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Abstract

In railway systems, during congested traffic situations, the infrastructure capacity is com-
pletely exploited for trains circulation. When traffic is perturbed, some trains must be
stopped or slowed down for ensuring safety, and delays occur. The real-time Railway
Traffic Management Problem (rtRTMP) is the problem of modifying trains route and
schedule to limit delay propagation. In this paper, we propose an approach based on
Benders decomposition of a MILP-based algorithm for this problem, named RECIFE-
MILP. Specifically, we split the solution process in three steps rather than two as in the
standard decomposition. As we show in a thorough experimental analysis, this decompo-
sition of the solution process into three steps can outperform the original RECIFE-MILP
algorithm when tackling large instances with some specific features.

Keywords: Benders decomposition, real-time railway traffic management problem,
MILP.
2010 MSC: 00-01, 99-00

1. Introduction

For many railway systems, in congested situations, the infrastructure capacity is
completely exploited for train circulations. Many trains travel within short time through
critical points. Here, if a disturbance occurs, traffic may be perturbed and, as a result,
conflicts may emerge. In a conflict, multiple trains traveling at the planned speed would
claim the same track segment concurrently. Hence, some trains must be stopped or
decelerated for ensuring safety, and delays propagate. In locations such as junctions,
which are areas where multiple lines cross, the emergence of conflicts is very frequent
and effectively dealing with them may be particularly difficult. The real-time Railway
Traffic Management Problem (rtRTMP) is the problem of modifying trains route and
schedule to limit delay propagation. Currently, this problem is tackled by dispatchers.
They do it manually, so the result of their choices is generally suboptimal. The use of an
efficient algorithm to help dispatchers decision making is crucial to ensure an effective
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traffic management when disturbances occur. The design of such an efficient algorithm
has been the object of a remarkable branch of research, to which this paper belongs.

In the literature, many algorithms have been proposed to address the rtRTMP. In
this paper, we aim to increase the applicability of an existing algorithm. Namely, we
consider the RECIFE-MILP algorithm. RECIFE-MILP is a Mixed Integer Linear Pro-
gramming (MILP) based heuristic which has been proven to be very effective in several
circumstances. However, it has been shown [1] that the performance of RECIFE-MILP
may strongly worsen when tackling large instances in the short time allowed by the real-
time nature of the problem. For the MILP formulation at the basis of this algorithm, we
propose a Benders Decomposition (BD) [2] approach. In a classic BD, binary variables,
here representing train routing and scheduling decisions, are fixed in the master problem.
Given these decisions, the continuous variables, i.e., the trains actual arrival times, are
computed in the slave problem to deduce the total delay. Through the progressive addi-
tion of cuts to the master and the iterative solution of the two problems, the algorithm
is supposed to converge to the optimal solution. Unfortunately, this approach is not able
to improve the performance of RECIFE-MILP [3]. We think that this bad performance
is due to three main issues, deriving from the initial MILP model of RECIFE-MILP.
First, the objective function of this model only includes continuous variables, which im-
plies a rather blind master problem at least at the beginning of the search: its objective
function includes only a dummy variables representing the contribution of continuous
variables, and is hence incapable of driving the search until the addition of a sufficient
number of cuts. Second, in RECIFE-MILP the relation between routing and scheduling
variables is completely held by the continuous timing variables: they are hence absent in
the master problem, which strives in finding feasible solutions for the overall problem for
a number of iterations. Third, the RECIFE-MILP model is a disjunctive programming
formulation which includes a big-M parameter linked to the scheduling variables, which
is hence included in the cuts making them potentially quite weak. While the first issue
cannot be solved without fundamentally changing the aim of the RECIFE-MILP model,
in this paper we propose an approach for overcoming the second and the third one. In
particular, we propose a three-step Benders Algorithm (3BA). Specifically, we split the
solution process in three steps rather than two as in the standard BD. In a first step, a
master problem including only routing variables is tackled. Based on the fixed routing,
in a second step a mixed-integer slave problem finds the optimal scheduling decisions.
Finally, in a third step a continuous slave problem computes the delays corresponding
to the routing and scheduling, and generates cuts for the master. As we show in a thor-
ough experimental analysis, this decomposition of the solution process into three steps
outperforms the original RECIFE-MILP algorithm when tackling large instances with
some specific features.

The remainder of this paper is organized as follows. Section 2 presents a literature
review. In Section 3, we describe the rtRTMP tackled in the paper and present its
mathematical formulation used in RECIFE-MILP. An introduction to the RECIFE-
MILP algorithm is done in Section 4. The details on the classic Benders Algorithm
(CBA) and the three-step Benders Algorithm (3BA) are described in Sections 5 and 6,
respectively. Computational results are reported in Section 7. Conclusions and directions
for future work are discussed in Section 8.
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2. Literature review

Many contributions can be found in the literature which propose algorithms, includ-
ing decomposition ones, to address the rtRTMP. In the following, we report some relevant
contributions. We group the contributions in two categories: those that propose algo-
rithms without focusing on the size of the instances, and those that explicitly tackle
large instances through decomposition. For what concerns the first category, several
algorithms have been proposed (for recent surveys, see [4, 5, 6]). In some papers, the
authors propose solution approaches in which train routes are fixed and the optimization
concerns the scheduling decisions ([7, 8, 9]). Some authors propose solution approaches
that consider a limited number of alternative routes selected during the solution process
[10, 11, 12, 13, 14]; others start with a small number of alternative routes and increase
it throughout the solution process [15, 16]. While several algorithms exist to tackle the
rtRTMP considering a limited number of alternative routes, few algorithms have been
proposed to address the rtRTMP considering all alternative routes that can be traversed
given the infrastructure layout. An effort in this direction is the stream of work including
[17, 18, 19, 1]. All these papers do not explicitly discuss the size of the instances to be
tackled. Differently, some works exist dealing specifically with large instances and using
decomposition techniques. For example, some authors propose heuristic approaches in
which the size of the instances is reduced through spacial decomposition of the infrastruc-
ture on which traffic is to be managed ([20, 21, 22]). Others, as [23, 24], propose classic
mathematical decomposition approaches based on column generation and Lagrangian
relaxation, respectively. To the best of our knowledge, only [25, 26, 27] propose algo-
rithms based on BD to solve the rtRTMP. In a recent seminar, [27] presents a standard
BD approach to tackle the train’s rescheduling problem formulated with an alternative
graph model. In their approach, the authors replace the standard Benders feasibility
and optimality cuts with strong cuts obtained by strengthening and lifting the standard
ones.

In this paper, we consider the algorithm named RECIFE-MILP, which allows solv-
ing some rtRTMP instances to optimality considering all details in the infrastructure.
RECIFE-MILP has been tested on instances representing traffic in various control areas
with different characteristics [1, 28, 29], achieving good results. However, it has been
shown that in some circumstances the performance of the algorithm worsens, as in case
trains have a large number of re-routing possibilities [1].

3. The real-time Railway Traffic Management Problem

As mentioned in the introduction, the rtRTMP consists in modifying trains route and
schedule to limit delay propagation in case of traffic perturbation.

In principle, planned timetables can be smoothly operated: if there are no distur-
bances nor disruptions, then the timetable can be executed exactly as planned. How-
ever, in real-time operations, disturbances and disruptions are inevitable. Disturbances
are relatively small perturbations that influence the railway traffic causing trains’ pri-
mary delay. They consist for example in a longer than planned running time from one
station to another or in a longer dwell time at a stop. These delays often propagate gen-
erating the so-called secondary or knock-on delays. Disruptions are large perturbations
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leading to major modifications of the timetable. The rtRTMP concerns the management
of traffic in case of disturbances.

Several approaches exist for modeling the rtRTMP. The representation considered
for infrastructure has a strong impact on the modeling techniques that can be effectively
applied. Specifically, macroscopic, mesoscopic and microscopic representations have been
considered. In the macroscopic representation, the railway network can be seen as a graph
in which stations corresponds to nodes and lines to edges. Precise train dynamics are in
general neglected as well as actual train separation. In the mesoscopic representation,
some parts of the network are represented in detail, and some others are not. Finally,
in the microscopic representation, all details of the infrastructure are modeled. Indeed,
when moving from macroscopic to mesoscopic and finally to microscopic representations,
the realism of the problem tackled increases. This allows in principle to find solutions that
could be directly deployed. This comes at the cost of a larger amount of data necessary
to model the same portion of infrastructure, and hence of a typically higher difficulty in
finding good solutions to the problem. Here, we focus on the microscopic representation:
we aim at efficient algorithms actually able to tackle traffic in interesting portions of
the network. We consider the highest level of detail for infrastructure representation,
i.e., we consider track-circuits. Track-circuits are track sections on which the presence
of a train is automatically detected. Sequences of track-circuits are grouped into block
sections, the access to which is controlled by a signal. To provide clear signal to the
driver, before a train can enter (start the occupation of) a sequence of block sections,
all their track-circuits must be reserved for the train itself, also allowing some additional
time for route formation. After a train exits a track-circuit, its reservation is still active
for the so called release time. This functioning precisely mimics reality, and in particular
the route-lock sectional-release interlocking system [30]. We name utilization the sum of
reservation and occupation time. The complete sequence of track-circuits traversed by
a train during its trip is named route. Routes may include intermediate stops. In the
representation we consider, a sequence of track-circuits used by trains either performing
stops or not defines two routes. The running times for the route with intermediate stops
includes the appropriate deceleration and acceleration times.

The objective functions used in literature when tackling the rtRTMP are typically
functions of trains’ delay, e.g., total delay or maximum delay. Trains’ delay is the non-
negative difference between the actual arrival times at stations and the scheduled ones.
Other objective functions considering different performance indicators are: the minimiza-
tion of the trains’ travel time, which is a measure of the time spent by all trains in the
network, the schedule deviation, which penalizes both trains’ advance and delay, and the
maximization of trains’ punctuality, which refers to the number of trains that do not ar-
rive at their final destination on time, or suffering a delay smaller than a given threshold.
Moreover, customer perspective is sometimes considered when solving the rtRTMP. For
example, passengers’ inconvenience to be minimized can be measured as the additional
waiting time at platforms and number of transfers.

The rtRTMP studied in this paper minimizes weighted total delay. The weighting
in the objective function allows taking into account different train priorities. These
priorities may be linked to the type of circulation (e.g., freight or passenger) or other
aspects as the number of passengers traveling on each train.

Concerning the rtRTMP constraints, the following ones are imposed to respect oper-
ational requirements:
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Time concerning constraints: These constraints impose the respect of operational
requirements related to the time. For instance, at a station a train cannot depart before
its scheduled departure time. Another requirement handled by these constraints is the
coherent physical occupation time of track-circuits along a train route: a train cannot
start occupying a track-circuit along its route if it has not spent in the preceding one at
least the corresponding running time. Time constraints also allow modeling the complete
blocking time stairway [30].

Connection constraints: In railway traffic, train services are sometimes in connec-
tion: passengers or crew members are planned to transfer from a train to another at a
specific station. In this case we must impose constraints that manage requirements such
as the guarantee of a minimum time separation between the arrival of the feeder train
and the departure of the connecting train.

Rolling-stock re-utilization constraints: If train services are to be operated with
the same rolling-stock, their arrival and departure must be coherent, in terms of both time
and space. Hence, a minimum time interval must pass between arrival and departure,
and the concerned trains must arrive at and depart from the same track-circuit.

Capacity constraints: The track-circuits utilization by two trains must not overlap.
Modeling this problem, we present in the following the RECIFE-MILP formulation,

which we decompose in our Benders algorithms. Before presenting the formulation, we
present the notation used, following the notation in [1].

T ≡ set of trains;

wt ≡ weight associated to train t’s delay;

tyt ≡ type corresponding to train t (train characteristics);

initt, exitt ≡ earliest time at which train t can be operated and earliest time at which it
can reach its destination given init t and the route assigned in the timetable;

Rt, TCt ≡ set of routes and track-circuits available for train t;

TCr ≡ set of track-circuits composing route r;

TC(tc, tc′, r) ≡ set of track-circuits between tc and tc′ along r;

pr,tc, sr,tc ≡ track-circuits preceding and following tc along r;

tc0, tc∞ ≡ dummy track-circuits representing origin and destination of any route;

rtty,r,tc, ctty,r,tc ≡ running time and clearing time of tc along r for a train of type ty ;

bsr,tc ≡ block section including track-circuit tc along route r;

forbs, relbs ≡ formation time and release time for block section bs;

ˆTCt,t′,tc ≡ set of track-circuits tc′ which may be used by both t and t′ such that if t
precedes (≺) t′ on tc, then necessarily t ≺ t′ on tc′ , and so on (e.g., if the track-
circuits follow each other on a straight track segment). In other words, it is the set
of track-circuits composing the track segment which starts with tc. ˆTCt,t′,tc = {tc}
if tc ∈ TCt∩TCt′ and no implied precedence relation links tc to other track-circuits.
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Figure 1: Main variables and data concerning the utilization of tc belonging to route r of train t.

ˆTCt,t′,tc = ∅ if ∃tc′ ∈ TCt ∩TCt′ such that tc ∈ ˆTCt,t′,tc′ , i.e., that is tc belongs to
a track segment which starts with a different tc′. Hence, each track-circuit belongs
to one and only one set ˆTCt,t′,tc;

ˆTCt,t′ ≡ ∪tc∈TCt∩TCt′
ˆTCt,t′,tc , i.e., ˆTCt,t′ is the set of all the track segments for the

two trains;

M ≡ large constant.

The formulation contains non-negative continuous variables:

for all triplets of t ∈ T , r ∈ Rt and tc ∈ TC r:

ot,r,tc : time at which t starts the occupation time of tc along r;

lt,r,tc : longer stay of t’s head on tc along r, due to dwell time and scheduling decisions
(delay);

for all pairs of t ∈ T and tc ∈ TC t:

sU t,tc : time at which t starts tc utilization;

eU t,tc : time at which t ends tc utilization;

for all t ∈ T :

Dt : delay suffered by train t when exiting the infrastructure.

The continuous variables are represented in Figure 1, together with the main input
data (clearing time, running time, release time and formation time) concerning block
sections and track-circuits.
In addition it includes binary variables:

for all pairs of t ∈ T and r ∈ Rt:

xt,r =

{
1 if t uses r,
0 otherwise,

for all triplets of t, t′ ∈ T such that the index of t is smaller than the index of t′, and
t̂c ∈ ˆTCt,t′ :
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yt,t′,t̂c =

{
1 if t utilizes t̂c before t′ (t ≺ t′),
0 otherwise (t � t′).

We impose the index of t smaller than the index of t′ to avoid creating two re-scheduling
variables yt,t′,t̂c and yt′,t,t̂c for track segment t̂c. One variable is enough in this case
since yt′,t,t̂c is the complement to one of yt,t′,t̂c. By doing so, we reduce the number of
y-variables in the formulation.

min
∑
t∈T

wtDt. (1)

ot,r,tc ≥ init t xt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r : pr,tc = tc0, (2)

ot,r,tc ≤Mxt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r, (3)

ot,r,tc = ot,r,pr,tc
+ lt,r,pr,tc

+ rtr,ty,pr,tc
xt,r ∀t ∈ T, r ∈ Rt, tc ∈ TC r : tc 6= tc0, (4)

∑
r∈Rt

xt,r = 1 ∀t ∈ T, (5)

Dt ≥
∑
r∈Rt

ot,r,tc∞ − exitt ∀t ∈ T, (6)

sU t,tc ≤
∑
r∈Rt:

tc∈TCr

(
ot,r,ref r,tc

− forbsr,tc xt,r

)
∀t ∈ T, tc ∈ TC t, (7)

eU t,tc ≥
∑
r∈Rt:

tc∈TCr

ot,r,refr,tc
+ relbsr,tc xt,r + ctr,ty,tc xt,r+

+
∑

tc′∈TC(refr,tc,tc,r)

rtr,ty,tc′ xt,r + lt,r,tc′ ∀t ∈ T, tc ∈ TCt, (8)

eU t,tc −M(1− yt,t′,t̂c) ≤ sU t′,tc ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TCt ∩ TCt′ : tc ∈ ˆTCt,t′,t̂c,

(9)

eU t′,tc −Myt,t′,t̂c ≤ sU t,tc ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TCt ∩ TCt′ : tc ∈ ˆTCt,t′,t̂c. (10)

The objective (1) is the minimization of the total weighted delays suffered by trains
at their exit from the infrastructure. Constraints (2) state that a train t cannot be
operated earlier than init t. Constraints (3) indicate that the start time of track-circuit
occupation along a route is zero if the route itself is not used. Constraints (4) impose
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that a train starts occupying track-circuit tc along a route after spending in the preceding
track-circuit its longer stay and its running time, if the route is used. Constraints (5)
state that a train must use exactly one route. Constraints (6) indicate that the value
of delay Dt at least equals the difference between the actual and the scheduled arrival
times at the exit of the infrastructure. Constraints (7) impose that a train’s utilization
of a track-circuit tc starts as soon as the train starts occupying the track-circuit refr,tc
along one of the routes including tc, minus the formation time. Constraints (8) indicate
that the utilization of a track-circuit lasts till the train utilizes it along any route, plus
the formation time and the release time. Constraints (9) and (10) impose that the
track-circuit utilization by two trains does not overlap .

4. RECIFE-MILP algorithm

In this paper, we propose a variant of the RECIFE-MILP algorithm. RECIFE-MILP
is a heuristic algorithm which mainly consists in tackling a rtRTMP instance by solving
the formulation presented in Section 3, for a limited computational time through a MILP
solver. If the optimum is proven, the run is interrupted, otherwise, the best solution found
after the elapse of this time is returned. In RECIFE-MILP, a two-optimization-step cycle
is implemented. In the first step, the MILP solver optimizes the train scheduling without
modifying the routes with respect to the default ones (i.e., the routes defined in the initial
timetable). In the second step, it optimizes also in terms of train routing, using as initial
solution the best solution found in the first step. Disregarding the optimality proof, the
first step is terminated after 30 seconds provided that one feasible solution has been
found. Otherwise, the first step continues until the first feasible solution is detected; in
all experiments run so far, the search with no re-routing (first optimization step) always
found at least a feasible solution within very few seconds.

Besides the two-optimization-step cycle, others boosting methods are implemented to
improve the solution algorithm performance. Among them there are the infrastructure
topology exploitation and the decrease of the value of the large constant (big-M decrease).

The infrastructure topology exploitation consists in reducing as much as possible the
number of binary y-variables, i.e., the variables appearing in Constraints (9) and (10)
that define the precedence relation between couples of trains utilizing the same track-
circuit. To this aim, the RECIFE-MILP algorithm exploits the fact that the topology of
a physical network frequently imposes that the precedence relation between couples of
trains must be identical on different track-circuits.

To decrease the value of the large constant (i.e., the big-M value), the solution ob-
tained in the first optimization step is exploited. We refer the interested reader to [1] for
more details on boosting methods.

5. Classic Benders Algorithm (CBA)

In this section, we describe CBA. Here, the original formulation is decomposed into
two problems, the Unrestricted Master Problem (UMP) and the Sub-Problem (SP).
The UMP includes all binary variables, corresponding to re-routing and rescheduling
decisions. The SP includes all variables related to timings. Figure 2 shows the procedure
behind the iterative algorithm. In a first step, the UMP fixes routing and scheduling
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Figure 2: Representation of the classic Benders approach applied to the RECIFE-MILP formulation.

decisions and passes them to the SP. In a second step, the dual of the latter finds out if
timings can be fixed so that a feasible solution is found with the routing and scheduling
decisions received. If so, it sends to the UMP an optimality cut to indicate the quality
of the decisions received. Otherwise, it returns feasibility cuts aiming to drive the UMP
towards feasible routing and scheduling combinations. These two steps are repeated until
the optimal solution is found or until a computational time limit is reached. The details
on the UMP and the SP are described in the rest of this section.

5.1. Unrestricted Master Problem (UMP)

In CBA, the UMP includes both the re-routing variables xt,r and the rescheduling
ones yt,t′,t̂c, and a dummy non-negative continuous variables z. Its formulation is a
follows.

min z. (11)

subject to the routing constraints∑
r∈Rt

xt,r = 1 ∀t ∈ T. (12)

and the integrality constraints on re-routing and rescheduling variables

xt,r ∈ {0, 1} ∀t ∈ T, r ∈ Rt (13)

yt,t′,t̂c ∈ {0, 1} ∀t, t
′ ∈ T, t ≺ t′, t̂c ∈ ˆTCt,t′ (14)

Constraints (12) state that a train must use exactly one route.

5.2. Sub-problem (SP)

Let, r̄ ∈ Rt be the route used by train t and r̄′ ∈ Rt′ the route used by train t′ in
the UMP solution to be evaluated, where t, t′ ∈ T . Remark that the set of track-circuits
available for train t (TCt) can be reduced to TC r̄ (set of track-circuits composing route
r̄) and the set of track-circuits available for train t′ (TCt′) can also be reduced to TC r̄′ .
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By excluding all other track-circuits, for which timing variables can be implicitly set to
zero, we minimize the size of the SP. Hence, the SP can then be formulated as follows.

min
∑
t∈T

wtDt. (15)

ot,r̄,tc ≥ initt ∀t ∈ T, tc ∈ TC r̄ : pr̄,tc = tc0 (16)

−ot,r̄,tc + ot,r̄,pr,tc + lt,r̄,pr̄,tc = −rt r̄,ty,pr̄,tc ∀t ∈ T, tc ∈ TC r̄ : tc 6= tc0 (17)

Dt − ot,r̄,tc∞ ≥ −exitt ∀t ∈ T (18)

sU t,tc − ot,r̄,ref r̄,tc
≤ −forbs r̄,tc ∀t ∈ T, tc ∈ TC r̄ (19)

eU t,tc − ot,r̄,ref r̄,tc
−

∑
tc′∈TC(ref r̄,tc,tc,r̄)

lt,r̄,tc′ ≥ relbsr̄,tc + ctr̄,ty,tc+

+
∑

tc′∈TC(ref r̄,tc,tc,r̄)

rtr̄,ty,tc′ ∀t ∈ T, tc ∈ TC r̄ (20)

eU t,tc − sU t′,tc ≤M −Mȳt,t′,t̂c ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TC r̄ ∩ TC r̄′ : tc ∈ ˆTCt,t′,t̂c

(21)

eU t′,tc − sU t,tc ≤Mȳt,t′,t̂c ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TC r̄ ∩ TC r̄′ : tc ∈ ˆTCt,t′,t̂c. (22)

The optimality and feasibility cuts we add to the UMP during Benders iterations and
obtained from the dual of the SP are the following:

z − (
∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rtr̄,ty,pr̄,tc
λt,r̄,tc)+

+
∑
t∈T

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ctr̄,ty,tc +
∑

tc′∈TC(ref r̄,tc,tc,r̄)

rtr̄,ty,tc′)ωt,tc − forbsr̄,tc φt,tc]−

−
∑
t∈T

exittθt +
∑

t,t′∈T

∑
t̂c,tc∈TCr̄∩TCr̄′ :

tc∈ ˆTCt,t′,t̂c

M [(1− yt,t′,t̂c)ηt,t′,tc + yt,t′,t̂cψt,t′,tc]) ≥ 0

((α, λ, θ, φ, ω, η, ψ) ∈ PS)
(23)
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∑
t∈T

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rtr̄,ty,pr̄,tcλt,r̄,tc)

+
∑
t∈T

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ctr̄,ty,tc +
∑

tc′∈TC(ref r̄,tc,tc,r̄)

rtr̄,tyt,tc
′)ωt,tc − forbsr̄,tc φt,tc]−

−
∑
t∈T

exittθt +
∑

t,t′∈T

∑
t̂c,tc∈TCr̄∩TCr̄′ :

tc∈ ˆTCt,t′,t̂c

M [(1− yt,t′,t̂c)ηt,t′,tc + yt,t′,t̂cψt,t′,tc] ≤ 0

((α, λ, θ, φ, ω, η, ψ) ∈ RS)
(24)

Where αt,r̄,tc, λt,r̄,tc, θt, φt,tc, ωt,tc, ηt,t′,tc, ψt,t′,tc, be the dual variables
associated with Constraints (16)-(22) respectively. As such, αt,r̄,tc ≥ 0, λt,r̄,tc ∈ R,
θt ≥ 0, φt,tc ≤ 0, ωt,tc ≥ 0, ηt,t′,tc ≤ 0 and ψt,t′,tc ≤ 0.

6. Three-step Benders Algorithm (3BA)

Inspired by CBA, we design 3BA and we describe it in this section. 3BA separates
the RECIFE-MILP formulation into three problems: the Unrestricted Master Problem
(UMP), the Mixed Integer Linear Sub-Problem (MILSP) and the Linear Sub-Problem
(LSP). In 3BA, the UMP contains only the binary re-routing variables. The MILSP
contains the binary rescheduling variables and the continuous timing variables. The
Linear Sub-Problem (LSP) contains only timing variables, as the SP in CBA. Figure 3
shows the procedures behind the algorithm. As for CBA, 3BA is iterative. In a first
step, the UMP fixes routing decisions and passes them to the MILSP. In a second step,
the MILSP solves the scheduling problem finding the optimal train precedences given the
routes received. These routes and precedences are passed to the LSP. In a third step, the
dual of the LSP determines the optimality cuts to be sent to the UMP to represent the
quality of the routing decisions. Remark that, differently from CBA, here cuts include
no information on precedence relations among trains. These three steps are repeated
in sequence until the optimal solution is found or until a computational time limit is
reached. The details on the UMP, the MILSP and the LSP are described in the rest of
this section.

6.1. Unrestricted Master Problem (UMP)

Unlike in CBA, the UMP in 3BA includes only the re-routing variables xt,r and a
dummy non-negative continuous variables z. Its formulation is a follows.

min z. (25)

subject to the routing constraints∑
r∈Rt

xt,r = 1 ∀t ∈ T (26)

and the integrity constraints on re-routing variables

xt,r ∈ {0, 1} ∀t ∈ T, r ∈ Rt (27)

Constraints (26) state that a train must use exactly one route.
11



Figure 3: Representation of the three-step Benders Algorithm applied to the RECIFE-MILP formulation.

6.2. Mixed Integer Linear Sub-Problem (MILSP)

When the re-routing variables are fixed in the UMP (let them be x̄t,r), then we know
the route used, r̄ ∈ Rt, by each train t. As in CBA, the set of track-circuits available
for train t (TCt) can be reduced to TC r̄ (set of track-circuits composing route r̄) and
the set of track-circuits available for train t′ (TCt′) can also be reduced to TC r̄′ . The
MILSP can then be formulated as follows.

min
∑
t∈T

wtDt. (28)

subject to the following constraints:

ot,r̄,tc ≥ initt ∀t ∈ T, tc ∈ TC r̄ : pr̄,tc = tc0 (29)

−ot,r̄,tc + ot,r̄,pr,tc
+ lt,r̄,pr̄,tc

= −rt r̄,ty,pr̄,tc
∀t ∈ T, tc ∈ TC r̄ : tc 6= tc0 (30)

Dt − ot,r̄,tc∞ ≥ −exitt ∀t ∈ T (31)

sU t,tc − ot,r̄,ref r̄,tc
≤ −forbs r̄,tc ∀t ∈ T, tc ∈ TC r̄ (32)

eU t,tc − ot,r̄,ref r̄,tc
−

∑
tc′∈TC(ref r̄,tc,tc,r̄)

lt,r̄,tc′ ≥ relbsr̄,tc + ctr̄,ty,tc+

+
∑

tc′∈TC(ref r̄,tc,tc,r̄)

rtr̄,ty,tc′ ∀t ∈ T, tc ∈ TC r̄ (33)
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eU t,tc − sU t′,tc ≤M −Myt,t′,t̂c ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TC r̄ ∩ TC r̄′ : tc ∈ ˆTCt,t′,t̂c

(34)

eU t′,tc − sU t,tc ≤Myt,t′,t̂c ∀t, t′ ∈ T, t < t′, tc, t̂c ∈ TC r̄ ∩ TC r̄′ : tc ∈ ˆTCt,t′,t̂c. (35)

Note that in the MILSP, Constraints (34) and (35) contain the binary variables yt,t′,t̂c.
Hence, we cannot formulate the dual of this problem and identify the cut to be added
to the UMP. To do so, we solve the MILSP to get the optimal rescheduling decisions
ȳt,t′,t̂c, then we construct the LSP given ȳt,t′,t̂c and the re-routing decisions x̄t,r fixed in
the UMP. The formulation of the LSP is as follows.

6.3. Linear Sub-Problem (LSP)

Indeed, when we know the re-routing decisions made in the UMP (let them be x̄t,r)
and the corresponding rescheduling decisions made in the MILSP (let them be ȳt,t′,t̂c),
the remaining problem is a re-timing one. The LSP is formulated as the MILSP with the
exception of Constraints (34) and (35). Here, according to the value of the rescheduling
decisions ȳt,t′,t̂c made in the MILSP we add to the LSP one of the following two sets of
constraints:

eU t,tc − sU t′,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ (36)

eU t′,tc − sU t,tc ≤ 0 ∀t, t′ ∈ T, t < t′, tc ∈ TC r̄ ∩ TC r̄′ . (37)

If ȳt,t′,t̂c = 1 then we add Constraints (36) to the LSP, otherwise (37) is added.
Indeed, the MILSP and the LSP find the same values for timing decisions. However,

solving the dual of the LSP allows the addition of cuts to the UMP containing only
re-routing variables x.

Let αt,r̄,tc, λt,r̄,tc, θt, φt,tc, ωt,tc, ηt,t′,tc, ψt,t′,tc, be the dual variables as-
sociated with Constraints (29)-(33) and (36)-(37) respectively. As such, αt,r̄,tc ≥ 0,
λt,r̄,tc ∈ R, θt ≥ 0, φt,tc ≤ 0, ωt,tc ≥ 0 , ηt,t′,tc ≤ 0 and ψt,t′,tc ≤ 0. We formulate
the DLSP that is necessary to formulate the Benders cuts to be added to the UMP.

As the MILSP finds the optimal schedule given the routing decisions, the re-timing
problem with such schedule and routing is feasible by definition. Thus, the DLSP is
always bounded, and all Benders cuts returned are optimality ones. Remark that, as
neither the UMP nor the DLSP include y-variables, these cuts are formulated as follows:

z − (
∑
t∈T

∑
r̄∈Rt

∑
tc∈TCr̄

xt,r̄(inittαt,r̄,tc − rtr̄,ty,pr̄,tcλt,r̄,tc)+

+
∑
t∈T

∑
r̄∈Rt

∑
tc∈TCr̄

xt,r̄[(relbsr̄,tc + ctr̄,ty,tc +
∑

tc′∈TC(ref r̄,tc,tc,r̄)

rtr̄,ty,tc′)ωt,tc − forbsr̄,tc φt,tc]−

−
∑
t∈T

exittθt) ≥ 0

((α, λ, θ, φ, ω) ∈ PS)
(38)

with PS the extreme points of the polyhedron S representing the feasible solution space
of the DLSP.
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Figure 4: Pierrefitte–Gonesse junction.

7. Computational analysis

In this section, we compare the performance of 3BA, CBA and RECIFE-MILP. The
implementation is done using IBM ILOG CPLEX Concert Technology for C++ (IBM
ILOG CPLEX version 12.7 [31]).

We consider four case studies representing traffic in four control areas in France: the
Pierrefitte-Gonesse junction (Gonesse), the Saint-Lazare station (St. Lazare), the Lille
Flandres station (Lille) and a line section around the
Rouen-Rive-Droite station (Rouen). We set the computational time available for the
optimization to three minutes as often done in the literature (e.g., [1, 32]).

The weight associated to delay in the objective function is set to 1 for all trains, since
we have no information on different train priorities. The route formation and release
time are 15 and 5 seconds for all block section, respectively.

For each control area, we consider a one-day timetable, and we create 100 scenarios in
which 20% of trains, randomly selected, suffer a random delay between 5 and 15 minutes
at their entrance in the control area. We generate one rtRTMP instance from each of
these 100 scenarios by considering all the trains entering the control area within a one-
hour horizon. We set the time horizon from 6:00 am to 07:00 am. This time horizon
corresponds to the morning peak hour. We use the so obtained 400 instances for testing
the performance of 3BA.

Before presenting the results, we describe each control area in the next subsection.

7.1. Control areas tackled

Pierrefitte–Gonesse junction (Gonesse): Gonesse is a critical control area north
of Paris with dense mixed traffic. Figure 4 schematically depicts its infrastructure. It
includes 89 track-circuits, grouped into 174 block sections and 39 routes. The one-hour
instances we tackle include between 14 and 17 trains (mean 15). Each train can use
between 5 and 13 routes (mean 8), which translates into a RECIFE-MILP formulation
with about 121 000 continuous variables, 1 800 binary variables and 35 000 constraints
for an instance with 15 trains.

Lille Flandres station (Lille): In Lille, trains must necessarily cross for enter-
ing and exiting the station, which makes even the only scheduling decisions extremely
critical. In addition to this difficulty for schedule optimization, the large number of
routes available for the trains increases the complexity of the routing optimization w.r.t.
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Figure 5: Lille Flandres station.
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Figure 6: Saint–Lazare station.

Gonesse. The control area is shown in Figure 5. Lille is a terminal station with 17
platforms connected to seven regional, national and international lines. It hosts both
traditional passenger trains and high speed ones. In total, 299 track-circuits compose
734 block sections and 2 409 routes. The one-hour instances that we tackle include be-
tween 36 and 41 trains (mean 39). Each train can use between 1 and 72 routes (mean
11), which translates into a RECIFE-MILP formulation with about 274 500 continuous
variables, 3 700 binary variables and 68 700 constraints, for an instance with 39 trains.

Saint-Lazare station (St. Lazare): St. Lazare is one of Paris complex and
critical control areas. As Lille, it is a terminal station area. It covers slightly more than
4 km. The control area is depicted in Figure 6. The Saint-Lazare station includes 212
track-circuits, grouped into 197 block sections and 27 routes. The one-hour instances
tackled include betwen 54 and 64 trains (mean 60). Each train can use between 1 and 9
routes (mean 5), which translates into a RECIFE-MILP formulation with about 165 016
continuous variables, 4 436 binary variables and 48 655 constraints for an instance with
60 trains.

Rouen-Rive-Droite control area (Rouen): The control area including Rouen-
Rive-Droite station comprises six stations, with two to six platforms, and one junction.
The presence of multiple stations with several possible platform assignments implies the
availability of a very large number of alternative routes. The existence of these routes is
the main source of complexity of traffic management in this control area, together with
the presence of mix traffic. The control area is depicted in Figure 7. The 190 track-
circuits compose 189 block sections and 11 347 routes. Our one-hour instances include
between 10 and 13 trains (mean 11). Each train can use between 1 and 384 routes (mean
73), which translates into a RECIFE-MILP formulation with about 949 800 continuous
variables, 1 030 binary variables and 224 900 constraints, for an instance including 11
trains.
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Figure 7: Rouen-Rive-Droite control area.

Table 1: Results over 100 instances at each control area: average total delay in seconds, number of
optima proven, average optimality gap and average solution time in seconds.

hhhhhhhhhhhhhhhControl area
Algorithm

CBA 3BA RECIFE-MILP

Delay #Opt Gap time Delay # Opt Gap time Delay # Opt Gap time

Gonesse 134 53 0.14 87 131 56 0.11 80 104 100 0 64

Lille 1146 0 1 180 1016 0 0.97 180 567 15 0.53 154

St. Lazare 447 0 1 180 447 0 1 180 176 85 0.03 108

Rouen 445 2 0.98 180 24 76 0.24 44 387 6 0.92 169

7.2. Results

In this section, we present the results of our computational experiments on the four
control areas. The aim of these computational experiments is twofold: first, we show
and analyze the out-performance of 3BA with respect to CBA; then, we evaluate and
compare the performance of 3BA and RECIFE-MILP.

Table 1 reports the results obtained over the 100 instances for each control area
after 180 wall-clock seconds of computation. The table contains three columns, one per
algorithm. Each column indicates the average delay in seconds (objective function value),
the number of optima proven, the average optimality gap found by the corresponding
algorithm and the average computational time in seconds. Recall that this time is at most
180 seconds, i.e., the time limit we consider, but it can be lower if the optimal solution
is proven earlier. Four rows make up the table, one for each control area tackled.

The comparison of the performance of 3BA and CBA allows making the following
observation. The average returned objective function value of 3BA is lower than the one
of CBA for three control areas (Gonesse, Lille and Rouen), while the number of optimal
solutions proven is higher for two control areas (Gonesse and Rouen). For the St. Lazare
instances, the two algorithms achieve similar performances. In the computational time
available, the number of cuts generated for 3BA is lower than the one for CBA. In
particular, CBA generates 96, 211, 116 and 287 cuts in average versus 93, 129, 75, and
94 for 3BA on the Gonesse, St. Lazare, Lille and Rouen instances, respectively. The lower
number for 3BA can be explained by the longer time needed for the generation of one
cut, which includes the solution of a MILP problem. We think the better performance of
3BA with respect to CBA is due to three reasons. First, in 3BA no big-M is present in
the cuts. This makes the cuts stronger, since big-M is known to be a source of weakness
in integer programming. Second, in 3BA, the cuts associated to routing solutions in
the UMP are always linked to optimal scheduling decisions. This can be interpreted
as having the cuts really indicating what best can be done with the routes selected. In
CBA, instead, with a set of routes comes a set of scheduling decisions, which can be good
or bad if at all feasible. The cut added to the UMP is then not necessarily linked to the
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actual routes potential. Third, in CBA several feasibility cuts are generated before the
UMP is able to find a feasible solution. Feasibility cuts are indeed quite weak, and this
process consumes computational time. On the contrary, in 3BA, only optimality cuts
are added, since solutions are by definition feasible.

These results show that 3BA outperforms CBA whatever the chosen criterion (average
delay, number of optimal solutions, average optimality gap, average computational time).
In the following, then, we only focus on 3BA in the comparison with RECIFE-MILP.

The comparison between 3BA and RECIFE-MILP is shown in Table 1. The results
show that 3BA clearly outperforms RECIFE-MILP in Rouen instances. 3BA solves
76 instances to the optimum, finds 24 seconds as the average delay and 0.24 as the
average optimality gap. The corresponding figures for RECIFE-MILP are 6, 387 and 0.92,
respectively. However, in the Gonesse, Lille and St. Lazare instances, the performance
of 3BA is not comparable to the one of RECIFE-MILP.

To find an explanation to the different relative performance in the control areas, we
conjecture that 3BA is appropriate for the instances in which the number of alternative
routes available per train is very large. To support our conjecture, we study in the
following how the results on each control area change when we vary the maximum number
of alternative routes per train. To do so, we solve the same instances considered above
limiting the number of routes per train to different values. Specifically, we consider the
first m available routes for each train, and we vary m between 1 and the maximum
number of routes in the original instances.

The graphical analysis of these results is done in Figures 8 and 9. In Figures 8,
the x-axis indicates the maximum number of routes per train and the y-axis shows the
average delay in seconds for the four control areas. In Figure 9, the x-axis indicates
the maximum number of routes per train and the y-axis shows the number of instances
solved to the optimum within the available computational time, again for the four control
areas. These figures show the following results.

For the Rouen instances (see Figures 8 and 9, bottom right) the higher the maximum
number of routes per train is, the more the average delay found by RECIFE-MILP
increases. Instead, the average delay found by 3BA remains stable and tends to slightly
decrease. When the maximum number of routes per train is in the interval [1,10], the
two algorithms achieve the same performance. When this value is 20, RECIFE-MILP
solves all the instances to the optimum, while 3BA fails to do so in 12 cases. However,
for 8 of them, 3BA reaches the optimal solution although it does not manage to prove
its optimality. To assess the statistical significance of the difference between the two
algorithms, we perform the Wilcoxon rank-sum test with a confidence level of 0.95. This
test does not show any significant difference between the algorithms run on Rouen, when
the maximum number of routes per train is in [1, 40]. Nevertheless, for a maximum
number of routes per train going from 60 to the extreme value of 384, the difference is
statistically significant in favor of 3BA. However, different observations are suggested for
the three other control areas. In Gonesse (see Figures 8 and 9, top left), the experiments
do not allow to remark any significant difference when the maximum number of routes
per train is smaller than or equal to 2. From 3, this difference is statistically significant in
favor of RECIFE-MILP. Moreover, in terms of the number of optima proven, RECIFE-
MILP solves all the instances to the optimum, while the number of instances solved to
the optimum by 3BA tends to decrease when the maximum number of routes per train
increases. In the Lille instances (see Figures 8 and 9, top right), the bad performance
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Figure 8: Comparison of the average delay achieved by RECIFE-MILP and 3BA on the four control
areas depending the maximum number of routes per train.

Figure 9: Comparison of the number of instances solved to the optimum by RECIFE-MILP and 3BA
on the four control areas depending the maximum number of routes per train.
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of 3BA is clearly revealed compared to RECIFE-MILP. Even if 3BA manages to solve
some instances to the optimum beyond the value of one route per train, RECIFE-MILP
outperforms significantly 3BA from two routes per train. In St. Lazare (see Figures 8
and 9, bottom left), the performance of 3BA is very poor compared to RECIFE-MILP.
3BA fails to prove the optimality for all instances when the maximum number of routes
per train exceeds 1. From 2, the difference is statistically significant in favor of RECIFE-
MILP.

As a result, we cannot state that the difference of performance between the two
algorithms is due to the maximum number of alternative routes available per train. To
further investigate the reason of this difference, we study the performance depending to
the total number of x and y-variables separately. The graphical analysis of this study is
done in Figures 10 and 11.

In Figure 10, we analyze the behavior of the two algorithms on the four control areas
in terms of the number of instances solved to the optimum (y-axis) depending the total
number of x-variables (x-axis). For Gonesse, we observe that RECIFE-MILP solves all
instances to the optimum, while 3BA fails to do so as soon as more than one route is
considered per train (all the points following the first one). Similarly, we can remark
that the performance of 3BA is very bad for the St. Lazare and Lille instances. In
St. Lazare, 3BA fails to solve all instances to the optimum even with small numbers of
x-variables. In the Lille instances, we have a similar behavior of 3BA. As soon as the
total number of x-variables increases, the number of instances solved by 3BA decreases
drastically. When the total number of x-variables reaches 172, 3BA fails to solve all
instances. The performance of RECIFE-MILP in the two control areas (St. Lazare and
Lille) is also worse than the one in Gonesse. However, although the number of instances
solved by RECIFE-MILP tends to decrease, RECIFE-MILP manages to do better than
3BA in the St. Lazare and Lille instances. Instead, for Rouen, when the total number
of x-variables is in the interval [12, 71], the number of instances solved to the optimum
within the available computational time by the two algorithms is the same. When the
value is 120 (the first point where the lines get separated in Figure 10, bottom right),
the number of instances solved to the optimum within the available computational time
decreases for 3BA and remains constant for RECIFE-MILP. However, when the total
number of x-variables increases, RECIFE-MILP suffers from this augmentation and its
number of instances solved to the optimum tends to decrease, while these figures for 3BA
tends to stabilize. The observation that we can draw based on Figure 10 is that, when
an instance of the rtRTMP contains “many” alternative train routes, meaning “many”
routes are available for many trains, 3BA seems to be the best option. The results in the
different control areas appear coherent in this sense: in Gonesse, where few x-variables
are present even when all alternative routes are considered for each train, RECIFE-MILP
is consistently better than 3BA. The same holds when not all routes are considered for
Lille, St. Lazare and Rouen. However, as the number of x-variables increases and gets
around a few hundreds, the difference in performance becomes smaller in these three
control areas: the performance of RECIFE-MILP starts degrading and getting closer
to the one of 3BA. In Rouen, where 3BA is capable of solving to optimality a large
number of instances, the latter eventually outperforms RECIFE-MILP when the number
of x-variables becomes very large.

This observation does not fully explain the different performance. Specifically, it does
not explain why 3BA is really not well behaving in Lille and St. Lazare. To shed some
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Figure 10: Comparison of the number of instances solved to the optimum by RECIFE-MILP and 3BA
on the four control areas depending the number of x-variables.

light on this behavior, we consider the total number of y-variables. Similarly to what
we just did for x-variables, in Figure 11, we analyze the behavior of the two algorithms
on the four control areas in terms of the number of instances solved to the optimum
(y-axis) depending the total number of y-variables (x-axis). Note that the number of y-
variables is constant for Rouen throughout the increase of the number of routes available
per train, when this number is above 80: the last points in Figure 11 bottom right have
the same abscissa. This is due to the characteristics of the additional routes available
for the trains: they are new combinations of parts of routes which are already covered
by existing y-variables, since they are present in other trains routes. Instead, in the
other three control areas, the number of y-variables keeps increasing as the number of
alternative routes of each train grows. For Rouen, we observe that for a number of
y-variables in the interval [70, 348], the two algorithms are successful for all instances.
When this value is 401, the number of instances solved by 3BA decreases, while for
RECIFE-MILP it remains stable. When the total number of y-variables reaches 495, the
number of instances solved by 3BA tends to stabilize, while this value for RECIFE-MILP
strongly decreases following the increase of the number of routes per train. Instead, for
Gonesse (Figure 11 top left), as soon as more than one route is available for each train
(second point in the series), 3BA suffers from the noticeable augmentation of y-variables
and the number of instances it solves to the optimum decreases, while for RECIFE-
MILP it remains stable. Similarly, in the St. Lazare and Lille instances, as the total
number of y-variables increases RECIFE-MILP does better than 3BA. In Lille, although
the number of instances solved to the optimum by the two algorithms decreases when
the total number of y-variables increases, 3BA suffers from this augmentation more than
RECIFE-MILP. Worse still, in the St. Lazare instances, we can remark that 3BA fails to
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Figure 11: Comparison of the number of instances solved to the optimum by RECIFE-MILP and 3BA
on the four control areas depending the number of y-variables.

solve all instances to the optimum when the number of routes available per train exceeds
1. An explanation to this bad result achieved by 3BA in St. Lazare can be the immediate
predominance of the scheduling decisions (4611) on the routing ones (291).

The conclusion which we draw from these analyses is that, when an instance of the
rtRTMP contains “many” x-variables and “few” y-variables as in the case of Rouen with
many alternative routes per train, 3BA achieves a better performance than RECIFE-
MILP. Instead, when the number of y-variables is “large” and the number of x-ones is
“small”, as in Gonesse, Lille and St. Lazare, RECIFE-MILP outperforms 3BA. These
results suggest that, depending on the characteristics of the rtRTMP instances, either
3BA or RECIFE-MILP can be the best option. Specifically, when a rtRTMP instance
contains “many” train routes that do not generate “many” rescheduling variables 3BA
proves to be efficient. Instead, disregard the number of train routes, if these routes
generates “many” rescheduling variables, then RECIFE-MILP seems to be the best.

The fact that 3BA outperforms RECIFE-MILP when there are “many” routing deci-
sions (i.e., x-variables) and “few” scheduling ones (i.e., y-variables) may be due to several
reasons.

One possible reason is related to the computational time necessary to solve the
rescheduling problem (i.e., the MILSP) in 3BA. When the MILSP contains “many”
y-variables this computational time may increase. As a result, 3BA generates less Ben-
ders cuts than when the MILSP is easy to solve. We remark that for Gonesse, Lille and
St. Lazare, where the MILSP contains “many” y-variables “few” Benders cuts are added
to the UMP: for example, when all the routes of the original instances are available for
the trains, the average computational time per cut added is 1.38, 1.40 and 2.42 seconds
for Gonesse, Lille and St. Lazare, respectively. This corresponds to the generation of
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130, 129 and 75 cuts in average for the three control areas in the three minute computa-
tional time available. Instead, for Rouen, where the MILSP contains “few” y-variables,
“many” Benders cuts are added to the UMP: the average computational time per cut
added is 0.70 seconds, i.e., in average 257 cuts are generated. Indeed, the quality of the
search process being equal, the more solutions are explored, and hence the more cuts are
generated, the better the solution quality is.

Moreover, we believe that another reason for the different performance is related to
the characteristics of the control area considered. In particular, it is related to the fact
that different control areas may feature different route inter-dependencies. Let us call
two routes interdependent if two trains using them incur in strong potential conflicts, and
independent otherwise. A proxy for routes interdependency is the number of y-variables
which derive from their use: the more the variables, the higher the interdependency1.
Although routes interdependency is difficult to quantify, intuitively it can be observed
that Rouen, with its line structure, allows the definition of more independent routes
than Gonesse, Lille and St. Lazare, that are junctions rich of switches and bidirectional
tracks. For Rouen, given a set of trains, a few of which are perturbed, it is often possible
to identify an allocation of routes such that the perturbed trains seldom cross the others.
Depending on the fact that these routes are chosen or not, the total delay and hence the
objective function value of the LSP will change quite a lot. For Gonesse, for example,
this is still possible if the number of trains is low, but it becomes very unlikely for large
train sets. As a consequence, the objective function value of the LSP corresponding
to different route allocations will often be similar for this control area. This is indeed
what we observe throughout 3BA runs. Getting now to the different behavior of 3BA
on the four control areas, we think that, in general, largely different LSP (and hence
DLSP) objective function values will imply largely different coefficients for the x-variables
involved. In turn, this will imply that different route assignments, when evaluated in
the UMP already including some cuts, will have quite different impacts on the value of
variable z, and hence on the UMP objective function. Thus, the quality of different route
assignments may become visible already after a few cut generations, and this may indeed
improve the performance of the solution process. Hence for Rouen, where routes are more
independent, 3BA soon manages to make wise route choices and reach good performance,
whereas for Gonesse, Lille and St. Lazare, where routes are strongly interdependent, 3BA
struggles to identify promising assignments and behaves quite poorly.

8. Conclusions and future works

In this paper, we aimed at improving the performance of a state-of-the-art algorithm
for the rtRTMP when tackling large problem instances. Specifically, we proposed 3BA. It
is an algorithm based on Benders-like decomposition of the RECIFE-MILP formulation
into three problems: the UMP, the MILSP and the LSP. The UMP contains only the
binary re-routing variables. Given the re-routing decisions made in the UMP, the MILSP
contains the binary rescheduling variables and the continuous re-timing variables. Based

1Remark that this is only a proxy since what really matters for the reasoning which follows is the
presence of potential conflicts, which also depend on the trains timing. However, we think the proxy is
meaningful here.
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on the optimal scheduling decisions obtained by solving the MILSP, the dual of the
LSP defines the cuts to be added to the UMP. This reformulation allows the generation
of Benders cuts without the big-M parameter and the avoidance of the exploration of
rescheduling infeasible or sub-optimal solutions, which characterize the standard Benders
decomposition of RECIFE-MILP.

We tested this algorithm on four French control areas with rather different character-
istics. In the experimental analysis, we observed that for the four control areas tackled,
3BA outperforms CBA on the three ones and have the same performance as CBA on one
control area. 3BA also clearly outperforms RECIFE-MILP for one control area, while
the opposite holds for the three others. We conjecture that the different performance
on the four control areas is due to the characteristics of the rtRTMP instances to be
tackled: we think that when a rtRTMP instance contains “many” alternative routes for
the trains that do not require to make “many” rescheduling decisions 3BA is the best
option to achieve high quality results, RECIFE-MILP being preferable otherwise. This
is probably due, at least in part, to the time necessary to solve the MILSP when many
rescheduling decisions are to be made.

In future research, we will study possible ways for reducing this time, for example
through the introduction of valid inequalities.
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