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INTRODUCTION

G-protein-coupled receptors (GPCRs) are allosteric molecules in equilibrium with many different conformational states [START_REF] Bond | Physiological effects of inverse agonists in transgenic mice with myocardial overexpression of the beta 2-adrenoceptor[END_REF][START_REF] Samama | A mutation-induced activated state of the b2-adrenergic receptor. Extending the ternary complex model[END_REF]. GPCRs adopt at least one inactive (R) and several active (R*) states [START_REF] Alves | Direct observation of G-protein binding to the human delta-opioid receptor using plasmon-waveguide resonance spectroscopy[END_REF][START_REF] Baneres | Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy[END_REF][START_REF] Ghanouni | Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor[END_REF][START_REF] Okada | Activation of rhodopsin: new insights from structural and biochemical studies[END_REF][START_REF] Swaminath | Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states[END_REF]. R* states can be reached, even in the absence of agonists or mutations (called here basal constitutively active R* or R*basal), whereas chemically different ligands can stabilize different R*s. Partial agonists may stabilize a specific receptor state different from the R* of full agonist. For example, using circular dichroism difference spectra of the purified 5-HT4 receptor, we have previously found that free (or neutral antagonist-occupied), agonist-occupied (partial or full agonist) and silent (inverse agonist-occupied) receptors involved different arrangement of the e2 loop [START_REF] Baneres | Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy[END_REF]. Inactive R state of family A GPCRs is generally not the equivalent to the "silent" state of the cis-retinal-rhodopsin receptor complex called the ground state (Rg) [START_REF] Palczewski | Crystal structure of rhodopsin: A G protein-coupled receptor[END_REF][START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF]. Recent insights into the b2-adrenergic receptor (b2-AR) structure indicate that, even in the presence of the partial inverse agonist carazolol, this receptor is certainly not under the Rg state and adopts a structural feature of the R*s (a relatively open "ionic lock") [START_REF] Cherezov | High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor[END_REF][START_REF] Rosenbaum | GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function[END_REF]. Therefore, the Rg state may only be reached with full inverse agonists such as the cis-retinal and the R state may be, in some receptors, already a R* [START_REF] Palczewski | Crystal structure of rhodopsin: A G protein-coupled receptor[END_REF].

One of the main questions in GPCR molecular pharmacology is to understand the structural arrangements of the 7 transmembrane (TM) helices that occur to stabilize either Rg or the different R*s. Notably, some main arrangement and rearrangement events during activation seem to be common, at least in family A GPCRs [START_REF] Kobilka | G protein coupled receptor structure and activation[END_REF][START_REF] Ruprecht | Electron crystallography reveals the structure of metarhodopsin I[END_REF][START_REF] Schertler | Structure of rhodopsin and the metarhodopsin I photointermediate[END_REF][START_REF] Smit | Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity[END_REF].

The recent crystal structure of the ligand-free opsin, which contains several features characteristic of R*s [START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF], has shown that the intracellular part of TM6 is tilted outwards by 6-7 Å, while TM5 moves towards TM6 by 2-3 Å. In addition, conformational changes occurring to generate either Rg or R* states are accomplished by rearrangement of side chains forming different networks of interactions between helices [START_REF] Rosenbaum | GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function[END_REF]Shi et al., 2002;[START_REF] Smit | Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity[END_REF]. The structure of metarhodopsin I by electron crystallography [START_REF] Ruprecht | Electron crystallography reveals the structure of metarhodopsin I[END_REF][START_REF] Schertler | Structure of rhodopsin and the metarhodopsin I photointermediate[END_REF], experimental studies of rhodopsin [START_REF] Lin | Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state[END_REF], as well as computer simulations associated with mutagenesis of b2-adrenergic (Shi et al., 2002), 5-HT2A [START_REF] Visiers | Three-dimensional representations of G proteincoupled receptor structures and mechanisms[END_REF], CB1 (McAllister et al., 2004) and histamine H1 receptors [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF] have shown that W6.48 of the conserved CWxPFF motif of TM6 undergoes a conformational transition, from pointing toward TM7 in the inactive state, to pointing toward TM5 in the agonist-induced R* [START_REF] Ruprecht | Electron crystallography reveals the structure of metarhodopsin I[END_REF][START_REF] Schertler | Structure of rhodopsin and the metarhodopsin I photointermediate[END_REF]. The side chain at position 3.36 has also been suggested to act as a rotamer toggle switch simultaneously with W6.48 in the histamine H1 and cannabinoid (CB1) receptors [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF][START_REF] Mcallister | Structural mimicry in class A G protein-coupled receptor rotamer toggle switches: the importance of the F3.36(201)/W6.48(357) interaction in cannabinoid CB1 receptor activation[END_REF].

In this study, we have investigated the 5-HT4 receptor (5-HT4R), and its ability to stabilize different R*s. The focus was mainly put on the roles of the W6.48 rotamer toggle switch and its associated toggle switch at position 3.36. We found that both toggle switches were required for stabilizing the basal R* state (called R*basal), none of them were fully implicated in stabilizing the R* reached in the presence of 5-HT (called R*-5-HT), whereas the T3.36 and the W6.48 toggle switches were implicated in stabilizing the R* in the presence of synthetic agonists belonging to either the benzamide or aryl ketone classes (called R*-benzamides), or to a benzimidazolone class (called R*-BIMU 8).

MATERIALS AND METHODS

Plasmid construct

HA-tagged-5-HT4 receptor cDNAs in pRK5 were generated by fusing the sequence of the HA epitope (YPYDVPDYA) to a cleavable signal peptide (MVLLLILSVLLLKEDVRGSAQS) derived from the metabotropic glutamate receptor 5 (mGlu5R). This sequence was inserted into the pRK5 vector using Xba I and BsrG I restriction sites. Then, full-length mouse 5-HT4(a)R cDNAs were subcloned in frame using BsrG I and Hind III. HA-5-HT4-T3.36A, HA-5-HT4-T3.36S, HA-5-HT4-T3.36C, HA-5-HT4-W6.48A receptor mutants were generated from HA-5-HT4(a)R, cloned in pRK5, with the Quick Change Site-Directed Mutagenesis Kit (Stratagene, Amsterdam, Netherlands).

Membrane preparation and radioligand binding assay

Membranes were prepared from transiently transfected cells plated on 15-cm dishes and grown in DMEM with 10% dialyzed foetal calf serum (dFCS) as described in Claeysen et al. [START_REF] Claeysen | A Single Mutation in the 5-HT4 Receptor (5-HT4-R D100(3.32)A) Generates a Gs-coupled Receptor Activated Exclusively by Synthetic Ligands (RASSL)[END_REF]. The membrane solubilized in 50 mM HEPES (pH 7.4; 5 mg of protein in 1 ml of solution) were stored at -80°C until use. Membrane suspension (about 10 µg), diluted in 100 µl of 50 mM HEPES containing 10 mM pargyline and 0.01% ascorbic acid, was incubated at 20°C for 30 min with 100 µl [ 3 H]GR 113808 (specific activity: 82 Ci/mmole) and 50 µl of buffer or competing drugs. For saturation analysis assays, various concentration of [ 3 H]GR 113808 (0.001-0.8 nM) were used. BIMU8 (10 µM) was used to determine non-specific binding. Protein concentration was determined by using the bicinchoninic acidic method.

Cell surface ELISA

COS-7 cells were transfected with HA-tagged-5-HT4R, WT or mutants cDNAs. Cells were grown on 96-well plates in DMEM medium with 10% dFCS and fixed as described previously [START_REF] Barthet | Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements[END_REF]. Cells were then incubated with anti-HA antibody at 0.6 µg/ml for 60 min in the same buffer and incubated with anti-rabbit/HRP conjugate (Amersham Pharmacia Biotech) at 1 µg/ml for 60 min.

Chromogenic substrate was added (Supersignal® ELISA femto-maximum sensitivity (Pierce, Perbio-Brebières, France). Chemiluminescence was detected and quantified by a Wallac Victor 2 luminescence counter.

Determination of cAMP production in transfected cells

COS-7 cells were transfected with the appropriate cDNA and seeded into 24-well plates (100 000 cells/well). 24 hours post-transfection, a 10 min-stimulation with the appropriate concentrations of drugs was performed as previously described [START_REF] Barthet | Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different GRK2 requirements[END_REF]. Quantification of cAMP production was performed by Homogenous Time Resolved Fluorescence (htrf®) using the cAMP Dynamic kit (Cisbio International, Bagnols-sur-Cèze, France), according to the manufacturer's instructions.

Data analysis

The dose-response curves were fitted using GraphPad Prism and the following equation for monophasic dose-response curves: y = (ymax -ymin) / 1 + [(x / EC50) nH] + ymin, where EC50 is the concentration of the compound necessary to obtain 50% of the maximal effect and nH is the Hill coefficient. Competition and saturation experiments were analysed by non-linear regression using GraphPad Prism as previously described [START_REF] Ansanay | Pharmacological comparison between [ 3 H]-GR113808 binding sites and functional 5-HT4 receptors in neurons[END_REF]. All data represented correspond to the mean ± SEM of three independent experiments performed in triplicate. Statistical analysis was carried out with the t test using GraphPad Prism 3.0 software.

Nomenclature of side chain conformation

The side chain conformation has been categorized into gauche-(g-: 0°< c1<120°), trans (t: 120°< c1<240°), or gauche+ (g+: 240°< c1<360°) depending on the value of the torsional c1 angle.

Numbering scheme of GPCRs

Residues are identified by the generic numbering scheme of [START_REF] Ballesteros | Integrated methods for the construction of three dimentional models and computational probing of structure-function relations in G protein coupled receptors[END_REF] that allows easy comparison among residues in the 7TM segments of different receptors.

Computational model of the ligand-receptor complexes

A model of the 5-HT4R was constructed by homology modelling using the crystal structure of the b2adrenergic receptor (PDB code 2RH1) [START_REF] Cherezov | High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor[END_REF][START_REF] Rosenbaum | GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function[END_REF] as template.

The 5-HT, BIMU8, and S-zacopride, ligands were docked, by interactive computer graphics, into the receptor model with their protonated side chain interacting with D3.32 in TM3 (Shi and Javitch, 2002). The [START_REF] Duan | A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations[END_REF] force field [START_REF] Duan | A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations[END_REF] was used for peptides and the general Amber force field (GAFF) [START_REF] Wang | Development and testing of a general amber force field[END_REF] and HF/6-31G*-derived RESP atomic charges were used for the ligands. Molecular dynamics simulations, in a explicit lipidic bilayer, of the ligandreceptor complexes were performed with the Sander module of AMBER 9 [START_REF] Case | AMBER 9[END_REF] using the protocol previously described [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF].

Drugs

The following compounds were used: BIMU8

N-[(1R,5S)-8-methyl-8-azabicyclo[3.2.1]oct-3-yl]-2,3- dihydro-3-iso-propyl-2-oxo-1H-benzimidazol-1-carboxamide hydrochloride, S-zacopride (S)-N-(1- azabicyclo[2.2.2]oct-3-yl)-4-amino-5-chloro-2-methoxybenzamide monohydrochloride, Cisapride cis- 4-amino-5-chloro-N-{1-[3-(4-fluoro-phenoxy)propyl]-3-methoxy-4-piperidinyl}-2-methoxy benzamide, RS 67333 1-(4-amino-5-chloro-2-methoxy-phenyl)-3-(1-butyl-4-piperidinyl)-1- propanone, RO116-1148 2,3-dihydrobenzo-(1,4)-dioxine-5-carboxylic acid 1-butylpiperidin-4- ylmethylamide hydrochloride

RESULTS

The role of T3.36 and W6.48 in stabilizing the basal constitutive activity of 5-HT4 receptors (R*basal).

We have previously shown that the constitutive activity of the histamine H1 receptor was dependent on the nature of the residue at position 3.36 [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF]. When serine, present in the WT H1

receptor was substituted by threonine or cysteine, the basal constitutive activity increased dramatically, occluding the histamine activation; whereas the constitutive activity was inexistent when serine was substituted by alanine. In biogenic amine receptors, the 3.36 position is rarely occupied by threonine (1%) and more often by cysteine (56%) or serine (31%). Interestingly, position 3.36 is occupied by threonine in 5-HT4Rs. This may explain why 5-HT4Rs have such a high constitutive activity. We engineered the T3.36A/S/C mutant receptors to study the role of the short and polar side chain of T3.36 in the constitutive activity of the 5-HT4R. By using different plasmid concentrations, we managed to obtain similar cell surface expression of the WT 5-HT4R and T3.36A/S/C mutants.

This was confirmed by using an Elisa assay (Fig. 1A) but also by Scatchard analysis using the specific labelled 5-HT4R ligand [ 3 H]GR 113808, as described previously [START_REF] Claeysen | Novel brain-specific 5-HT4 receptor splice variants show marked constitutive activity: role of the C-terminal intracellular domain[END_REF] (see Fig. 1A and its legend). The T3.36A mutation almost abolished the constitutive activity (Fig. 1B), indicating that the hydrogen bond capability of T3.36 plays an important role in stabilizing R* adopted by constitutively active 5-HT4Rs. T3.36S/C mutations provide a way of identifying the conformation of T3.36 in the active state of the R*basal because of the different side chain rotamer distribution of threonine from those of serine or cysteine, when located in an a-helical structure (Fig. 1C) [START_REF] Ballesteros | Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation[END_REF]. The conformations of the short and b-branched side chain of threonine are limited to the g+ (85% of the side chains) and g-(15%) because the t conformation is unfavourable due to the steric clash of the side chain methyl group with the backbone carbonyl at the i-3 position [START_REF] Mcgregor | Analysis of the relationship between side-chain conformation and secondary structure in globular proteins[END_REF]. In contrast, serine can adopt either the g+ (52%), g-(20%) or t (28%) rotamer conformation. The fact that T3.36S reduces the constitutive activity of the receptor to a level close to the value observed in the T3.36A mutation precludes the serine-specific t conformation as the active conformation. Cysteine is restricted to the g+ (71%) or t (29%) conformation because of the steric clash between the Sg atom and the carbonyl oxygen of residue i-3 in the g-conformation [START_REF] Mcgregor | Analysis of the relationship between side-chain conformation and secondary structure in globular proteins[END_REF]. The unchanged constitutive activity of the T3.36C mutation, relative to WT, points to the common g+ conformation of cysteine and threonine as the active conformation, in agreement with previous proposals [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF]. We, thus, propose that T3.36 in the 5-HT4R

undergoes a conformational transition from the inactive g-to the active (R*basal) g+ conformation.

Modecular modelling showed that this conformational transition is only feasible if the side chain of W6.48 modifies its conformation simultaneously, in a concerted manner, from the inactive g+ to the active t conformation (Fig. 1D). Both the W6.48 and the T3.36 concerted toggle switches were absolutely necessary to adopt the R* constitutive active state (R*basal). Indeed, as previously described, the W6.48A mutant [START_REF] Joubert | A 5-HT4 receptor transmembrane network implicated in the activity of inverse agonists but not agonists[END_REF] as well as the T3.36A mutant were under the Rg state (Fig. 1B).

In order to be certain that both mutations (T3.36A and W6.48A) were stabilizing the 5-HT4R under a

Rg state, we studied the activities of these mutants as a function of the receptor density. As seen in Fig. 2A the basal activity of the WT receptor increased proportionally to the plasmid concentration and up to 31 pmol/mg whereas the basal activity of both T3.36A and W6.48A mutants remained totally in the Rg state whatever the receptor density (Fig. 2A). As expected, the inverse agonist RO 116-1148 had no effect on the basal activity in both W6.48A [START_REF] Joubert | A 5-HT4 receptor transmembrane network implicated in the activity of inverse agonists but not agonists[END_REF] and T3.36A mutants whereas it totally blocked the basal activity of the WT receptor (Fig. 2B). In conclusion, both the T3.36 and the W6.48 toggle switches were necessary to reach a R*basal.

Reaching the maximal R*-5-HT state does not require the W6.48 toggle switch whereas the T3.36 toggle switch is partially involved.

When measured at similar cell surface density, the maximal activity (Emax) of the R*-5-HT state in WT and W6.48A mutant were not different (Fig. 1B, Table 1). In the W6.48 mutant, the EC50 was shifted to the right by a factor of 25, despite the fact that the binding affinity of 5-HT for the W6.48A mutant receptor remained the same. Thus, the mutation did not affected 5-HT binding, weakly the coupling and not at all the maximal activity of the R*-5-HT state. In contrast, when measured at similar cell surface density, the maximal activity (Emax) of the R*-5-HT state, in the T3.36A mutant, dropped by 26 % compared to that of the WT, whereas its EC50 shifted to the right by a factor of 24 and its binding affinity was also reduced by a factor of 18. We constructed a three-dimensional model of the complex between 5-HT and a b2-AR-based model of the 5-HT4R (see Methods). This computational model considers that agonists bind the active conformation of the 5-HT4R, in which T3.36 is pointing towards TM7 in the active g+ conformation and W6.48 is pointing towards TM5 in the active t conformation. The conformation of F6.52 was also modeled in t to avoid the steric clash with W6.48 (Shi et al., 2002). T3.36 in g+ participates, in addition to the known aspartic acid D3.32 in TM3, in the binding of the protonated amine of serotonin; similar as described for histamine binding to the H1 receptor [START_REF] Jongejan | Linking agonist binding to histamine H1 receptor activation[END_REF]. The indole ring of 5-HT expands toward TMs 5 and 6, to hydrogen bond the key S5.43 and N6.55 side chains (Fig. 5A), as proposed by site-directed mutagenesis [START_REF] Mialet | Exploration of the ligand binding site of the human 5-HT(4) receptor by site-directed mutagenesis and molecular modeling[END_REF], without forming a direct interaction with W6.48. This mode of binding explains the fact that T3.36A slightly influences both the binding affinity for 5-HT as well as R*-5-HT (Emax and EC50), and that W6.48A does not modify the binding affinity nor Emax. Thus, the W6.48 toggle switch is not necessary to reach the R*-5-HT, while the T3.36 switch is only partially necessary. R*-5-HT is probably attained through other routes of activation involving TMs 5 and 6 (see Discussion).

The R*-benzamide state is reached following a direct interaction of benzamides with T3.36, triggering its toggle switch from the g-to the g+ conformation.

Notably, the T3.36A mutation modified the process of receptor activation in an agonist-specific dependent manner (Table 1; Fig. 3B). At similar receptor expression density, the Emax of the R*-BIMU8 state was weakly decreased by this mutation, from 97% to 78%; while the EC50 was unchanged (Fig. 3; Table 1). In contrast, activation by 2-methoxy-4-amino-5-chloro benzamides (Szacopride, cisapride) and related aryl ketone (RS 67333) was almost eliminated (Fig. 3B; Table 1).

Importantly, cell surface expression of this T3.36A mutant was similar to that of the WT (Fig. 1A and legend), and the lack of stimulation was not due to a loss of binding affinity of these ligands for the 5-HT4R-T3.36A mutant (Table 1). Since the benzamides are partial agonists on the WT receptor, it was possible that a weaker coupling efficiency due to mutation could have a higher influence on the Emax of benzamides compared to that of WT. Therefore, we studied the influence of receptor density on the stimulation of 5-HT4R by 5-HT, S-zacopride and BIMU8 in WT and T3.36A mutant (Fig. 4).

We have previously shown that, in COS-7 cells [START_REF] Claeysen | Pharmacological properties of 5-Hydroxytryptamine(4) receptor antagonists on constitutively active wild-type and mutated receptors[END_REF], the 5-HT4R activation can be analysed by the two-state model proposed by [START_REF] Leff | The two-state model of receptor activation[END_REF]. In particular the Emax increased as the function of receptor density, but the EC50 remains identical. This was again observed here when the dose-activation curves were determined on WT 5-HT4R (Fig. 4, left panels). The 5-HT and BIMU8

dose-response curves determined on the T3.36A mutant also showed an increase in Emax without change in EC50 when the receptor density increased (Figs. 4D and4F). In contrast, the benzamide Szacopride was totally unable to stimulate the T3.36A mutant whatever the receptor density (Fig. 4E;

Table 1).

In order to propose a structural hypothesis of the small effect of the T3.36A mutation on activity of the R*-BIMU8 state and the specific elimination of the R*-benzamide state we propose a model in Figs. 5B and 5C describing the complexes between these ligands and the 5-HT4R. In addition to other pharmacophoric elements (see legend to Fig. 5), S-zacopride and BIMU8 contain key carbonyl groups, which point towards TM3 (Fig. 5B) and towards TM6 (Fig. 5C), respectively. Thus, the carbonylic oxygen of S-zacopride forms a specific hydrogen bond with the active g+ rotamer of T3.36 (Fig. 5B), whereas the carbonylic oxygen of BIMU8 forms the hydrogen bond interaction with the active t rotamer of W6.48 (Fig. 5C). Accordingly, the T3.36A mutation almost abolished the benzamide and aryl-ketone induced 5-HT4R stimulation (Fig. 3; Table 1). We propose that benzamides and aryl ketones stabilize a R* (R*-benzamides) by triggering the direct conformational transition of T3.36 (from the inactive g-to the g+ conformation) by forming a specific hydrogen bond with T3.36.

The R*-BIMU8 state is primarily reached following a direct interaction of benzimidazolones with W6.48, and triggering its toggle switch from the g+ to t conformation.

The computational simulation presented above suggests that BIMU8 may trigger the process of 5-HT4R activation (stabilization of the R*-BIMU8) mainly via the conformational transition of W6.48 from the g+ to the t conformation by a specific hydrogen bond interaction. To test this hypothesis, we analysed the ability of BIMU8 to stimulate the W6.48A mutant. To our surprise the KD value for BIMU8 was unchanged (Table ), whereas this mutation reduced the EC50 by 43-fold (Fig. 6B) and the Emax by a factor of 2, compared to 5-HT stimulation (Fig. 6A). This reduction of the BIMU8stimulation was independent of the receptor density (Fig. 6B). The effects of T3.36A and W6.48A mutations in BIMU8 function suggest that the T3.36 toggle switch plays a minor role in the stabilization of R*-BIMU8 (Emax decreased from 97% to 78%); leaving the W6.48 toggle switch as the main mechanism of 5-HT4R activation by BIMU8 (Emax decreased from 97% to 53%). We tried to generate the double T3.36A-W6.48A mutant receptor to fully impair the R*-BIMU8 state.

Unfortunately, this double mutant receptor was poorly expressed at the cell surface and no conclusion can be drawn.

Molecular modelisation showed that in the absence of W6.48 (W6.48A mutant), the aromatic ring of BIMU8 can occupy the position of the active t conformation of W6.48 in the WT receptor (see Fig. 6C). This position of the aromatic ring of BIMU8 in the receptor is very favourable due to the presence of the F5.47 aromatic side chain. In this new mode of binding, the carbonylic oxygen of BIMU8 forms a hydrogen bond interaction with the active g+ rotamer of T3.36 (Fig. 6C). Likely, in the W6.48A mutant receptor, the new R*-BIMU8 state is stabilized by this hydrogen bond, a mechanism of triggering a R* state similar to that of R*-benzamides (compare Figs. 5B and6C). This mode of binding explains why BIMU8 has similar binding affinity for WT and W6.48A mutant 5-HT4R. Nevertheless, the lack of expression of this double T3.36A-W6.48A mutant receptor impedes to experimentally probe this hypothesis.

DISCUSSION

One of the most important progresses in family A GPCR molecular pharmacology has been to understand, based on biophysical, biochemical and crystallography experiments, how a multitude of chemically different agonists, which do not share a common binding mode, can trigger receptor activation. A few conserved molecular activation mechanisms implying the rearrangement of the side chains of a limited number of residues have been associated with receptor activation [START_REF] Kobilka | G protein coupled receptor structure and activation[END_REF][START_REF] Smit | Pharmacogenomic and structural analysis of constitutive g protein-coupled receptor activity[END_REF]. A key question is to determine which different rearrangements of a given GPCR lead to the different R*s. Are they different for basal constitutively active R* and agonist-induced R*s? Do chemically different agonists induce different rearrangement? Few examples indicate this could be the case. In the b2-adrenergic receptor, salbutamol although being an agonist, does not trigger the TM6 toggle switch whereas the cathecol derivatives do [START_REF] Swaminath | Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states[END_REF].

Here, we show that the R*basal of the WT 5-HT4 receptor is likely to be the result of a simultaneous double toggle switch. One is the conformational change of W6.48 from the inactive g+ (pointing towards TM7) to the active t (TM5) conformation, which is accompanied by the conformational transition of T3.36 from the inactive g-(TM6) to the active g+ (TM7) conformation.

Both coordinated switches are necessary to go from the silent Rg to the R*basal. Indeed, mutation of either W6.48 or T3.36 to alanine kept the WT 5-HT4 receptor to the Rg state whatever the receptor density. This Rg state was, of course, insensitive to inverse agonists. When the receptor is under the Rg state, the levels of cAMP accumulation were close to those observed in the absence of receptors (the mock-transfected cells). The Rg state is not often described in GPCR pharmacology [START_REF] Joubert | A 5-HT4 receptor transmembrane network implicated in the activity of inverse agonists but not agonists[END_REF]. The Rg state of rhodopsin is stabilized by the full inverse agonist cis-retinal, the structure of which is distinct from the ligand-free opsin state R [START_REF] Lin | Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state[END_REF][START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF].

We have also shown that T3.36, in addition to modulate the Rg to R*basal, plays a minor role in the stabilization of R*-5-HT and R*-BIMU8 and is fully required in the stabilization of the R*benzamides (S-zacopride, cisapride and RS 67333). Benzamides were completely inactive on the T3.36A mutant, whatever the receptor density, excluding a simple reduction in the coupling efficiency affecting preferentially the response to partial agonists such as benzamides. Thus, as a hypothesis, we can conclude that S-zacopride, cisapride, and RS 67333 trigger 5-HT4R activation via stabilization of the rotamer toggle switch of T3.36, from the inactive g-to the active g+ conformation. Here, we show for the first time that the 3.36 position is directly implicated in agonist-induced activation and is responsible for the stabilization of an active state.

The 5-HT4R is also activated by benzimidazolone ligands such as BIMU8. We propose that the R*-BIMU8 state is primarily reached following a direct interaction between the carbonylic oxygen of benzimidazolones and W6.48, triggering its toggle switch from the inactive g+ to the active t conformation. A similar mode of interaction between the W6.48 residue and the CSP-2503 agonist has been proposed during activation of the 5-HT1A receptors [START_REF] Lopez-Rodriguez | Synthesis and structure-activity relationships of a new model of arylpiperazines. 8. Computational simulation of ligandreceptor interaction of 5-HT(1A)R agonists with selectivity over alpha1-adrenoceptors[END_REF].

It was surprising that the W6.48A as well as the T3.36A mutant were fully activated by 5-HT. This clearly indicates that the conformational mechanisms occurring from Rg to R*basal are different from those occurring from Rg to R*-5-HT. A two state model was not sufficient to explain those results.

The 5-HT4Rs as well as rhodopsin are, at least, in equilibrium between three states, i.e. the Rg, the R*basal and the R*-5-HT states. The R*-5-HT state can be reached either from the Rg or from the R*basal state. Thus, the relative stimulation by 5-HT was higher in cells expressing the receptor under the Rg state (W6.48A and T3.36A mutants) than under the R*basal state (WT receptors) (Fig. 1). A similar observation can be done considering the WT and the T3.36A mutant and the stimulation by BIMU8. The relative stimulation by BIMU8 was higher in cells expressing the T3.36A mutant (under the Rg state) than the WT receptors (under the R*basal state) (Fig. 3).

To date, there is not a clear idea as to the rearrangements occurring upon 5-HT stimulation.

However, it has been shown for the β2-adrenergic receptor, using fluorescence spectroscopy to monitor agonist-induced conformational changes, that relocation of the extracellular side of TM5 is necessary to facilitate binding of the catechol hydroxyls to the Ser residues at positions 5.42 and 5.46 [START_REF] Swaminath | Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states[END_REF]. In addition, TM6 performs an inward movement of the extracellular part toward TM3 (the global toggle switch of Schwartz et al.) that is stabilized by the interaction with agonists [START_REF] Schwartz | Molecular mechanism of 7TM receptor activation--a global toggle switch model[END_REF]. By homology with these proposals, we suggest that 5-HT would stabilize R*-5-HT by the interaction between the 5-OH and NH moieties with the S5.43 and N6.55 side chains, respectively, triggering the proposed movements of TMs 5 and 6.

The mechanisms by which binding of these chemical signals at the extracellular domain of the receptor trigger a set of conformational rearrangements of the TM segments near the G-protein binding domain are not fully understood. Nevertheless, comparison of the structure of inactive rhodopsin [START_REF] Li | Structure of bovine rhodopsin in a trigonal crystal form[END_REF] with the crystal structure of the ligand-free opsin [START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF] has provided additional insights into these processes. Specifically, we propose that the T3.36/W6.48 rotamer toggle switch disrupts a conserved hydrogen bond network linking W6.48 and D2.50 [START_REF] Li | Structure of bovine rhodopsin in a trigonal crystal form[END_REF][START_REF] Pardo | The role of internal water molecules in the structure and function of the rhodopsin family of G protein-coupled receptors[END_REF][START_REF] Rosenbaum | GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function[END_REF], triggering the conformational transition of N7.49 towards D2.50 [START_REF] Urizar | An activation switch in the rhodopsin family of G protein-coupled receptors: the thyrotropin receptor[END_REF], and ultimately leading to the extended conformation, pointing towards the protein core, of R3.50 [START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF]. On the other hand, the agonist-induced inward movement of the extracellular part of TM6 toward TM3 [START_REF] Schwartz | Molecular mechanism of 7TM receptor activation--a global toggle switch model[END_REF] might cause the intracellular movement of TM6 toward TM5, facilitating the observed ionic interaction between E6.30 and K5.66 [START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF]. Finally, the relocation of the extracellular side of TM5 to facilitate binding of biogenic amine agonists [START_REF] Swaminath | Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states[END_REF] induces the intracellular movement of TM5, enabling the interaction of Y5.58 with the extended conformation of R3.50 [START_REF] Park | Crystal structure of the ligand-free G-protein-coupled receptor opsin[END_REF].

We have previously established, using circular dichroism difference spectra of purified 5-HT4R, that free (or neutral antagonist-occupied), agonist-occupied (partial or full agonist) and silent (inverseagonist-occupied) receptors involved different arrangements of the e2 loop [START_REF] Baneres | Molecular characterization of a purified 5-HT4 receptor: a structural basis for drug efficacy[END_REF].

Here, in a cellular context, we provide arguments in favour of different conformational arrangements during stabilization of different 5-HT4 R*s: the R*basal, the R*-5-HT, the R*-benzamides and the R*-BIMU8. (B) Basal level and maximum 5-HT (10 -5 M) stimulation of cAMP formation were measured after 10 min incubation. Each value was estimated as the percentage of maximum cAMP production (8.9 ± 0.7 pmol/100 000 cells) in the WT induced by 5-HT (10 -5 M).

FOOTNOTES

(C) Statistical preferences of threonine (T), serine (S), and cysteine (C) side chain rotamer distribution (t: trans, g+: gauche+ or g-: gauche-; see Methods) when located in a a-helical structure (adapted from Ballesteros et al. [START_REF] Ballesteros | Serine and threonine residues bend alpha-helices in the chi(1) = g(-) conformation[END_REF]). Active conformations in the 5-HT4R are shown in bold and asterisked. In these models the protonated moiety of the ligands interact with D3.32; the 5-OH and NH moieties of 5-HT hydrogen bond the key S5.43 and N6.55 side chains (A) as proposed by site-directed mutagenesis [START_REF] Mialet | Exploration of the ligand binding site of the human 5-HT(4) receptor by site-directed mutagenesis and molecular modeling[END_REF]; the -C(CH3)2 and -Cl moieties of BIMU8 and S-zacopride, respectively, are located in a small hydrophobic cavity between TMs 3-5 (B, C); and the -NH2 group of S-zacopride hydrogen bonds S5.43 (B). BIMU8 and S-zacopride form an intramolecular hydrogen bond between the -NH amide and a carbonyl or methoxy group, respectively. BIMU8 elicits 5-HT4R activation by forming a hydrogen bond interaction with W6.48 in the active t conformation (C), while S-zacopride triggers activation via the interaction with T3.36 in the active g+ conformation (B). The atoms implicated in these interactions are pointed out: oxygen of the drugs is asterisked and T3.36 or W6.48 hydrogen is labelled with a filled square. (C) Computational models of the complex between BIMU8 and W6.48A mutant receptor. In the absence of W6.48, the aromatic ring of BIMU8 occupies the position of the active t conformation of W6.48 in the WT receptor (see Fig. 5C); and the carbonylic oxygen hydrogen bonds the active g+ rotamer of T3.36. The atoms implicated in this interaction are pointed out: oxygen of the drug is asterisked and T3.36 hydrogen is labelled with a filled square.

TABLE 1

Pharmacological properties of a series of 5-HT4R ligands on WT 5HT4R, T3.36A and W6.48A mutant receptors.

All the data are expressed as means ± SEM of at least four separate experiments.

(a) Binding assays were performed by using [ 3 H]GR 113808 as the specific 5-HT4R radioligand in COS-7 cells membranes expressing either WT 5-HT4R, 5-HT4-T3.36A or 5-HT4-W6.48A. Non-specific binding was determined with BIMU8 (10 µM). KD values were determined from Cheng-Prussoff equation.

(b) The agonist activity or potency (EC50) was accessed as the concentration that gave 50% increase in the response to cAMP formation.

(c) The maximal activity of each drug (EMAX) is expressed as percentage of the maximum 5-HT response obtained with the WT at similar receptor density.

ND: non determined. 5-HT 7.7 ± 1.4 10 -8 3.6 ± 0.7 10 -9 100% 1.4 ± 2.3 10 -6 8.6 ± 3.3 10 -8 74 ± 1% 7.4 ± 2.6 10 -8 8.9 ± 3.2 10 -8 100% BIMU8 5.3 ± 1.2 10 -8 1.8 ± 0.7 10 -8 97 ± 4% 2.1 ± 0.1 10 -7 7.7 ± 1.7 10 -8 78 ± 2% 1.1 ± 0.7 10 -7 5.4 ± 1.9 10 -7 53 ± 3% S-zacopride 6.4 ± 0.9 10 -7 1.1 ± 0.2 10 -7 77 ± 1% 7.2 ± 1.5 10 -7 ND ND Cisapride 2.0 ± 0.2 10 -7 4.3 ± 3.1 10 -8 64 ± 1% 7.3 ± 1.4 10 -7 ND ND RS 67333 5.5 ± 0.2 10 -9 2.6 ± 1.5 10 -9 70 ± 2% 1.2 ± 0.3 10 -8 ND ND 

  Figure 1. Constitutive activity of the WT 5-HT4R is largely dependent on T3.36.
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 5 HT4R activation consists of a concerted T3.36/W6.48 rotamer toggle switch. T3.36 undergoes a conformational transition from the inactive g-to the active g+ conformation, in conjunction with the conformational transition of W6.48 from the inactive g+ to the active t conformation.
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 2 Figure 2. Lack of basal activity and inverse agonist RO 116-1148 effect in T3.36A and W6.48A
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 3 Figure 3. Influence of T3.36 in the agonist-induced activation of the 5-HT4R.
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 4 Figure 4. Effect of increasing T3.36A receptor density on agonist activation.
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 5 Figure 5. Computational models of the complexes between 5-HT4R and BIMU8 or Zacopride.
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 6 Figure 6. Influence of W6.48 in the BIMU8-induced activation of the 5-HT4R.
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