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Abstract. Subgroup discovery in labeled data is the task of discover-
ing patterns in the description space of objects to find subsets of objects
whose labels show an interesting distribution, for example the dispropor-
tionate representation of a label value. Discovering interesting subgroups
in purely numerical data - attributes and target label - has received little
attention so far. Existing methods make use of discretization methods
that lead to a loss of information and suboptimal results. This is the case
for the reference algorithm SD-Map*. We consider here the discovery of
optimal subgroups according to an interestingness measure in purely nu-
merical data. We leverage the concept of closed interval patterns and
advanced enumeration and pruning techniques. The performances of our
algorithm are studied empirically and its added-value w.r.t. SD-Map* is
illustrated.

Keywords: Pattern Mining · Subgroup Discovery · Numerical Data

1 Introduction

Mining purely numerical data is quite popular. It concerns data made of objects
described by numerical attributes, and one of these attributes can be considered
as a target label. We can then choose to learn models to predict the value of
the label for new objects, or we can apply subgroup discovery methods [14,22]
that is the focus of this paper. Subgroup discovery aims at discovering subsets of
objects - known as subgroups - described by interesting descriptions according
to a quality measure calculated on the target label. A quality measure has to
capture discrepancies in the target label distribution between the selected sub-
set of objects and the overall dataset. A large panel of exhaustive [1,10] and
heuristic [16,5] subgroup discovery algorithms have been proposed so far. Most
of these approaches consider a set of nominal attributes with a binary label.
Regarding numerical attributes, a few approaches [11,19] that avoid the use of
basic discretization techniques have been introduced. However, to the best of our
knowledge, we lack from a method that would support an exhaustive search and
thus the possibility to guarantee the computation of a global optimum for the
quality measure without the use of discretization in some form or other. When



2 A. Millot et al.

considering numerical target labels, [15] introduced relevant quality measures as
well as the SD-Map* reference algorithm. Notice however that SD-Map* requires
the prior discretization of the numerical attributes.

The guarantee to discover an optimal subgroup in purely numerical data is
a useful task and we now motivate it for our ongoing research project. We are
currently working on optimization methods for urban farms (e.g., AeroFarms,
Infarm, FUL1). In that setting, plant growth recipes involve many numerical
attributes (temperature, hydrometry, CO2 concentration, etc) and a numerical
target label (the yield, the energy consumption, etc). Our goal is to mine the
recipe execution records (i.e., the collected measures) to discover the charac-
teristics of an optimized growth. In expert hands, such characteristics can be
exploited to define better recipes. In such a context, the guaranteed discovery
of the optimal subset of recipes with respect to the target label is more rele-
vant than the heuristic discovery of the k best subgroups with no optimality
guarantee. Preliminary results on simulated crops are given in this paper.

To achieve the search for optimality, we decided to search the space of inter-
val patterns as defined in [13]. Our main contribution consists in an algorithm
that exhaustively enumerates all the interval patterns. Our approach (i) exploits
the concept of closure on the positives adapted to a numerical setting to oper-
ate in a subspace (ii) uses a new faster tight optimistic estimate that can be
applied for several quality measures (iii) uses advanced pruning techniques (for-
ward checking, branch reordering). The result is the efficient algorithm OSMIND
for an optimal subgroup discovery in purely numerical data without prior dis-
cretization of the attributes. Section 2 formalizes our mining task. In Section
3, we discuss related work. We detail our contributions in Section 4 before an
empirical evaluation in Section 5. Section 6 briefly concludes.

2 Problem Definition

Purely numerical dataset. A purely numerical dataset (G,M, T ) is given by
a set of objects G, a set of numerical attributes M and a numerical target label
T . In a given dataset, the domain of any attribute m ∈M is a finite ordered set
denoted Dm. In this context, m(g) = d means that d is the value of attribute
m for object g. The domain of label T is also a finite ordered set denoted DT .
T (g) = v means that v is the value of label T for object g. Fig. 1 (left) is a purely
numerical dataset made of two attributes (M = {m1,m2}) and a target label T .
A subgroup p is defined by a pattern, i.e., its intent or description, and the set
of objects from the dataset where it appears, i.e., its extent, denoted ext(p).

Interval patterns, extent and closure. Given a purely numerical dataset
(G,M, T ), an interval pattern p is a vector of intervals p =

〈
[bi, ci]

〉
i∈{1,...,|M |}

where bi, ci ∈ Dmi, and each interval is a restriction on an attribute of M , and
|M | is the number of attributes. An object g ∈ G is in the extent of an interval

1 https://aerofarms.com/, https://infarm.com/, http://www.fermeful.com/.

https://aerofarms.com/
https://infarm.com/
http://www.fermeful.com/


Optimal Subgroup Discovery in Purely Numerical Data 3

m1 m2 T

g1 1 1 15
g2 1 2 30
g3 2 2 60
g4 3 2 40
g5 3 3 70
g6 4 3 85

m1

m2

0 1 2 3 4 5
0

1

2

3

4

g1

g2 g3

g5 g6

g4
c1

c2

Fig. 1. (left) A purely numerical dataset. (right) Non-closed (c1 =
〈
[2, 4], [1, 3]

〉
, non-

hatched) and closed (c2 =
〈
[2, 4], [2, 3]

〉
, hatched) interval patterns.

pattern p =
〈
[bi, ci]

〉
i∈{1,...,|M |} iff ∀i ∈ {1, ..., |M |},mi(g) ∈ [bi, ci]. Let p1 and

p2 be two interval patterns. p1 ⊆ p2 means that p2 encloses p1, i.e., the hyper-
rectangle of p1 is included in that of p2. It is said that p1 is a specialization of
p2. Given an interval pattern p and its extent ext(p), p is defined as closed if
and only if it represents the most restrictive pattern (i.e., the smallest hyper-
rectangle) that contains ext(p). For example, in the data from Fig. 1 (left), the
domain of m1 is {1, 2, 3, 4} and 〈[2, 4], [1, 3]

〉
is the interval pattern that denotes a

subgroup whose extent is {g3, g4, g5, g6}. Fig. 1 (right) depicts the same dataset
in a cartesian plane as well as a comparison between a non-closed (c1) and a
closed (c2) interval pattern.

Quality measure and optimistic estimate. Considering a purely numerical
dataset (G,M, T ), the interestingness of each interval pattern is measured by
a numerical value. Usually, the value quantifies the discrepancy in the target
label distribution between the overall dataset and the extent of the considered
interval pattern. We consider here the family of quality measures based on the
mean introduced in [15]. Given an interval pattern p, its quality is given by:

qamean(p) = |ext(p)|a × (µext(p) − µext(∅)), a ∈ [0, 1]

with µext(p) the mean of the target label for p, µext(∅) the mean of the target
label for the overall dataset, |ext(p)| the cardinality of ext(p) and a a parameter
that controls the number of objects in the subgroups.

Given an interval pattern p and a quality measure q, an optimistic estimate
for q, denoted as bsq, is a function that gives an upper bound for the quality of
all specializations of p. Formally, ∀s ⊆ p : q(s) ≤ bsq(p). Optimistic estimates are
used to prune the search space: if an interval pattern optimistic estimate is lower
than the required minimal quality, it is useless to consider its specializations.

Optimal subgroup. Let (G,M, T ) be a purely numerical dataset, q a quality
measure and P the set of all interval patterns of (G,M, T ). An interval pattern
is said to be optimal iff ∀p′ ∈ P : q(p′) ≤ q(p). Notice that several subgroups
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can have the same optimal quality. In this paper, we return the first one found
by the algorithm.

3 Related Work

Although we are not aware of previous proposals for an optimal subgroup dis-
covery in purely numerical data, related topics have been seriously investigated.
Traditionally, subgroup mining has been mainly concerned with nominal at-
tributes and binary target labels. To deal with numerical data, prior discretiza-
tion of the attributes [6,8] is then required. Numerical target labels can also be
discretized [18]. However, discretization generally involves a loss of information
such that we cannot guarantee the optimality of the returned subgroups. [2] in-
troduced the concept of Quantitative Association Rules where a rule consequent
is the mean or the variance of a numerical attribute. A rule is then defined as
interesting if its mean or variance significantly deviates from that of the overall
dataset. Later on, [21] proposed an extension of such rules called the Impact
Rules. These methods, however, cannot perform an exhaustive enumeration of
subgroups and therefore provide no guarantee for an optimal subgroup discov-
ery. A recurring issue with exhaustive pattern enumeration algorithms is the
size of the search space which is exponential as a function of the number of
attributes. Fortunately, the search space can be pruned thanks to optimistic
estimates [22,12]. [15] introduces a large panel of quality measures and opti-
mistic estimates for an exhaustive mining with numerical target labels. A few
approaches have been proposed to tackle numerical attributes [11,16,19]. How-
ever, these methods always involve the use of discretization techniques. When
dealing with exhaustive search in numerical data, we find the MinIntChange
algorithm [13] based on constructs from Formal Concept Analysis [7]. It en-
ables an exhaustive mining of frequent patterns - not subgroups - in numerical
data without prior discretization. The use of closure operators and equivalence
classes [20,9,4,10] is a popular solution to reduce the size of the subgroup search
space. [3] introduced an anytime subgroup discovery algorithm in numerical data
for binary target labels by revisiting the principles of MinIntChange. We also
want to leverage closure operators, optimistic estimates and the enumeration
strategy of MinIntChange for an optimal subgroup discovery in purely numer-
ical data though our mining task is different from the task in [3].

4 Optimal Subgroup Discovery

4.1 Closure On The Positives

The closure operator on interval patterns introduced in [13] has been extended
to closure on the positives for binary labels in [3].

Definition 1. Let p ∈ P be an interval pattern, p′ ⊆ p a second interval pattern,
and T a binary target label. An object is said to be positive if its label value is
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Fig. 2. (left) Purely numerical dataset with binary label (Tb). (center) Closed (c1 =〈
[1, 4], [1, 3]

〉
, non hatched) and closed on the positives (c2 =

〈
[2, 4], [2, 3]

〉
, hatched)

interval patterns. (right) Depth-first traversal of Dm2 using minimal changes.

that of the class we want to discriminate, and negative in the opposite case. Let
ext(p)+ be the subset of objects of ext(p) whose label T is positive. p′ is said to
be closed on the positives if it is the most restrictive pattern enclosing ext(p)+.
If q is the quality measure, we have q(p) ≤ q(p′).

For all subgroups p ∈ P , if all negative objects which are not in the extent of
p′ are removed from the extent of p, then the subgroup quality cannot decrease.
Note that closed on the positives are a subset of closed patterns.

The concept of closed on the positives for binary target labels can be extended
to numerical target labels for a set of quality measures, including qamean. We
transform the numerical label into a binary label: objects whose label value is
strictly higher (resp. lower or equal) than the mean of the dataset are defined as
positive (resp. negative). Note that the quality measure is computed on the raw
numerical label. The binarisation is only used to improve search space pruning
and it does not lead to a loss of information concerning the resulting patterns
(i.e., the optimal subgroup discovery without discretization is guaranteed). Fig. 2
(left) is the dataset of Fig. 1 with label T (mean = 50) transformed into the
binary label Tb. Fig. 2 (center) depicts the dataset of Fig. 2 (left) in a cartesian
plane and a comparison between a closed (c1) and a closed on the positives (c2)
interval pattern. We separate the case where the subgroup quality is positive
from the case where it is negative. Given a subgroup of positive quality, we can
prove that its quality is always higher or equal if all negative objects not in the
closure on the positives are removed.

Theorem 1. Let p be an interval pattern, qamean a set of quality measures, p+

the closure on the positives of p such that p+ ⊆ p, and qamean(p) ≥ 0, then
qamean(p+) ≥ qamean(p), a ∈ [0, 1].

Proof. Let ext(p) be the extent of p, ext(p)+ the extent of p+, ext(p)− = ext(p)\
ext(p)+ the set of negative objects of ext(p) not in ext(p)+, and T (i) the target
label value for Object i. For shorter notation, we define e = ext(p) and θ =
ext(∅). We prove that:

|e+|a × (µe+ − µθ) ≥ |e|
a × (µe − µθ) (1)
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Which can be transformed into:

|e+|a ×
∑
i∈e+(T (i)− µθ)

|e+| ≥ |e|a ×
∑
i∈e(T (i)− µθ)

|e| (2)

|e+|a ×
∑
i∈e+(T (i)− µθ)

|e+| ≥ (|e+|+ |e−|)a ×
∑
i∈e+(T (i)− µθ) +

∑
i∈e−(T (i)− µθ)

|e+|+ |e−|
(3)

By construction, we know that
∑
i∈e+(T (i)− µθ) ≥ 0 ≥

∑
i∈e−(T (i)− µθ). The

rest of the proof follows the same as [15]. We deduce that for any subgroup
verifying qamean(p) ≥ 0, the closure on the positives always leads to a subgroup
of equal or higher quality.

The case of a negative quality subgroup is more complex since the closure on
the positives can lead to a decrease of the subgroup quality. We prove that
objects which are not in the closure on the positives can never be part of the
best subgroup specialization.

Theorem 2. Let p be an interval pattern, p+ the closure on the positives of
p such that p+ ⊆ p and ext(p)+ its extent with |ext(p)+| > 0. Let ext(p)− =
ext(p)\ext(p)+ be the set of negative objects of ext(p) not in ext(p)+, and qamean
a set of quality measures with qamean(p) < 0: No object in ext(p)− can be part of
the best specialization of p.

Proof. We hypothesize that there exists an object in ext(p)−, denoted i−, which
belongs to the best specilization of p, denoted ptop. By construction, qamean(ptop) >
0 (since |ext(p)+| > 0). Let p+top be the closure on on the positives of ptop. By

construction, we know that i− isn’t part of the extent of p+top (since i− doesn’t

belong to p+). Yet, according to Theorem 1, we have qamean(p+top) ≥ qamean(ptop).
We deduce that i− doesn’t belong to the best specialization of p.

4.2 Tight Optimistic Estimate

We now introduce a new tight optimistic estimate for the family of quality
measures qamean. An optimistic estimate is said to be tight, if, for any subgroup
of the dataset, there is a subset of objects of the subgroup whose quality is equal
to the value of the subgroup optimistic estimate. Note that the subset does not
need to be a subgroup. It is possible to derive a tight optimistic estimate for the
quality measures qamean by considering each object of a subgroup only once.

Definition 2. Let p be an interval pattern, and Si ⊆ ext(p) the subset of objects
of ext(p) containing the i objects with the highest label value. Then, as defined
in [15], a tight optimistic estimate for qamean is given by:

bssamean(p) = max(qamean(S1), ..., qamean(S|ext(p)|)), a ∈ [0, 1]

We can derive a better optimistic estimate by focusing on positive objects only.
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Theorem 3. Let p be an interval pattern and ext(p)+ the set of objects from
the extent of p whose label value is higher than the mean of the dataset. Let
Si ⊆ ext(p)+ be the subset of objects containing the i objects with the highest
label value. A new tight optimistic estimate for qamean is given by:

bss
a

mean(p) = max(qamean(S1), ..., qamean(S|ext(p)+|)), a ∈ [0, 1]

Proof. We need to prove that:

bss
a

mean(p) ≥ bssamean(p), a ∈ [0, 1]

In other words, we need to show that: ∀Si ⊆ ext(p), qamean(S+
i ) ≥ qamean(Si)

with S+
i the subset of positive objects of Si. In [15], it is proven that no negative

object belongs to the best subgroup’s subset of objects for the quality measures
qamean. It follows logically that for any subset Si, removing the negative objects
can not lower its quality. Thus, we have

∀Si ⊆ ext(p), qamean(S+
i ) ≥ qamean(Si)

We deduce that:

max(qamean(S1), ..., qamean(S|ext(p)+|)) ≥ max(qamean(S1), ..., qamean(S|ext(p)|)), a ∈ [0, 1]

Thus, bss
a

mean(p) is a tight optimistic estimate for qamean.

4.3 Algorithm

We introduce OSMIND, a depth first search algorithm for an optimal subgroup
discovery. It computes closed on the positives interval patterns coupled with the
use of tight optimistic estimates and advanced search space pruning techniques.
The pseudocode is available in Algorithm 1.

To guarantee an optimal subgroup discovery, we adopt the concept of min-
imal change from MinIntChange that ensures an exhaustive enumeration of
all interval patterns (see Fig. 2 (right) for an example with one attribute). A
right minimal change consists in replacing the right bound of an interval by the
current value closest lower value in the domain of the corresponding attribute.
Following the same logic, a left minimal change consists in replacing the left
bound by the closest higher value. The search starts with the minimal interval
pattern that covers all the objects of the dataset. The main idea in procedure
RECURSION is to apply consecutive left or right minimal changes until obtaining
an interval whose left and right bounds have the same value for each interval
of the minimal interval pattern. If so, the algorithm backtracks until finding a
pattern on which a minimal change can be applied. We leverage the concept of
closure on the positives adapted to numerical labels to significantly reduce the
number of candidate interval patterns. After each minimal change (Line 4), in-
stead of evaluating the resulting interval pattern, we compute and evaluate the
corresponding closed on the positives interval pattern (Line 5). When carrying
out an exhaustive search of all closed on the positives interval patterns, a given
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Algorithm 1 OSMIND algorithm

1: function osmind( )
2: Initialize(minimal interval pattern, optimal pattern)
3: recursion(minimal interval pattern, 0)
4: return optimal pattern
5: end function

1: procedure recursion(pattern, attribute)
2: for i = attribute to nb attributes− 1 do
3: for elem in {right, left} do
4: pattern← minimalChange(pattern, i, elem)
5: closed pattern← computeClosureOnThePositives(pattern)
6: if isCanonical(closed pattern) then
7: if tightOptEst(closed pattern) > quality(optimal pattern) then
8: store(closed pattern, i) end if
9: if quality(closed pattern) > quality(optimal pattern) then

10: optimal pattern← closed pattern end if
11: end if
12: end for
13: end for
14: for each element stored ordered by optimistic estimate value do
15: if tightOptEst(element.pattern) > quality(optimal pattern) then
16: recursion(element.pattern, element.attribute) end if
17: end for
18: end procedure

interval pattern can be generated multiple times. To avoid this redundancy and
to ensure the unicity of the pattern generation, a popular solution is the use
of a canonicity test. In the case of interval patterns, the canonicity test verifies
that the closure operation did not lead to a change on an interval preceding the
interval on which the minimal change has been applied (Line 6). However, the
successive application of left or right minimal changes on an interval can also
lead to multiple generations of the same interval pattern. A solution is to use a
constraint on the minimal changes. After a right minimal change, a right or left
minimal change can be applied. However, a left minimal change must always be
followed by a left minimal change. We also exploit advanced pruning techniques
to reduce the size of the search space. This can be done through the use of a tight
optimistic estimate of the quality of a closed on the positives interval pattern
specializations. For each subgroup, an optimistic estimate is derived (Line 7),
and, if it is lower than the best subgroup quality, the search space is pruned by
discarding every specialization of this interval pattern. Our second implemented
technique is the coupling of forward checking and branch reordering. Given an
interval pattern, the set of all its direct specializations (application of a right
or left minimal change on each interval) are computed - forward checking - and
those whose optimistic estimate is higher than the best subgroup are stored
(Line 8). Branch reordering by descending order of the optimistic estimate value
is then carried out (Line 14). Branch reordering enables to explore the most
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promising parts of the search space first. It also enables a more efficient pruning
by raising the minimal quality earlier.

5 Empirical Validation

We consider 7 purely numerical datasets described in Table 1. SD-Map* imple-
mentation is available within the VIKAMINE system2. The first 5 datasets (Bolt,
Basketball, Airport, Body Temp and Pollution) originate from the Bilkent3

repository. The other 2 datasets (RecipesA and RecipesB) are simulations of
plant growth that we generated using the specialized environment Python Crop
Simulation Environment PCSE4. Each growth simulation is described by a set
of numerical attributes - the growth conditions (e.g., temperature, CO2) - and
a numerical target label - the yield at the end of the growth cycle. Here, a plant
growth is split into several time periods of equal length called stages. Table 2
depicts simplified examples of plant growth simulations generated with PCSE.

Table 1. Datasets and their character-
istics: number of attributes, number of
objects and size of the search space.

Dataset Attr Obj |P|
Bolt 8 40 8.7 × 109

Basketball 4 96 2.3 × 1011

Airport 4 135 7.1 × 1015

Body Temp 2 130 1.8 × 103

Pollution 15 60 1.7 × 1042

RecipesA 9 100 5.1 × 1018

RecipesB 9 1000 5.1 × 1018

Table 2. Plant growth split in 2 stages
(P1 and P2), 2 attributes (temperature
and CO2), and a target label (yield).

R TP1 COP1
2 TP2 COP2

2 Y

r1 18 800 24 1000 5
r2 22 1000 27 950 6
r3 27 1200 28 650 7
r4 19 600 17 800 3
r5 24 500 23 450 9
r6 16 750 19 1300 2
r7 30 1100 25 900 8

Performance improvements provided by our contributions are summarized in
Table 3. Performances of the closure on the positives operator are compared to
those of a simple closure operator (Section 2). For each dataset, we compare the
number of evaluated subgroups before finding the optimal one for the quality
measure qamean with a = 0.5 and a = 1. In all the cases, the closure on the
positives is significantly more efficient. In fact, our method enables to divide
the number of considered subgroups by an average of more than 20. We now
study the potential performance improvement - in terms of execution time in
seconds - provided by our new tight optimistic estimate. We compare it to the
tight optimistic estimate from [15] on all the datasets with the same quality
measures. Our optimistic estimate is more efficient in all cases and it provides
an execution time decrease of up to 30%.

2 http://www.vikamine.org/
3 http://funapp.cs.bilkent.edu.tr/DataSets/
4 https://pcse.readthedocs.io/en/stable/index.html

http://www.vikamine.org/
http://funapp.cs.bilkent.edu.tr/DataSets/
https://pcse.readthedocs.io/en/stable/index.html


10 A. Millot et al.

Let us discuss the added-value of OSMIND w.r.t. SD-Map*, i.e., the refer-
ence algorithm for an exhaustive strategy with numerical target labels. We com-
pare the quality of the best found subgroup with each method on the first 5
datasets of Table 1 when using the quality measure qamean with a = 0.5. Regard-
ing SD-Map*, a prior discretization of numerical attributes is needed. To obtain
fair results, we evaluate several discretization techniques with different numbers
of cut-points (2, 3, 5, 10, 15 and 20) for SD-Map* and we retain only the best
solution that is compared to the OSMIND results. Selected discretization tech-
niques are Equal-Width, Equal-Frequency and K-Means. The comparison is in
Fig. 3. Our algorithm provides subgroups of higher quality for all datasets, and
this no matter the applied discretization for SD-Map*. We infer that the infor-
mation loss inherent to the attribute discretization is responsible for the poorer
results obtained with SD-Map*. Next, we compare the run times of OSMIND
and SD-Map* to quantify the cost of optimality. We generate datasets - made
of plant growth simulations - with sizes ranging from 10 to 10000 objects. While
SD-Map* and OSMIND both find the optimal subgroup in the same amount of
time for small datasets, the execution time of OSMIND grows exponentially with
the number of objects contrary to that of SD-Map* (>40000 seconds for OSMIND
vs <1 second for SD-Map* with 10000 objects).

Let us now use the PCSE environment to generate 1000 random recipes. We
then successively select 10, 50, 100, 200, 500 and 1000 recipes from the dataset
and we observe the quality of the best subgroup returned for the quality mea-
sure qamean when a = 0.5. Regarding SD-Map*, we use again the discretization
that produces the best subgroup. Fig. 4 depicts the relative quality of the best
subgroup returned by each algorithm for different dataset sizes. With smaller
datasets, SD-Map* finds the optimal subgroup despite the use of discretiza-
tion. However, as datasets get larger, SD-Map* returns consistently 10% to 25%

Table 3. Comparison: Closure on the positives (COTP) vs Normal closure (NC) and
Tight improved (TI) vs Tight base (TB). ”-” means execution time >72h.

Dataset a COTP NC Gain (÷) TI TB Gain (%)

Bolt
0.5 25 118 4.7 0.0062 0.0078 20.5
1 16 299 19 0.0042 0.0055 23.6

Basketball
0.5 143037 3014506 21 80.5 104 22.6
1 42548 1121798 26 30.5 39.3 22.4

Airport
0.5 387 12042 35 0.17 0.19 10.5
1 57 10055 176 0.033 0.037 10.8

Body Temp
0.5 795 1199 1.5 0.53 0.73 27.4
1 570 865 1.5 0.47 0.53 11.3

Pollution
0.5 100776 - - 23.9 25 4.4
1 1289 41662411 32321 0.376 0.408 7.8

RecipesA
0.5 18258 430105 24 8.25 9,84 16.1
1 1147 24431 21 0.72 0,82 12.2

RecipesB
0.5 324116 854873 2.6 1666 2223 25
1 5261 17848 3.4 45.8 64,3 28.8
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Fig. 3. Comparison of the best sub-
group quality.

Fig. 4. Comparison of the best sub-
group quality w.r.t. number of objects.

worse results. Another important qualitative aspect concerns the descriptions of
the optimal subgroups found by OSMIND and SD-Map*. Table 4 depicts these
descriptions for dataset RecipesA. Besides the higher quality of the subgroup
returned by OSMIND, its description also enables to extract much more informa-
tion than the description obtained with SD-Map*. In fact, where SD-Map* only
offers a strong restriction on attribute IrradP2, OSMIND provides actionable
information on 5 of the 9 considered attributes.

Let us finally introduce our use case on urban farm recipe optimization that
is studied in [17]. We do not have access to real farming data yet but we found a
way to support our application scenario thanks to the inexpensive experiments
enabled by the simulator PCSE. In an urban farm, plants grow in a controlled
environment (e.g., temperature, CO2 concentration, etc). A growth recipe is the
set of development conditions of a plant throughout its growth. In the absence
of failure, recipe instructions are followed and an optimization objective can
concern the yield at the end of the growth cycle. Table 2 features examples of
growth recipes and we can simulate the execution of recipes through the use of
the PCSE environment by setting the characteristics (e.g., the climate) of the
different stages. We use this simulator to generate 30 recipes with random growth
conditions. We focus on 3 variables that set the amount of solar irradiation, wind
and rain. The plant growth is split in 3 stages of equal length. We can first check
that OSMIND enables the discovery of a subgroup maximizing the yield. Next,

Table 4. Comparison between descriptions of: the overall dataset (DS), the optimal
subgroup returned by OSMIND, the optimal subgroup returned by SD-Map*. ”-” means
no restriction on the attribute compared to DS, Q and S denote respectively the quality
and size of the subgroup.

Subgroup RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Q S

DS [0,40] [1000,25000] [0,30] [0,40] [1000,25000] [0,30] [0,40] [1000,25000] [0,30] 0 100

OSMIND - [4428,23285] [0,27] [8,40] [16428,25000] - [2,40] - - 50147 26

SD-Map* - - - - [19000,25000] - - - - 40069 31
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we validate the interpretability and actionability of the return results. Table 5
features a comparison between the interval pattern of the overall dataset and
that of the optimal subgroup returned by OSMIND. These results illustrate the
capacity of OSMIND to discover a recipe subgroup with optimal yield (17819 vs
7256). We can use the description of the optimal subgroup as a new recipe that
will lead to higher yields. The optimal interval pattern is easily interpretable
and it supports the extraction of non-trivial knowledge. As an example, during
the first stage of the growth cycle, the amount of solar irradiation (IrradP1) that
plants undergo seems to have no impact on the optimization of the yield. This
can be inferred from the weak restriction applied on the interval of values taken
by IrradP1. Domain knowledge confirms: the capacity of plant light absorption
is severely limited during the first stage of the growth cycle meaning that the
growth cost could be cut down while keeping the same yield by restricting the
amount of light used during the beginning of the plant growth.

Table 5. OSMIND results. Interval patterns of the overall dataset (DS) and the optimal
subgroup returned (OS), and average Yield (Y) of recipes for each subgroup.

Subgroup RainP1 IrradP1 WindP1 RainP2 IrradP2 WindP2 RainP3 IrradP3 WindP3 Y

DS [0,40] [1000,25000] [0,30] [0,40] [1000,25000] [0,30] [0,40] [1000,25000] [0,30] 7256

OS [0,40] [2714,23285] [0,21] [8,37] [16428,25000] [0,23] [2,40] [6142,25000] [0,27] 17819

6 Conclusion

We investigate the optimal subgroup discovery with respect to a quality mea-
sure in purely numerical data. We motivated the reasons why existing methods
achieve suboptimal results by requiring a discretization of numerical attributes.
The OSMIND algorithm enables optimal subgroup discovery without such a loss
of information. The empirical evaluation has illustrated the added-value and
the exploitability of the OSMIND algorithm when compared to the reference al-
gorithm SD-Map*. From an applicative perspective, our future work concerns
the design of optimization methods for urban farms that push much further
the applicaion case that was just sketched here. From an algorithmic perspec-
tive, our future work concerns the enhancement of OSMIND scalability for high-
dimensional datasets. Moreover, it would be interesting to investigate how to
exploit some sequential covering techniques for computing not only an optimal
subgroup but a collection of non-redundant optimal subgroups.
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