
p1 = . . . = pd = p ∈ (0, 1), the chosen direction at iteration k in Equation (4) boils down
to 1

pX̃k:

(
1
pX̃

T
k:βk − yk

)
− 1−p

p2 diag
(
X̃k:X̃

T
k:

)
βk. This meets the classical debiasing terms of

covariance matrices [14, 15, 12] . Note also that in the presence of complete observations, meaning
that p = 1, Algorithm 1 matches the standard least squares stochastic algorithm.
Remark 1 (Ridge regularization) Instead of minimizing the theoretical risk as in (2), we can consider
a Ridge regularized formulation: minβ∈Rd R(β) + λ‖β‖2, with λ > 0. Algorithm 1 is trivially
extended to this framework: the debiasing term is not modified since the penalization term does not
involve the incomplete data X̃i:. This is useful in practice as no implementation is availaible for
incomplete ridge regression.

4 Theoretical results

In this section, we prove convergence guarantees for Algorithm 1 in terms of theoretical excess risk,
in both the streaming and the finite-sample settings. For the rest of this section, assume the following.

• The observations (Xk:, yk) ∈ Rd × R are independent and identically distributed.
• E[‖Xk:‖2] and E[‖yk‖2] are finite.

• Let H be an invertible matrix, defined by H := E(Xk:,yk)[Xk:X
T
k:].

The main technical challenge to overcome is proving that the noise in play due to missing values is
strutured and still allows to derive convergence results for a debiased version of averaged SGD. This
work builds upon the analysis made by Bach and Moulines [1] for standard SGD strategies.

4.1 Technical results

Bach and Moulines [1] proved that for least-squares regression, averaged SGD converges at rate n−1
after n iterations. In order to derive similar results, we prove in addition to Lemma 1, Lemmas 2
and 3:
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• Lemma 2 shows that the noise induced by the imputation by zeros and the subsequent transforma-
tion results in a structured noise. This is the most challenging part technically: having a structured
noise is fundamental to obtain convergence rates scaling as n−1 – in the unstructured case the
convergence speed is only n−1/2 [5].

• Lemma 3 shows that the adjusted random gradients g̃k(β) are almost surely co-coercive [24] i.e.,
for any k, there exists a random “primitive” function f̃k which is a.s. convex and smooth, and
such that g̃k = ∇f̃k . Proving that f̃k is a.s. convex is an important step which was missing in the
analysis of Ma and Needell [15].

Lemma 2. The additive noise process (g̃k(β?))k with β? defined in (2) is Fk−measurable and,

1. ∀k ≥ 0, E[g̃k(β?) | Fk−1] = 0 a.s..

2. ∀k ≥ 0, E[‖g̃k(β?)‖2 | Fk−1] is a.s. finite.

3. ∀k ≥ 0, E[g̃k(β?)g̃k(β?)T ] 4 C(β?) = c(β?)H .

Sketch of proof (Lemma 2). Property 1 easily followed from Lemma 1 and the definition of β?.
Property 2 can be obtained with similar computations as in [15, Lemma 4]. Property 3 cannot
be directly derived from Property 2, since g̃k(β?)g̃k(β?)T 4 ‖g̃k(β?)‖2I leads to an insufficient
upper bound. Proof relies on decomposing the external product g̃k(β?)g̃k(β?)T in several terms and
obtaining the control of each, involving technical computations.

Lemma 3. For all k ≥ 0, given the binary maskD, the adjusted gradient g̃k(β) is a.s. Lk,D-Lipschitz
continuous, i.e. for all u, v ∈ Rd, ‖g̃k(u)− g̃k(v)‖ ≤ Lk,D‖u− v‖ a.s.. Set

L := sup
k,D

Lk,D ≤
1

p2m
max
k
‖Xk:‖2 a.s.. (5)

In addition, for all k ≥ 0, g̃k(β) is almost surely co-coercive.

Lemmas 2 and 3 are respectively proved in Appendices S2.2 and S2.3, and can be combined with
Theorem 1 in [1] in order to prove the following theoretical guarantees for Algorithm 1.

4.2 Convergence results

The following theorem quantifies the convergence rate of Algorithm 1 in terms of excess risk.

Theorem 4 (Streaming setting). Assume that for any i, ‖Xi:‖ ≤ γ almost surely for some γ > 0.
For any constant step-size α ≤ 1

2L , Algorithm 1 ensures that, for any k ≥ 0:

E
[
R
(
β̄k
)
−R(β?)

]
≤ 1

2k

(√
c(β?)d

1−
√
αL

+
‖β0 − β?‖√

α

)2

,

with L given in Equation (24), pm = minj=1,...d pj and

c(β?) =
Var(εk)

p2m
+

(
(2 + 5pm)(1− pm)

p3m

)
γ2‖β?‖2. (6)

Note that in Theorem 4, the expectation is taken over the randomness of the observations
(Xi:, yi, Di:)1≤i≤k. The bounded features assumption in Theorem 4 is mostly convenient for the
readability, but it can be relaxed at the price of milder but more technical assumptions and proofs
(typically bounds on quadratic mean instead of a.s. bounds).

Remark 2 (Finite-sample setting) Similar results as Theorem 4 can be derived in the
case of finite-sample setting. For the sake of clarity, they are made explicit here-
after: for any constant step-size α ≤ 1

2L , Algorithm 1 ensures that for any k ≤ n:

E
[
R(β̄k)−R(β?)]|Dn

]
≤ 1

2k

(√
c(β?)d

1−
√
αL

+ ‖β0−β?‖√
α

)2

with L given in Equation (24) and c(β?) =

Var(εk)
p2m

+
(

(2+5pm)(1−pm)
p3m

)
max1≤i≤n ‖Xi:‖2‖β?‖2.
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Convergence rates for the iterates. Note that if a Ridge regularization is considered, the regular-
ized function to minimizeR(β)+λ‖β‖2 is 2λ-strongly convex. Theorem 4 and Remark 2 then directly

provide the following bound on the iterates: E
[∥∥βk − β?∥∥2] ≤ 1

2λk

(√
c(β?)d

1−
√
αL

+ ‖β0−β?‖√
α

)2

.

Additional comments. We highlight the following points:

• In Theorem 4, the expected excess risk is upper bounded by (a) a variance term, that grows with
the noise variance and is increased by the missing values, and (b) a bias term, that accounts for the
importance of the initial distance between the starting point β0 and the optimal one β?.

• The optimal convergence rate is achieved for a constant learning rate α. One could for example
choose α = 1

2L , that does not decrease with the number of iterations. In such a situation, both the
bias and variance terms scale as k−1. Remark that convergence of the averaged SGD with constant
step-size only happens for least squares regression, because the un-averaged iterates converge to a
limit distribution whose mean is exactly β∗ [1, 4].

• The expected risk scales as n−1 after n iterations, without strong convexity constant involved.
• For the generalization risk R, this rate of n−1 is known to be statistically optimal for least-squares

regression: under reasonable assumptions, no algorithm, even more complex than averaged SGD
or without missing observations, can have a better dependence in n [23].

• In the complete case, i.e. when p1 = . . . = pd = 1, Theorem 4 and remark 2 meet the results from
Bach and Moulines [1, Theorem 1]. Indeed, in such a case, c(β?) = Var(εk).

• The noise variance coefficient c(β?) includes (i) a first term as a classical noise one, proportional to
the model variance, and increased by the missing values occurrence to Var(εk)

p2m
; (ii) the second term

is upper-bounded by 7(1−pm)
p3m

· γ2‖β?‖2 corresponds to the multiplicative noise induced by the
imputation by 0 and gradient debiasing. It naturally increases as the radius γ2 of the observations
increases (so does the imputation error), and vanishes if there are no missing values (pm = 1).

Remark 3 (Only one epoch) It is important to notice that in a finite-sample setting, as covered by
Remark 2, given a maximum number of n observations, our convergence rates are only valid for
k ≤ n: the theoretical bound holds only for one pass on the input/output pairs. Indeed, afterwards,
we cannot build unbiased gradients of the risk.

4.3 What about empirical risk minimization (ERM)?

Theoretical locks. Note that the translation of the results in Remark 2 in terms of empirical risk
convergence is still an open issue. The heart of the problem is that it seems really difficult to obtain a
sequence of unbiased gradients of the empirical risk.

• Indeed, to obtain unbiased gradients, the data should be processed only once in Algorithm 1: if we
consider the gradient of the loss with respect to an observation k, we obviously need the binary
mask Dk and the current point βk−1 to be independent for the correction relative to the missing
entries to make sense. As a consequence, no sample can be used twice - in fact, running multiple
passes over a finite sample could result in over-fitting the missing entries.

• Therefore, with a finite sample at hand, the sample used at each iteration should be chosen
without replacement as the algorithm runs. But even in the complete data case, sampling without
replacement induces a bias on the chosen direction [7, 9]. Consequently, Lemma 1 does not hold for
the empirical risk instead of the theoretical one. This issue is not addressed in [15], unfortunately
making the proof of their result invalid/wrong.

Comparison to Ma and Needell [15]. Leaving aside the last observation, we can still comment
on the bounds in [15] for the empirical risk without averaging. As they do not use averaging but only
the last iterate, their convergence rate (see Lemma 1 in their paper) is only studied for µ−strongly
convex problems and is expected to be larger (i) by a factor µ−1, due to the choice of their decaying
learning rate, and (ii) by a log n factor due to using the last iterate and not the averaged one [22].
Moreover, the strategy of the present paper does not require to access the strong convexity constant,
which is generally out of reach, if no explicit regularization is used. More marginally, we provide
the proof of the co-coercivity of the adjusted gradients (Lemma 3), which is required to derive the
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convergence results, and which was also missing in Ma and Needell [15]. A more detailed discussion
on the differences between the two papers is given in Appendix S1.

ERM hindered by NA. It is also interesting to point out that with missing features, neither the
generalization riskR, nor the empirical riskRn are observed (i.e., only approximations of their values
or gradients can be computed). As a consequence, one cannot expect to minimize those functions
with unlimited accuracy. This stands in contrast to the complete observations setting, in which the
empirical risk Rn is known exactly. As a consequence, with missing data, empirical risk loses its
main asset - being an observable function that one can minimize with high precision. Overall it is
both more natural and easier to focus on the generalization risk.

4.4 On the impact of missing values

Marginal values of incomplete data. An important question in practice is to understand how
much information has been lost because of the incompleteness of the observations. In other words, it
is better to access 200 input/output pairs with a probability 50% of observing each feature on the
inputs, or to observe 100 input/output pairs with complete observations?

Without missing observations, the variance bound in the expected excess risk is given by Theo-
rem 4 with pm = 1: it scales as O

(
Var(εk)d

k

)
, while with missing observations it increases to

O
(

Var(εk)d
kp2m

+ C(X,β?)
kp3m

)
. As a consequence, the variance upper bound is larger by a factor p−1m for

the estimator derived from k incomplete observations than for k × pm complete observations. This
suggests that there is a higher gain to collecting fewer complete observations (e.g., 100) than more
incomplete ones (e.g., 200 with p = 0.5). However, one should keep in mind that this observation is
made by comparing upper bounds thus does not necessarily reflect what would happen in practice.

Keeping only complete observations? Another approach to solve the missing data problem is
to discard all observations that have at least one missing feature. The probability that one input
is complete, under our missing data model is

∏d
j=1 pj . In the homogeneous case, the number of

complete observations kco out of a k−sample thus follows a binomial law kco ∼ B(k, pd). With only
those few observations, the statistical lower bound is Var(εk)d

kco
. In expectation, by Jensen inequality,

we get that the lower bound on the risk is larger than Var(εk)d
kpd

.

Our strategy thus leads to an upper-bound which is typically pd−3 times smaller than the lower bound
on the error of any algorithm relying only on complete observations. For a large dimension or a
high percentage of missing values, our strategy is thus provably several orders of magnitude smaller
than the best possible algorithm that would only rely on complete observations - e.g., if p = 0.9 and
d = 40, the error of our method is at least 50 times smaller.

Also note that in Theorem 1 and Lemma 1 in Ma and Needell [15], the convergence rate with missing
observations suffers from a similar multiplicative factor O(p−2 + κp−3).

5 Experiments
5.1 Synthetic data

Consider the following simulation setting: the covariates are normally distributed, Xi:
i.i.d.∼ N (0,Σ),

where Σ is constructed using uniform random orthogonal eigenvectors and decreasing eigenvalues
1/k, k = 1, . . . , d. For a fixed parameter vector β, the outputs yi are generated according to the
linear model (1), with εi ∼ N (0, 1). Setting d = 10, we introduce 30% of missing values either with
a uniform probability p of missingness for any feature, or with probability pj for covariate j, with
j = 1, . . . , d. Firstly, the three following algorithms are implemented:

(1) AvSGD described in Algorithm 1 with a constant step size α = 1
2L , and L given in (24).

(2) SGD from [15] with iterates βk+1 = βk−αkg̃ik(βk), and decreasing step size αk = 1√
k+1

.

(3) SGD_cst from [15] with a constant step size α = 1
2L , where L is given by (24).

6



Figure 1: Empirical excess risk
(Rn(βk)−Rn(β?)). Left: n = 103 and
100 passes. Right: n = 105 and 1 pass. d = 10,
30% MCAR data. L is assumed to be known in
both graphics.

1001 1010 1100 2000 11000 n

k
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R n
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R n

(
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AvSGD_heterogeneous
AvSGD_homogeneous

Figure 2: Empirical excess risk Rn(βk) −
Rn(β?) for synthetic data where n = 105,
d = 10 and with heterogeneous missing val-
ues either taking into account the heterogeneity
(plain line) in the algorithm or not (dashed line).

Debiased averaged vs. standard SGD. Figure 1 compares the convergence of Algorithms (1), (2)
and (3), with either multiple passes or one pass, in terms of excess empirical risk Rn(β)−R(β?),
with Rn(β) := 1

n

∑n
i=1 fi(β). As expected (see Remark 3 and Subsection 4.3), multiple passes can

lead to saturation: after one pass on the observations, AvSGD does not improve anymore (Figure 1,
left), while it keeps decreasing in the streaming setting (Figure 1, right). Looking at Figure 1 (right),
one may notice that without averaging and with decaying step-size, Algorithm (2) achieves the

convergence rate O
(√

1
n

)
, whereas with constant step-size, Algorithm (3) saturates at an excess

risk proportional to α after n = 103 iterations. As theoretically expected, both methods are improved
with averaging. Indeed, Algorithm 1 converges pointwise with a rate of O( 1

n ).

About the algorithm hyperparameter. Note that the Lipschitz constant L given in (24) can be
either computed from the complete covariates, or estimated from the incomplete data, see discussion
and numerical experiments in Appendix S3.

Heterogeneous vs. homogeneous missingness. In Figure 2, the missing values are introduced
with different missingness probabilities, i.e. with distinct (pj)1≤j≤d per feature, as described in
Equation (3). When taking into account this heterogeneousness, Algorithm 1 achieves the same
convergence rates as in Figure 1. However, ignoring the heterogeneous probabilities in the gradient
debiasing leads to stagnation far from the optimum in terms of empirical excess risk.

Polynomial features. Algorithm 1 can be adapted to handle missing polynomial features, see
Appendix S4 for a detailed discussion and numerical experiments on synthetic data.

5.2 Real dataset 1: Traumabase dataset
We illustrate our approach on a public health application with the APHP TraumaBase R© Group
(Assistance Publique - Hopitaux de Paris) on the management of traumatized patients. Our aim is
to model the level of platelet upon arrival at the hospital from the clinical data of 15785 patients.
The platelet is a cellular agent responsible for clot formation and it is essential to control its levels
to prevent blood loss and to decide on the most suitable treatment. A better understanding of the
impact of the different features is key to trauma management. Explanatory variables for the level of
platelet consist in seven quantitative (missing) variables, which have been selected by doctors. In
Figure 3, one can see the percentage of missing values in each variable, varying from 0 to 16%, see
Appendix S5 for more information on the data.

Model estimation. The model parameter estimation is performed either using the AvSGD Algo-
rithm 1 or an Expectation Maximization (EM) algorithm [3]. Both methods are compared with the
ordinary least squares linear regression in the complete case, i.e. keeping the fully-observed rows
only (i.e. 9448 rows). The signs of the coefficients for Algorithm 1 are shown in Table 3.

According to the doctors, a negative effect of shock index (SI), vascular filling (VE), blood transfusion
(RBC) and lactate (Lactacte) was expected, as they all result in low platelet levels and therefore a
higher risk of severe bleeding. However, the effects of delta Hemocue (Delta.Hemocue) and the heart
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Variable Effect NA %
Lactate − 16%
∆.Hemo + 16%
VE − 9%
RBC − 8%
SI − 2%
HR + 1%
Age − 0%

Figure 3: Percentage of missing
features, and effect of the variables
on the platelet for the TraumaBase
data when the AvSGD algorithm is
used. “+” indicates positive effect
while “−” negative.

Figure 4: Prediction error boxplots (over 10 replica-
tions) for the Superconductivity data. AvSGD complete
corresponds to applying the AvSGD on the complete data,
AvSGD and Mean+AvSGD use the predictions obtained
with the estimated parameters β̂AvSGD

n and β̄AvSGD
n respec-

tively.

rate (HR) on platelets are not entirely in agreement with their opinion. Note that using the linear
regression in the complete case and the EM algorithm lead to the same sign for the variables effects
as presented in Table 3.

5.3 Real dataset 2: Superconductivity dataset
We now consider the Superconductivity dataset (available here), which contains 81 quantitative
features from 21263 superconductors. The goal here is to predict the critical temperature of each
superconductor. Since the dataset is initially complete, we introduce 30% of missing values with
probabilities (pj)1≤j≤81 for the covariate j, with pj varying between 0.7 and 1. The results are
shown in Figure 4 where a Ridge regularization has been added or not. The regularization parameter
λ (see Remark 1) is chosen by cross validation.

Prediction performance. The dataset is divided into training and test sets (random selection of
70− 30%). The test set does not contain missing values. In order to predict the critical temperature
of each superconductor, we compute ŷn+1 = XT

n+1β̂ with β̂ = βAvSGD
n or βEM

n . We also impute
the missing data naively by the mean in the training set, and apply the averaged stochastic gradient
without missing data on this imputed dataset, giving a coefficient model β̄AvSGD

n . It corresponds to
the case where the bias of the imputation has not been corrected. The prediction quality on the test
set is compared according to the relative `2 prediction error, ‖ŷ − y‖2/‖y‖2. The data is scaled, so
that the naive prediction by the mean of the outcome variable leads to a prediction error equal to 1.
In Figure 4, we observe that the SGD strategies give quite good prediction performances. The EM
algorithm is not represented since it is completely out of range (the mean of its prediction error is 0.7),
which indicates that it struggles with a large number of covariates. As for the AvSGD Algorithm, it
performs well in this setting. Indeed, with or without regularization, the prediction error with missing
values is very close to the one obtained from the complete dataset. Note that Algorithm 1 is shown to
handle missing polynomial features well even in higher dimensions, see Appendix S4 for a detailed
discussion and large-scale experiments on the superconductivity dataset.

6 Discussion
In this work, we thoroughly study the impact of missing values for Stochastic Gradient Descent
algorithm for Least Squares Regression. We leverage both the power of averaging and a simple and
powerful debiasing approach to derive tight and rigorous convergence guarantees for the generaliza-
tion risk of the algorithm. The theoretical study directly translates into practical recommendations for
the users and a byproduct is the availability of a python implementation of regularized regression with
missing values for large scale data, which was not available. Even though we have knocked down
some barriers, there are still exciting perspectives to be explored as the robustness of the approach
to rarely-occurring covariates, or dealing with more general loss functions as well - for which it is
challenging to build a debiased gradient estimator from observations with missing values, or also
considering more complex missing-data patterns such as missing-not-at-random mechanisms.
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S1 Discussion on the paper of Ma and Needell [15]

In this section, we make the theoretical issues unlocked in Ma and Needell [15] explicit. For clarity,
we directly refer to the lemmas and theorems as numbered in the published version (http://www.
global-sci.org/uploads/online_news/NMTMA/201809051633-2442.pdf), the numbering
being slightly different than the arXiv version. For readability, we translate their method and
results with the notation used in the present paper. In their paper, they consider the finite-sample
setting, with at hand (Dk, X̃i)1≤i≤n, in view of minimizing the empirical risk.

As a preamble, let us remind that the contributions of the present paper go far beyond correcting the
approach in [15]: we propose a different algorithm using averaging, that converges faster and in a
non-strongly convex regime, with a different proof technique, requiring a more technical proof on the
second order moment of the noise, and we allow for heterogeneity in the missing data mechanism.

S1.1 Hurdles to get unbiased gradients of the empirical risk

The stochastic gradients in [15] are not unbiased gradients of the empirical risk (which makes their
main result wrong). Indeed, their algorithm uses the debiased direction (4) by sampling uniformly
with replacement the (X̃k)k’s.

For clarity, we highlight both why the result is not technically correct in their paper, and why it is not
intuitively possible to achieve the result they give.

Technically. The proof of the main Theorem 2.2 (Theorem 2.1 being a direct corollary), corresponds
to the classical proof in which one upper bounds the expectation of the mean-squared distance from
the iterate at iteration k + 1 to the optimal point conditionally to the iterate at iteration k, or more
precisely, conditionally to a σ-algebra making this iterate measurable. This is typically written

E
[
||βk+1 − βn∗ ||2|Fk

]
,

where βn∗ is the minimizer of the empirical risk Rn and βk is Fk-measurable.

The crux of the proof is then to use unbiased gradients conditionally to Fk: the property needed is
that

E
[
gik+1

(βk)|Fk
]

= ∇Rn(βk).

In classical ERM (without missing value) it is done by sampling uniformly at iteration k + 1 one
observation indexed by ik+1 ∼ UJ1;nK, independently from βk.
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In regression with missing data, one has to deal with another source of randomness, the randomness
of the mask D. In Ma and Needell [15], Lemma A.1 states that for a random i ∼ UJ1;nK and a
matrix row Ai, for a random mask D associated to this row,

ED[Eigi(β)] = ∇Rn(β).

This lemma is valid. Unfortunately, its usage in the proof of Theorem 2.2 (page 18, line (ii)), is not,
as one does not have:

E[gik+1
(βk)|Fk] = ∇Rn(βk),

indeed,

• either the sample ik+1 is chosen uniformly at random in J1;nK andDik+1
is not independent

from βk.
• or the sample i is not chosen uniformly in J1;nK (for example without replacement, as we

do) and then the gradient is not an unbiased gradient of Rn as the sampling is not uniform
anymore.

In other words, the proof would only be valid if the mask for the missing entries was re-sampled
each time the point is used, which is of course not realistic for a missing data approach (that would
mean that the data has in fact been collected without missing entries).

Intuition on why it is hard. A way to understand the impossibility of having a bound for multiple
pass on ERM in the context of missing data is to underline that the empirical risk, in the presence of
missing data, is an unknown function: its value cannot be computed exactly (see Subsection 4.3).

As a consequence we can hardly expect that one could minimize it to unlimited accuracy. This is very
similar to the situation for the generalization risk in a situation without missing data: as the function
is not observed, it is impossible to minimize it exactly. Given only n observations, no algorithm can
achieve 0-generalization error (and statistical lower bounds [23] prove so).

Conclusion. This highlights how difficult it is to be rigorous when dealing with multiple sources
of randomness. Unfortunately, none of these limits are discussed in the current version of [15].This
makes the approach and the main theorem of [15] mathematically invalid. In the present paper, the
generalization risk is decaying during the first pass, and as a consequence, the empirical risk also
probably does, but this has not been proved yet.

In the following paragraph, we give details on the missing technical Lemma.

S1.2 Missing key Lemma in the proof.

Proving that (f̃k) is a.s. convex is an important step for convergence, which was missing in the
analysis of [15]. More precisely, in Lemma A.4. in [15], a condition is missing on G(x): G needs to
be smooth and convex for its gradient to satisfy the co-coercivity inequality. Note that this condition
was also missing in the paper they refer to Needell et al. [17] (Indeed, at the third line of the proof of
Lemma A.1. in Needell et al. [17], one needs f to be convex for G to be convex). Co-coercivity of
the gradient is indeed a characterization of the fact that the function is smooth and convex, see for
example Zhu and Marcotte [24].

S2 Proofs of technical lemmas

Recall that we aim at minimizing the theoretical risk in both streaming and finite-sample settings.
β? = arg min

β∈Rd

R(β) = arg min
β∈Rd

E(Xi:,yi) [fi(β)] . (2)

In the sequel, one consider the following modified gradient direction

g̃k(βk) = P−1X̃k:

(
X̃T
k:P
−1βk − yk

)
− (I− P )P−2diag

(
X̃k:X̃

T
k:

)
βk. (4)

Note that for all k, Dk: is independent from (Xk:, yk). In what follows, the proofs are derived
considering

E = E(Xk:,yk),Dk:
= E(Xk:,yk)EDk:

where E(Xk:,yk) and EDk:
denotes the expectation with respect to the distribution of (Xk:, yk) and

Dk: respectively.
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S2.1 Proof of Lemma 1

Lemma S1. Let (Fk)k≥0 be the following σ-algebra,

Fk = σ(X1:, y1, D1: . . . , Xk:, yk, Dk:).

The modified gradient g̃k(βk−1) in Equation (4) is Fk-measurable and

E [g̃k(βk−1) | Fk−1] = ∇R(βk−1) a.s.

Proof.

E(Xk:,yk),Dk:
[g̃k(βk−1)|Fk−1]

(i)
= E(Xk:,yk),Dk:

[
P−1X̃k:X̃

T
k:P
−1
]
βk−1 − E(Xk:,yk),Dk:

[
P−1X̃k:yk

]
− E(Xk:,yk),Dk:

[
(I− P )P−2diag

(
X̃k:X̃

T
k:

)]
βk−1

(ii)
= E(Xk:,yk)

[
P−1PXk:X

T
k:PP

−1βk−1 − P−2(P − P 2)diag(Xk:X
T
k:)βk−1 − P−1PXk:yk

]
− E(Xk:,yk)

[
(I− P )P−2Pdiag

(
Xk:X

T
k:

)
βk−1

]
=∇R(βk−1),

In step (i), we use that βk−1 is Fk−1-measurable and (Xk, yk, Dk) is independent from Fk−1. Step
(ii) follows from

EDk:

[
X̃k:X̃k:T

]
= PXk:X

T
k:P − (P − P 2)diag(Xk:X

T
k:),

EDk:

[
diag(X̃k:X̃

T
k:)
]

= Pdiag(Xk:X
T
k:),

EDk:

[
X̃k:

]
= PXk:.

S2.2 Proof of Lemma 2

Lemma S2. The additive noise process (g̃k(β?))k with β? defined in Equation (2) isFk−measurable
and has the following properties:

1. ∀k ≥ 0, E[g̃k(β?) | Fk−1] = 0 a.s.,

2. ∀k ≥ 0, E[‖g̃k(β?)‖2 | Fk−1] is a.s. finite,

3. ∀k ≥ 0, E[g̃k(β?)g̃k(β?)T ] 4 C(β?) = c(β?)H, where 4 denotes the order between
self-adjoint operators (A 4 B if B −A is positive semi-definite).

Proof. 1 The first point is easily verified using Lemma 1 combined with∇R(β?) = 0 by (2).

2 Let us first remark that by independence E[‖g̃k(β?)‖2 | Fk−1] = E[‖g̃k(β?)‖2]. Then,

E[‖g̃k(β?)‖2] ≤ 1

p2m
E
[
‖Xk:‖2

(
X̃T
k:P
−1β? − yk

)2]
+

(1− pm)2

p2m
E
[
‖P−1diag

(
X̃k:X̃

T
k:

)
β?‖2

]
.
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We decompose the computation with respect to EDk:
first,

EDk:

[(
X̃T
k:P
−1β? − yk

)2]
= EDk:

[
(X̃T

k:P
−1β?)2

]
− 2ykEDk:

[
X̃T
k:P
−1β?

]
+ y2k

= EDk:


 d∑
j=1

X̃kjp
−1
j β?j

2
− 2ykEDk:

 d∑
j=1

X̃kjp
−1
j β?j

+ y2k

=

d∑
j=1

EDk:

[
X̃2
kjp
−2
j β?2j

]
+ 2

∑
l<j

EDk:

[
X̃kjX̃klp

−1
l β?j β

?
l

]
− 2yk

d∑
j=1

Xkjβ
?
j + y2k

=

d∑
j=1

p−1j X2
kjβ

?2
j + 2

∑
l<j

XkjXklβ
?
j β

?
l − 2yk

d∑
j=1

Xkjβ
?
j + y2k

= (XT
k:β

? − yk)2 +

d∑
j=1

(p−1j − 1)X2
kjβ

?2
j ,

which gives

EDk:

[(
X̃T
k:P
−1β? − yk

)2]
≤ (XT

k:β
? − yk)2 +

1− pm
pm

β?T diag(Xk:X
T
k:)β

?. (8)

As for the second term,

EDk:

[
‖P−1diag(X̃k:X̃

T
k:)β

?‖2
]

= EDk:

 d∑
j=1

X̃4
kjp
−2
j β?2j


=

d∑
j=1

X4
kjp
−1
j β?2j

≤ 1

pm

d∑
j=1

X4
ijβ

?2
j

≤ 1

pm

 d∑
j=1

X2
kj

 d∑
j=1

X2
kjβ

?2
j


=

1

pm
‖Xk:‖2β?T diag(Xk:X

T
k:)β

?

Finally, one obtains

E[‖g̃k(β?)‖2 | Fk−1] ≤ 1

p2m
E(Xk:,yk)

[
(εk)2‖Xk:‖2

]
+

(1− pm) + (1− pm)2

p3m
E(Xk:,yk)

[
‖Xk:‖2β?T diag(Xk:X

T
k:)β

?
]
.

3 We aim at proving there exists H such that

E[g̃k(β?)g̃k(β?)T ] 4 C = cH.

Simple computations lead to:

E[g̃k(β?)g̃k(β?)T ] = E[T1 + T2 + TT2 + T3],

with:

T1 = (X̃T
k:P
−1β? − yk)2P−1X̃k:X̃

T
k:P
−1,

T2 = −(X̃T
k:P
−1β? − yk)P−1X̃k:β

?Tdiag(X̃k:X̃
T
k:)P

−2(I − P ),

T3 = (I − P )P−2diag(X̃k:X̃
T
k:)β

?β?Tdiag(X̃k:X̃
T
k:)P

−2(I − P ).
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Bound on T1. For the first term, we use

P−1X̃k:X̃
T
k:P
−1 4

1

p2m
X̃k:X̃

T
k:, (9)

since for all vector v 6= 0, vT
(

1
p2m
X̃k:X̃

T
k: − P−1X̃k:X̃

T
k:P
−1
)
v ≥ 0,

d∑
j=1

(
1

p2m
− 1

p2j

)
X̃2
kjv

2
j + 2

∑
1≤j<l≤d

(
1

p2m
− 1

pjpl

)
X̃kjX̃klvjvl

(iii)

≥
d∑
j=1

(
1

p2m
− 1

p2j

)
X̃2
kjv

2
j + 2

∑
1≤j<l≤d

√√√√( 1

p2m
− 1

p2j

)(
1

p2m
− 1

p2l

)
X̃kjX̃klvjvl

=

 d∑
j=1

√√√√( 1

p2m
− 1

p2j

)
X̃kjvj

2

≥ 0.

Step (iii) uses
(

1
p2m
− 1

pjpl

)
≥
√(

1
p2m
− 1

p2j

)(
1
p2m
− 1

p2l

)
. Indeed,(

1

p2m
− 1

pjpl

)2

≥

(
1

p2m
− 1

p2j

)(
1

p2m
− 1

p2l

)
⇔

(
1

p4m
− 2

1

pjpl

1

p2m
+

1

p2jp
2
l

)
− 1

p4m
+

1

p2mp
2
l

+
1

p2mp
2
j

− 1

p2jp
2
l

≥ 0

⇔
(

1

pmpj
− 1

pmpl

)2

≥ 0.

Let us now prove that
1

p2m
X̃k:X̃

T
k: 4

1

p2m
Xk:X

T
k:

i.e.
X̃k:X̃

T
k: 4 Xk:X

T
k:. (10)

Indeed, for all vector v 6= 0, vT (Xk:X
T
k: − X̃k:X̃

T
k:)v ≥ 0:

vT (Xk:X
T
k: − X̃k:X̃

T
k:)v =

d∑
j=1

(1− δ2kj)X2
kjv

2
j + 2

∑
1≤j<l≤d

(1− δkjδkl)XkjXklvjvl

(iv)

≥
d∑
j=1

(1− δ2kj)X2
kjv

2
j + 2

∑
1≤j<l≤d

√
(1− δ2kj)(1− δ2kl)XkjXklvjvl

=

 d∑
j=1

√
(1− δ2kjXkjvj

2

≥ 0

Step (iv) is obtained using (1− δkjδkl) ≥
√

(1− δ2kj)(1− δ2kl). Indeed,

(1− δkjδkl)2 ≥ (1− δ2kj)(1− δ2kl)⇔ (1− 2δklδkj + δ2kjδ
2
kl)− 1 + δ2kj − δ2kjδ2kl + δ2kl ≥ 0

⇔ (δkj − δkl)2 ≥ 0.

Then, by (8) and (XT
k:β

? − yk)2 = ε2k,

E(Xk:,yk) [T1] = E(Xk:,yk)

[
1

p2m
ε2kXk:X

T
k:

]
+ E(Xk:,yk)

[
1− pm
p3m

(
β?T diag(Xk:X

T
k:)β

?
)
Xk:X

T
k:

]
.

Noting that
‖diag(Xk:)β

?‖2 ≤ ‖Xk:‖2‖β?‖2, (11)

E [T1] 4
1

p2m
Var(εk)H +

1− pm
p3m

‖Xk:‖2‖β?‖2H (12)
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Bound on T3. Using the resulting matrix structure of (I −
P )P−2diag(X̃k:X̃

T
k:)β

?β?Tdiag(X̃k:X̃
T
k:)P

−2(I − P ),(β?1)
2
δ4k1X

4
k1 β?1β

?
2δ

2
k1δ

2
k2X

2
k1X

2
k2

. . .
(β?d)

2
δ4kdX

4
kd

 ,

one obtains

EDk:
[T3] = (I − P )P−2Pdiag(Xk:Xk:

T )β?β?Tdiag(Xk:Xk:
T )PP−2(I − P )︸ ︷︷ ︸

=:T3a

+ (I − P )P−2(P − P 2)diag(Xk:Xk:
T )diag(β?β?T )diag(Xk:Xk:

T )P−2(I − P )︸ ︷︷ ︸
=:T3b

. (13)

Using similar arguments as in (9), both terms in (13) are bounded as follows

T3a 4
(1− pm)2

p2m
diag(Xk:Xk:

T )β?β?Tdiag(Xk:Xk:
T )

T3b 4
(1− pm)3

p3m
diag(Xk:Xk:

T )diag(β?β?T )diag(Xk:Xk:
T )

For T3a, one can go further by using

diag(Xk:X
T
k:)β

?β?Tdiag(Xk:X
T
k:) 4 ‖diag(Xk:)β

?‖2Xk:X
T
k:. (14)

Let us prove that for all vector v 6= 0,

vT (‖diag(Xk:)β
?‖2Xk:X

T
k: − diag(Xk:X

T
k:)β

?β?Tdiag(Xk:X
T
k:))v ≥ 0, i.e.

d∑
j=1

((
d∑
l=1

X2
ilβ

2
?l

)
X2
kj −X4

kjβ
?2
j

)
v2j + 2

∑
1≤j<m≤d

((
d∑
l=1

X2
klβ

?2
l

)
XkjXkm − β?j β?mX2

kjX
2
km

)
vmvj︸ ︷︷ ︸

=:Q

≥ 0

Indeed, Q ≥
(∑d

j=1

√(∑d
l=1X

2
klβ

?2
l

)
X2
kj −X4

kjβ
?2
j vj

)2

≥ 0, since, looking at the term de-

pending only on vjvm:

((
d∑

l=1

X2
klβ

?2
l

)
XkjXkm − β?

j β
?
mX

2
kjX

2
km

)
≥

√√√√(( d∑
l=1

X2
klβ

?2
l

)
X2

kj −X4
kjβ

?2
j

)((
d∑

l=1

X2
klβ

?2
l

)
X2

km −X4
kmβ

?2
m

)

⇔

(
d∑

l=1

X2
klβ

?2
l

)
X4

kjX
2
kmβ

?2
j +

(
d∑

l=1

X2
klβ

?2
l

)
X4

kmX
2
kjβ

?2
m − 2

(
d∑

l=1

X2
klβ

?2
l

)
X3

kjX
3
kmβ

?
j β

?
m ≥ 0

⇔


√√√√( d∑

l=1

X2
klβ

?2
l

)
X2

kjXkmβ
?
j −

√√√√( d∑
l=1

X2
klβ

?2
l

)
X2

kmXkjβ
?
m

2

≥ 0

For T3b, one can also dig deeper noting that

diag(Xk:X
T
k:)diag(β?β?T )diag(Xk:X

T
k:) 4 ‖diag(Xk:)β

?‖2Xk:X
T
k:. (15)

For all vector v 6= 0, we aim at proving

vT (‖β?Tdiag(Xk:)‖2Xk:X
T
k: − diag(Xk:X

T
k:)diag(β?β?T )diag(Xk:X

T
k:)))v ≥ 0

⇔
d∑
j=1

((
d∑
l=1

X2
klβ

?2
l

)
X2
kj −X4

kjβ
?2
j

)
v2j + 2

∑
1≤j<m≤d

(
d∑
l=1

X2
klβ

?2
l

)
XkjXkmvjvm︸ ︷︷ ︸

=:Q′

≥ 0.

15



Indeed, Q′ ≥
(∑d

j=1

√(∑d
l=1X

2
klβ

?2
l

)
X2
kj −X4

kjβ
?2
j vj

)2

≥ 0 since

((
d∑
l=1

X2
klβ

?2
l

)
XkjXkm

)
≥

√√√√(( d∑
l=1

X2
klβ

β2
l

)
X2
kj −X4

kjβ
?2
j

)((
d∑
l=1

X2
klβ

?2
l

)
X2
km −X4

kmβ
?2
m

)

⇔

(
d∑
l=1

X2
klβ

?2
l

)
X4
kjX

2
kmβ

?2
j +

(
d∑
l=1

X2
klβ

?2
l

)
X4
kmX

2
kjβ

?2
m −X4

kjX
4
kmβ

?2
j β

?2
m ≥ 0

Combining (11), (14) and (15) lead to

E(Xk:,yk) [T3a] 4
(1− pm)2

p2m
‖Xk:‖2‖β?‖2H

E(Xk:,yk) [T3b] 4
(1− pm)3

p3m
‖Xk:‖2‖β?‖2H

and to the final bound for T3,

E [T3] 4
(1− pm)2

p2m
‖Xk:‖2‖β?‖2H +

(1− pm)3

p3m
‖Xk:‖2‖β?‖2H. (16)

Bound on T2 + TT2 . Firstly, focus on T2:

T2 = −(X̃T
k:P
−1β? − yk)P−1X̃k:β

?Tdiag(X̃k:X̃
T
k:)P

−2(I − P )

=: −(A−B),

where

A = P−1X̃k:X̃
T
k:P
−1β?β?Tdiag(X̃k:X̃

T
k:)P

−2(I − P )

B = P−1X̃k:ykβ
?Tdiag(X̃k:X̃

T
k:)P

−2(I − P ).

Computation w.r.t. EDk:
. Term A can be split into three terms,

A1 = P−1diag(X̃k:X̃
T
k:)P

−1β?β?Tdiag(X̃k:X̃
T
k:)P

−2(I − P )

A2 = P−1(X̃k:X̃
T
k: − diag(X̃k:X̃

T
k:))P

−1diag(β?β?T )diag(X̃k:X̃
T
k:)P

−2(I − P )

A3 = P−1(X̃k:X̃
T
k: − diag(X̃k:X̃

T
k:))P

−1(β?β?T − diag(β?β?T ))diag(X̃k:X̃
T
k:)P

−2(I − P ).

Noting that
A1 = P−2diag(X̃k:X̃

T
k:)β

?β?Tdiag(X̃k:X̃
T
k:)P

−2(I − P ),

the expectation EDk:
has already been computed in (13), so

EDk:
[A1] = P−2Pdiag(Xk:Xk:

T )β?β?Tdiag(Xk:Xk:
T )PP−2(I − P )

+ P−2(P − P 2)diag(Xk:Xk:
T )diag(β?β?T )diag(Xk:Xk:

T )P−2(I − P ). (17)

As for A2, making the structure of the term (X̃k:X̃
T
k: −

diag(X̃k:X̃
T
k:))P

−1diag(β?β?T )diag(X̃k:X̃
T
k:) explicit,

A2 =


0 1

p2
δk1δ

3
k2Xk1X

3
k2β

?2
2 . . . 1

pd
δk1δ

3
kdXk1X

3
kdβ

?2
d

1
p1
δk2δ

3
k1Xk2X

3
k1β

?2
1 0

. . .
1
p1
δkdδ

3
k1XkdX

3
k1β

?2
1 0

 ,

one has

EDk:
[A2] = P−1P (Xk:Xk:

T − diag(Xk:Xk:
T ))diag(β?β?T )diag(Xk:Xk:

T )P−2(I − P ). (18)
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As for A3, the term (X̃k:X̃
T
k: − diag(X̃k:X̃

T
k:))P

−1(β?β?T − diag(β?β?T ))diag(X̃k:X̃
T
k:) can be

made explicit as
∑d
l=2

1
pl
δklXklβ

?
l δk1X

3
k1β

?
1

∑d
l=3

1
pl
δklXklβ

?
l δk1δ

2
k2Xk1X

2
k2β

?
2 . . .

∑
l 6=1,d

1
pl
δklXklβ

?
l δk1δ

2
kdXk1X

2
kdβ

?
d

. . .
. . . ∑d−1

l=1
1
pl
δklXklβ

?
l δkdX

3
kdβ

?
d

 ,

which gives

EDk:
[A3] = P−1P (X̃k:X̃

T
k:−diag(X̃k:X̃

T
k:))(β

?β?T−diag(β?β?T ))diag(X̃k:X̃
T
k:)PP

−2(I−P )

+P−1(P−P 2)diag
(

(X̃k:X̃
T
k: − diag(X̃k:X̃

T
k:))(β

?β?T − diag(β?β?T ))diag(X̃k:X̃
T
k:)
)
P−2(I−P ).

Noting the following,

diag
(

(X̃k:X̃
T
k: − diag(X̃k:X̃

T
k:))(β

?β?T − diag(β?β?T ))diag(X̃k:X̃
T
k:)
)

= diag
(
X̃k:X̃

T
k:β

?β?Tdiag(X̃k:X̃
T
k:)
)

− diag(X̃k:X̃
T
k:)diag(β?β?T )diag(X̃k:X̃

T
k:),

one has

EDk:
[A3] = P−1P (X̃k:X̃

T
k:−diag(X̃k:X̃

T
k:))(β

?β?T−diag(β?β?T ))diag(X̃k:X̃
T
k:)PP

−2(I−P )

+ P−1(P − P 2)diag
(
X̃k:X̃

T
k:β

?β?Tdiag(X̃k:X̃
T
k:)
)
P−2(I − P )

− P−1(P − P 2)diag(X̃k:X̃
T
k:)diag(β?β?T )diag(X̃k:X̃

T
k:)P

−2(I − P ) (19)

Term B can be made explicit as follows

X̃k:β
?Tdiag(X̃k:X̃

T
k:) =

 β?1δ
3
i1X

3
i1 β?1δ

2
i1δi2X

2
i1Xi2

β?2δ
2
i2X

2
i2δi1Xi1 β?2δ

3
i2X

3
i2

. . .


which implies

EDk:
[B] = ykP

−1PXk:β
?Tdiag(Xk:Xk:

T )PP−2(I − P )

+ ykP
−1(P − P 2)diag(Xk:β

?Tdiag(Xk:Xk:
T ))P−2(I − P ). (20)

Putting Equations (17), (18), (19) and (20) together,

E
[
T2 + TT2

]
= E(Xk:,yk)

[
T21 + T22 + T23 + TT23 + T24 + TT24 + T25

]
T21 = −2(P−1 − I)diag(Xk:Xk:

T )β?β?Tdiag(Xk:Xk:
T )(P−1 − I)

T22 = −2P−3((I − P )(I − 3P + 2P 2)diag(Xk:Xk:
T )diag(β?β?T )diag(Xk:Xk:

T )

T23 = −Xk:Xk:
Tdiag(β?β?T )diag(Xk:Xk:

T )(P−2(I − P )− P−1(I − P ))

T24 = −(Xk:
Tβ? − yk)Xk:β

?Tdiag(Xk:Xk:
T )P−1(I − P )

T25 = −2(Xk:
Tβ? − yk)(I − P )diag(Xk:β

?Tdiag(Xk:Xk:
T ))P−2(I − P ),

Computation w.r.t. E(Xk:,yk). For T21, it trivially holds that

−diag(Xk:X
T
k:)β

?β?Tdiag(Xk:X
T
k:) 4 0. (21)

Indeed, for all vector v 6= 0,

d∑
j=1

X4
kjβ

?2
j v

2
j + 2

∑
1≤j<m≤d

β?j β
?
mX

2
kjX

2
kmvjvm =

 d∑
j=1

X2
kjβ

?
j vj

2

≥ 0.
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Denoting the maximum of the coefficients of P as pM = maxj pj , one has

T21 4 −2
(1− pM )2

p2m
diag(Xk:Xk:

T )β?β?Tdiag(Xk:Xk:
T )

4 0 (using (21)).

T22 is split into two terms,

T22a = −2P−3((I − P )(I + 2P 2))diag(Xk:Xk:
T )diag(β?β?T )diag(Xk:Xk:

T )

T22b = 6P−2(I − P )diag(Xk:Xk:
T )diag(β?β?T )diag(Xk:Xk:

T )

T22a 4 −2
(1− pM )(1 + 2p2M )

p3m
diag(Xk:Xk:

T )diag(β?β?T )diag(Xk:Xk:
T ) 4 0,

since it is a diagonal matrix with only negative coefficients, and noting that (1−pM )(1+2p2M )
p3m

> 0.
Then,

T22b 4
6(1− pm)

p2m
diag(Xk:Xk:

T )diag(β?β?T )diag(Xk:Xk:
T )

which implies

E(Xk:,yk) [T22b] 4
6(1− pm)

p2m
‖Xk:‖2‖β?‖2H

using (14) and (11).

As for T23 + TT23, note that

T23+TT23 4 −2
(pM − 1)2

p2m

(
Xk:Xk:

Tdiag(β?β?T )diag(Xk:Xk:
T ) + diag(β?β?T )diag(Xk:Xk:

T )Xk:Xk:
T
)

One prove that

−
(
Xk:Xk:

Tdiag(β?β?T )diag(Xk:Xk:
T ) + diag(Xk:Xk:

T )diag(β?β?T )Xk:Xk:
T
)

4 −2

(
min

j=1,...,d
β?2j X

2
kj

)
Xk:X

T
k: (22)

Indeed, denoting m =
(

minj=1,...,d β
?2
j X

2
kj

)
, one has

vT
(
−2mXk:X

T
k: +

(
Xk:Xk:

Tdiag(β?β?T )diag(Xk:Xk:
T ) + diag(Xk:Xk:

T )diag(β?β?T )Xk:Xk:
T
))
v ≥ 0

⇔
d∑
j=1

(
−2mX2

kj + 2X4
kjβ

?2
j

)
v2j + 2

∑
1≤j<q≤d

(
−2mXkjXkq +X3

kjXkqβ
?2
j +X3

kqXkjβ
?2
q

)
vjvq ≥ 0

⇔
d∑
j=1

(
−2mX2

kj + 2X4
kjβ

?2
j

)
v2j + 2

∑
1≤j<q≤d

√(
−2mX2

kj + 2X4
kjβ

?2
j

)(
−2mX2

kq + 2X4
kqβ

?2
q

)
vjvq ≥ 0

⇔

 d∑
j=1

√(
−2mX2

kj + 2X4
kjβ

?2
j

)
vj

2

≥ 0,

using that(
−2mX2

kj + 2X4
kjβ

?2
j

) (
−2mX2

kq + 2X4
kqβ

?2
q

)
≥
(
−2mXkjXkq +X3

kjXkqβ
?2
j +X3

kqXkjβ
?2
q

)2
⇔
(
X3
kjXkqβ

?2
j −X3

kqXkjβ
?2
q

)2 ≥ 0

Therefore

E(Xk:,yk)

[
T23 + TT23

]
4 −2

(pM − 1)2

p2m

(
min

j=1,...,d
β?2j X

2
kj

)
H 4 0,
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since H is definite positive.

Finally one uses (XT
k:β

? − yk) = εk to conclude by independence that T24 = T25 = 0.

One gets

E
[
T2 + TT2

]
4

6(1− pm)

p2m
‖Xk:‖2‖β?‖2H. (23)

Combining (12), (16) and (23) leads to the desired bound.

S2.3 Proof of Lemma 3

Lemma S3. For all k ≥ 0, given the binary mask D, the adjusted gradient g̃k(β) is a.s. Lk,D-
Lipschitz continuous, i.e. for all u, v ∈ Rd,

‖g̃k(u)− g̃k(v)‖ ≤ Lk,D‖u− v‖ a.s..

Set
L := sup

k,D
Lk,D ≤

1

p2m
max
k
‖Xk:‖2 a.s.. (24)

In addition, for all k ≥ 0, g̃k(β) is almost surely co-coercive.

Proof. Note that

‖g̃k(u)− g̃k(v)‖ =
∥∥∥(P−1X̃k:X̃

T
k:P
−1 − (I − P )P−2diag(X̃k:X̃

T
k:)
)

(u− v)
∥∥∥

≤
∥∥∥(P−1X̃k:X̃

T
k:P
−1 − (I − P )P−2diag(X̃k:X̃

T
k:)
)∥∥∥‖u− v‖

≤
∥∥∥ 1

p2m

(
X̃k:X̃

T
k: − (1− pm)diag(X̃k:X̃

T
k:)
)∥∥∥‖u− v‖

≤ 1

p2m
‖X̃k:‖2‖u− v‖,

where we have used the Weyl inequality in the last step.

One can thus choose Lk,D = 1
p2m
‖X̃k:‖2 and

L = sup
k,D

Lk,D ≤
1

p2m
sup
k
‖Xk:‖2 ≤

1

p2m
max
k
‖Xk:‖2

Then, let us prove that the primitive of the adjusted gradient g̃k is convex. To do this, we check that
the derivative of g̃k is definite positive:

∂

∂β
g̃k(β) =

1

p2

(
X̃k:X̃

T
k: − (1− p)diag

(
X̃k:X̃

T
k:

))
since

(
X̃k:X̃

T
k: − (1− p)diag

(
X̃k:X̃

T
k:

))
is positive semi-definite. Indeed,

vT
(
X̃k:X̃

T
k: − (1− p)diag

(
X̃k:X̃

T
k:

))
v ≥ 0

⇔
d∑
j=1

pX̃kj
2
v2j + 2

∑
1≤j<l≤d

X̃kjX̃klvjvl ≥ 0

⇔

 d∑
j=1

√
pX̃kjvj

2

≥ 0,

using p2
(
X̃kj

)2 (
X̃kj

)2
≤
(
X̃kj

)2 (
X̃kl

)2
since p ≤ 1.
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S3 Add-on to Section 5: Lipschitz constant computation

The Lipschitz constant L given in (24) is either computed from the complete covariates (oracle
estimate) L̂OR

n = 1
p2m

max1≤k≤n ‖Xk:‖2, or estimated from the incomplete data matrix, L̂NA
n =

1
p̂2m

max1≤k≤n
‖X̃k:‖2d∑

j Dkj
, with p̂m = min1≤j≤d p̂j , and p̂j =

∑
kDkj

n . In L̂NA
n , the squared norm of

each row ‖X̃k:‖2 is divided by the proportion of observed values d∑
j Dkj

. This way, the value of

‖X̃k:‖2 is renormalized, by taking into account that some rows may contain more missing values than
others. Note that theoretically the step size has to satisfy α ≤ 1

2L̂NA
n

, thus L̂NA
n may be overestimated

but should not be underestimated at the risk of instability in Algorithm 1. Figure S5 shows that using
a slightly overestimated Lipschitz constant estimate does not deteriorate the convergence obtained
using the oracle estimate.

100 101 102 103 104 105

k

10 4

10 3

10 2

10 1

100

R n
(

k)
R n

(
)

LNA
n = 53.04

SGD_cst
SGD
AvSGD

100 101 102 103 104 105

k

10 4

10 3

10 2

10 1

100

R n
(

k)
R n

(
)

LOR
n = 42.37

SGD_cst
SGD
AvSGD

Figure S5: Empirical excess risk (Rn(βk)−Rn(β?)) given n for synthetic data (n = 105, d = 10)
when there is 30% MCAR data, with 1 pass over the data and estimating the Lipschitz constant.

S4 Add-on to Section 5: Handling polynomial missing features

The debiased averaged SGD algorithm proposed in Section 3 can be further extended to the case of
polynomial features by using a different debiasing than in Equation (4).

For example, in dimension d = 2, with second-order polynomial features, the interaction effect of
Xk1Xk2 and the effects of X2

k1, X2
k2 are accounted, so the augmented matrix design can be written

as
(X:1|X:2|X:1X:2|X2

:1|X2
:2)T .

Then, the “descent” direction at iteration k in Equation (4) should be chosen as

U�−1 � X̃k:X̃
T
k:βk − diag(U)�−1 � X̃k:yk

where

U =


p1 p1p2 p1p2 p1 p1p2
p1p2 p2 p1p2 p1p2 p2
p1p2 p1p2 p1p2 p1p2 p1p2
p1 p1p2 p1p2 p1 p1p2
p1p2 p2 p1p2 p1p2 p2

 ,

and diag(U) denotes the vector formed by the diagonal coefficients of U and U�−1 stands for the
matrix formed of the inverse coefficients of U .

Synthetic data Considering a second-order model, we simulate data according to y =
(X:1X:2|X2

:1|X2
:2)Tβ? + ε. An additional experiment is given in Figure S6 in Appendix S3, il-

lustrating that Algorithm 1 still achieves a rate of O
(
1
n

)
while dealing with polynomial features of

degree 2.
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Figure S6: Empirical excess risk (Rn(βk)−Rn(β?)) given n for synthetic data (n = 105, d = 10)
when the model accounts mixed effects.

Real dataset About large-scale setting there is no computational barrier to apply the proposed
method in high dimension, as the computational cost is similar to standard SGD strategies without
missing data. These are computationally cheap at each iteration and particularly relevant on large
datasets. In this section, we propose to run the proposed algorithm on the superconductivity dataset
as in Subsection 5.3. 30% of missing values are uniformly introduced in the initial 81 features, with
n = 21263. However, here we consider polynomial features of order 2, which increases the initial
dimension 81 to 3400.

The empirical proportions of missing values for each variable in the resulting dataset are represented
on Figure S7, and the observed convergence rate for one pass on the data is displayed in Figure S8.
With the same numerical complexity, Algorithm 1 performs as well as an averaged SGD strategy run
on the complete observations, whereas a standard SGD strategy run on imputed-by-0 data saturates
far from the optimum.
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Figure S7: Proportion of missing values for the polynomial features of degree 2 on the superconduc-
tivity dataset, when the initial missingness proportion on the raw features is 30%.
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Figure S8: Empirical excess risk (Rn(βk)−Rn(β?)) given n for the superconductivity dataset
(n = 21263) (containing 81 initial features) and d = 3403 with polynomial features of degree 2.
Three different algorithms are compared: an averaged SGD on complete data (blue), the proposed
debiased averaged SGD Algorithm 1 (orange) and an averaged SGD run on imputed-by-0 data
without any debiasing (green).

S5 Add-on to Section 5: Description of the TraumaBase data variables

The variables of the TraumaBase dataset which are used in experiments are the following:

• Lactate: The conjugate base of lactic acid.
• Delta.Hemo: The difference between the homoglobin on arrival at hospital and that in the

ambulance.
• VE: A volume expander is a type of intravenous therapy that has the function of providing

volume for the circulatory system.
• RBC: A binary index which indicates whether the transfusion of Red Blood Cells Concen-

trates is performed.
• SI: Shock index indicates level of occult shock based on heart rate (HR) and systolic blood

pressure (SBP). SI = HR
SBP . Evaluated on arrival at hospital.

• HR: Heart rate measured on arrival of hospital.
• Age: Age.
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