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Abstract

We here both unify and generalize nonassociative structures on typed binary trees, that
is to say plane binary trees which edges are decorated by elements of a set 2. We prove
that we obtain such a structure, called a Q-dendriform structure, if €2 has four products
satisfying certain axioms (EDS axioms), including the axioms of a diassociative semigroup.
This includes matching dendriform algebras introduced by Gao, Guo and Zhang and family
dendriform algebras associated to a semigroup introduced by Zhang, Gao and Manchon , and
of course dendriform algebras when 2 is reduced to a single element. We also give examples
of EDS, including all the EDS of cardinality two; a combinatorial description of the products
of such a structure on typed binary trees, but also on words; a study of the Koszul dual
of the associated operads; and considerations on the existence of a coproduct, in order to

obtain dendriform bialgebras.

Keywords. Dendriform algebra; diassociative semigroup; plane binary trees; shuffle product.

AMS classification. 16T30; 05C05; 18D50.

Contents

(1

(Extended) diassociative semigroups|

[1.1 Diassociative semigroups|

(1.2 Extended diassociative semigroups| . . . ... .. .. ..
[1.3  Nondegenerate extended diassociative semigroups| . . . .
1.4  Extended diassociative semigroups of cardinality two| . .

{)-dendriform algebras|

[2.1 Definition and example|. . . . . ... ..o
[2.2  Structures on typed binary trees| . . ... ... ... ..
[2.3  Structure on typed words| . . . . .. ...
[2.4  From ()-dendrifrom algebras to dendriform algebras|. . .

Operad of {)-dendriform algebras|

[3.1 Combinatorial description of the operad|

[3.2  Associative products|

[3.3  Dendriform products|

*Centre Universitaire de la Mi-Voix, 50, rue Ferdinand Buisson, CS 80699,

o O Ot Ot

13

16
16
16
22
25

62228 Calais Cedex, France



[4  Combinatorial description of the products| 37

4.1 On typed trees| . . . . . . . . e 37

4.2 On typed words|. . . . . . . . .. 41
[6 Hopt algebraic structure] 41

[5.1  Existence of dendriform bialgebraic structures| . . . . . . . . ... ... 41

5.2 Combinatorial description of the coproducts on typed trees| . . . ... ... ... 42

.3 Combinatorial description of the coproducts on typed words| . . . . . . . . . . .. 44
[References] 45
Introduction

Dendriform algebras are associative algebras with an associativity splitting, that is to say their
associative product can be written as a sum of two products < and >, with the following axioms:

(x<y)<z=zx<(y<z+4+y>2),
(x>y)<z=xz>(y<2),
(x<y+zxz>y)>z=z>(y>2).

Note that summing these three relations proves that, indeed, < + > is associative. Classical
examples of dendriform algebras are given by shuffle algebras, based on words, as noticed by
Schiitzenberger in [13], which justifies the terminology of noncommutative shuffle algebras used
for example in [0]. Free dendriform algebras were first described by Loday and Ronco [I1] and
studied in [I]: the free dendriform algebra on one generator is based on plane binary trees, and
its two products < and > are inductively defined using the decomposition of any plane binary
tree (except the unit 1) into a left and a right plane binary tree. For example, here are plane
binary trees with k = 2, 3 or 4 leaves:

v, Y A S

Here are examples of products on plane binary trees:

VY oY

N
VXL Y <
vy oY Y <
vl \P
Vv Y Vv X

Recently, a new interest in typed trees were developed in the seminal work of Bruned, Hairer
and Zambotti on stochastic PDEs [3]. Given a nonempty set €2, called the set of types, a Q-typed
tree is a tree with a map from this set of edges to €2: they are related to a generalization of pre-Lie
algebras [5]. Similarly, several generalizations of dendriform algebras were recently introduced,
where plane binary trees are replaced by typed plane binary trees.

A
<
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N
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e Firstly, if Q is a set, a Q-matching dendriform algebras [7] is a vector space A with products
<a, >a, Where a € Q, such that:

(x<qy)<pz=12<q(y<gz)+z<a(y>aq2),
(a:>ay)<5z:x>a(y<gz),
(x<gy)>az+ (@ >ay) >p2=20>q (y>p2).

e Secondly, if (£2,*) is a semigroup, a Q-family dendriform algebra [I4] is a vector space A
with products <, >4, where « € €2, such that:

(x <ay) <p2z=2 <08 (Y <g 2+ Y >a 2),
(.T>ay)<32=l‘>a(y</32),
(x<gy+T>aY) >axB 2 =T >a (Y >3 2).

In both cases, it was proved that the free object on one generator is based on plane Q-typed binary
trees, with products inductively defined in a similar way as the Loday-Ronco’s construction. A
plane Q-typed binary tree is a plane binary tree given a map from the set of its internal edges
to 2. We shall denote them in the following way:

Y. Y Y. \2<1<((a,6)7¥v((a,ﬁ),§{(a,6),\%(a,ﬁ),vl\(y(a,ﬁ),

where «, § € Q. In all cases, the type of the internal edge 1 is a and the type of the internal
edge 2 is 8. Here are examples of products in the 2-matching case:

Y >0 Y(a) = \Q(a), Yo<o Y = \?1/(04),
Y s Y- XQ(M + %w), Y« Y- %w),
Y s Yv @ = Y (@8, Y Yo=Y s,

a)>5 Y = X<( (8, \&(a) <5 Y = M(a,ﬁ)
a)<g Y = i%/(a,ﬁ) + ?1%(5, a), ?{(a) >5 Y = \122;(5,&)

Here are examples of products in the Q-family case:

Y > Y(a) = \Q(a), Y o<, Y = ?l/(a),
Y e YY) - X1<(<oc « f,a) + % 58, Y <a Y(B)- %(a,ﬂ),
Y > %m - (), Y < Y (p)- \%(a,ﬁ%

a)>g Y = \<<( (8, ), \Q(a) <5 Y = M(a,ﬁ),
a) <5Y=§2§{(a*5,ﬂ)+\%(a*ﬁ,a), ?1/(04) >ﬁY:%(5,a

Our aim in this article is to give both a unification and a generalization of the extended
dendriform structures. We start with a set of types 2, given four operations «—, —, <, >. A



Q)-dendriform algebra is a vector space A with products <., >, where a € €2, such that:

( <ay) <p2z=2<qep (Y <a<p 2) + T <asp (Y >acp 2),
r>q (<p2)= (T >ay) <g 2,

T >a (y >B z) = (1‘ >af y) >a—p 2+ (l’ <oa<f y) >a«f %
We recover the notion of {2-matching dendriform algebra taking:

vaaﬁega Oé<—B:Oé, 04_)6:67

a<p=p, asf =
and we recover the notion of 2-family dendriform algebra taking, for any «, 5 € €Q:

Va, 8 € Q, a—fB=axp, a— f=axpf,

a<f=8, acf=a;

We prove in Proposition [I5] that the free Q-dendriform algebra on one generator is based on
plane -typed binary trees, with an inductive definition of the products <, and >g, if, and only
if, the four operations of € satisfy a bunch of 15 axioms, see Definitions [I] and [2} a similar result
is proved for words in Proposition giving typed versions of shuffle algebras. Such a structure
on  will be called an extended diassociative semigroup (briefly, EDS); in particular, the first
five axioms only involve the two operations < and —:

(a=pf)—r=a—(—7y)=a—(—-7),
(@—=B)—=v=a—(B7),
(a—=pB)—=y=(a=pf)—=y=a—(8—17).

These axioms are ruled by the operad on diassociative algebras, which suggested our terminology.
A noticeable fact is that this operad is the Koszul dual of the dendriform operad. Examples of
EDS include the ones, denoted by EDS(2), giving matching dendriform algebras; the ones,
denoted by EDS((, #), giving family dendriform algebras; and lots more. For example, if  is of
cardinality two, we found 24 EDS, including EDS(Q2) and 5 coming from associative semigroups.

We prove that any 2-dendriform algebra A gives a dendriform algebra structure on the space
KQ® A (Proposition : this was already known in the case of {2-matching dendriform algebras
[8]. The converse implication is true under a condition of nondegeneracy of the EDS (.

The description of free 2-dendriform algebras induces a combinatorial description of their
operad. When (2 is finite, this is a quadratic finitely generated operad, which Koszul dual is
described in Proposition [27] This operad is not always Koszul, and we produce a necessary
condition (£2 should be weakly nondegenerate, Definition and a sufficient condition on it (2
should be nondegenerate, see Definition {4f) for the associated operad to be Koszul. For example,
EDS(Q) is nondegenerate; if (€2, *) is a finite associative semigroup, then EDS(€2, %) is nonde-
generate if, and only (2, *) is a group.

We also give a study of these objects, from a Hopf-algebraic and a combinatorial point of
view. In particular, we give a description of the products on trees and on words in Propositions
and [36] generalizing in the latter case the usual half-shuffle products. Shuffle algebras and the
Loday-Ronco algebra are known to be Hopf algebras; this is not always true for 2-dendriform
algebras, as described in Proposition If Q is nondegenerate, then such a structure exists on
trees and on words (Propositions [39| and , which is combinatorially described in Propositions
and These coproducts generalize the Loday-Ronco coproduct on trees and the deconcate-
nation coproducts on words.



This paper is organized as follows: the first section is devoted to the study of EDS. We
give examples based on (diassociative) monoids, and semidirect products of groups. We also
introduce nondegenerate EDS, with a reformulation of their axioms due to a transformation
of the four defining operations into four other ones; this allows to associate to any group G a
nondegenerate EDS EDS*(G) (Proposition E[) We prove some results on particular families of
EDS: for example, we give in Proposition [L0] all nondegenerate finite €2 such that if @ and 5 € €,

a—f=p—-a=a

We also give in this section a complete classification of EDS of cardinality 2 (24 objects, which
4 are nondegenerate).

The second section is devoted to the definition of {2-dendriform algebras and to the structure
on trees and words, when € is an EDS. The operadic aspects are considered in the next section,
with in particular the results on the Koszulity; we also study the associative products and the
dendriform products (that is to say, morphisms from the operad of associative algebras and from
the the operad of dendriform algebras) in -dendriform algebras in particular cases of 2.

We finally give a combinatorial description of the products in Section 5 and the last section
is devoted to the existence of the coproducts and their combinatorial descriptions.

Acknowledgements. The author is grateful to Professor Xing Gao, his team and Lanzhou
University for their warm hospitality.

Notations 1. K is a commutative field. All the vector spaces in this text will be taken over K.
If S is a set, we denote by KS the vector space generated by S.

1 (Extended) diassociative semigroups

1.1 Diassociative semigroups

Definition 1. A diassociative semigroup is a family (Q,<«,—), where Q is a set and —,—:
Q x Q — Q are maps such that, for any o, B,y € Q:

a—f)—y=a—B—y)=a—(B—-17), (1)
a—f)—y=a—(87), (2)
a—B)my=(a=p)—>y=a—(8-7). (3)

~— —~~ —~

Ezample 1. 1. If (Q, %) is an associative semigroup, then (€, *, x) is a diassociative semigroup.
2. Let Q be a set. We put:
Ya, B € Q, a<— f=aq, a— fB=0.
Then (2, <, —) is a diassociative semigroup, denoted by DS({2).
3. Let Q = (2, «—, —) be a diassociative semigroup. We define two new operations on 2 by:

Va, 8 € Q, a<? 3= aqa, a—P 3 =0«aqa.

This defines a new diassociative semigroup Q% = ({2, < —°). We shall say that Q is
commutative if 2 = Q. that is to say:

Ya, 5 €, a— pf=0<a.

In other words, a commutative diassociative semigroup is a pair (€2, <) such that, for any
a, B, € L

(@=p)—y=a—(f—7)=(a—7y) <}



1.2 Extended diassociative semigroups

Definition 2. An extended diassociative semigroup (briefly, EDS) is a family (Q, —, —,<,>),
where § is a set and «—, —,<1,>: Q x Q —> Q) are maps such that:

1. (Q,«—,—) is a diassociative semigroup.

2. For any o, B,y € Q)

as(B—7)=a=p, (4)

(= B)<y=B<7, (5)

(a<f) —((a=B)<7y)=a<(8 <), (6)
(a<pf)<((a=pB)<y)=B<7, (7)

(a<f) = ((a=p)<=7y)=a<(8—1), (8)
(a<f)=((a—=p)<y) =87, (9)

(a=(B—7) « (B=7) = (o< B)=n, (10)
(ax=(B—-7)<(B=)=a<p, (11)

(a=(B—7) = (B=7)=(a—B)=7, (12)
(a=(B—-7)=B=y)=a=p (13)

Ezample 2. 1. Let Q = (Q, <, —) be a diassociative semigroup. We define two products on

Q by:
Ya, B € §, a<af =7, acf=a.

Then (Q, <, —,<,>) is an EDS, denoted by EDS(2, <, —). When (2, —, —) = DS(Q),
we shall simply write EDS(Q2).

2. Let = (€,%) be an associative semigroup. If < and = are products on §2, then
(Q, *,x,<,>) is an EDS if, and only if, for any «, 3, € Q:

ae(Bx7) =aep, (14)

(axB)ay=p<7, (15)

(@=pf)x(B=av)=a=(Bxy), (16)

(=)< (B=n)=B<7, (17)

(<= p)=(B<7) =87, (18)

(a=p)* (B=7) = (a*f) =7, (19)

(a=p)<(Bey) =a<p, (20)

(a=p)= (7)) =a=p. (21)

3. Let © be a set and let DS(Q2) be the diassociative semigroup attached to €. If < and >
are products on 2, then (2, —, —, <, =) is an EDS if, and only if, for any «, 3,7 € Q:

(a<pf)<(a<y)=pB<9, (22)
(@< f)=(a<y)=B>7, (23)
(a=v)<(B=v) =a<p, (24)
(azv)=>(f=y)=a=p (25)



4. Let Q = (Q, <, —) be a diassociative semigroup, and let ¢, p= : & — Q be two maps.
We define two products on 2 by:

Va, B €, a< B =¢x(B), a=f=¢e(a).
Then (2, <, —,<1,>) is an EDS if, and only if:
¢< = ¢<09x = 950 P, (26)
¢ = =0 9g = P © P, (27)
and, for any «, 8 € :
p<(a « B) = p<(a) < d<(B), (28)
9<(a — B) = da(a) = ¢<(B), (29)
¢e(a — B) = (@) « ¢=(B), (30)
¢|>(06 - B) = <Z>|>(Oé) - ¢l>(/3)a (31)

that is to say ¢4 and ¢ are diassociative semigroup morphisms. If so, the obtained EDS
is denoted by EDS(S2, <, —, ¢, ¢=). In particular,

EDS(Q, <, —, Idg, Idy) = EDS(Q, —, —).

5. Let (Q,«—,—,<,>) be an EDS. We define four new products on  by:
VOC?BGSL 04<_Op6:5_>a, a_)opﬁzﬁ(_av

a<? f=6r>aq, a=? [ =[F<a.

This defines a new diassociative semigroup Q% = (Q, <% —%P < =) We shall say
that € is commutative if 2 = Q°P, that is to say, for any «, 3, v € Q:

a— =0+« a, a3 =[F<o.
In the case of groups, we find semidirect products:

Proposition 3. Let (2, *,*,<1,>) be an EDS, such that (2, %) is a group. There exist three
subgroups H, Ko and K~ of Q such that

G=KxH,=KxH.. (32)

Moreover, for any a,B € Q, a <1 B is the canonical projection of B on Hg and o = 3 is the
canonical projection of o on H.

Proof. Let o, 3,5 € Q. As Q is a group, there exists v € Q such that 8 x~v = '. By ,

a > = a=> . Hence, there exists a map ¢ : Q@ —> Q such that:

Va,BeQ, $o() = a > B.
Similarly, we deduce from the existence of a map ¢ : 2 — € such that
VO&,BEQ, ¢<1(B):a<ﬁ

By -, ¢« and ¢ are group morphisms. Let us denote by K. and K. their respective
kernels, and by H., and H. their respective images. By and , ¢, = ¢4 and @2 = ¢,

S0:
G=KoxHy=K.xH..

Moreover, ¢ and ¢~ are the canonical projection on, respectively, Ho and H...

Let @ € K. Then ¢4() = eg, and, by (27):

P=(a) = ¢ 0 p<(@) = gu(ec) = ec,
so a € K. By symmetry, K, = Ko = K. O



Remark 1. Conversely, if is satisfied, the canonical projections ¢ and ¢ satisfy —,

so we obtain an EDS.

1.3 Nondegenerate extended diassociative semigroups

Definition 4. Let Q = (Q,«—,—,<,>) be an EDS. We define the following maps:

QQ _ QZ QQ _ QZ
909'{(0475) — (< B,a<p), SL'{(O«ﬁ) — (a— B,a=p).

We shall say that Q is nondegenerate if o and @_, are bijective.

The axioms of EDS can be entirely given with the help of the maps ¢ and ¢_,:

(33)

Lemma 5. Let Q = (Q, <, —,<,>) be a set with four products. We define o and ¢_, by ,

and we put:

. QQ _ QQ
{ (@,8) — (B,q).

Then Q is an EDS if, and only if:

(T®Id)o(Id® p)o(T®Id)o (¢, ®Id) = (¢, ®Id) o (Id® ¢.),

(Id®p_)o(T®Id) o (Id® ) ® (T®Id)o (v ®Id) = (pe ®Id) o (Id® p.),
d®p-)o(T®Id)o (Id@ ) o (T®Id) o (p ®@Id) = (p @ Id) o (Id® ¢-),

(d®p)o(p-®Id)o(Id®¢-) = (¢ @ Id) o (IdQT) o (p— ® Id),
Id®¢)o(po®Id)o (Id®p_) = (p®Id)o (Id®T) o (¢ ® Id).

Proof. Direct computations prove that is equivalent to ({2)), and . ) to one of the

equalities of , @ and ; to the other equality of ., and @D, . ) to one of the

equalities of , and ; to the other equality of , and .

O]

Proposition 6. Let ) = (2, «—, —,<,>) be a nondegenerate EDS. We define four products «,

—~, <« and » on Q) by:

Vo, B € (1, (@, 8) = (a = B,a<p), ¢l @, B) = (B~ B,8ra).

Then, for any «, B,y € §:

(@~ pf)~y=a~(B—n),

OH(B v) = (@<« B) <, (a»B)ry=ar(Br7),
»(Bey) =B, (.~ B)« 7=B 7,
(v~ (B < v)) (B=7q) =a=—p, (a—~B) ~((arf) ~y)=8~7,
(=~ (Bay)«(B=r) =(aef) —~n, (a—~pB)r((arB) =7)=a~(Br7)
(e~ (B—~7)— (B )—ah% (aef) ~ ((a=f) ~7)=a—7,
(=~ (B—=7)«(Bry)=08r(a<y), (e fB)» ((ahﬁ)dv) (ary) <
(ahﬂ)w ( »y) = B, ~(aey)=a«(f~1).

In particular, < and <« are associative.



Proof. By :
(¢ @Id)o(r@Id)o(Id@e ) o (r®1d) = (Id®@ ¢ ') o (¢5' @ Id).
When applied to (53, «, ), we obtain:
(a@r(B=y), (@ B) v (a=B)ar) =(ary,a~(B—7),847).
The other identities are proved in the same way, from —. ]
We now explore two families of nondegenerate EDS.
Lemma 7. Let (2, %) be an associative semigroup. The following conditions are equivalent:
1. EDS(Q, x, *) is nondegenerate.
2. For EDS(Q, *, %), p and p_, are surjective.
3. (2, %) is a group.
If this holds, for any «, B € Q)

anf=axp, a~f=alxp,

a<f =0, arf=ao.

Proof. Obviously, 1. = 2.

2.= 3. For any o, 0 € Q, v (a,8) = (a* 5,3) and p_,(a, ) = (o * §, ). Hence, for any
B, € Q, there exist a, @’ € Q, such that ax 8= B *xa’ = .

Let us fix By € Q, and let us consider elements e and €’ such that e x 8y = B9 x €’ = [y. Let
~ € ); there exists a € €2, such that o * 5y = . Hence,

yxed =axfoxd =axfy=1.

Similarly, e * v = ~ for any ~. In particular e x ¢’ = e = €’ is a unit of Q. For any 8 € §, there
exist A/, 5" € Q, such that

BB =psp =
Moreover, '« fx 3" = 'xe =3 =ex " = 3", s0 8/ = 3" is an inverse of 5 in Q: Q is a group.

3. = 1. The inverse bijections of ¢ and p_, are given by
o M a,B) = (axp7',B), o Ha,B) = (8,87 xa).
So (2 is nondegenerate. O

Proposition 8. Let Q2 = (Q, %, x,<,>) be an associative semigroup. We assume that, either
is finite, or either (€2, %) is cancellative: for any «, B, v € €,

(axf=axvy)= (=1), (axy=0xvy) = (a=0).
Then € is nondegenerate if, and only if, the two following conditions hold:
1. (2, %) is a group.

2. Q =EDS(Q, %, *).



Proof. 1. = 2. Let us assume that () is nondegenerate. We consider the map:
0 — 03
w{ (anBa’Y) - (OZI>B,,3|>’7,0Z*5*’Y).

Let us prove that v is injective. We denote by 1, = (11, 12,) the inverse of the bijection ¢_,.
We put:

, QS _ QS
v { (@.8.7) — @LEL(y,axf),a),v2 (L (v, ax B),a), L (v, a * B)).

Let a, 8,7 € Q. We put ¢/ o (a, 8,7) = (o, 8/,7') with:
o =L (WL (axBxr, (a=p)* (B=7)),a=f),
B =92 (L (axBxy, (a=pB)* (B=7)),ap),
Y =93 (axBry, (a=B)* (B=7)).
By :
po(axB,y) = (axBxv,(a=p8)*(B=7)),
Therefore:
O/:ZZ)L(O‘*B7O“>B):O‘7 5,=w2_)(0é*5,0él>,8)=ﬁ, 7/:7

So v is injective. If  is finite, ¢ is bijective. If Q is cancellative, let us put ¢/(«, 3,7v) =
(o, ',7"). By definition of v, the first component of ¥ (a/,3,7") is @ and the third one is 7.
Let us denote its second component by 5” = ' =~/. By definition of

o x flary =7, (@ *f) =9 =axp, o =4 =a.
Moreover, by :
axf=(@*p)=v = (=) (=) =ax(f =) =axp"

As Q is cancellative, 8” = 3, so 1 o4’ = Idg and 4 is surjective.

Consequently, if o/, 8/ € Q, there exist a, 3, € 2, such that o/ = a < and /' = <. By

(21):

O(/ = /B/ — a/‘
We prove similarly that o/ < 8’ = 3, using . By Lemma E (Q, %) is a group.
2. = 1. The inverse implication comes from Lemma [7] [

Proposition 9. Let (H,*) be a group, K be a nonempty set and 0 : K — H be a map. We
define four products on H x K in the following way:

V(e, o), (B, 8") € H x K, (a, ') < (8,8) = (a, ),
(a, ') = (8,8) = (8,8,
(a,0) < (8,8) = (a7 + 5,5,
(o,0') = (8,8) = (0(8") x B" * v, )

This defines a nondegenerate EDS denoted by EDS*(H, *, K, 0). It is commutative if, and only
if, for any o' € K, 0() is the unit of H. For any (a,a/),(5,8') e H x K:

(06,0/) = (57/3/) = (OZ,O/), (OL,O/) b (576/) = (a*676/)>
(a,a') = (8,8") = (8,8, (a,a) > (B,8') = (B*O(B) » @, ).

10



Proof. Note that (H x K,«,—) = DS(H x K). Direct computations prove that (22))-(25) are
satisfied. Moreover, ¢ and ¢_, are bijections, which inverses are given by:

e ('), (8,87) = (e, ), (ax B,8), =} (@, ), (8,8)) = (ax0() * 8, 8), (e, &)).
So this EDS is nondegenerate. O

Ezxample 3. 1. If K is reduced to a single element, let us denote by w the image of this element
by 0. As a set, EDS*(H, %, 2, 0) is identified with H, given the products:

Oé<—B=a, O[_)B:ﬁv
a<f=al*8, asf=w*xflxa.

This diassociative semigroup will be denoted by EDS*(H, ,w). It is commutative if, and
only if, w is the unit of H. In this case, we shall simply denote it by EDS*(H, *).

2. If H is a null group, we identify H x K and K. We obtain EDS(K).

Proposition 10. Let (Q,«—,—,<,>) be a finite nondegenerate EDS, such that (Q, «—,—) =
DS(Q). There exist a group (H,*), a nonempty set K and a map 0 : K — H such that Q is
isomorphic to EDS*(H,, K, 6).

Proof. First step. For any o, € Q, p(a, 8) = (a,a< ) and ¢, (a, B) = (B, a=>f). With the
notations of Proposition [6] for any «, € Q:

a—f=aq, a—~f[=0.
Moreover, for any «, 3, v €
aafi=y e B=asy, amf=v < a=ysf,
The relations of Proposition [f] simplify: for any a, 3,7 € Q,

a<(Bay)=(aap)y, ar(Bry)=(arpB)ry, (39)
(a<aB)ry=(ary)«p, a<(Bry)=pr(aey). (40)

Second step. Let us study the semigroup (£2,«). For any a € €2, we consider the map

Q — Q
fa.{ﬁ D

This is an element of the symmetric group &(€2). By (39), for any «, 3 € Q:
Jao© f,B = fa<6-

Hence, if H = {fo,a € Q}, H' is a sub-semigroup of &(£2). As Q is finite, this is a subgroup of
S(92). Consequently, the following set is nonempty:

K={a€eQ, fo=1do} ={aeQ, VBeQ, a«f = [}

Let us choose e € K. We consider the map

(H — Q
1/"{ o fle).

For any o, € Q, as e« 8 = (:
V(fao fg) =a<«fee=aceaBae= fale)« fs(e).

11



So 1 is a semigroup morphism. Let us assume that ¢ (f,) = ¢(fg). For any v € {2
fa() = ey =aseay =9(fa) <7 =9(fp) <7 = fs(7),

so fo = fg: 1 is injective. Let us denote by H its image; then H is a sub-semigroup of (2, <)
and is a group, of unit e. For any 5 = f,(e) € Q, for any v € {2

fs(7) = fale) ey =a<e«y =a<y = fo(y),

so fg = fo. Hence, the inverse of 1) is:

-1 . H—>H/
v { B — Js

We denote by * the product of H: for any «,8 € H, a* 8 = a « 8. We define a product on
H x K by:
(a,a)«(8,8) = (axB,B).

Let us consider the map

(a, /) — a<d.

@:{HXK —s 0

For any (o, '), (8,6') e H x K, as o € K:
O((a, )« (8,8) =O(axp,8) =a«f«f =a<d’ « <5 =0(a,a') «O(3,5).

So © is a semigroup morphism.
Let (o, &), (B, ') € H x K, such that ©(a, o) = O(3, ). Hence, a«a’ = S« 3'. Therefore,
as o, € K:
fa = fa Ofo/ = fa<o/ = f,8<5’ = fﬁ of,é” = fB~

As 9! is injective, & = 3. Consequently:
o —a<(a<d)=f< (@)= 4.

So © is injective.
Let «y € 2. There exists a unique o € H, such that f, = f,. Let a~! be the inverse of « in
the group H and o/ = a~! <~. Then:

Gea= a0y = fou(y) = Ida(7) = 7.
Moreover, for any S € €

for = famrofy = fol o fy = fy o fy = Id,
so o/ € K and v = O(a, a’): © is surjective.

From now, we assume, up to an isomorphism, that (©2,«) = (H x K, «). By definition of «,
for any (a,a’), (8, 8') € H x K,

(a,0') < (8,8) = (a™' + B, 5).

Last step. Let us now study the product ». Recall that e is the unit of H and let us choose
a € K. We put, for any (v,7') € H x K:

(e;a) » (v:7") = ((v,7): ' (v, 7))
By , for any (o, o), (8,5) € H x K:
(B,8) > (7,7) = ((e;a) « (B, 8)) » (7,7) = ((e;a) » (7,7) « (B, 8) = (e(v,7) * 8, 8).
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Still by :

(o, @) < ((8,8) » (1,7) = (axu(y,7) * B, 8)
= (8,8) > ((a,0') « (v,7)
= (L(Oé * ’Yv’y/) * B7ﬁ,)'
Hence, t(a*7,7') = a*i(y,7'). We put 8(a’) = i(e,a’)~t. For any a, o’ € K, taking v = e:
va,a) =axile,d) =axf(a) L
Finally, for any (o, o), (8,5) € H x K:
(e, ) » (8,8) = (B*0(8) ! xa,a).

By definition of », (a,a/) = (8,8") = (0(8') *» B~ xa,a’). So Q = EDS*(H, x, K, 0). O

1.4 Extended diassociative semigroups of cardinality two

Let © = {a,b} be a set of cardinality two. There are 16 maps from 02 to €. Testing all
possibilities with a computer, we find 13 structures of diassociative semigroups on 2, which
restrict to 8 up to isomorphism, and 45 structures of EDS on 2, which restrict to 24 up to
isomorphism. In order to describe them, we shall use the maps ¢, ¢p : 2 — 2, such that for
any « € €

¢a(@) = a, op(a) = D.
We shall meet six possible products for <« and =, denoted by:
Mg | al|b my|alb <gps |a|b >Eps |a | b
a |ala a |b|b a alb a ala
b |ala b |b|b b alb b blb
mi|al|b mo | al|b
a |al|b a |bla
b |bla b |al|b
A.
—pg=—4lal|b
a a
b ala
This is the diassociative semigroup attached to the semigroup such that:
Ya, 5 € Q, a*xs B =a.
Al. ({a,b},*4,%4, Mg, mg). This is EDS({a, b}, %4, *4, ¢a, Da)-
It is commutative.
A2. ({a, b}, * A, * A, <NEDS, '>EDS)- This is EDS({CL, b}, *A, *A)-
It is commutative.
B.
—plalb —plalb
a |a a |a|b
b |ala b |al|b
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B1. ({a,b},«<p,—p,mq, mg). This is EDS({a, b}, —p,—pB, da, ¢a)-
It is the opposite of D1.

B2. ({a, b}, “~—B,—™B,<EDS, >EDS)~ This is EDS({a, b}, “B, _’B)-
It is the opposite of D2.

—c=—c|alb

a ala
b alb

This is the diassociative semigroup (Z/2Z, x, x), with a = 0 and b = 1.

C1. ({a,b},«—c,—c,ma,mg). This is EDS(Z/2Z, x, X, ¢q, ¢q)-
It is commutative.

C2. ({a,b},«—c,—c,ma,mp). This is EDS(Z/2Z, X, X, ¢a, Dp)-
It is the opposite of C4.

C3. ({a,b},«¢c,—c,<EDS,>EDs). This is EDS(Z/27Z, x, x).
It is commutative.

C4. ({a,b},«—c,—c,my, my). This is EDS(Z/2Z, x, X, ¢p, Pa)-
It is the opposite of C2.

Cs5. ({CL, b}a «C,—>C,Mp, mb)' This is EDS(Z/QZ, X, X, (;Sb) ¢b)

It is commutative.

—plalb —plalb
a |ala a |ala
b |[b|b b |ala

D1. ({a,b},<—p,—D,ma,mg). This is EDS({a, b}, —p,—D, Pa, ba)-
It is the opposite of B1.

D2. ({a’ b}, “—D,—D,<EDS, >EDS)~ This is EDS({CL, b}, <D, _’D)-
It is the opposite of B2.

< EF="F Qa b

a a
b blb

S|

This is the diassociative semigroup attached to the semigroup such that:
Ya, 5 €, ax*xp B =a.
El. ({a,b},*g,*g, ms, my). This is EDS({a, b}, *g, *g, ¢a, da)-

It is the opposite of G1.

E2. ({a,b},*E, *g, ma,mp). This is EDS({a, b}, g, *g, ¢a, db)-
It is the opposite of G2.

E3. ({a,b},*g,*p, —p,<EDS, >EDs). This is EDS({a, b}, *g, *g).
It is the opposite of G3.
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~—F | Q b —F | a b
a |ala a |al|b
b |bl|b b |al|b

This is DS({a, b}).
F1. ({a,b},<—p,—p,ma,mg). This is EDS({a, b}, —p, >F, da, da)-

It is commutative.
F2. ({CL, b}, [, —>F,Mgq, mb). ThiS is EDS({a, b}, —F,—F, (Z)a, ¢b>
It is commutative.
F3. ({a, b}, ~—r,—F,<EDS, DEDS)- ThiS is EDS({CL, b})
It is commutative.
F4. ({a,b}, <, —p,m1,m1). This is EDS*(Z/27Z, +), with a = 0 and b = 1.
It is commutative.
F5. ({a,b}, <, —p,mi,my). This is EDS*(Z/27Z,+,1), with a = 0 and b = 1.
It is not commutative, but is isomorphic to its opposite via the map permuting a and

b.
G.
—ag=—¢|alb
a alb
b albd
This is the diassociative semigroup attached to the semigroup such that:
Vo, B € Q, ax*g p=p.
G1. ({a,b}, *g,*q, ma, mg). This is EDS({a, b}, *q, *G, ¢a, Pa)-
It is the opposite of El.
G2. ({a,b}, *g,*q, mq, mp). This is EDS({a, b}, xc, *G, ¢a, Pb)-
It is the opposite of E1. It is the opposite of E2.
G3. ({a,b},*c, *G; —p,<EDS, >EDs). This is EDS({a, b}, x¢, *q).
It is the opposite of E3.
H.
—yg=—pg|lalb
a alb
b bla

This is the diassociative semigroup attached to the group (Z/2Z, +), with a = 0 and b = 1.

H1. ({a,b},*m,*m, mq, my). This is EDS(Z/27Z, +, +, ¢a, Pa)-
It is commutative.

H2. ({a, b}, *H, %[, —D,<EDS, ‘>EDS)- This is EDS(Z/QZ, +, +).
It is commutative.

Only four of these EDS are nondegenerate: F3, F4, F5, H2.

Remark 2. Similar computations can be done for EDS of cardinality 3. Up to isomorphism, there
are four nondegenerate EDS of cardinality 3:

EDS({a,b,c}), EDS(Z/3Z, +, +), EDS*(Z/3Z, +), EDS*(Z/3Z, +,1).
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2 ()-dendriform algebras

2.1 Definition and example

Definition 11. Let ) be a set with four products «—,—,<1,=>. A Q-dendriform algebra is a
family (A, (<a)acq; (>a)acq) where A is a vector space and <y, >qo: AQ A —> A, such that for
any x,y,z € A, for any o, 8 € Q:

(l’ <a y) < 2= <qp (y <a<f Z) +x <a—p (y >a=f8 Z)7 (41)

T >q (<52)= (T >ay) <g 2, (42)

x> (Y>52) = (T >aep Y) >asp 2+ (T <axp ¥) >acp 2 (43)

Ezxample 4. 1. If (2, ) is a semigroup, we recover the definition of dendriform family algebra

[14] when we consider EDS(2, *, *):
6—f=a—f=axp a<f=p a=f=a
Note that in this case, (Q, «, —) is an EDS.

2. For any set 2, considering EDS(2), we recover the definition of matching dendriform
algebras [7].

Remark 3. Let A be a Q-dendriform algebra. For any a,b € A, for any « € 2, we put:
a<Pb=>b>,a, a>Pb=>b<,a.

Then (A, (<& )acq, (& )acq) is a Q°P-dendriform algebra, where the products of Q° are defined
by:

VOZ,BEQ, a(_opﬁzﬁ_’av O‘_’OPBZB%O@

a<? f=fFr>a, ax=? f=F<a.
This gives the notion of commutative (2-dendriform algebra:
Definition 12. Let Q such that, for any a, 8 € Q:
a<— pB=p0-—>a, a<f=f>=a.

Let A be a Q-dendriform algebra. We shall say that A is commutative if for any o, g € Q, for
any a, be A:

a<ab=0b>,a.

2.2 Structures on typed binary trees
Definition 13. Let Q be a set.

1. A Q-typed binary tree is a pair (T, ), where T is a plane binary tree and T is a map from
the set on internal edges of T' to Q. For any internal edge e of T, T(e) is called the type of
e.

2. The set of Q-typed binary trees is denoted by Tq. We denote by 73 the set of Q-types
binary trees different from the trivial tree 1.

3. For any n = 0, the set of Q-typed binary trees with n internal vertices (and n + 1 leaves)
is denoted by Ta(n).
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Consequently:

Ta = || o), T = || Ta).

n=0 n=1

Ezample 5. Here are plane binary trees with n < 3 leaves:

| Y. XY NN

For any T' = (T, 1) € Tq, we shall give indices to internal edges and indicate their types in this
way:

\&(a), %(a), &((a,ﬁ),%(a,ﬁ)vé(aﬂ%\%(@75)7*%(@,5)-

In all cases, the type of the internal edge 1 is a and the type of the internal edge 2 is 5.

Definition 14. Let T1,T5 € Tq, and o, 3 € Q. We denote by T} \/TQ the tree T € Tq obtained

aiﬂ
by grafting T1 on the left and Ty and the right on a common root. If Ty # 1, the type of the

internal edge between the root of T and the root of Th is . If Ty # I, the type of internal edge
between the root of T and the root of Ty is [3.

Ezxample 6. For example, for any «, 8,y € 2:

XK((M) = ﬂw\/l, %(a,ﬁ) = YY(B)\/I,
oLy oy

Han-vy ¥, Y an-y Yo,
v, v,
Vl\%/(a,ﬁ) =TV Y.
a,B

Remark 4. Note that any element T' € To(n), with n > 1, can be written under the form

T=71\/T.
o,
with 71, T € Tq, a, f € Q. This writing is unique except if 77 =| or T5 =|: in this case, one can

change arbitrarily o or 8. In order to solve this notational problem, we add an element denoted
by & to ©Q and we shall always assume that if 77 =|, then a = ; if T5 =|, then 8 = .

Proposition 15. Let Q be a set with four products «—,—,<a,=>. We define products <, and
>q ON K%Jr, for a € Q, by the following recursive formulas: for any T,T1,Ts € ’TQJ’, for any
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a757’7697
Yo<aT=1\/T.
J,«
M\ )< T=T1\/T,

o, o,

T1 \/T2 <7 T = T1 \/ (T2 </3<W T) + Tl \/ (T2 >,3|>'y T),
a.p a,fery a,f—y

T>, Y = T\/|
T >q |\/T2 T\/TQ,
.8

T >, Tl\/T2 (T>aep T1) \/ o+ (T <aepTh) \/ To:
a—py a—py

The following conditions are equivalent:
1. With these products, KT is the free Q-dendriform freely generated by Y.
2. With these products, K'E;r is Q-dendriform.
3. (Q,«,—>,<,>) is an EDS.
Proof. We extend the products <, and >, to the space K%Jr RKTo +KTo® K%Jr by putting:
Vo e KT, T <gl=I1>,2=uzx, | <q X =2 >4 1=0.

By convention, we consider the added element ¢ as a unit for the four products of 2. The
definition of the products <, and >, can be rewritten in the following way: for any 71" € 7;;, for
any 17,75 € Tq, for any a, 5,7 € €0,

T<ql=1>,T=T,
I <o T =T >,1=0,

T\ T | < T=T1 \/ (T2<p=y T)+T1 \/ (To >pr T),
a,B a,B—y o,y

T>, Ty \/TQ T > a3 T1 \/ T + T <a<p T1 \/ Ts.
o oBr

Obviously, 1. = 2. Let us prove that 2. = 3. Let o, 8,7 € Q. For x =y = Y and
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T >a (Y >p 2) =<2<1<((a—>(5—>7),(a>(ﬁ—>v))—>(ﬂ>7),(a>(5—>’v))>(ﬁ>7))
+\2<((a—> (B=),(@=(B—>7) < B=),(a=(B—>7)=<(8=7)

+¥(O&<ﬁ(ﬁﬁ’7),a<‘(ﬁg’7)vﬁ<‘7)

2X3
1

+ (= (B—7),a=(8«),8<27)

+\12;/(04<— (B—=7),a<(B—n),<7),

(T >amB Y) >asp 2 =<2<1<(((04—>6) =7, (@ — B)=v,a=p)

23
1

+ ((a =) —y,a=p,(a—f)<9),

(T <a<B ¥) >acs zz\kg(((cw—ﬁ) -7, (a—B)ay,a<p)

3
2

+ T ((a=B) v, (a=p) < ((a < p)<7),(a<p) < (e p)<7))

3
2

+ T ((aeB) v (a<p) = ((a — B)<7),(a<p) = ((a« f)<7)).

Identifying the decorations of the trees in these expressions, we obtain relations —.

3. = 1. Let us first prove that K’TQJ” is a Q2-dendriform algebra. Let us first prove relations
— for z,y,z € To by induction on the total number N of leaves of x, y and z. Firstly,
observe that is obviously satisfied if x =|; is obviously satisfied if y =|; is obviously

satisfied if z =|; hence, there is nothing to prove if N < 3. Let us assume the result at all ranks
< N. Let us first prove (42)) for x,y,z. We can assume that y = T} \/Tg, where T1,T» € Tq
7,0

and 7,0 e Qu{g} (y=Z U Ty =1, = if 6 =1). Then:

(.%' >a y) <5 z = (x >a|>'y Tl) \/ (Tg >5|>/5 T1) + (.%' >m>fy Tl) \/ (T2 <5<’5 Z)

a—,6—08 a—y,0«f3
+(@<amnT1) \/ (D508 )+ (@ <amn T1)  \/ (T2 <525 2)
a—,0—p a—,0<p

=1 >4 (Y <3 2).
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Let us now prove for x,y, z. We can assume that z = T} \/TQ. Then:
7,6

T> (y>p2)=(x > a(B—) (Y >gey 11)) \/ T

+ (z <a<(B—7) (y > By T1)) \/ T2
a—(B—),0

+ (@ amgey O <p=n 1)/ T
a—(B<),0

+ (‘T <a<(B—) (y <<y Tl)) \/ Ty,
a—(B),0

(93 > a8 y) >a—-p 2= ((J; > a4 y) > (a—B)y Tl) \/ T
(a—B)—,0

+ ((z >axp ¥) <(amp)<y 11) \/ T,
(a—B),8

(fU <a<f y) >aepf R = (<$ <a<f y) > (o) Tl) \/ Ty
(ae=B)—7,0

+ (7 <a=8 Y) <(ap)=y T1) \/ Ty
(aB)<,0

Using the induction hypothesis and relations —, putting o/ = a=>(8 — ) and ' = f=:

(@ >aes ¥) >aopery T1) /' T4 (( <asp¥) >@epyr )/ T

(a—=pB)—,0 (a—=B)—,6
— e e T) T
a—(8—7),0
=W>sy 1)\ T
a—(8—7),0
Similarly:
(z >asp ¥) <(amB)<y 11) \/ Tr = (T >ae(8er) (Y <p=y T1)) \/ T,
(a—=pB),6 a—(B«7),0
and

(@ <as(poy) U >0 T1)) )/ Dot @ <aspey W<s=rT1)  \/ T
a—(B—7),0 a—(B<),0

= ((z <a=8 Y) <(acp)y=y T1) \/ 1.
(ae—B)—,0

So is satisfied for x,y,z. Relation lb is proved similarly. We obtain that KTQ+ is -

dendriform.

Let us now prove its freeness. Let A be a 2-dendriform algebra and let a € A. Let us prove
the existence and uniqueness of a 2-dendriform algebra morphism & from K7}2+ to A such that

oY) =a.
We first extend the products of A to K® A+ AQK + A® A by putting, for any b € A:

b>o1=1<,b=0, 1>,b=b<,1=0.
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We then define ®(7") for any tree T' € T by induction on its number of leaves:

o(1) =1,

P T \/T2 = (I)(Tl) >a @ <p (I)(TQ).
95

Let us prove that ® is a Q2-dendriform algebra morphism. Let x,y € 7o and let us prove that
(z >0 y) = ®(x) >a (y), (z <a y) = ®(2) <a 2(y)
by induction on the total number N of leaves of z and y. If y = I, then:
O(x>a1)=0=(z) >4 1, O(x <4 1) = P(z) = P(z) >4 1.

The proof is similar if x = 1. Let us now assume that x,y # 1. Let us put y = 1T} \/Tg. By the

By
induction hypothesis applied to 77:

Oz >0 y) =P | (v >aep Th) \/ Ty |+ @ | (z <axp T1) \/ T

a—By a—pBy
(2(2) >aep D(11)) >amp a <y (T2)
+ (®(2) <axp ©(T1)) >acp a <y (T3)
= (2(x) >a ((T1) >p a)) <y B(12)
o (B(T1) >p a <4 (T2))

Similarly, ®(z < y) = ®(x) <4 (y).
Let us now prove the unicity of ®. Let ¥ be another morphism from K7, to A such that

‘I/(Y) = a. For any tree T # |, putting T =T} \/ng
a?/B

U(T) = U(Ty >q ¥ < To) = U(T1) >4 a <5 ¥(T),
soV =o, OJ

Ezxample 7. Let a, 8 € €.

Y <Y = Y
Yoo Y = \1<((a),
Y- () - Xﬁ((aaﬁ,wm%(aeﬂ,wm,
Yo Y= ¥ s,
N ay>s ¥ = XK((B,&),
\X(a) >3 Y = \1%;(5,04).
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Remark 5. 1. An easy induction proves that the Q2-dendriform algebra ]K’TQ+ is graded:

VaeQ, Yk 1>1,  KTok) <a KTo() + KTo(k) >a KTo(l) € KTo(k + ).

2. Similar results can be proved for Q-typed D-decorated plane binary trees, that is to say
Q-typed plane binary trees given a map from the set of internal vertices to D. We obtain
in this way the free ()-dendriform generated by D.

2.3 Structure on typed words
Definition 16. Let Q be a set and let V' be a vector space. The space of Q-typed words in 'V is

$hi (V) = DI e,

n=1

Tensors of Shéy (V) will be written in the form

ag...0, QUV1...Un,

wheren =21, ag,...,an € Q and vy,...,v, € V. Such a tensor will be called a Q-typed word in
V; its length is the integer n. We also put Sho(V) = K@ She, (V).

Proposition 17. Let Q be a set with four operations «—,—,<1,=>. For any vector space V, we
give Shq (V) products <, >, where a € Q, inductively defined in the following way:

l<qa...0n@ui...Vp=02...0, QU1...Uy >q 1 =0,

ag ... U] ... Uy <qgl=1>400...0,Q@QV1...U0 =Q9...0n V] ...Unp,
and

Qg ...y U1 ... 0 <o B2...0hQuwi...wy,
= (a2 > a)@u1) - (a3... A U2 ... U <apaa B2+ Bn @w1 ... wy)

+((ag —a)®v1) (A3 ... ® V2. .. Uy >agea B2 Pn @wi ... wy),

A ...y QU1 ...V > P2 .. B @Quwi...wy
=((a—B2)Qw1) - (A2...Qm @I ... U <a<p, B3...Ln@wsa...wy)
+((Oz<—52)®w1)-(ag...am@)vl...vm >oa>B2 Bg..-,Bn@wQ...wn),

where - is the concatenation product:

' (KQ®V)®Sho(V) — Shi(V)
(@)@ (ag...an@V1...0,) —> QQg...0, @V . ..Uy

The following conditions are equivalent:
1. With these products, Sh (V) is a Q-dendriform algebra for any vector space V.
2. Q is an EDS.

If this holds and if ) is commutative, then Shg(V) 1s the free commutative Q-dendriform algebra
generated by V.

Proof. Note that these products <., >, are defined on

(Sha (V) ® Sho(V))™ = Sho(V) ® Shi (V) + Shy (V) ® Sho (V).
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1. = 2. Let V be a vector space of dimension 4 and (v1,ve,vs,v4) be a basis of V. Let
o, B,7v € Q.

U1 >q (V2 >3 7 ® v304)

=a—> B9 (a=B—-7) = (B=7) (a=(8—7))=(8>7) @vsvsvavy

( ) (a=(8—=7)) < (B=7) (a=(8—17))<(B>7) ®vsviviv

( ) a<(B—7) By ®vzvivave

ta—-> (B (ax=(B«7) = (B<v) (a= (8« 7)) =(B<7) ®vsvovavy
( ) (a=(B<7)) « (B<v) (a=(8 7)< (B<7) ®vsvavivs
( )ra< (B «—7) By ®uvsvivavy,

(V1 >a=p V2) >ap ¥ @ U3V4
=(a—>f)—>v (a— )=y a> LR vsvvavy
t(a—p)—v-(a=p) « ((a = B)=7) (a=p)<((a - B)<=7) ®vsvav1v4
t(a—=p) v (a=p) = ((a = B)<7) (a=p) = ((a - B) <7) ®uvsvavgvy,
(V1 <a=p V2) >acp ¥ QU3V4

=(a—f) o7 (a—p)>v a>LFRQu3v010s

ta=p)—v-(a<p) « ((a<p)<7) (a=f)<((a< B)<7) ®vzvivavy
taep) =y (axp) = ((a<pB)<2y) (a<f)=((a « B)<=7) @vsvivavs.

As the family (Vg(1)V0(2)V0(3)Vo(4))oes, 18 linearly independent, identifying in , we obtain

@-[3).

2. = 1. Let us prove — for z,y, z typed words by induction on the total length N
of x, y and z. If x = 1, then is trivially satisfied; If y = 1, then is trivially satisfied;
if z =1, then is trivially satisfied. This proves the result if N < 2. We now suppose that
x,y,z # 1 and let us assume the result at all ranks < N. Let us put z = y® v - 2. Using the
induction hypothesis:

=a— (8= 7) @V (T >(ax(fom)=(Bm) ¥) > (a=(B—)—(5=) 7
+a = (B> QU (T <(ax(5om))a(b<) ¥) > (am(G—m)—(Br) 7
ta— () ®v- (T >auBer) Y) <pery 2
ta— (B—7)Qv- T <qu@er) (U <pay 2)
ta— (=7 @0 T <aa(gy) Y >y 7).
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Moreover:

(T >0 Y) >asp 2= (= B) > 7QV (T >ap ¥) >(anp)y ?
/

+ (= B) — 7@V (T >axp ¥) <(a—p)ary 7

= (@) > 7®v- (T <axp ¥) >(acp)oy 2
+(OZ<—B)<—’7®U'($ <a<f y) <o¢<—ﬁ)<1'y Z,
(@ B) > 7@V (& <axup ¥y) >( 42

)

(a—PB)=>

With —, we conclude that is satisfied for x,y, z. Relations and are proved

in the same way.

Observe that:

1<Pag...0 @Vi ...V =02...0m QUi...05n > 1=0,

O, O;
Q2. U ®Up. Uy <P 1 =1>Pay...0,@V1... 0 =02...0, QUi...Un,

and
Q2. Oy U Uy <P By B @wy...wy
=((a—a)®v1)-(a3...0 QV2... 0 <b _, B2...Bn @wr ... wy)
+ (@ = a2)Qu1) - (a3...Cm Qua... Uy >k, Po...Lrn@wi...wy)
= (2 =P a)®u1) (a3...0n @V2...Um < _y B2...bn@wr ... wy)
+ (2 =P ) @u1) - (3.0 @V2...0m >y Po... Bn @wr ... wy),
Qg ...y U Uy >P By B ®@wy ... w
=((Bg<—a)®w1)-(ag...am®v1...vm<gp<52Bg...ﬁn(@wg...wn)
+ ((B2 = a) ®w1) - (ag...am®vl...vm>zz">/32Bg...ﬁn®w2...wn)
:((oz—>°p62)®w1)-(ag...am®v1...vm<gp<]52Bg...ﬁn@)wg...wn)
+ (@<= B)@wi) (a2...am @Vi...0m >0ls B3...0n @wa ... wn),

S0

Shé (V)P = Shf,, (V).

In particular, if Q is commutative, the Q-dendriform algebra Shé (V) is commutative.

Let us assume that 2 is commutative. Let A be a commutative Q2-dendriform algebra and let
¢ : V —> A be any linear map. Let us prove that there exists a unique map @ : Sh (V) — A
of Q2-dendriform algebras such that @, = ¢.

Existence. We inductively define ® by:

®(v) = ¢(v),
Dlag...ap®uy...vy) = P(v1) <ap, Plas...ap®uy...vy) if n = 2.

Let us prove that ®(z <, y) = ®(z) <4 P(y) for any typed words x and y by induction on the
total length N of z and y. If the length of x is 1:

P(r<ay) =P(a®@z-y) = d(x) <a D(y) = ®(x) <o P(y).
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This proves the result if N = 2. Let us assume the result at all ranks < N. We can restrict
ourselves to the case where the length of x is not 1. We put x = (B®wv) - 2/, with v € V and 2’
is a typed word. Then:

b(r<ay) =PB—a®uv- 2 <aup Y) + (B — a®u-z' >4 pY)

' <asp y) + (V) <goa (@’ >acp Y)

v’ <asp y) + A(V) <goa P(Y <acp ')

D(2") <asp @(¥) + 0(v) <goa (B(Y) <acp (2'))
) +

(') <asp DY) + A(v) <poa (P(2') >ap P(y))

< =
A A
T ®
T 1
R e
Lei iy

= ®(z) <qa ®(y).
So @ is compatible with <,. As A and Sh;g(V) are commutative, for any x,y € Shg V),
(I)(:L‘ >a y) = (I)(y <a l‘) = (I)(y) <a (I)(m) = <I>(aj) >a (I)(y)

So @ is a morphism of (2-dendriform algebras.

Unicity. Let ¥ be such a morphism. Then for any typed word z = (a®v) - 2’ of length > 2
U(x) =T(v<42) =) <q U(2).

Hence, ¥ = . ]

2.4 From ()-dendrifrom algebras to dendriform algebras

Proposition 18. Let Q be an EDS and let A be a vector space equipped with bilinear products
<q and >o. We equip KQ & A with two bilinear products <, > defined in the following way:

Vo,Be€Q, Y,y € A, aR@r<BRY=a— R <qxp ¥,
a®Rr>PFRQY=0a—>BRT >a=p Y.

1. If (A, (<a)aeq; (>a)acq) is Q-dendriform, then (KQ® A, <, >) is dendriform.
2. If o and p_, are surjective, then the converse implication is true.
Proof. Let o, 3,7€ Q and z,y,z € A.
(@@ <BRY) <7®2z=(a—B) > 7® (T <axp ¥) <(ap)=y %

a®r < (BRQY<V1R®2+BOY>71®2) =a« (B 7)®T <ax(per) (Y <p<y 2)
ta— (B89 QT <aa(@oy) (Y >poy 2)-

As (2, <, —) is diassociative,
(a—=B)—mv=a—B<y)=a<(B—1).
1. Let us assume that A is Q-dendriform. Then, as ) is an EDS:
(& <a<p ¥) <(ap)oy 2 = T <(amp)—((ap)=m) (¥ <(amp)=((ap)=y) ?)

+ & <(axf)—((a—B)=r) (U >(a=f)=(((aB)=<) Z)

= T <ax(fe) (U <Bay 2) T T <ax(foy) (Y >y 2)-

So the first dendriform relation is satisfied. The second and third ones are proved in the same
way.
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2. Let us assume that KQ ® A is dendriform and that ¢. and ¢_, are surjective. For any
x,y,z € A, for any «, 3,7 €

(T <a=B Y) <(acB)ay 2 = T <aa(Ber) (Y <pay 2) + T <ax(ory) (Y > gy 2).
By hypothesis, the following map is surjective:
P { @
(@,8) — (as,a<f).
By composition, the following map is surjective:

0 — Q3

Ud@‘PL)O(SOL@”d):{ (@, B,7) — (a<f,(a—B)ay,a—f—r).

Let (o/,3,7') € 22 and let (o, B,7) € Q2 such that:

o =a<p, B =(a—pB)=n, YV =ae e
Then, by @-@:

(T <o Y) <p 2 =T <qa(@ery) U <pay 2) + T <aa(Boy) (Y >y 2)

=2 <arep (Y <arap 2) + T <armp (Y >aep 2)
So the first 2-dendriform relation is satisfied. The two other ones are similarly proved. O
Let us now study the dendriform algebras KQ ® K’E{ and KQ ® Shg (V).
Proposition 19. Let Q be an EDS.
1. The following assertions are equivalent:

(a) The dendriform algebra KQ ®]K7§2+ is generated by the elements a ® Y, a € ().

(b) v and ¢_, are surjective.
2. The following assertions are equivalent:

a) The dendriform subalgebra of KO KT, generated by the elements a® Y, a€ ), s
Q
free.

(b) o and ¢_, are injective.
Proof. Firstly, observe that the dendriform algebra K2 ® ’7}; is graded, with for any n > 1,
(KQ® T, )(n) = KQ® To(n).

1. (a) = (b). Let o, B € Q. As KQ@'E;’ is graded, there exists families of scalars (Agp)a,ben
and (ftqp)apeq such that:

a® \19(/3): Z )\a’ba®Y<b®Y+ Z ,u,ayba®Y>b®Y

a,beQ) a,beQ)

Z Aap@ < b® ?{(a<lb)—|— Z Hapt — D& \Q(a>b).

a,be) a,beQ)

Hence, there exists (a,b) € Q2, such that @ — b = a and a=>b = 3: ¢_, is surjective. Similarly,
(. is surjective.
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1. (b) = (a). Let us denote by A the dendriform subalgebra of KQ ® K7 generated by

the elements a ® Y. Let us prove that for any a € Q, T € Tq, a ® T € A by induction on
the number N of leaves of T. If N = 2, then T = Y and it is obvious. Otherwise, let us put
T="T \/5’7 T,. By the induction hypothesis, for ¢ = 1 or 2, T; = 1or T; € A. If T} # 1, let
(o/, 8") € Q such that ¢, (¢/, ") = (o, ). Then

a/®T1 > ﬁ/®|\/T2 = O/—>,8/®T1 >a/>5/ I\/TQ
By B

=a®T] >3 |\/T2
kel

= OZ®T1 \/T2
By

Soa®T € A. Similarly, if Ty # 1, then a ® T € A.

2. (a) = (b). Because of the graduation, A is freely generated by the elements a® Y, with
a e Let (o, B), (o, B") € Q2, such that p. (o, ) = ¢ (/, 5"). Then:

04®Y<B®Y:a<—ﬁ® ?1/(04<1ﬂ)o/<—5'® ?1/(04/45’):0/@Y<5’®Y_

/

By freeness of KQ @ KT, (o, ) = (/, 8'), so o is injective. The proof is similar for ¢_,.

2. (b)) = (a). Let Dend(f2) be the free dendriform algebra generated by €2. As a vector
space, it is generated by plane binary trees which internal vertices are decorated by €. Let
© : Dend(?) — KQ® K’E;r be the unique dendriform algebra morphism sending a €  to

a® Y. Then, for any tree T' € Dend(€2), writing it as T' = T \/,, T, a being the decoration of
the root of T, let us denote

@(Tl) = ZO@Tl(Z), @(Tg) = ZﬂjTQ(J)
i J

Then: ' ‘
o(T) = Zai — < f3 ®T1(l) \/ TQ(j).

1,J a;>a,(a;—a)<f;

We conclude that O(T) is a typed tree of the same form as 7', with types of edges obtained from
the decorations of the vertices of T by the application of compositions of maps Id®(—1 @ o ®
Id®=1) and 1d®V @ ¢, @ Id®"~) . As p._ and ¢_, are injective, © is injective. O

Proposition 20. Let Q be a commutative EDS and V' be a nonzero vector space.

1. The following assertions are equivalent:

(a) The dendriform algebra KQ ® She, (V) is generated by the elements a @ v, a € €,
veV.

(b) p is surjective.
2. The following assertions are equivalent:

(a) The commutative dendriform subalgebra of KQ ® Shy (V) generated by the elements
a®u, ae, veV, is free.

(b) o is injective.
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Proof. 1. (a) = (b). Let o, 8 € Q. Let us choose a nonzero element of V. Then a ® (8 ® v)
belongs to the dendriform subalgebra of KQ ® Sh¢y (V). As it is graded, it can be written under
the form:

a® (B®vv) :Zai®vi < B @w; :Zai — B ® (v < B @ vywy).

where v;, w; € V and a4, B; € Q for any i. Hence, there exists i, such that o (o, 5;) = (o, 5).

1. (b) = (a). Let us assume that p. is surjective. Let us denote by A the dendriform
subalgebra of KQ® Sh;g (V) generated by the elements « ® v. Let us prove that any typed word
ag...ap®uy...vk, for any ag € Q, a1 ® (ag ... ®v1 ... vE) belongs to A by induction on n.
It is obvious if n = 1. Otherwise, let (81, B2) € Q2, such that ¢(B1, B2) = (a1, as). Then:

Br@vi < Pa®(az...ap@va...v;) = P1 «— P2 ® (V1 <g,<fy A3 ... V2. .. V)
=1 ® (V] <ay A3... 0 ®Uy. .. V)

=1 ®(ag...0p®up...UL).

By the induction hypothesis, this belongs to A.

2. (a) = (b). Let ,B,d/,8" € Q such that o (a, ) = p(c/, ). Let v € V, nonzero.
Then:

a®@U<BRU=a+Ra<fRW)=d (< @) =d®@v<F Q.
By freeness of KQ ® Shey (V), (o, 8) = (¢, B).

3. (b) = (a). Recall that the free commutative dendriform algebra generated by KQ ® V
is the shuffle algebra Sh* (KQ ® V'), with the usual half-shuffle product. Hence, there exists a
dendriform algebra morphism ® : Sh"(KQ® V) — KQ® Sh;g (V), sending o ® v to itself. For
any ai,...,an €, v1,...,v, €V, in Sh¥(V):

(1 ®u1)... (A ®vy) = (a1 ®v1) < (2 ®v2) ... (0, ®vy)) .
Hence, an easy induction allows to prove that
V(1 ®v1) ... (n ®vp)) = (9 @Id®™ D)o . o (Id®" D Q@ ) (a1...an) vy ...0p.

As @ is injective, W is injective. ]

3 Operad of (2-dendriform algebras

We fix in this section an EDS (Q, «—, —, <, >).

3.1 Combinatorial description of the operad

Let us denote by Pq the (nonsymmetric) operad of {2-dendriform algebras. It is generated by
elements <, >.€ P(2), with a € , and the relations:

VYo, 5 €, <3 o(<a; 1) =<qep oI, <q<xp)+ <asp oL, >a=p),
>a O(I7 <ﬁ) =<g O(>a7])7
> o(1,>8) =>a-8 o(>acp: 1)+ >acp o(<axs, I).
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As we know from Proposition a combinatorial description of the free 2-dendriform algebra
on one generator, we obtain a combinatorial description of this operad:

Vn > 1, Pa(n) = KTq(n).

The composition is given by the actions of the products of K’E{”. In particular:

=Y, <=V <Y= Y@  se=YsuY= Y

The operadic composition can be inductively computed with the help of the following formula:

Tl\/TZO(Tllv"'le::) =T O(Tlla""Tiil) >a Tg+1 <p TZO(T1{+27""TI;)7
a7ﬂ

where T is a tree with ¢ internal vertices, T5 is a tree with k — ¢ — 1 internal vertices, and
Ti,..., T are trees.

Example 8. Here are examples of operadic compositions:

<a o(<p, 1) = B) <a Y = ?yﬁ%a,ﬁ<a) y(ﬂ%a,ﬁwz),
<o o(I,<g) = Y<a %5 _?>/ B),
>a 0(<g, 1) = B) >a Y = %
o(I,<g) = Y >4 ?/ﬁ)zw(a,ﬁ),
<o o(>p5,1) = \&(ﬁ) <o Y = M(ﬁ,a
<o o(l,>5) = Y<a\1§ﬁ)=i§{( . B),
>0 (>4, 1) = B) > Y = \<<(
oI, >p) = Y >4 \&ﬁ)=\12;(a<—f8,a<15)+\2<1<((a—>5,a>6).

3.2 Associative products

Proposition 21. Let m € Pq(2), written under the form

m:Zaa<a+Zba>a.

el a€e

Then mo (I,m)=mo (m,I) if, and only if, for any «, 5 € Q:

bobg = Z barbgr, aqag = Z agrag, (44)
¢ (a/,8)=(a,8) P (a’,8)=(a,B)

boag = Z bobgr, anbg = Z A/ Q.
p(a’,8)=(a, ) e (a,8)=(a,8)
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Proof. Indeed:

o(I,m)= )] aaag\%(a,ﬂ)—i- aab5§§/( )

a,Be) a,BEQ

+ Z babg \2<1<((aaﬁ,a>ﬂ)+\§;(a%ﬁ,a<lﬁ) + 2 baaﬁw(a,ﬁ),

a,Befd a,Be)

Z aaap té/aeﬁ,a>ﬁ) \%(ou—ﬁ,a<1ﬁ) + Z aabg\%(ﬁ,a)

»/BEQ a,ﬁEQ
+ )] baaﬁ% + >0 b bﬁ&( (@, B).
7669 a 659
Identifying, we obtain the announced equations. O

Corollary 22. If Q is nondegenerate, then m o (I,m) = m o (m,I) if, and only if, for any
a, B eQ:

ba—pbacp = babg, AaBlaxp = Gaags, (45)
bopaaxs = babg, aq—pbasg = anag.

In particular cases of EDS:

Proposition 23. 1. Let (2, %) be a group. In PEDS(Q,x,%); the nonzero associative products
are of the form
A Z <a + >a
aeG

where X is a nonzero scalar and G is a subgroup of (€2, %).

2. Let (H, ) be a group, K be a nonempty set and 6 : K — H be a map. In Pgpg#(u . K.0);
the nonzero associative products are of the form

2 A (Z (aa) T ><e<a'>m,a'>>v

a'eK aeG

where (Aos)arer s a nonzero family of scalars with finite support and G is a subgroup of

(H,*).
Proof. 1. In this case, becomes:

ba*ﬂba = bab,()’a GaxpAg = Aaag,
baxgbs = baag, AaxBla = Aabg.

We put G, = {a € Q,a, # 0} and G, = {a € Q,b, # 0}. At least one of them is not empty: let
us assume for example that Gy # . Let a € Gy. If 8 = e is the unit of Q:

ba*eba = bi = babe>

80 b = by # 0: e € Gy and for any a € Gy, by = be. If a, 8 € Gy, then:
ba*/jba = babﬁ # 0,

so a*fBeGy. Forany a e Gy, if f=a™t

beba = baby-1 # 0,
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so a~t e Gy: we proved that Gy is a subgroup of Q. If 8 € Gy, then
acbg = Genpag = a% # 0,

so B € Gy: G4 € Gy. Conversely, if € Gy,
beag = beugbg = b3 # 0,

so ag # 0: Gy,  G4. Moreover, as b, = bg for any 8 € ), we obtain that ag = b.. Putting
A =bg and G = G, = Gy, we obtain that

m:)\Z <o+ >q -
aeG

Conversely, for such a m, (45) is satisfied, so m is associative.
2. In this case, (45]) becomes:

b(g,61b(0(8") 251 x00r) = Diara)b(p,);
U a,a’)Ua=1%8,8) = Aa,a’)X(B,8):
baan(a14p,6") = D(a,an)b(s,67)
A(5,5)b(0(8) x5 1 rc0r) = Qo) UB,6)-
For any o/ € K, we put:
Ga(a') = {a€ H, a(,a) # 0}, Gy(a') = {a € H, bgar)ra,ar) # 0}
Let o' € K, such that G,(a/) # . For any a, § € G4(a/):

a(a7a/)a(57a/) = a(ma/)a(a_hﬁ’a/), a(,@,a’) = a(a—l*/&a/).

So a™! x 8 e Gu(a’). Hence, G4(c') is a subgroup of H. Moreover, there exists a nonzero scalar
aq such that for any a € Go(a'), a(q,0) = ao-
Let o/ € K, such that Gy(a’) # &. For any «, 8 € Gp():
b(@(a’)*a,a’)b(@(a’)*ﬂ,a’) = b(@(a/)*ﬁ—l*O(a’)—l*9(04’)*04,0/)b(@(a’)*ﬂ,a’)7
bo(aryeaar) = Dio(arysp=1aa0r)-
So 871 xa € Gy(a’). Hence, Gy(') is a subgroup of H. Moreover, there exists a nonzero scalar

bos such that for any o€ Gy(a'), bg(aryea,ar) = bor-

Let a € Go(o'). Then Gq4(a/) # &, so is a subgroup of H, and the unit e of H belongs to
Gq(d'). Then:

0 # A(a,a) (e, ) = a(e,a’)b(G(a’)*a,a’)‘

Therefore, o € Gp(’): we obtain that G,(a/) € Gy(d).
Let 8 € Gy(a'). Then Gy(a') # & is a subgroup of H, and e € Gy(c’). Hence:

0 # b(g(ar),a)b(o(a)B,0’) = D(o(ar) ) A0 ()~ 120(a’)xB0 -

We obtain that § € G,(). Finally, for any o € K, Go(a/) = Gp(a/). We denote this set by
G(d).

If G(o/) # &, we obtain, for a = = e:

aa/ba: = Qo' Qg -
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Consequently, b, = a,. We denote by A, this scalar.

As m # 0, at least one of the G(o) is nonempty. We consider
K' ={d e K, G(d) # &}.
Let o/, € K'. For any a € G(d), for 8 = e:
AarG(a-1,81) = A Agr # 0.

Hence, a=! € G(B'). As this is a subgroup, a € G(f'), and G(¢/) < G(B'). By symmetry,
G(d/) = G(P'). We denote by G this subset. Then:

m = Z )‘ Z (a,0) + > (0(a/)xa,0f) = Z )\a’ Z <(o¢,o¢’) + >(9(a’)*o¢,o/)7

a’eK’ aeG a’eK aeG
where we put A\ = 0if o/ ¢ K. Conversely, for such a m, is satisfied, so m is associative. [

Ezxample 9. 1. If H is a null group, we obtain the case of EDS(2). The associative products
are of the form

Z Aa(<a + >a),

ael)

where (A\q)acq is family of scalars with finite support.

2. If K is reduced to a single element, we obtain the case of EDS* (), x,w). The associative
products are of the form

A <o+ >uras
acH

where A is a scalar and H is a subgroup of (2, *).
Proposition 24. Let Q be an EDS. We suppose that there exist g, By € €2 such that:
Ya, 5 € €, a<af = Py, a>f = a.
The associative products of Pq are of the form
A(<gy + >ag)s
where X\ is a scalar.

Proof. Let m be an associative product. In this case, (44]) becomes:

Z ba/blg/ if 8 = ay, Z Qo ap if 8= o,
bab,B = { o—>pf'=a Aaap = { o/—f'=a
0 otherwise; 0 otherwise;
D1 babg if B = Bo, > awag if B = ag,
baa/g =1 df'=a aabﬂ = { o/—>p'=a
0 otherwise; 0 otherwise.

In particular, if o = 8 # ag, b2 = 0, so b, = 0. Similarly, if 8 # B, ag = 0. By @ ., .

and..
Qg < g = ap — Qg = Qp, Bo < Bo = Bo — Bo = Po-

Hence, bagag, = b2, S0 bay = 0 or bay = agy; agybay = a%o, so ag, = 0 or by, = ag,. Finally,
ag, = bay, = A and m = A\(<g, + >q,). The converse is trivial. O
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Ezxample 10. Let us give the associative products in the 24 four cases of cardinality 2. Here, A,
w and v are scalars.

Al (<a + >4) A2 AM<a + >4)

B1 AM<q + >4q) B2 AM<q + >a), 1(>a — >p)

C1 AM<q + >4q) C2 AM<q + >b)

C3 AM<a + >a), u(<p + >p) C4 A<p + >4)

C5 A(<p + >p) D1 AM<a + >a)

D2 AM<a + >a), (<a — <p) E1l A<a + >4)

E2 A<q + >p) E3 | M<q + >a), u(<p + >p), v(<q — <p)
F1 AM<q + >4) 2 AM<q + >p)

F3 AM<q + >4) + p(<p + >p) F4 | M<q+ >a), 1(<aq + <p + >4 + >p)
F5 | XM<q + >p),V(<q + <p+ >4 +>p) || G1 AM<a + >4)

G2 AM<q + >b) G3 | M<q + >a), (<p + >p), V(>4 — >p)
H1 AM<q + >4q) H2 | MN<q+ >a),pt(<a + <p + >a + >p)

3.3 Dendriform products

Proposition 25. Let <,>¢€ P(2), written under the form

<=Zaa<a+2ba>a, >=an<a+2da>a,

a€el a€el) a€eld a€eld

Then (<, >) satisfies the dendriform relations
<o(<,I)=<o(I,< + >), <o(>,I)=> o(I,<), >o(l,>) =>o(< + >,I)

if, and only if, for any o, 5 € Q2

babﬁ = Z ba/(bﬁ/ + dgr), aa(aﬁ + Cﬁ) = Z Ao/ Qg (46)
o (o ,8)=(cx,8) —(o/,f")=(ev,8)
baaﬁ = Z ba/(bgl + dg/), aa(bg + dg) = Z Ao/ Qg
pe(a',8")=(a,8) o (o ,8)=(ax,8)
bacg = 0,
0= > derbgy, bods = > derbgy,
(/") =(a,8) (/") =(a,B)
0= Z Co/ Q1 Calp = Z Ca’apr,
(/") =(a,B) o (a,8)=(c,8)
CaCB = Z (aa/ + Co/)C,B/a da(bﬁ + dﬂ) = Z da/dgl,
o (a/,8")=(cx,8) o (a,8")=(a,B)
Cad/g = Z (aar + Ca/)65r, da(aﬁ + Cﬁ) = Z da/dg/.
o (a,f)=(a,8) p(a,f")=(a,3)
Proof. By direct computations in the operad Pgq, as for Proposition [21] O

Note that if (<, >) satisfies the dendriform relations, then L/ =< + > is associative:
Wwo (w, ) =wo (I,w).

In the nondegenerate case, the knowledge of the associative products of P2 induces the knowledge
of all dendriform products:
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Corollary 26. Let Q) be a nondegenerate EDS. For any associative product

m = Z Qo <o + Z da >a€ P<2)7

ael ae

the only pairs of dendriform products (<, >) such that < + >= m are the following:

(m,O), (Ovm)’ (Z Ao <a, Z do >a> .

ael) ael)

Proof. Let (<, >) be a pair of dendriform products and m =< + >. As p. and ¢_, are bijective,
gives (third, fourth fifth and eighth rows, first column) that:

Va, 8 € Q, bacg = 0, dobg =0, caag =0, cabg = 0.

If one of the bg is nonzero, then for any o € €1, ¢, = dy = 0, so >= 0 and <= m. Similarly, if
one of the cg is nonzero, then for <= 0 and >= m. If for any 3 € 1, bg = cg = 0, then:

<=Zaa<a, >:Zdo¢>a- (47)
ae) ae)

Conversely, if m is an associative product, written under the form:

m = Z o <o +do >a,

aef)
then obviously, (0,m) and (m,0) are pairs of dendriform products. If we define (<, >) by ,
that is to say by, = co = 0 for any « € €, then implies , so (<,>) is dendriform. O
3.4 Koszul dual

When (0 is finite, the operad Pq is a quadratic algebra, finitely generated. By direct computa-
tions, we obtain the Koszul dual of Pq:

Proposition 27. Let Q2 be a finite EDS. The Koszul dual 73}2 of Pq s generated by the elements
—Ha, Fa, a € Q, with the relations:

Va, f € Q, —g O(_|ouI) =—ap O(L _|a<1ﬁ) =—a—p O(Ia |_a|>ﬁ)a
s O(Iv _|Oé) =—a o(l_ﬁvj)v
Fa O(I |_[3) =la-p O(|_al>,6’7[) =qp O<_|a<1,87])'

Definition 28. Let (2, «—, —,<1,>) be an EDS. We consider the following linear map:

{ KO? — KO? x KQ?
Pl (@ B) — (o, B), p(, B)).

The dimension of the kernel of ¢ is called the corank of @ and denoted by coRk(Q2). We shall
say that Q0 is weakly nondegenerate if coRk(Q2) = 0.

Ezxample 11. 1. If ¢ or ¢_, is injective (which happens if Q is nondegenerate), then (2 is
weaky nondegenerate.

2. If (9,«,—) is a diassociative semigroup, then EDS(Q), «—, —) is weakly nondegenerate.
Indeed, in this case,

(p(()é,ﬂ) = ((a - /8;6)7 (a7_) 575))7

So ¢ is injective.
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3. Here are the coranks of the 24 EDS of cardinality 2.

Al |3 A2 |1| B1|2|B2|0
Cl1|2]C2(2)|C3|0|C4]|2
Ch|2|(|D1|2|D2|0| E1|2
E2|2(|E3|0| F1|1|F2]|1
F3|0| F4|0||F5]0| G1|2
G2|2||G3|0||H1|2|H2|0

Proposition 29. Let (2, <, —,<,>). Then:
dimg (P4(3)) = 3% + 2coRk(Q).

Proof. For any mM), m® e {H, +}, we shall consider the following subspaces of the free operad
generated by o, —o, With a € €

L(my,mq) = Vect (m&l) o (m(;),l),oz,ﬂ € Q) ,

R(mi,ms) = Vect (m(l) o (I, m(;)),a,ﬁ € Q) .

(0%
According to the form of the relations defining 775!):

L(F,+)® L(+,4) __ R(H,4)® R(H,+)

Loy _

Ph(3) = Rl ) @ = o @ S ),
with:

El = VeCt(}_ou—,B O(_|o¢<B>I)_ |_oz—>,3 O(|_al>67[)7 (Oé,ﬁ) € 92)7

FEy = Vect(%w_ﬁ O(I, 4a<15)f 4@—’5 O(I, Fa>ﬁ)a (Oé,ﬁ) S 92)
Hence:

dimg (P,(3)) = 5|Q* — dimg (E1) — dimg (E»).

By definition of ¢, dimg(F;) = dimg(Es) = dimg(Im(p)) = |2]* — coRk(f2), which gives the
result. O

Theorem 30. Let € be an extended diassociative dialgebra.
1. If Pq is Koszul, then € is weaky nondegenerate.

2. If Q is nondegenerate, then Pq is Koszul.

Proof. We put w = |9].
1. Let us assume that Pq is Koszul. The Poincaré-Hilbert formal series of Pq is:

o0
1—+1—-4wX 1
_ : _ 2 2v3 _
F = E dimg (Po(n)) X" = X + 2wX* + bw*X +...—T—;.

k=1

We denote by G the Poincaré-Hilbert formal series of 73;2. As Pgq is Koszul:

SO:

X 0
-1
G= g mp = 2 XN

n=1

so dimg (Ph(3)) = 3w?. Therefore, coRk(2) = 0.
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2. We use the rewriting method of [2] to prove that 735 is Koszul. The rewriting rules are
the following;:

—g O(HOM I) Fa—p O(Fa>ﬁa I)
—a—p o({, |_Cvl>ﬁ) Fa o(Z, l_ﬁ)
40“—5 O(I’ 40l<‘,3) Fou—ﬂ O(4a<ﬁa I)

=g o(Fa, I) —ta o(I, Hp)

There are 14 critical trees, giving 14 diagrams which turn out to be all confluent. Let us describe
two of them.

=y o(Hg o(Ha, 1)) ——————— =y o(Hap °(, Ha=p))

| |

4597 o(—|0“ _|5<17) 4(&%,3)%7 O(L _|(a<—ﬁ)<1’y O(_|a<157 I))

T

4041 O(I’ 451 O(I7 4’}’1)) 4012 O(Ia 4,32 O(I7 4’}/2))

with:
ap =a <« (B <7), g = (@« f) <,
pr=a< (B« "), B2 =(a<f) « ((a < B)=y),
7 =p<7, Y2 =(a<B)<((a < B)=).

By 7 @ and 7 (0417,61,")/1) = (a27/827’72)~

We denote the inverse of p. by ¥ = (YL 2 ).

Fy o(—|5 o(_|047[)) =y o(_|aHB O(I, _|a<6))
F1 (v,8) ©(Has Fy2 (1,8)) Fy1 (raep) O Fy2 (vaep) ©(Haxp, 1))

| |

Fay o7, 61 o([, |_'yl)) Fas o1, 5, o({, l_’yg))

with:
aq =¢<1_(¢<1_(%5)a04)» (€3] =’¢(1_(’)’,Oé<—ﬁ),
B =Vl (e (y,8), ), B2 = VL (W2 (y,a — B),a< fB),
a! :wi(f)/vﬁ)? ')’2=¢L(¢i(’)’a@<—5)aa<‘ﬁ)

By definition:
((10<— ®Id> o (Id®§0<—)(a27/827’72) = (7705 <~ /Baa<‘ B)

Let us compute
(SOH ®Id) © (Id®‘:0e)(041a51a71) = (0/17537’71)
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We obtain, by :

oy = a1« (B m) = (a1« B1) v =iy, 8) < ¥2(v,8) = .
Moreover, by (6)):
Bi=a1< (b —m)= (=) — (a1 i) =m) =a— @L(y,0) 29 (y,8) = a B
By (7):
Nn=biay=(@<b)<((ar—B)am=a<x@(y,8)<¢Z(y,8) =a<p.

So:
(pe ®1d) o (Id® p)(a1, B1,71) = (p ® Id) o (Id ® ) (2, B2,72)-

As P is injective, (0417517’}’1) = (a2752772)' [

Example 12. The first point implies that the operads associated to the EDS Al, A2, B1, C1, C2,
C4, C5, D1, E1, E2, G1, G2 and H1 are not Koszul. The second point implies that the operads
associated to the EDS F2, F3, F4, F5, H2 are Koszul. We do not know if the operads associated
to B2, C3, D2, E3 and G3 are Koszul or not.

4 Combinatorial description of the products

4.1 On typed trees

Definition 31. Let k > 0, ag,...,ar € Q, f1,...,0t € Qu {I} and T1, ..., T} € Q, with the
convention that B; = & if and only if T; = 1. We put:

lif k=0,
R(OQ,__,’O%)(ﬁl ® Tl, - ,Bk ® Tk,’) = Ty \/ R(ag,...,ak)(ﬁ2 ) TQ, . ,ﬁk @Tk) ’Lf k> 2,
Q1,02
lif k=0,
Liag.on)(BL®TY, ..., B @ Ty) = Liagnan) (B2 @ T, B ®T) \/ T1if = 2.

a2,

Let us denote by Lj the ladder of length k:

Ly =

®
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Roughly speaking, R(a,, .. a,) (B1®T1, ..., By ®Tk), (respectively La,, . ) (B1&T1, ..., B ®T)))
is obtained by grafting T; on the vertex i of Ly for any i on the left (respectively on the right).
The type of the edge from ¢ to the root of T; is §;; the type of the root between the vertex i — 1
and the vertex ¢ is «; for any ¢ > 2.

Note that any tree T" in T can uniquely written under the form
T = Riag,..ap)(B1 T, .., B @ Tk).
This is the right comb decomposition of T'. It can also be uniquely written under the form
T =Ligy,.ap(B1®TY,.... 5 ®T)).
This is the left comb decomposition of T
Definition 32. Let k,l > 0. A (k,l)-shuffle is a permutation o € Sy such that
o(l) <...<o(k), ok+1)<...<a(k+1).

The set of (k,1)-shuffle will be denoted by sh(k,l). If o € sh(k,1), then o=1(1) € {1,k + 1}: we
put

sh_(k,1) = {o e sh(k,1),071(1) = 1}, sh. (k,1) = {o e sh(k,l),07 (1) = k + 1}.

Notations 2. Let k,1 > 0,0 € Sh(k),l), gy, 1 € B, ., Bral € QI_I{@} and 11, ..., Tk €
), with the convention that 8; = ¢ if and only if T; = 1. Let

ez k) Br®T1, -, B @ Thes Brs1 @ Thg1s - -+ Bt @ Thtt)

be the typed tree obtained in the following process: starting form the ladder Ly,

e For any 1 <i < k +1, graft T,-1(;) on the vertex 4, on the left if o~ 1(i) < k, and on right
otherwise.

e The type of the edge between the vertex i and the root of Tj,-1(;) is SBy-1(;).
e The type of the edge between the vertex ¢ — 1 and ¢ is «; for any ¢ > 2.

Notations 3. Let k,l = O,with k +1 > 1, and o € sh(k,l). We define a map DEL. Qk+-1
Qk“rl*l:

e Ifk=0o0r!=0,then 0 = Idg;.We put Df—’l = Idqr+i-1.
e Otherwise:
— If 0 € sh.(1,1), then o = Id;;1, and
DYoo, ... apyr) = (o, ... ag).
— If o € sh_(k,1), with k > 2, let o’ be the following permutation:

o =((2)—1,...,0(k+1)—1)esh(k—1,1).

If o’ € sho(k —1,1), for any (s, ..., o) € QFFHL
L _ pe-L
o (o, apy) = (@2 < apy1, Dy (a3, Q2 < Qg1 -+ Qg) ) -
If o’ € sho (k — 1,1), for any (as,...,q4) € QFFL
Dkl _ pe-L
pe (ag,...,akH) = |02 = Qpy1, Vg (ag,...,ak,ag >ak+1,...,ak+l) .

38



— If o esh.(k,1), then o = (2,3...,k+1,1) and
ij’l(ag, e 704k+1) = (Oék+1,a2, - ,ozk).

— If o € sh. (k,1), with [ > 2, let ¢’ be the following permutation:

/

o =(c(1)—1,...,0(k)—1,0(k+2)—1,0(k+1)—1)esh(k,l—-1).

If o’ € sho(k,l — 1), for any (s, ...,y ) € QL
k—1,1
Dﬁvl(az, e Q) = (Oék+1 —agq2, D, (Q2y ..oy Oy Q1 < Q2 - - ,akH)) .
If o’ € shy (k,1 — 1), for any (s, ..., o) € QFFL
k-1,
D(’;’Z(OQ, e Q) = (ak+1 — agqo, Do (g, 0, Qg1 B Qpga, - ,Oék+l)) .
Example 13.
2,1 1,2
D(i23)(a2’a3) = (042 a3, 02 < Oég), D(élg)(OQ,Oé?)) = (042 “— (a3, 0p <7 Olg),
2,1 1.9
D(1’32)(042,043) = (a2 — Qasz, a2 >O‘3)7 D(élg)(OéZ,OéS) = (OQ — (3, (9 >a3)’
2,1 12
D(231)(Oé2,043) = (043,042), D(123)(O(27043) = (042,043).

Proposition 33. Let us consider two elements of Tq:

T = Ry,..an)(BL®T1,. .., B @ Ty),
T" = Loy gran ) Brr1 ® Thg1s - -+ Bt ® Thrt)

Let a1 € Q). Then:

D(’i’l PRERS)
T<ak+1 T = Z 15 (2 akH)(ﬁl@Tb-"7ﬂk®Tk;Bk+l®Tk+17"'76k+l®Tk+l)7
oesh (k,l)

k,l
T, T'= ). T2 2 (5 @ T, B ® Thi Brest ® T -+ Bt © Tis)-
oeshs (k,l)

Proof. If k = 0, observe that:

sh_(0,1) = &, sh. (0,1) = {Id;},
| <, T =0, | >0, TV =T'.

So the result is immediate if £ = 0. It is proved in the same way if [ = 0. We now assume that
k,l = 1, and we proceed by induction on k + [. There is nothing more to prove if £ + [ < 1.
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Otherwise, by the induction hypothesis, putting S = R(a,, . ) (B2 @ T, ..., Bk @Tk),:
T < T'=T1 \/ S <ap, T’

B1,02
=T\ (F<apmor TV+T1 (S >asmapn T')
B1,02¢ag 1 B1,02— k11

k—1,1
_ Z Tl \/ TUDU (043,-~,042<1ak+17~~ak+l)(52 ® T27 L 7ﬁk+l ® Tk+l)

oesh<(k—1,1)  pr,a2<agt1

k—1,0,
+ Z T \/ T)° (ad""’a2>ak+1""ak+l)(52®T27-~-75k+z®Tk+z)

oeshy (k—1,0)  Br,0e—ap41

DENag,.agy)
= Z 1%° (BL®T1, ..., Byt @Thyq)

cesh (k—1,)

DFY(ao,...,
+ Z 17 (02 akm(ﬂl T, Bt @ Thyi)
oeshy (k—1,1)

Dg' (02,00 41)
= 2 TO' (/81®T17"'76k+l®Tk+l)7
oeShk,l)
where @ = (1,0(1) + 1,...,0(k +1—1) + 1). The formula for T" >, ., 7" is proved in the same
way. ]
The formulas for D! can be simplified when <« and = are trivial:

Proposition 34. Let (Q, <, —) be a diassociative semigroup. We work with the EDS EDS(Q).
Let k,1 >0, o € sh(k,l), and aa, ..., a4 € Q. We put:

1. Forany2<i<k+I:
a1 if i < o(1),
Lo(i) =3\1% ifa(p— 1)
& ifi>o(k);
Ry(i) =R apifolp—1)<i<o(p), withk+2<p<k+]I,
g ifi>o(k+1).
2. Forany2<i<k+/1,
Dy = [Fol9) = Roli) 070 <,
Lo(i) = Ro(i) if o= (i) > k,
with the convention o — & = J — a = « for any a € Q.

Then:
DEl g, ... aprr) = (Dg(2),..., Dok +1)).

Proof. Induction on k + [. O

Remark 6. Working with 2 reduced to a single element, we obtain the dual description of the
coproduct of the Hopf algebra YSym described in [1].

Corollary 35. Let Q2 be a set. We work in EDS(Q). For any k,1 >0, for any o € sh(k,!):
D(l;’l(ag, ce 7ak‘+l) = (040—1(2), ce ,OéU—l(k+l)),
with the convention oy = Q1.

Proof. Let 2 < i < k+1. If 071(i) < k, then D, (i) = L,(i) = Ag-1(s)- 1f o~1(i) > k, then
Dg(i) = Rg(i) = Oégfl(l-). ]
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4.2 On typed words

Remark that: ”
KQ® Sh (V) = P(KQ)®" @ Ve
n=1

Proposition 36. Let € be an EDS, and V be a vector space. For any ao, ..., apy € 2, for any
Vlyeooy Ukl € V:

ag ... QUL ... Vg <ak+1 ak+2...ak+l®vk+1...vk+l

= Z D?I(OQ? B ak+l) ® Vo=1(1) - - - Vo=1(k+1)>
oesh (k,l)

ag...0 QUL ...V >ak+1 ak+2...ak+l®vk+1...vk+l

= Z Dg’l(ag,. . .,akH)@vUﬂ(l) oo V=1 (k1)
oeshs (k,l)

Proof. Similar as the proof of Proposition O

5 Hopf algebraic structure

5.1 Existence of dendriform bialgebraic structures
Let us recall the notion of dendriform bialgebra introduced by Loday and Ronco [9} 10, 11, 12]:

Definition 37. A dendriform bialgebra is a family (A, <,>,A), where (A, <, >) is a dendriform
algebra, (A, A) a coassociative coalgebra (not necessarily counitary) such that, for any x,y € A:

Alz<y)=2y+2 <yz"+2/@2" y+ax <y @y +2' <y @2" -,
Alz>y)=yQ@r+2 >yR2"+y @z y" +z>y @y +2' >y 2",

where - =< + > is the associative product associated to (A, <,>). We use Sweedler’s notations
Aa) = d ®d" for any a € A.

Proposition 38. Let € be an extended disasociative semigroup. If there exists a nonzero graded
Q-dendriform algebra A, with Ag = (0), with a homogeneous coproduct A making KQ ® A a
dendriform bialgebra, then p— and p_, are injective.

Proof. Let a be a nonzero element of A of minimal degree n. As n > 0, necessarily, for any
a €,
Ala®a) = 0.

Let o, 3,0/, B € Q, such that v (o, ) = p(a’,8"). Then, in KQ® A:
a®a<fRa=a—fRa<ppa=0d «fR®a<yapa=ad®a<pf Ra.
Hence, by the compatibility between A and <:
Ala®@a<f®a)=(a®a)® (fRa) =AldQ@a<f ®a)=(d/®a)® (' ®a).

Asa # 0, (o,8) = (/, ). Using the compatibility between A and >, we obtain that ¢_, is
injective. O

Proposition 39. If ) is a nondegenerate EDS, there exists a unique coproduct A on KQ@KTQJF,
making it a dendriform bialgebra, such that:

Va e Q, A(a@Y)zo.

Moreover, this dendriform bialgebra is graded by the number of internal vertices.
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Proof. If € is nondegenerate, by Proposition KQ @K’E]Jr is freely generated, as a dendriform
algebra, by the elements o ® Y. From [111, @, [10L 12} 1], such a A exists and is unique. O

Proposition 40. Let Q2 be a nondegenerate EDS and let V' be a nonzero vector space. The
following conditions are equivalent:

1. There exists a unique coproduct on KQ & Sh;g(V), making it a dendrifrom bialgebra, such
that for any v eV, for any a € Q, A(la®v) = 0.

2. Q is commutative.

Proof. 1. = 2. Let (a, B) € Q2. As € is nondegenerate, there exists a unique (o/, ') € Q2, such
that (o, 8) = p_(c’,5"). Let v be a nonzero element of V. By construction of (¢, 8):

aQu<fBRu=a—fBRa<fw) =d - Q=) =dQv>p Qu.
Hence:
Ala®v<BQ) = (a®v)® (B®v) = Ald Qv > Qv) = (8 Qv)® (¢/ ®v).
Asv #0, (o, 8') = (B,a), so, by definition of (o, 8):
Boa=a<p Bea=a<f.

Therefore, ) is commutative.

2. = 1. By Proposition , KQ® Shg(V) is freely generated, as a commutative dendriform
algebra, by KQ® V. From [I], 11}, [4], such a A exists and is unique. O

5.2 Combinatorial description of the coproducts on typed trees

Let us generalize the combinatorial description of the coproduct given in [8]. We work with
KQ ® ’7}; where €2 is a nondegenerate EDS. We shall use the notations of Proposition @

Notations 4. 1. For any a € Q, let ¢}, and ¢, : @ — Q defined by:
va(B) =B a, pa(B) =arp.

2. Let T e 7}; and let ag € 2. Let us choose an internal edge e of T
(a) We denote by T, the typed plane binary subtree of T" formed by all the vertices of T'
which are born from e.

(b) Let ey,...,ex be the internal edges on the unique path in 7' from its root to the
extremity of e; in particular, e, = e. For any ¢, let a; be the type of ¢;, and:

o M, = <« if ¢; is a right edge;
o B, = if ¢ is a left edge.
We then put:
Te(an) = ohEo... 0 oM (ap) ® T, e KO KT
Definition 41. Let T € 75“.
1. A cut of T is a nonempty subset ¢ of the set of internal edges of T'.

2. A cut of T is admissible if any path in the tree meets at most one element of c. The set
of admissible cuts of T is denoted by Adm(T"). Note that if ¢ is an admissible cut of T, its
elements are naturally ordered from left to right, and we shall write ¢ = {e1 < ... < eg}.
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8. Let ¢ be an admissible cut of T'. The typed plane binary subtree obtained from T by deleting
T for any e € ¢ is denoted by R(T).

Proposition 42. Let Q) be a nondegenerate EDS, and let T € 7;{ and o € Q. Then:

Ala®T) = 2 (@@ RYT)) @ (Tey () - ... - Tey (),
c={e1<...<ep}eAdm(T)

where - =< 4+ >.

Proof. First step. Let us first prove that, for any admissible cut ¢ € Adm(T), there exists a tree
te(a® R(T)) obtained from a ® R(T") by an action on the types of the internal edges and on
«, such that:

A(a®T) = > te(a® RT)) @ (Toy () - ... - Tp, ().
c={e1<...<er}eAdm(T)

For any trees 11,715, for any «, 5 € Q:
a®1\/ Tz =B=1® Y <By®D

Dy
04®T1\/|:6>04®T1 >ﬁ~a®\(,
B?@
a®T1\/T2:6>a®T1 >(6~a)h’y®\(<a<’y®Tg.
By

Remark that if T = T \/ a,p T2, then any admissible cut ¢ of T' is of the form ¢; L ¢z, where ¢; is
either an admissible cut, or the empty cut, or the total cut (which means that R°(T) = ¢F), of
ci; at least ¢; or ¢y is not empty. Then t.(a ® R°(T)) is inductively defined by:

o If c is total, then t.(a ® R°(T)) = I ® 1.
o If ¢ is empty, then t.(a @ R°(T)) =a®T.
o If ¢ = ¢; U ¢y, then:

(@ @RT)) = 1e,(Bra®@T) > (B~ a) ~v® Y < i0,(a1yQT).

Using the compatibilities between the dendriform products and the coproducts, we obtain the
result by induction on the number of internal vertices of T

Second step. Let us prove that t.(a ® R°(T)) = a ® R°(T) by induction on the number n of
internal vertices of T'. It is obvious if n = 1. Otherwise, we put T = T} \/ T5, and ¢ = ¢1 U co.

By
Then, using the induction hypothesis on 77 and T5:

(@@ R(T)) = 16, (Bra@R(11)) > (B~ ) ~4® T < toy(c <y ® R (1))
=Br»a@RN(T) > (B~a) ~7® Y <a<y®R2(Ty)
= (Bra) > (B~ a) =~ 7) @R (1) > (ra)e((Bva)y) T <47 ®R2(T).
By (34):
(p®@Id)o (Id® ) = (r@Id) o (Id® ¢ ) o (1 ® Id) © (o ® Id),
so, for any o/, ', € Q:

(0 = (8 —~9),d =8 —~7),8«)=((a" = p)~+,d =5, (a - p) ).
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For o/ = B»a, B/ = —~ a and ' = v, we obtain:

(Bra)—>((B~a)~7)=(Bra)—>(f~a)~y=a—7,
(Bra)e=((B~a)~v)=(Bra)e(B~a) =0

Hence:
(@@ R(T)) = a ~y@ R (TY) >3 Y < a«y® R2(Ty)
— 0=y @RI \/ 1< 00y ® R(T))
B,
= (@~ 7) — (@) @RUT1) \/ I <(arry)a(aey) R ()
B?@
= a®R(Ty) \/ 1 <y R*(Ty)
B,
= a®RY(T1) \/ R*(T3)
Bry
=a® RYT).
Hence, t.(a ® R°(T)) = a® R°(T) for any admissible cut of any tree T'. O

Remark 7. Working with 2 reduced to a single element, we obtain the dual description of the
product of the Hopf algebra ) Sym described in [IJ.

Ezample 14. 1. Let (£, <, —) be a diassociative monoid. We assume that EDS(Q, <, —) is
nondegenerate. In this case, for any a, g€ Q, ¢35 (5) = = (8) = a. Hence, for any edge e
of a given tree T, of type ae, for any ag € {2:

Te(Ot()) = 0. ®T,.

2. Let (2, %) be a group. In EDS*(Q, ), for any a, 5 € Q, ¢5(8) = ¢=(8) = f * a. Hence,
for any edge e of a given tree T', of type ae, for any ag € 2:

Te(Od()) =a0*...*ak®Te.

5.3 Combinatorial description of the coproducts on typed words

Proposition 43. Let €2 be a nondegenerate commutative EDS. We use the notations of Proposi-
tion @ In the dendriform bialgebra KQ®Sh (V), for any aq, ..., an € Q, for any vy, ..., v, € V:

Alay...an®@uvy...vp)

n—1
= Z (Oél...()éi®’l)1...’l)i)®((a1< ...<ai+1)ai+2...an®vi+1...vn).
=1

Proof. We work with the Q2-dendriform algebra A of Q-typed plane binary trees which internal
vertices are decorated by V. All the results presented for nondecorated trees can be extended to
this context. For any v € V', we denote by Y(v) the plane binary tree Y which unique internal
vertex is decorated by v. By freeness, there exists a unique 2-dendriform algebra morphism ®
from A to Sh¢,(V), sending Y(v) to v for any v € V. It naturally induces a dendriform algebra

morphism from KQ®A to KQ®Sh{, (V), also denoted by ®. For any v € V, any a € £, a®Y(v)
is primitive in KQ® A, and a®uv is primitive in KQ@Sh;g (V): this implies that ® is a dendriform
bialgebra morphism.
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Let us introduce some notations. For any n > n and «ag,...,a, € Q, Ry (a2...qay) is
inductively defined by:

R1=Y, Rn(ag...an)zl\/Rn_l(ag...an) if n>2.
[ Ne%}

Note that the underlying plane binary tree of Ry (as...,) is a right comb. For example:

RQ(O{Q) = ?1/(042), Rg(a2a3) = \?1>2/(O[2,O[3).

For vy,...,v, € V we denote by Ry (az...apn;v1...0,) the Q-typed plane binary tree by giving
the n internal vertices of Ry, (o ... ay,), naturally ordered starting from the root, the decorations
Vly.-.yUn.

By definition of the products on trees:

(ahﬁ)@)Y(v) < (@<«B)®Rp(ag...an;v1...0,)
= (Oé i ﬁ) A (O‘4 5) ® Y(U) <(ar\ﬁ)<1(a<5) Rn(OQ < Q1. -'Un)
= a@Y(v) <g Rp(ag...on;v1 ... 0p)

=a®|\/Rn(a2...an;v1...vn)
@76

=a® Ryi1(Bag...apn;vvr ... 0p).
An easy induction proves that:
Pl @ Ry ...an;vi...v,)) =1 ...0p QU1 ... 0.
The admissible cuts of R,, are the cuts of a single internal edge: hence, by Proposition

Ala; ® Ry(ag ... ap; vy ... v,))

= (1 @ Ri(vg...ci3v1...0;)) ® (gp?xi“ o...0p5, (1) @ Ry—i(aig2...0n30vig1...Vp))

=1
n—1
= (Oél ®Ri(a2 R e 73V 'Uz)) ® (041 <. 4011 ® Rnfi(ai+2 R0 7SS 01 T R ’Un))
i=1
The result is obtained by application of ®. O
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