
HAL Id: hal-02483625
https://hal.science/hal-02483625

Submitted on 21 Jul 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Piezocomposite transducer design and performance for
high resolution ultrasound imaging transducers

Fidèle Hanse Wampo, Roger Pierre Lemanle Sanga, Pierre Maréchal,
Guy-Edgar Ntamack

To cite this version:
Fidèle Hanse Wampo, Roger Pierre Lemanle Sanga, Pierre Maréchal, Guy-Edgar Ntamack. Piezo-
composite transducer design and performance for high resolution ultrasound imaging transducers. In-
ternational Journal of Computational Materials Science and Engineering, 2019, 08 (03), pp.1950013.
�10.1142/S2047684119500131�. �hal-02483625�

https://hal.science/hal-02483625
https://hal.archives-ouvertes.fr


Piezocomposite transducer design and performance

for high resolution ultrasound imaging transducers

F.L. Hanse Wampo1, R.P. Lemanle Sanga1 , P. Maréchal2 , G.E. Ntamack1,

1 Groupe de Mécanique des Matériaux et de l’Acoustique (GMMA), Université de Ngaoundéré, Cameroun.

2Laboratoire Ondes et Milieux Complexes (LOMC), UMR 6294 CNRS, Université du Havre, France.

Corresponding author: pierre.marechal@univ-lehavre.fr

Abstract : Piezocomposite  design  for  dedicated  ultrasonic  imaging  applications  requires

precise  homogenization  models  for  predicting  the  electromechanical  characteristics  of  the  new

material.  Thus several  homogenization  models  have  been developed.  As part  of  this  work,  we

applied several analytical homogenization models for piezocomposite of 2-2 and 1-3 connectivities.

To validate these analytical models, a comparative study was made between various models and

experimental  measurements.  As  a  result,  these  homogenized  electromechanical  properties  are

effectively  used  for  the  calculation  and  comparison  of  electroacoustic  response  for  typical

transducers aimed at ultrasound imaging applications. An optimal design of transducer aimed at

ultrasound imaging applications is proposed as a dedicated imaging performance index, elaborated

through a trade-off between sensitivity and bandwidth.

Keywords : piezoelectric materials; connectivity; homogenization; effective properties; ultrasound

imaging transducers.

1. Introduction

In the past decades, the application fields of ultrasonic waves for detection and characterization

have  developed  considerably.  Piezoelectric  materials  are  mostly  used  as  active  material  for

ultrasound applications and both their compositions and fabrication methods have known strong

developments,  especially  in  submarine  detection  systems and medical  imaging [1, 2].  Although

significant progress has been made on these materials, new piezoelectric composites structures were

born of the increased need for sensitivity and applications. Among them, 2-2, 0-3 and 1-3 composite

connectivities were shown as promising configurations [1]. In general, their use tends to grow in the

mobile and embedded electronics. Applications of piezoelectric materials require improvement of

their characteristics. The electromechanical behavior of the composite media essentially involves

multiscale methods [3-6]. However, because of their high manufacturing cost, and high prices are

generally used in numerical modeling for the study of their  micro and macroscopic mechanical

behavior.  Thus  several  homogenization  models  have  been  developed  for  calculating  the  actual
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coefficients.  In  this  work,  we  make  a  comparison  of  some  analytical  models  applied  to

piezocomposites having 2-2 and 1-3 connectivities. On the basis of connectivity concept, we write

the  constitutive  equations  of  piezoelectricity.  Some  analytical  homogenization  models  are  first

described.  Then  these  different  models  of  homogenization  are  applied  in  some  types  of

piezocomposite. To validate analytical models, a comparison between the analytical results and the

experimental values is discussed. An application of such piezocomposite transducers to ultrasound

medical imaging is studied. The electroacoustic performance of optimally designed piezocomposite

transducers is compared for various damping configurations in a given electrical and front medium

environments.  The  electroacoustic  performances  of  transducers  aimed  at  ultrasound  imaging

applications is proposed as a result of a dedicated performance index. Finally, the relevance of this

index  is  demonstrated  through  the  comparison  of  the  transfer  functions  and  electroacoustic

responses of a basic and two optimum configurations, each one corresponding to the studied 2-2

and 1-3 connectivities.

2. Homogenization models for piezoelectric composites

2.1. Connectivity

To define  how the  phases  are  coupled  therebetween,  Newnham et  al.  [7]  have  introduced  the

concept of connectivity. The connectivity is the number of directions in which it is possible to cross

from one side without leaving the cube considered phase this figure is from 0 to 3. A composite is

then classified according to the connectivity of each phase, the first digit is by convention that of the

piezoelectric phase. For a two-phase composite, Figure 1 shows the various possible connectivities.

Figure 1: Various connectivities for a two-phase composite: phase 1 (clear) stands for the piezoelectric phase and phase

2 (shaded) stands for the polymer phase [7].
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2.2. Constitutive equations

For an infinitesimal deformation, the components of strain tensor of order 2 are defined by the

following equation [8]:

S ij=
1
2( ∂ ui

∂ x j

+
∂u j

∂ x i
) (1)

where Sij are the strain tensor components, the indexes i and j are in {1, 2, 3}, ui is a component of

the displacement vector, and xi is the considered axis.

In  a  piezoelectric  material,  electrical  and  mechanical  phenomena  interact,  resulting  in

electromechanical effects. Neglecting the pyroelectric effect, fundamentals of piezoelectricity can

be written as a generalized Hooke’s equation:

{T=c ES−e t E
D=e S+εS E

   ≡    [TD]=[cE −e t

e εS ][ SE]    ≡   [TD ]=[K ] [S E] (2)

where [TD] = [T, D]t is the generalized stress vector including T the stress components and D the

electrical displacement components ; [SE] = [S, E]t is the generalized strain vector including S the

strain components and  E the electrical  field components ;  {cE, e, S} are the components of the

generalized stiffness matrix [K] including cE the stiffness components at constant electrical field, e

the piezoelectric components, and S the dielectric components at constant strain.

3. Some analytical homogenization models

When  considering  the  general  problem,  the  homogenization  can  be  considered  as  a  linear

combination of the elementary components properties. Basically, in linear elasticity, the upper and

lower bounds of the homogenization models are the sum of the stiffness coefficients (Voigt) [9] and

the  addition  of  the  reciprocals  compliance  coefficients  of  the  constituting  phases  (Reuss)  [10],

respectively:

{c33
Voigt=∑

i=1

N

v i c33
i

c33
Reuss=(∑

i=1

N

v i(c33
i )−1)

−1
(3)

3.1. Voigt and Reuss models

In the case where the number of considered phases is  N = 2, some simplifications occurs and the

Voigt [9] and Reuss [10] models results in:
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{c33
Voigt=v p c33

p +vmc33
m

c33
Reuss=

c33
m c33

p

vmc33
p +v p c33

m

    ≡     {c33
Voigt=c33

m +v p(c33
p −c33

m )
c33
Reuss=

c33
m

1−v p

c33
p −c33

m

c33
p

(4)

where {vp, vm} are the volume fraction of the piezoelectric and matrix phases, respectively, and is

reduced to a single variable in the case of a two phases composite, since vm = 1  vp.

3.2. Matrix homogenization model

The matrix method for the homogenization of piezocomposite is an analytical method proposed for

calculating equivalent composite coefficients. Hashimoto and Yamaguchi [11] applied this model in

the case of the 2-2 composite; Levassort et al. [12] applied it to the 0-3 and 1-3 composites.

3.2.1. Continuity assumption

The continuity  assumption  led to  suppose that  there  is  no relative  movement between the two

phases.  This leads  to  the conclusion (equation (5))  that  one hand, the stress  T and the electric

displacement D are continuous in the directions perpendicular to the interface and secondly that the

deformations S and the electric field E are continuous in the directions parallel to the interface. 

Figure 2: Basic piezocomposite cell for a 2-2 connectivity [7].

After applying this assumption 2-2 connectivity composite (Figure 2), the following relations are

obtained continuity:

{
T 1

eff=v pT 1
p+vmT 1

m

T 2
eff=v pT 2

p+vmT 2
m

S3
eff=v p S3

p+vmS3
m

S4
eff=v p S4

p+vmS4
m

S5
eff=v p S5

p+vmS5
m

T 6
eff=v pT 6

p+vmT 6
m

D1
eff=v pD1

p+vmD1
m

D2
eff=v pD2

p+vmD2
m

E3
eff =v pE3

p+vmE3
m

and {
S1

eff=S1
p=S1

m

S2
eff=S2

p=S2
m

T 3
eff=T 3

p=T 3
m

T 4
eff=T 4

p=T 4
m

T 5
eff=T 5

p=T 5
m

S6
eff=S6

p=S6
m

E1
eff=E1

p=E1
m

E2
eff=E2

p=E2
m

D3
eff=D3

p=D3
m

(5)
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3.2.2. New expression of the constitutive law

First,  two matrix vectors [H] and [G]  are defined, depending on discontinuity and continuity of

parameters (equation (5)). Second, another matrix function [W] that binds [H] and [G] is deduced:

{[H ]=[T1 , T2 , S3 , S4 , S5 , T6 , D1 ,D2 , E3]
[G]=[S1 , S2 , T3 , T 4 ,T 5 , S6 , E1 ,E2, D3]

(6)

By introducing the (99) matrices [P] and [Q], we obtain:

{[TD ]=[Q ][H ]−[P ][G ]
[SE]=[Q ][G ]−[P ] [H ]

(7)

where Pij={−1   if  i= j={3, 4, 5, 9}
0   else

 and Qij={+1   if  i= j={1, 2, 6, 7, 8}
   0   else

.

By substituting [H] = [W][G] in equation (7), and relating it with [TD] = [K][SE] (equation (2)), we

get:

{[W ]=[[K ][P ]+[Q ]]−1 [[P ]+[K ][Q ]]
[K ]=[[Q ] [W ]−[P ] ][ [Q ]−[P][W ] ]−1

(8)

The formalism described here is generic and can be easily transposed to other connectivities, as

detailed  by  Levassort  et  al.  [12]  for  the  0-3  connectivity,  and  Smith  et  al.  [13]  for  the  1-3

connectivity.

3.2.3. Piezocomposite electromechanical coefficients matrix

The electromechanical behavior of the piezocomposite is given by [TD] = [K][SE] (equation (2)).

Moreover, following the continuity of relationship, [G] is the same in the matrix, the fiber and the

composite, while [H] in the composite is the pondered average of those in the matrix and in the

fiber. Thus we have:

{[H ]=v p[H
p]+vm[H

m]
[G ]=[Gp]=[Gm]

(9)

By substituting [H] = [W][G] in equation (9) for both phases, we obtain:

[H ]=v p [W
p][G p]+vm[W

m] [Gm] (10)

An identification of [H] = [W][G] with equation (10) gives:

[W ]=v p[W
p]+vm[W

m] (11)

As a result, the generalized stiffness matrix [K] is obtained:

[K ]=[[Q ][W ]−[P ]] [[Q ]−[P] [W ] ]−1 (12)
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3.2.4. Extension of the matrix method to 1-3 piezocomposites

By applying the relationship of continuity and adopting the methodology as presented in the case of

the 2-2 connectivity, the effective electromechanical stiffness matrix is obtained in the case of the 1-

3 connectivity.

3.3. Homogenization models of Smith and Cha

Actual properties piezocomposite which are most appropriate in the thickness vibration mode are

given  by  the  following  equations,  where  all  parameters  are  represented  by  the  IEEE standard

notation [13, 14]. According to Smith et al. [13], for a 1-3 connectivity piezocomposite, we get:

c33
E ,eff=v p(c33

E, p−
2 vm(c13

p −c12
m )2

v p(c11
m +c12

m )+vm(c11
p +c12

p ))+vm c33
m

e33
eff=v p(e33

p −
2 vme31

p (c13
p −c12

m )

v p(c11
m +c12

m )+vm(c11
p +c12

p )) (13)

ε 33
S , eff=v p(ε 33

S , p+
2vm(e31

p )2

vp(c11
m +c12

m )+vm(c11
p +c12

p ))+vmε 33
m

According to Cha et al. [14], for a 2-2 connectivity piezocomposite, we obtain:

c33
E ,eff=v p(c33

E, p−
vm(c13

p −c12
m )2

v p c11
m +vmc11

p )+vmc33
m

e33
eff=v p(e33

p −
vme31

p (c13
p −c12

m )

v p c11
m +vm c11

p ) (14)

ε 33
S , eff=v p(ε 33

S , p+
vm(e31

p )2

vp c11
m +vmc11

p )+vmε33
m

The model of W.A. Smith [13] is valid when the lateral spatial scale of the composite is sufficiently

fine that the composite can be treated as an effective homogeneous medium. In order to find the

expressions of the elastic, piezoelectric and dielectric coefficients above, W.A. Smith [13] gave the

relations of behavior following three directions (x, y, z) for the matrix phase (exponent m) and the

piezoelectric phase (exponent p). It is thus supposed that the strain along the x direction is the same

as that along the  y direction, both in the matrix phase and the piezoelectric phase (S1
m = S2

m and

S1
p = S2

p), what makes it possible to find the following relations:

{T 1
m=(c11+c12)S1

m+c12S3
m

T 3
m=2c12S1

m+c11S3
m

D3
m=ε 33 . E3

m

and {T 1
p=(c11

E +c12
E )S1

p+c13
E S3

p−e31 E3
p

T 3
p=2c13

E S1
p+c33

E S3
p−e33 E3

p

D3
p=ε 33

S . E3
p+e33 S3

p+2e31S1
p

(15)

J.H. Cha  [14]  supposed  that  the  length  of  the  2-2  piezocomposite  in  the  y direction  can  be

considered infinite compared with that in the x direction. The strain along the y direction is the same

both in the matrix phase and in the piezoelectric phase. It can be considered null (S2
m = S2

p = 0) and

we obtain the following equations:
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{T 1
m=c11S1

m+c12 S3
m

T 3
m=c12 S1

m+c11 S3
m

D3
m=ε 33 . E3

m

and {T 1
p=c11

E S1
p+c13

E S3
p−e31 E3

p

T 3
p=c13

E S1
p+c33

E S3
p−e33 E3

p

D3
p=ε 33

S . E3
p+e33 S3

p+e31 S1
p

(16)

Ultimately, the difference between these expressions is that for the model of W.A. Smith [13], they

are applicable only to the piezocomposites of 1-3 connectivities, whereas the expressions developed

by  J.H. Cha  [14]  can  be  adapted only  to  the  2-2  piezocomposites  connectivities.  Among  the

applications of such homogenization models,  C.N. Della  et al. [5]  studied the performance of 1-3

piezocomposites with  the  active  and  passive  phases  using  the  Mori-Tanaka  model  [4].  The

electromechanical  parameters  show  that  the  use  of  an  active  polymer  phase  can  improve  the

performance of the  studied  hydrophone.  For transducer applications,  the effective expressions of

several key parameters are usually used, i.e. the acoustic impedance ZL
eff, longitudinal velocity cL

eff

and the electromechanical coupling factor kt
eff:

{
ZL

eff=√c33
D ,eff ρ eff

cL
eff=√c33

D ,eff

ρ eff

k t
eff=

e33
eff

√c33
D,eff ε 33

S , eff

(17)

with {ρ
eff=v pρ

p+(1−v p)ρ
m

c33
D, eff=c33

E, eff+
(e33

eff )2

ε 33
S , eff

(18)

4. Homogenization

For numerical calculations, we will use as an example a piezocomposite made of two phases: the

first one being the polymer Araldite D, and the second one being the piezoelectric ceramic PZT-7A.

The electromechanical characteristics of these materials are summarized in Table 1.

Table 1: Electromechanical properties of piezoelectric materials [15].

Material
c11
E

(GPa)

c12
E

(GPa)

c13
E

(GPa)

c33
E

(GPa)

e31

(C/m2)

e33

(C/m2)

ρ

(kg/m3)

ε 33
S

ε 0

Araldite D 8.0 4.4 4.4 8.0 0 0 1150 4.2

PZT-7A 148 76.2 74.2 131 -2.1 9.5 7600 235

The effective properties resulting from these homogenization models are plotted as a function of the

volume fraction of PZT-7A. For a 1-3 connectivity, homogenization results of analytical results are

compared with the experimental results, those extracted from the published work of H.L.W. Chan

and J. Unsworth [15].
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4.1. Homogenization results for the 2-2 connectivity

The following Figure 3 illustrates the electromechanical characteristics (equation (14)) obtained as a

function of the volume fraction vf of the PZT-7A piezoelectric phase.
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Figure 3: Homogenized 2-2 piezocomposite made of a PZT-7A/Araldite D as a function of the volume fraction vf of

ceramic PZT-7A : (a) elastic constant c33
eff , (b) piezoelectric constant e33

eff , (c) relative dielectric constant

ε 33
S , eff /ε 0 , (d) electromechanical coupling coefficient k t

eff , (e) longitudinal wave velocity cL
eff  and (f)

longitudinal acoustical impedance Z L
eff .
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4.2. Homogenization results for the 1-3 connectivity

The  following  Figure  4  illustrates  the  homogenized  electromechanical  characteristics  (equation

(13)) obtained as a function of the volume fraction of the PZT-7A piezoelectric phase.

v
f
 (%)

0 20 40 60 80 100

c 3
3

e
ff
 (

G
P

a)

0

20

40

60

80

100

120

140
[Reuss, parallel]
[Smith, TUFFC, 1991]

v
f
 (%)

0 20 40 60 80 100

e
3

3
e

ff
 (

C
/m

2
)

0

2

4

6

8

10
[Reuss, parallel]
[Smith, TUFFC, 1991]

(a) (b)

v
f
 (%)

0 20 40 60 80 100

k te
ff
 (

%
)

0

20

40

60

80

[Reuss, parallel]
[Smith, TUFFC, 1991]
[Chan, TUFFC, 1989]

(c) (d)

v
f
 (%)

0 20 40 60 80 100

c Le
ff
 (

m
/s

)

2500

3000

3500

4000

4500

5000
[Reuss, parallel]
[Smith, TUFFC, 1991]
[Chan, TUFFC, 1989]

v
f
 (%)

0 20 40 60 80 100

Z
Le

ff
 (

M
R

a)

0

10

20

30

40
[Reuss, parallel]
[Smith, TUFFC, 1991]
[Chan, TUFFC, 1989]

(e) (f)

Figure  4: Homogenized  1-3 piezocomposite  made of a PZT-7A/Araldite D as a function of the volume fraction  vf of

ceramic  PZT-7A : (a) elastic  constant  c33
eff ,  (b)  piezoelectric  constant  e33

eff ,  (c)  relative  dielectric  constant

ε 33
S , eff /ε 0 ,  (d)  electromechanical  coupling  coefficient  k t

eff ,  (e)  longitudinal  wave  velocity  cL
eff  and  (f)

longitudinal acoustical impedance Z L
eff . Experimental data are extracted from refrence [15].
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4.3. Analysis and discussion

In  the  previous  section,  various  homogenization  models  were  implemented  to  determine  the

effective characteristics of the piezocomposite material depending on the volume fraction of the

PZT-7A piezoelectric phase. It can be noted that for the elastic coefficients in 2-2 connectivity, the

upper bound is delimited by the Voigt model; the lower bound is that given by the Reuss model

which gives the same formulation as that of the matrix model.

Meanwhile, the Cha model gives an intermediate result. Regarding the piezoelectric and dielectric

coefficients, Voigt and matrix models are lower bounds. As a result, the electromechanical coupling

coefficient combines these intermediate results and is directly related to the performance of the

piezocomposite  transducer.  In  terms  of  2-2  connectivity,  the  electromechanical  coefficient  of

coupling tends towards 60% for the Cha model.

In the case of the 1-3 connectivity, there is a coincidence between the elastic coefficients resulting

from the matrix model and that of the Smith model. As expected, the Reuss model is the lower

bound. For the piezoelectric coefficient of the 1-3 piezocomposite, a substantially linear variation is

observed.  In  terms  of  the dielectric  coefficient,  Reuss,  matrix  and Smith models  have a  linear

evolution  and  coincide.  Finally,  for  the  electromechanical  coupling  coefficient,  Reuss  model

achieves a value that is above 75%. In general, the values of the electromechanical coupling in the

1-3 connectivity are well above 50% for volume fractions between 10% and 100%. This confirms

the  fact  that  the  piezocomposite  used  for  the  manufacture  of  transducers  are  most  often  1-3

connectivity.

After a comparative study of the models above, it appears that the analytically obtained results are

close to experimental measurements. In the case of acoustic impedance, velocity longitudinal and

electromechanical  coupling  factor,  we  note  that  Smith  and  matrix  models  are  close  to  the

experimental values from the model proposed by Reuss. In terms of the dielectric constant, the three

models  are  linear  and  coincide.  In  general,  we  see  that  the  homogenized  piezocomposite

characteristics vary depending on the model and piezocomposite connectivity used. The effective

elastic, piezoelectric and dielectric coefficients are bounded by those of the matrix and those of the

piezoelectric phase, and can lead to an improved electromechanical coupling factor. As a result, in

the case of 1-3 connectivities, the effective thickness coupling factor  kt
eff (<50% for most of the

ceramics) tends towards the  k33 electromechanical coupling factor (>70% for optimized volume

fractions).  Finally,  we  note  that  for  piezocomposite  2-2  and  1-3  connectivities,  the  various

homogenization models are ranging in the limits given by Voigt and Reuss.
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5. Transducer application

On the basis of the simulation results of the piezocomposite materials, the electroacoustic response

of transducers having some of those properties are simulated using the KLM model [16]. In the

limit of the acoustical impedance of the piezoelectric material, the choice of the backing material is

of first importance. When this critical value is exceeded, the drawbacks are canceling the benefits.

The higher the acoustical impedance of the backing, the higher the damping of the piezoelectric

resonance, i.e. amplitude loss and low frequency shift. A trade-off between sensitivity (amplitude)

and echo duration (time response duration at  6 dB) can be found on the basis of a performance

index designed by the end-user applications [17]. Therefore, a given transducer configuration based

on a PZT-7A piezoelectric material radiating in water is studied. The specifications were drawn up

with a view to an application in medical imaging. The specific requirements are a thickness mode

resonance frequency at  f0 = 12 MHz, an active surface at  S = 50 mm2,  a  front medium which is

water with  Zf = 1.5 MRa, and an electrical environment fixed at  Zg = Zr = 50. First, the impulse

transfer function spectrum (Figure 5 (a)) and electroacoustic response (Figure 5 (b)) are simulated

as a function of the acoustic impedance of the backing.
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Figure 5: Comparison of immersion of PZT-7A based piezocomposites transducers with a loaded backing from Zb = 0 to

Zp in terms of (a) transfer functions, (b) electroacoustic responses. Associated end-user elctroacoustic performances: (c)

normalized amplitude and center frequency, (d) normalized duration tn,r = tn/T0 at 6, 20 and 40 dB, (e) relative

bandwidths BWn,r = BWn/fc,n at 6, 20 and 40 dB, (f) performance index PI as defined in equation (19), as a function

of the backing load Zb / Zp from 0 to 1.

The  evolution  of  their  properties  is  then  evaluated  and  compared:  the  amplitude  and  center

frequency are plotted in Figure 5 (c), the normalized duration tn,r = tn/T0 at 6, 20 and 40 dB are

in Figure 5 (d), the normalized bandwidths BWn,r = BWn/fc,n at 6, 20 and 40 dB are in Figure 5

(e). On the basis of these estimators, the performance of the parameters may be summarized in a

global performance index.

Here, we used a performance index PI (equation (19)) designed for ultrasound imaging, including

t6,r the normalized time response duration at  6 dB,  t20,r the normalized time response duration at

20 dB,  ampn the  normalized  maximum amplitude  of  the  impulse  response  U(t)  and  fmax,n the

normalized frequency of the maximum of the transfer function Uf(f):

PI=log( t 6 ,n. t 20 ,n

ampn . f max, n
) (19)

The evolution of the performance index PI for the studied configuration is illustrated in Figure 5 (f)

and show two local minimums, for the normalized backing impedance at Zb / Zp = 2/3 and 3/4, i.e.

optimal performance for the application field which is ultrasound imaging. The first optimum of the

performance index PI around Zb / Zp = 2/3 seems to correspond to the tendency of its evolution ("+"

red cross in Figure 5 (f)), whereas the second one correspond to a local breakdown at Zb / Zp = 3/4

("" red cross in Figure 5 (f)). This second optimum value is due to the t20,r parameter (Figure 5 (d))

which shows a similar decrease in this  area.  This can be explained by the arch of the impulse

response that do not cross the threshold. Nevertheless, this local minimum may be disturbed by

imperfections of a real transducer, and should not be taken into account.
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On the basis of the simulation results discussed in the previous parts, two optimal configuration

have  been  selected:  vf = 60 %  for  the  piezocomposite  2-2  connectivity  and  vf = 50 %  for  the

piezocomposite  1-3 connectivity.  These configurations  were studied in  a similar  electroacoustic

environment, i.e. water in the front face  Zf = 1.5 MRa, coupled in the back face with a backing

having an acoustic impedance Zb / Zp = 2/3, and a standard 50  electrical environment. Both of the

optimal piezocomposite configurations exhibit a higher sensitivity and widen bandwidth but lower

resonance frequency, i.e. slightly reduced sensitivity and electroacoustic response duration, which

are  constituting  a  good  trade-off  for  acoustical  imaging.  This  result  can  be  confirmed  by  the

improved transfer function spectrum (Figure 6 (a)) and electroacoustic response (Figure 6 (b)) for

the  two  piezocomposite  configurations  when  compared  to  a  pure  PZT-7A piezoelectric  active

element.
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Figure 6: Comparison of immersion transducers with and epoxy backing in terms of (a) transfer functions and (b)
electroacoustic responses of piezocomposites based on PZT-7A.

The obtained transfer function spectrum and electroacoustic resonance can be characterized in order

to emphasize the interest of such piezocomposite compositions. A trade-off between some of these

parameters  can  be  compared  in  terms  of  performance  for  acoustical  imaging  applications.  As

defined by the performance index (equation (19)), it is evaluated at PI = 1.05, 0.27 and 0.27 for the

three studied piezoelectric configurations: PZT-7A, 2-2 PZT-7A/Araldite D piezocomposite with

vf = 60%, 1-3 PZT-7A/Araldite D piezocomposite with vf = 50%, respectively. 

6. Conclusion

In this  work, a comparative study was lead between several homogenization models applied to

piezocomposite of 2-2 and 1-3 connectivities. It appears that for the acoustic impedance, velocity

longitudinal and the electromechanical coupling factor, the Smith and matrix models are close to the
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experimental values. In terms of dielectric constant, the three models are linear and coincide. These

homogenization results  for  piezocomposite  characteristics  strongly  depend  on  the  considered

connectivity as well as  on the constitutive parts.  These homogenization models lead to determine

the  optimal  volume fraction  of  piezoelectric  phase  according to  a  chosen criterion.  Finally,  an

optimal configuration can be designed following an end-user application. As a result, a performance

index  dedicated  to  ultrasound  imaging  application  is  presented  as  a  good  trade-off  between

sensitivity and resolution. This performance index is then used and discussed to demonstrate an

optimal design for high resolution and high sensitivity piezocomposite transducer.

7. Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to

technical or time limitations.
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