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Introduction

Let Ω ⊂ R d , d ∈ N * , be a bounded, and smooth domain. For positive constants α and β, let k ij (x) : Ω → R, 1 ≤ i, j ≤ d be smooth functions which satisfy:

(1.1)

k ij (x) = k ji (x), α|ξ| 2 ≤ 1≤i,j≤d k ij (x)ξ i ξ j ≤ β|ξ| 2 , ∀x ∈ Ω, ∀ξ ∈ R d .
Define K(x) to be the symmetric positive definite matrix of coefficients k ij (x). Moreover, we define the density function κ(x)

= 1 √ det(K(x))
. We also define the Laplacian by ∆ K = 1 κ(x) div(κ(x)K∇•) on Ω and the d'Alembert operator K = ∂ 2 t -∆ K on R t × Ω. We assume that ω is a nonempty open subset of Ω. We consider the interior simultaneous controllability problem for the following wave system:

(1.2)                K 1 u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, K 2 u 2 = b 2 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, . . . Kn u n = b n f 1 ]0,T [ (t)1 ω (x)
in ]0, T [×Ω, u j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.

Here, we choose K i (1 ≤ i ≤ n) to be n different symmetric positive definite matrices. The state of the system is (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n ) and f is our control function. b i are n nonzero constant coefficients. In this paper, we mainly consider the exact controllability for the system (1.2) given by the following definition.

Definition 1.1 (Exact Controllability). We say that the system (1.2) is exactly controllable if for any initial data

(u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)
) n and any target data

(U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)) n
, there exists a control function f ∈ L 2 (]0, T [×ω) such that the solution of the system (1.2) with initial data

(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = (u 0 1 , • • • , u 1 n ) satisfies (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = (U 0 1 , • • • , U 1 n ).
Moreover, we also consider the partial exact controllability for the system (1.2) given by the following definition. Definition 1.2. Let Π be a projection operator of (H 1 0 (Ω)×L 2 (Ω)) n . We say that the system (1.2) is Π-exactly controllable if for any initial data (u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)) n and any target data

(U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ) ∈ (H 1 0 (Ω) × L 2 (Ω)
) n , there exists a control function f ∈ L 2 (]0, T [×ω) such that the solution of (1.2) with initial data (u

1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = (u 0 1 , u 1 1 , • • • , u 0 n , u 1 n ) satisfies Π(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = Π(U 0 1 , U 1 1 , • • • , U 0 n , U 1 n ).
If we only impose that Π(u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=T = 0, we say that the system (1.2) is Π-null controllable.

Proposition 1.3. For the system (1.2), the Π-null controllability is equivalent to the Π-exact controllability.

Proof. We follow closely the proof of [START_REF] Coron | of Mathematical Surveys and Monographs[END_REF]Theorem 2.41]. It is clear that (Π-exact controllability) =⇒ (Π-null controllability). So we focus on the proof of the converse. We define the operator

(1.3) A =     0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0     .
the system (1.2) is equivalent to (1.4) ∂ t y = -A y + Bf 1 ]0,T [ (t)1 ω (x), y| t=0 = y(0), where

y =       u 1 ∂ t u 1 . . . u n ∂ t u n       , y(0) =       u 0 1 u 1 1 . . . u 0 n u 1 n       and B =       0 b 1 . . . 0 b n       .
Let us consider S(t) the semi-group generated by A . Let y 0 ∈ (H 1 0 (Ω) × L 2 (Ω)) n and y 1 ∈ (H 1 0 (Ω)×L 2 (Ω)) n . Since the system (1.2) is Π-null controllable, we obtain that there exists f such that the solution ỹ of the Cauchy problem (1.5) ∂ t ỹ = -A ỹ + Bf 1 ]0,T [ (t)1 ω (x), y| t=0 = y 0 -S(-T )y 1 satisfies Πỹ(T ) = 0. For the Cauchy problem (1.6) ∂ t y = -A y + Bf 1 ]0,T [ (t)1 ω (x), y| t=0 = y 0 , the solution y is given by (1.7) y(t) = ỹ(t) + S(t -T )y 1 , ∀t ∈ [0, T ].

Hence, we obtain that y(T ) = ỹ(T ) + y 1 . In particular, we know that Πy(T ) = Πy 1 since Πỹ(T ) = 0. We now obtain the Π-exact controllability for the system (1.2).

According to the Hilbert Uniqueness Method of J.-L. Lions [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués[END_REF], the controllability property is equivalent to an observability inequality for the adjoint system. In particular, when we focus on our system (1.2), the exact controllability is equivalent to proving the following observability inequality: ∃C > 0 such that for any solution of the adjoint system:

(1.8)

               K 1 v 1 = 0 in ]0, T [×Ω, K 2 v 2 = 0 in ]0, T [×Ω, . . . Kn v n = 0 in ]0, T [×Ω, v j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, v j (0, x) = v 0 j (x), ∂ t v j (0, x) = v 1 j (x), 1 ≤ j ≤ n, we have (1.9) C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ n i=1 (||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ).
For the partial controllability, we have a similar result. The Π-exact controllability of the system (1.2) is equivalent to proving the following observability inequality: ∃C > 0 such that for any solution of the adjoint system:

(1.10)

               K 1 v 1 = 0 in ]0, T [×Ω, K 2 v 2 = 0 in ]0, T [×Ω, . . . Kn v n = 0 in ]0, T [×Ω, v j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, (v 1 (0, x), ∂ t v 1 (0, x), • • • , v n (0, x)∂ t v n (0, x)) = Π * V 0 , where V 0 ∈ (L 2 × H -1
) n and Π * is the adjoint operator of the projector Π, we have

(1.11) C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||Π * V 0 || 2 (L 2 ×H -1 ) n .
This is an easy consequence of Proposition 1.3, the conservation of energy for system (1.2) and [7, Chapter 4, Proposition 2.1].

In order to study the observability inequality, a classical method is to follow the abstract three-step process initialized by Rauch and Taylor [START_REF] Rauch | Exponential decay of solutions to hyperbolic equations in bounded domains[END_REF](see also [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF]). It can be detailed as follows:

• Firstly, get the microlocal information on the observable region. Argue by contradiction to obtain different kinds of convergence in subdomain ]0, T [×ω and the whole domain ]0, T [×Ω. • Secondly, use microlocal defect measure (which is due to Gérard [START_REF] Gérard | Microlocal defect measures[END_REF] and Tartar [START_REF] Tartar | H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations[END_REF]), or propagation of singulaties theorem (see [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 18.1) to prove a weak observability estimate:

n i=1 (||v 0 i || 2 L 2 + ||v 1 i || 2 H -1 ) ≤ C( T 0 ω | n j=1 b j κ j v j | 2 dxdt + n i=1 (||v 0 i || 2 H -1 + ||v 1 i || 2 H -2 )).
• Thirdly, use unique continuation properties of eigenfunctions to obtain the original observability inequality (1.9). For the high frequency estimates, a very natural condition is to assume that the control set satisfies the Geometric Control Condition(GCC). Definition 1.4. For ω ⊂ Ω and T > 0, we shall say that the pair (ω, T, p K ) satisfies GCC if every general bicharacteristic of p K meets ω in a time t < T , where p K is the principal symbol of K .

We will give the definition of bicharacteristics in Section 3. This condition was raised by Bardos,Lebeau,and Rauch [8] when they considered the controllability of a scalar wave equation and has now become a basic assumption for the controllability of wave equations. In [START_REF] Burq | Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes[END_REF], the authors show that the geometric control condition is a necessary and sufficient condition for the exact controllability of the wave equation with Dirichlet boundary conditions and continuous boundary control functions. In order to study the low frequencies, we need to introduce the notion of unique continuation of eigenfunctions. Definition 1.5. We say the system (1.2) satisfies the unique continuation of eigenfunctions if the following property holds: ∀λ ∈ C, the only solution

(φ 1 , • • • , φ n ) ∈ (H 1 0 (Ω)) n of            -∆ K 1 φ 1 = λ 2 φ 1 in Ω, -∆ K 2 φ 2 = λ 2 φ 2 in Ω, • • • -∆ Kn φ n = λ 2 φ n in Ω, b 1 κ 1 φ 1 + • • • + b n κ n φ n = 0 in ω, is the zero solution (φ 1 , • • • , φ n ) ≡ 0.
There is a large literature on the controllability and observability of the wave equations. Several techniques have been applied to derive observability inequalities in various situations. This paper is mainly devoted to multi-speed wave systems coupled by the control functions only. For other interesting situations, we list some of the existing results and references:

• For single wave equation, it is by now well-known that Bardos, Lebeau, and Rauch [START_REF] Bardos | Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary[END_REF] use microlocal analysis to prove the (1.9)-type observability inequality for a scalar wave equation. Other approaches for proving it can also be found in the literature, for example, using multipliers [START_REF] Lions | Contrôlabilité exacte, perturbations et stabilisation de systemes distribués[END_REF][START_REF] Lagnese | Control of wave processes with distributed controls supported on a subregion[END_REF], using Carleman estimates [START_REF] Haraux | On a completion problem in the theory of distributed control of wave equations[END_REF][START_REF] Baudouin | Global Carleman estimates for waves and applications[END_REF], or completely constructive proof [START_REF] Laurent | Uniform observability estimates for linear waves[END_REF], etc. • Although we now have a better picture on the controllabilty of a single wave equation, the controllability of systems of wave equations is still not totally understood. To our knowledge, most of the references concern the case of systems with the same principal symbol. Alabau-Boussouira and Léautaud [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] studied the indirect controllability of two coupled wave equations, in which their controllability result was established using a multi-level energy method introduced in [START_REF] Alabau-Boussouira | A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems[END_REF], and also used in [START_REF] Alabau-Boussouira | A hierarchic multi-level energy method for the control of bidiagonal and mixed n-coupled cascade systems of PDE's by a reduced number of controls[END_REF][START_REF] Alabau-Boussouira | Insensitizing exact controls for the scalar wave equation and exact controllability of 2-coupled cascade systems of PDE's by a single control[END_REF]. Liard and Lissy [START_REF] Liard | A Kalman rank condition for the indirect controllability of coupled systems of linear operator groups[END_REF], Lissy and Zuazua [START_REF] Lissy | Internal observability for coupled systems of linear partial differential equations[END_REF] studied the observability and controllability of the coupled wave systems under the Kalman type rank condition. Moreover, we can find other controllability results for coupled wave systems, for example, Cui, Laurent, and Wang [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] studied the observability of wave equations coupled by first or zero order terms on a compact manifold. The microlocal defect measure when dealing with the single wave equation can also be extended to a system case. One can refer to Burq and Lebeau for the microlocal defect measure for systems [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF]. • As for multi-speed case, Dehman, Le Roussau, and Léautaud considered two coupled wave equations with multi-speeds in [START_REF] Dehman | Controllability of two coupled wave equations on a compact manifold[END_REF]. More related work is given by Tebou [START_REF] Tebou | Simultaneous observability and stabilization of some uncoupled wave equations[END_REF], in which the author considered the simultaneous controllability of constant multi-speed wave system and derived some result in a semilinear setting in [START_REF] Tebou | Simultaneous controllability of some uncoupled semilinear wave equations[END_REF].

1.1. Plan of the paper. The paper is organized as follows. Our main results are in Section 2 and Section 3 is devoted to introducing some geometric preliminaries. We include the descriptions of the boundary points, and give the precise definition of general bicharacteristics and the order of tangential contact with the boundary.

In Section 4, we focus on the high frequency estimates. Subsection 4.1 is devoted to introducing the microlocal defect measure and its basic properties, which is also the main tool for our proof. Subsection 4.2 deals with the partial controllability, and Subsection 4.3 is aimed to recover the exact controllability result in the whole energy space of initial conditions with the help of the unique continuation properties of eigenfunctions. In these two sections, we prove the Theorem 2.1, and Theorem 2.5 respectively.

In Section 5, we plan to deal with low frequency estimates, mainly discussing about the unique continuation properties of eigenfunctions. Subsection 5.1 provides a counterexample to show that only assuming the hypotheses in Theorem 2.1 cannot ensure the unique continuation properties of eigenfunctions. Then, we add some stronger assumptions to obtain the unique continuation property. The first attempt is to require an analyticity condition, which is the example in Proposition 5.3. The other attempt is to require constant coefficients in Subsection 5.2 and Subsection 5.3, which is stated in Theorem 2.8. Subsection 5.4 is about generic properties of metrics which ensure the unique continuation in dimension 1 and 2.

In Section 6, we deal with the constant coefficient case with multiple control functions. We also discuss the corresponding Kalman rank condition in this setting.

In Appendix A, we include the proof of the equivalent condition of the Kalman rank condition in the case of multiple control functions.

1.2. Ideas of the proof. In our paper, we prove the controllability result by applying the Hilbert uniqueness method to prove the observability inequality of the adjoint system. In order to study the observability inequality, we always use an argument by contradiction. First, we try to prove a weak observability inequality by adding some low frequency part. To obtain the original observability inequality, we need to analyse the invisible solutions in the subdomain ω×]0, T [ by proving the unique continuation properties of eigenfunctions. In section 4, we discuss some generic properties. We follow the ideas given by Uhlenbeck [36], using the transversality theorem to obtain generic properties.

Main results

In this paper, we mainly study the exact controllability for the system (1.2) and discuss the optimality of the given conditions. On the other hand, when we consider the constant coefficient case, we associate the controllability with the Kalman rank condition. Instead of considering the exact controllability, we can only consider the high frequency estimates to obtain a partial result. One can also see similar finite codimensional controllability results, for instance, in [START_REF] Cui | On the observability inequality of coupled wave equations: the case without boundary[END_REF] and [START_REF] Liu | Finite codimensional controllability and optimal control problems with endpoint state constraints[END_REF].

Theorem 2.1. Given T > 0, suppose that:

(1) (ω, T, p

K i ) satisfies GCC, i = 1, 2, • • • , n, (2) 
K 1 > K 2 > • • • > K n in ω, (3) 
Ω has no infinite order of tangential contact on the boundary. Then, there exists a finite dimensional subspace E ⊂ (H 1 0 (Ω) × L 2 (Ω)) n such that the system (1.2) is P-exactly controllable, where P is the orthogonal projector on E ⊥ .

We will explain the concept of the order of contact in the section 3.

Remark 2.2. We say that

K 1 > K 2 in ω if and only if ∀x ∈ ω, ∀ξ ∈ R d and ξ = 0, (ξ, K 1 (x)ξ) > (ξ, K 2 (x)ξ), where (•, •) denotes the inner product of R d .
Remark 2.3. The Assumption (2) can be generalized as follows: let σ be a permu-

tation of {1, 2, • • • , n}, K σ(1) > K σ(2) > • • • > K σ(n) in ω.
Remark 2.4. The same result holds for the laplacian operator

∆ K,κ = 1 κ(x) div(κ(x)K(x)∇•),
where we only assume that κ ∈ C ∞ (Ω) without the restriction κ(x)

= 1 √ det(K(x))
.

To obtain the exact controllability, we need more assumptions on the low frequency part.

Theorem 2.5. Given T > 0, suppose that:

(1) (ω, T, p K i ) satisfies GCC, i = 1, 2, • • • , n, (2) K 1 > K 2 > • • • > K n in ω, (3) 
Ω has no infinite order of tangential contact on the boundary, (4) The system (1.2) satisfies the unique continuation property of eigenfunctions.

Then the system (1.2) is exactly controllable in (H 1 0 (Ω) × L 2 (Ω)) n .
Now, we consider the particular case of constant coefficients. Define the diagonal

matrix D =   d 1 . . . d n   and B =   b 1 . . . b n   .
We use ∆ to denote the canonical Laplace operator. Now we consider the simultaneous control problem for the system:

(2.1)

∂ 2 t U -D∆U = Bf 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω,
where

U =   u 1 . . . u n   .
This system can be written as

           (∂ 2 t -d 1 ∆)u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, . . . (∂ 2 t -d n ∆)u n = b n f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, u j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
First, we introduce the Kalman rank condition for the system (2.1). Theorem 2.8. Given T > 0, suppose that:

(1) (ω, T, p d i ) satisfies GCC, i = 1, • • • , n. (2) 
Ω has no infinite order of tangential contact on the boundary.

Then the system (2.1) is exactly controllable in (H 1 0 (Ω) × L 2 (Ω)) n if and only if (D, B) satisfies the Kalman rank condition.
Remark 2.9. Let T 0 be the controllability time corresponding to the wave equation with unit speed of propagation. Then the controllability time in the Theorem 2.8 satisfies T > T 0 max{ 1 √

d j ; j = 1, 2, • • • , n}.
In advance, we consider the case with multiple control functions

f 1 , f 2 , • • • , f m (1 ≤ m ≤ n).
To be more specific, we consider the system:

(2.2)    ∂ 2 t U -D∆U = BF 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, U| ∂Ω = 0, (U, ∂ t U)| t=0 = (U 0 , U 1 ).
where

D = diag(d 1 , d 2 , • • • , d n ), F =   f 1 . . . f m   , and B =   b 11 • • • b 1m . . . . . . . . . b n1 • • • b nm   .
We can also define the Kalman rank condition rank[D|B] = n. Here we recall that

[D|B] = (D n-1 B|D n-2 B| • • • |DB|B).
We have the following theorem:

Theorem 2.10. Given T > 0, suppose that:

(1) (ω, T, p d i ) satisfies GCC, i = 1, • • • , n. (2) 
Ω has no infinite order of contact on the boundary. Then the system (2.2) is exactly controllable if and only if (D, B) satisfies the Kalman rank condition.

Geometric Preliminaries

Let B = {y ∈ R d : |y| < 1} be the unit ball in R d . In a tubular neighbourhood of the boundary, we can identify M = Ω × R t locally as [0, 1[×B. More precisely, for z ∈ M = Ω × R t , we note that z = (x, y), where x ∈ [0, 1[ and y ∈ B and z ∈ ∂M = ∂Ω × R t if and only if z = (0, y). Now we consider R = R(x, y, D y ) which is a second order scalar, self-adjoint, classical, tangential and smooth pseudodifferential operator, defined in a neighbourhood of [0, 1] × B with a real principal symbol r(x, y, η), such that

(3.1) ∂r ∂η = 0 for (x, y) ∈ [0, 1[×B and η = 0.
Let Q 0 (x, y, D y ), Q 1 (x, y, D y ) be smooth classical tangential pseudo-differential operators defined in a neighbourhood of [0, 1] × B, of order 0 and 1, and principal symbols q 0 (x, y, η), q 1 (x, y, η), respectively. Denote

P = (∂ 2 x + R)Id + Q 0 ∂ x + Q 1 . The principal symbol of P is (3.2) p = -ξ 2 + r(x, y, η).
We use the usual notations T M and T * M to denote the tangent bundle and cotangent bundle corresponding to M, with the canonical projection π π : T M( or T * M) → M.

Denote r 0 (y, η) = r(0, y, η). Then we can decompose T * ∂M into the disjoint union E ∪ G ∪ H, where

(3.3) E = {r 0 < 0}, G = {r 0 = 0}, H = {r 0 > 0}.
The sets E, G, H are called elliptic, glancing, and hyperbolic set, respectively. Define

Char(P ) = {(x, y, ξ, η) ∈ T * R d+1 | M : ξ 2 = r(x, y, ξ, η)
} to be the characteristic manifold of P . For more details, see [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF] and [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF].

3.1. Generalised bicharacteristic flow. We begin with the definition of the Hamiltonian vector field. For a symplectic manifold S with local coordinates (z, ζ), a Hamiltonian vector field associated with a real valued smooth function f is defined by the expression:

H f = ∂f ∂ζ ∂ ∂z - ∂f ∂z ∂ ∂ζ .
Considering the principal symbol p, we can also consider the associated Hamiltonian vector field H p . The integral curve of this Hamiltonian H p , denoted by γ, is called a bicharacteristic of p. Our next goal is to study the behavior of the bicharacteristic near the boundary. To describe the different phenomena when a bicharacteristic approaches the boundary, we need a more accurate decomposition of the glancing set G. Let r 1 = ∂ x r| x=0 . Then we can define the decomposition

G = ∞ j=2 G j , with G 2 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0}, G 3 = {(y, η) : r 0 (y, η) = 0, r 1 (y, η) = 0, H r 0 (r 1 ) = 0}, . . . G k+3 = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j ≤ k, H k+1 r 0 (r 1 ) = 0}, . . . G ∞ = {(y, η) : r 0 (y, η) = 0, H j r 0 (r 1 ) = 0, ∀j}.
Here H j r 0 is just the vector field H r 0 composed j times. Moreover, for G 2 , we can define G 2,± = {(y, η) : r 0 (y, η) = 0, ±r 1 (y, η) > 0}. Thus G 2 = G 2,+ ∪ G 2,-. For ρ ∈ G 2,+ , we say that ρ is a gliding point and for ρ ∈ G 2,-, we say that ρ is a diffractive point. For ρ ∈ G j , j ≥ 2, we say that a bicharacterisric of p tangentially contact the boundary {x = 0} × B with order j at the point ρ.

Consider a bicharacteristic γ(s) with π(γ(0)) ∈ M and π(γ(s 0 )) ∈ ∂M be the first point which touches the boundary. Then if γ(s 0 ) ∈ H, we can define ξ ± (γ(s 0 )) = ± r 0 (γ(s 0 )), which are the two different roots of ξ 2 = r 0 at the point γ(s 0 ). Notice that the bicharacteristic with the direction ξ -will leave the domain M while the bicharacteristic with the other direction ξ + will enter into the interior of M. This leads to a definition of the broken bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.2 for more details): Definition 3.1. A broken bicharacteristic of p is a map:

s ∈ I\D → γ(s) ∈ T * M\{0}
where I is an interval on R and D is a discrete subset, such that (1) If J is an interval contained in I\D, then for s ∈ J → γ(s) is a bicharacteristic of p in M. (2) If s ∈ D, then the limits γ(s + ) and γ(s -) exist and belongs to T * z M\{0} for some z ∈ ∂M, and the projections in T * z ∂M\{0} are the same hyperbolic point.

If γ(s 0 ) ∈ G, we have different situations. If γ(s 0 ) ∈ G 2,+
, then γ(s), locally near s 0 , passes transversally and enters into T * M immediately. If γ(s 0 ) ∈ G 2,- or γ(s 0 ) ∈ G k for some k ≥ 3, then γ(s) will continue inside T * ∂M and follow the Hamiltonian flow of H -r 0 . To be more precise, we have the definition of the generalized bicharacteristics(See [START_REF] Hörmander | The analysis of linear partial differential operators[END_REF] Section 24.3 for more details): Definition 3.2. A generalized bicharacteristic of p is a map:

s ∈ I\D → γ(s) ∈ T * M ∪ G
where I is an interval on R and D is a discrete subset I such that p • γ = 0 and the following properties hold:

(1) γ(s) is differentiable and

dγ ds = H p (γ(s)) if γ(s) ∈ T * M or γ(s) ∈ G 2,+ .
(2) Every t ∈ D is isolated i.e. there exists ǫ > 0 such that γ(s) ∈ T * M \T * ∂M if 0 < |s -t| < ǫ, and the limits γ(s ± ) are different points in the same hyperbolic fiber of T * ∂M. Under this map j, one could see γ(s) as a continuous flow on the compressed cotangent bundle b T * M . This is the so-called Melrose-Sjöstrand flow.

From now on we always assume that there is no infinite tangential contact between the bicharacteristic of p and the boundary. This is in the meaning of the following definition: Definition 3.4. We say that there is no infinite contact between the bicharacteristics of p and the boundary if there exists N ∈ N such that the gliding set G satisfies

G = N j=2 G j .
It is well-known that under this hypothesis there exists a unique generalized bicharacteristic passing through any point. This means that the Melrose-Sjöstrand flow is globally well-defined. One can refer to [START_REF] Melrose | Singularities of boundary value problems[END_REF] and [START_REF] Melrose | Singularities of boundary value problems[END_REF] for the proof.

High Frequency Estimates

4.1. Microlocal defect measure. In this section, we introduce the microlocal defect measures based on the article by Gérard and Leichtnam [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF] for Helmoltz equation and Burq [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF] for wave equations. Let (u k ) k∈N ∈ L 2 loc (R t ; L 2 (Ω)) be a bounded sequence, converging weakly to 0 and such that (4.1)

P u k = o(1) H -1 , u k | ∂M = 0.
Let u k be the extension by 0 across the boundary of Ω. Then the sequence

u k is bounded in L 2 loc (R t ; L 2 (R d )). Let A be the space of classical polyhomogeneous pseudo-differential operators of order 0 with compact support in R t × R d (i.e, A = ϕAϕ for some ϕ ∈ C ∞ 0 (R t × R d ))
. Let us denote by M + the set of non negative Radon measures on T * (R t × R d ). From [11, Section 1], we have the existence of the microlocal defect measure as follows: Proposition 4.1 (Existence of the microlocal defect measure). There exists a subsequence of (u k ) (still noted by (u k )) and µ ∈ M + such that

(4.2) ∀A ∈ A, lim k→∞ (Au k , u k ) L 2 = µ, σ(A) ,
where σ(A) is the principal symbol of the operator A (which is a smooth function homogeneous of order 2 in the variable ξ, i.e. a function on S * ((R t × R d )).

Remark 4.2. In the article [START_REF] Lebeau | Équation des ondes amorties[END_REF], Lebeau constructed the microlocal defect measure in another approach (see [24, Appendice] for more details). In the article [START_REF] Burq | Mesures de défaut de compacité, application au système de Lamé[END_REF], Burq and Lebeau proved the similar existence result [13, Proposition 2.5] in a setting of systems, which can be seen as an extension of Proposition 4.1

From [11, Théorème 15], we have the following proposition.

Proposition 4.3. For the microlocal defect measure µ defined above, we have the following properties.

• The measure µ is supported on the intersection of the characteristic manifold with R t × Ω,

(4.3) supp(µ) ⊂ {(t, x, τ, ξ); x ∈ M , τ 2 = t ξK(x)ξ}.
• The measure µ does not charge the hyperbolic points in ∂M, µ(H) = 0.

• The measure µ is invariant by the generalised bicharacteristic flow.

Remark 4.4. Notice first that in [11, Section 3], the author considered the case of solutions to the wave equation at the energy level (bounded in H 1 loc , and hence was considering second order operators. However, it is easy to pass from H 1 to L 2 solutions by applying the operator ∂ t and conversely from L 2 to H 1 by applying the operator

∂ -1 t , i.e. if v is an L 2 solution, considering the solution u associated to (-∆ D ) -1 (∂ t v | t=0 ), v | t=0 , which of course satisfies ∂ t u = v.
This procedure amounts to replacing the test operators of order 0 A by the test operator of order 2, B = -∂ t • A • ∂ t , but since τ 2 does not vanish on the characteristic manifold, it is an elliptic factor which changes nothing.

Remark 4.5. Notice also that due to discontinuity of the generalised bicharacteristics when they reflect on the boundary at hyperbolic points (the points corresponding to the left and right limits at s ∈ D), in Definition 3.1, the generalised bicharacteristic flow is not well defined (there are two points above any points corresponding to s ∈ D). However, since the measure µ does not charge these hyperbolic points, this flow is well defined µ almost surely and the invariance property makes sense. Notice also that in [START_REF] Burq | Mesures semi-classiques et mesures de défaut[END_REF]Appendice], weaker property than invariance (namely that the support is a union of generalised bicahracteristics) is proved. The general result follows from this weaker result by applying the strategy in [START_REF] Lebeau | Équation des ondes amorties[END_REF]. In any case, for the purpose of the present article, the invariance of the support would suffice.

Proof of the Theorem

2.1. Let V = (v 0 1 , v 1 1 , • • • , v 0 n , v 1 n ).
We introduce the following spaces:

• We define

K 1 = (H 1 0 (Ω) × L 2 (Ω)) n endowed with the norm ||V || 2 K 1 = n j=1 Ω (K j ∇v 0 j • ∇v 0 j + |v 1 i | 2 )κ i dx.
• We define K 0 = (L 2 (Ω) × H -1 (Ω)) n endowed with the norm

||V || 2 K 0 = n i=1 Ω |v 0 i | 2 κ i dx+ < v 1 i , T K i v 1 i > H -1 ,H 1 0 ,
where

T K i : H -1 (Ω) → H 1 0 (Ω) f → w is defined as the unique solution w ∈ H 1 0 (Ω) to -1 κ i div(κ i K i ∇T K i w) = f . • We define K -1 = (H -1 (Ω) × D(-∆) ′ ) n endowed with the norm ||V || 2 K -1 = n i=1 < v 0 i , T K i v 0 i > H -1 ,H 1 0 + < v 1 i , TK i v 1 i > D(-∆ K i ) * ,D(-∆ K i ) ,
where D(-∆) is the domain of the Laplacian operator with zero Dirichlet boundary condition and D(-∆) ′ is its dual space, and

TK i : D(-∆) ′ → D(-∆) f → w is defined as the unique solution w ∈ D(-∆) to (-∆ K i ) 2 TK i w = f . Remark 4.6. For any j ∈ {1, 2, • • • , n}, D(-∆ K j ) = D(-∆).
Recall the considered control system:

(4.4)                K 1 u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, K 2 u 2 = b 2 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, . . . Kn u n = b n f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, u j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, (u 1 , ∂ t u 1 , • • • , u n , ∂ t u n )| t=0 = U(0).
Consider the homogeneous system:

(4.5)                K 1 v h 1 = 0 in ]0, T [×Ω, K 2 v h 2 = 0 in ]0, T [×Ω, . . . Kn v h n = 0 in ]0, T [×Ω, v h j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, (v h 1 , ∂ t v h 1 , • • • , v h n , ∂ t v h n )| t=0 = V h (0) ∈ K 1 . Now, let us define (4.6) E = {V h (0) ∈ K 1 : (b 1 κ 1 v h 1 +• • •+b n κ n v h n )(t, x) = 0, for any t ∈]0, T [, x ∈ ω}, where (v h 1 , • • • , v h n )
is the solution to the homogeneous system (4.5). Hence, E is a closed subspace in K 1 . Denote the orthogonal projector operator P : K 1 → E ⊥ . And the adjoint system of System (4.4) is the following system:

(4.7)                K 1 v 1 = 0 in ]0, T [×Ω, K 2 v 2 = 0 in ]0, T [×Ω, . . . Kn v n = 0 in ]0, T [×Ω, v j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, (v 1 , ∂ t v 1 , • • • , v n , ∂ t v n )| t=0 = P * V (0) ∈ K 0 .
Using inequality (1.11), the P-exactly controllability of the system (4.4) is equivalent to proving the following observability inequality:

(4.8) C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||P * V (0)|| 2 K 0 , where (v 1 , • • • , v n )
is the solution to the adjoint system (4.7).

4.2.1.

Step 1: Establish a weak observability inequality. First we want to prove a weak inequality:

(4.9) ||P * V (0)|| 2 K 0 ≤ C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt + ||P * V (0)|| 2 K -1 ,
If the above inequality was false, we could get a sequence (P * V k 0 ) k∈N such that (4.10)

||P * V k 0 || 2 K 0 = 1, (4.11) 
T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0, k → ∞, and 
(4.12) ||P * V k 0 || 2 K -1 → 0, k → ∞. Here we use v k i (1 ≤ i ≤ n)
to denote the corresponding solution of the system (4.7) with the initial data P * V k 0 . Hence, we obtain n bounded sequences {v k i } k∈N (1 ≤ i ≤ n). Let µ i be the defect measure associated to the sequence {v k i } k∈N , by the construction in Subsection 4.1. Notice that in these constructions, each sequence {v k i } k∈N is solution to a particular wave equation

K i v k i = 0, v k i | ∂Ω =
0 and in Section 3 this corresponds to different principal symbols p i , different sets G i , H i , E i and different generalised bicharacteristic γ i .

From the definition of the measures, we obtain

∀A ∈ A, µ i , σ(A) = lim k→∞ (Av k i , v k i ) L 2 ,
where v k i is the extension by 0 across the boundary of Ω. From Proposition 4.3 we have Lemma 4.7. Each measure µ i is supported on the characteristic manifold

Char(p i ) = {(t, x, τ, ξ) ∈ T * R × R d | Ω ; τ 2 = t ξK i (x)ξ}
and is invariant along the generalised bicharacteristic flow associated to the symbol p i = t ξK i (x)ξτ 2 Lemma 4.8. The measures µ i and µ l are mutually singular in ]0, T [×ω, for i = l. Remark 4.9. We recall that two measures µ and ν are singular if there exists a measurable set A such that µ(A) = 0 and ν(A c ) = 0.

Proof. This follows easily from Lemma 4.7 and the assumption 2 in Theorem 2.5, which implies that over ω, the two characteristic manifolds Char(p i ) and Char(p l ) are disjoint. Lemma 4.10. For A ∈ A with the compact support in ]0, T [×ω, we obtain that for i = l:

(4.13) lim sup k→∞ |(Av k i , v k l ) L 2 | = 0.
Proof. For ∀(t, x) ∈]0, T [×ω, we have that

Char(p i ) ∩ Char(p l ) = {0}, i = l.
Then we choose a cut-off function

β i ∈ C ∞ (T * R × R d ) homogeneous of degree 0 for |(τ, ξ)| ≥ 1, with compact support in ]0, T [×ω such that β i | Char(p i ) = 1, β i | Char(p l ) = 0, and 0 ≤ β i ≤ 1.
Since A ∈ A with the compact support in ]0, T [×ω, for some ϕ ∈ C ∞ 0 (]0, T [×ω), we have that A = ϕAϕ. We choose φ ∈ C ∞ 0 (]0, T [×ω) such that φ| supp(ϕ) = 1 i.e, φϕ = ϕ. Now let us consider the (Av

k i , v k l ) L 2 . First, we have that (Av k i , v k l ) L 2 = (ϕAϕv k i , v k l ) L 2 = (ϕAϕv k i , φv k l ) L 2 = ((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 + (Op(β i )ϕAϕv k i , φv k l ) L 2 . For the first term ((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2
, by the Cauchy-Schwarz inequality, therefore we obtain that

|((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 | ≤ ||(1 -Op(β i ))ϕAϕv k i || L 2 || φv k l || L 2 As we know that {v k l } is bounded in L 2 loc (R t × R d ), there exists a constant C such that || φv k l || 2 L 2 = ( φv k l , φv k l ) L 2 ≤ C.
From the definition of the measure µ i , we obtain

lim k→∞ ||(1 -Op(β i ))ϕAϕv k i || 2 L 2 = lim k→∞ ((1 -Op(β i ))ϕAϕv k i , (1 -Op(β i ))ϕAϕv k i ) L 2 = µ i , (1 -β i ) 2 ϕ 4 |σ(A)| 2 .
From Proposition 4.3, we have that supp (µ i ) ⊂ Char(p i ). In addition, by the choice of β i , we know that 1β i ≡ 0 on supp (µ i ), which implies that µ i , (1 -

β i ) 2 ϕ 4 |σ(A)| 2 = 0. Hence, we obtain (4.14) lim sup k→∞ |((1 -Op(β i ))ϕAϕv k i , φv k l ) L 2 | = 0.
The other term (Op(

β i )ϕAϕv k i , φv k l ) L 2 = (v k i , ϕA * ϕOp(β i ) * φv k l ) L 2
is dealt with similarly by exchanging i and l. Now let us come back to the proof of the weak observability inequality (4.9). By the assumption (4.11), We know that

T 0 ω |b 1 κ 1 v k 1 + • • • + b n κ n v k n | 2 dxdt → 0,
for χ ∈ C ∞ 0 (ω×]0, T [), and we would like to obtain:

1≤i,l≤n

χb i κ i v k i , χb l κ l v k l → 0, as k → ∞.
According to Lemma 4.10, we know that for i = l,

(4.15) lim sup k→∞ | χb i κ i v k i , χb l κ l v k l | = 0.
As a consequence, we know that

(4.16) lim sup k→∞ Σ n i=1 χb i κ i v k i , χb i κ i v k i = 0.
Using again the definition of the measure µ i , we obtain the following: (4.17)

0 ≤ µ i , (χb i κ i ) 2 = lim k→∞ χb i κ i v k i , χb i κ i v k i ≤ lim sup k→∞ Σ n i=1 χb i κ i v k i , χb i κ i v k i = 0.
Thus, we know that

µ i | ω×]0,T [ = 0.
Since µ i is invariant along the general bicharacteristics of p K i (by Lemma 4.7), combining with GCC, we know that µ i ≡ 0. Since µ i = 0, we have v k i → 0 strongly in L 2 loc (]0, T [×Ω). Now we have to estimate

||∂ t v k 1 (0)|| H -1 . Let χ ∈ C ∞ 0 (]0, T [). Multiply the equation K 1 v 1 = 0 by T K 1 (χ 2 v k
1 ) and then integrate on ]0, T [×Ω. We obtain that (4.18)

0 = T 0 Ω K 1 v k 1 • T K 1 (χ 2 v k 1 ) dx dt = T 0 Ω v k 1 • (-∆ K 1 )T K 1 (χ 2 v k 1 ) dx dt - T 0 Ω ∂ t v 1 • T K 1 (∂ t (χ 2 )v k 1 ) dx dt - T 0 ||χ∂ t v k 1 || 2 H -1 = ||χv k 1 || 2 L 2 - T 0 ||χ∂ t v k 1 || 2 H -1 + T 0 Ω v k 1 • T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 ) dx dt
For the term

T 0 Ω v k 1 • T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 ) dx dt, we know that v k 1 → 0 strongly in L 2 loc (]0, T [×Ω) and T K 1 (∂ 2 t (χ 2 )v k 1 + ∂ t (χ 2 )∂ t v k 1 ) is bounded in L 2 .
Thus, up to a subsequence, it tends to 0 as k → ∞. Hence, we obtain that:

T 0 ||χ∂ t v k 1 || 2 H -1 → 0, as k → ∞.
So for all 0 < t 1 < t 2 < T ,

t 2 t 1 ||∂ t v k 1 (t)|| 2 H -1 dt → 0. So for almost every t ∈]t 1 , t 2 [, ||∂ t v k 1 (t)|| 2 H -1 + ||v k 1 (t)|| 2 L 2 → 0.
Then by the backward well-posedness, we can conclude:

||∂ t v k 1 (0)|| 2 H -1 + ||v k 1 (0)|| 2 L 2 → 0.
The same reasoning holds for v k j , 2 ≤ j ≤ n. This gives a contradiction with (4.10), which proves the weak observability inequality (4.9).

4.2.2.

Step 2: Descriptions of the space E. Define

N (T ) = {P * V (0) ∈ K 0 : (b 1 κ 1 v 1 + • • • + b n κ n v n )(t, x) = 0, for t ∈]0, T [, x ∈ ω}.
Lemma 4.11. E = N (T ) where E was defined in (4. [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]) and E has a finite dimension.

Proof. According to the weak observability inequality (4.9), for P * V (0) ∈ N (T ), we obtain that (4. [START_REF] Gérard | Ergodic properties of eigenfunctions for the Dirichlet problem[END_REF])

||P * V (0)|| 2 K 0 ≤ C||P * V (0)|| 2 K -1 .
We know that N (T ) is a closed subspace of K 0 . By the compact embedding K 0 ֒→ K -1 , we know that N (T ) has a finite dimension. By definition, we know that E ⊂ N (T ). Hence, we obtain that E has a finite dimension. Then we want to show that E = N (T ). Define

A =     0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0     . Thus, the solution (v 1 , ∂ t v 1 , • • • , v n , ∂ t v n ) t can be written as       v 1 ∂ t v 1 . . . v n ∂ t v n       = e -tA P * V (0).
Since N (T ) is of finite dimension, it is complete for any norm. Setting δ > 0, we know that (4.19) is still true for P * V (0) ∈ N (Tδ). Taking P * V (0) ∈ N (T ), for ǫ ∈]0, δ[, we have e -ǫA P * V (0) ∈ N (Tδ). For α large enough, as ǫ → 0 + ,

(α + A ) -1 1 ǫ (Id -e -ǫA )P * V (0) → A (α + A ) -1 P * V (0).
As a consequence, we obtain N (T ) ⊂ D(A ) ⊂ K 1 . Hence, we obtain that E = N (T ) and has a finite dimension.

4.2.3.

Step 3: Proof of the observability inequality (4.8). If (4.8) was false, we could find a sequence

{P * V k (0)} k∈N ⊂ K 0 such that (4.20) ||P * V k (0)|| K 0 = 1, T 0 ||b 1 κ 1 v k 1 + • • • + b n κ n v k n || 2 L 2 (ω) dt → 0. First, we know that {P * V k (0) k } k∈N is bounded in K 0 = (L 2 × H -1
) n . Hence, there exists a subsequence (also denoted by P * V k (0)) weakly converging in K 0 = (L 2 × H -1 ) n , to a limit which we denote with P * V (0). We also know that P * V (0) leads to a solution (v 1 , • • • , v n ) of the system (4.7) and satisfies that b

1 κ 1 v 1 + • • • + b n κ n v n = 0 in ]0, T [×ω.
Thus, we know that P * V (0) ∈ N (T ) = E, which implies that P * V (0) = 0. Since the embedding K 0 ֒→ K -1 is compact, we obtain that

||P * V (0) k || 2 K -1 → ||P * V (0)|| 2 K -1 .
From the weak observability inequality (4.9), we obtain:

1

≤ C||P * V (0)|| 2 K -1 ,
which contradicts to the fact that P * V (0) = 0. Then observability inequality (4.8) follows. This concludes the proof of the P-exact controllability of the system (4.4).

4.3.

The Proof of Theorem 2.5. According to the proof above, we only need to show that E ⊥ = {0}, which is equivalent to P * = Id. If we denote by Ṽ (t) the solution of

∂ t Ṽ + A Ṽ = 0, Ṽ | t=0 = V (0), then, A V (0) = -∂ t Ṽ | t=0 ∈ N (T ) provided that V (0) ∈ N (T ). This implies that A N (T ) ⊂ N (T ). Since N (T ) is a finite dimensional closed subspace of D(A ),
and stable by the action of the operator A , it contains an eigenfunction of A . To be specific, there exists (e 1 , e 2 ,

• • • , e n ) ∈ N (T ) and λ ∈ C such that     0 -1 • • • 0 -∆ K 1 0 • • • 0 . . . . . . 0 -1 0 0 -∆ Kn 0           e 0 1 e 1 1 .
. .

e 0 n e 1 n       = λ       e 0 1 e 1 1 .
. .

e 0 n e 1 n       .
It is equivalent to the following system:

(4.21)              -e 1 1 = λe 0 1 in Ω, -∆ K 1 e 0 1 = λe 1 1 in Ω, • • • -e 1 n = λe 0 n in Ω, -∆ Kn e 0 n = λe 1 n in Ω, b 1 κ 1 e 0 1 + • • • + b n κ n e 0 n = 0, in ω. We can simplify this into            ∆ K 1 e 0 1 = λ 2 e 0 1 in Ω, ∆ K 2 e 0 2 = λ 2 e 0 2 in Ω, • • • ∆ Kn e 0 n = λ 2 e 0 n in Ω, b 1 κ 1 e 0 1 + • • • + b n κ n e 0 n = 0 in ω,
Since the system satisfies the unique continuation of eigenfunctions, we know that e 0 1 = • • • = e 0 n = 0 in Ω, which implies that E = N (T ) = {0}. Hence, from (4.8) with P * = Id, we obtain the observability inequality

C T 0 ω |b 1 κ 1 v 1 + • • • + b n κ n v n | 2 dxdt ≥ ||V (0)|| 2 K 0 .
This concludes the proof of Theorem 2.5.

Unique continuation of eigenfunctions

5.1. A counterexample. First, we construct an example to show that the conditions in Theorem 2.1 are not sufficient to ensure the unique continuation of eigenfunctions. Now, let us focus on the unique continuation problem in dimension 1.

We just use the Taylor expansion of χ, χ ′ , sin and cos:

(5.4)

χ(x) = K + 1 2 χ ′′ ( π 2 )(x - π 2 ) 2 + R 1 (x), χ ′ (x) = χ ′′ ( π 2 )(x - π 2 ) + 1 2 χ ′′′ ( π 2 )(x - π 2 ) 2 + R 2 (x), sin(x) = 1 - 1 2 (x - π 2 ) 2 + R 3 (x), cos(x) = -(x - π 2 ) + R 4 (x),
where lim

x→ π 2 R j (x-π
2 ) 2 = 0, for j = 1, 2, 3, 4. Then we obtain:

(5.5)

f (x) = ((χ ′′ ( π 2 ) -K) 2 + R1 )(x - π 2 ) 2 ; g(x) = (-K(χ ′′ ( π 2 ) -K) + R2 )(x - π 2 ) 2 .
Here lim x→ π 2 Rj = 0 for j = 1, 2. Now if we choose a small neighbourhood of π 2 , then f = (χ ′′ ( π 2 ) -K) 2 + R1 and g = -K(χ ′′ ( π 2 ) -K) + R2 satisfy the property. So we know c is C ∞ and c > 0, which means that g is a smooth Riemannian metric. In addition, c < 1 in ]a, b[ and ∆ g and ∆ admit the same eigenfunction in this interval ]a, b[. Remark 5.2. In fact, we can construct a counterexample in any dimension d ≥ 1. For example, we define

M =]0, π[×Π d-1 y where Π d-1 y is the torus of dimension d -1.
Then consider two metric g 1 = dx 2 + d-1 j=0 dy 2 j and g 2 = c(x) dx 2 + d-1 j=0 dy 2 j where c(x) dx 2 is the metric we constructed in the dimension 1. Take the same u 1 (x) and u 2 (x) in the proof of Theorem 5.1. Let V be the eigenfunction of d-1 j=1

d 2 dy 2 j associated with eigenvalue α in Π d-1 y . Then        -∆ g 1 (u 1 (x)V (y)) = (α + 1)u 1 (x)V (y), -∆ g 2 (u 2 (x)V (y)) = (α + 1)u 2 (x)V (y), u 1 (x)V (y) + u 2 (x)V (y) = 0, in ]a, b[×Π d-1 y , u 1 (x)V (y), u 2 (x)V (y) ∈ H 1 0 (M). But we know u 1 (x)V (y) + u 2 (x)V (y) ≡ 0 in M.
As we have seen, not every smooth metric can give us the unique continuation of eigenfunctions. Here, we will give a positive result under a strong condition of analyticity. In particular, let us consider the example of two equations:

(5.6)        K 1 u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω K 2 u 2 = b 2 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω u j = 0 on ]0, T [×∂Ω, j = 1, 2, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), j = 1, 2. Proposition 5.3. Given T > 0, suppose that:
(1) (ω, T, p K i ) satisfies GCC, i = 1, 2.

(2) K 1 > K 2 in Ω with analytic coefficients.

(3) There exists a constant c such that density functions κ 1 , κ 2 are analytic and κ 1 = cκ 2 . (4) Ω has no infinite order of contact on the boundary.

Then the system (5.6) is exactly controllable.

Proof. According to Theorem 2.1, we only need to show the unique continuation of eigenfunctions of system (5.6):

(5.7)

   -∆ K 1 u 1 = λ 2 u 1 in Ω, -∆ K 2 u 2 = λ 2 u 2 in Ω, cu 1 + u 2 = 0 in ω.
Since K 1 and K 2 have analytic coefficients, we know u 1 and u 2 are analytic functions. Then cu 1 + u 2 is also analytic. By unique continuation for analytic functions, cu 1 + u 2 = 0 in the whole domain Ω. By the relations of two density functions κ 1 = cκ 2 , we have:

(5.8) ∆ K 1 u 1 = 1 κ 1 (x) div(κ 1 (x)K 1 ∇u 1 ) = 1 cκ 2 (x) div(cκ 2 (x)K 1 ∇u 1 ) = 1 κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ). Then -c∆ K 1 u 1 -∆ K 2 u 2 = - c κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ) - 1 κ 2 (x) div(κ 2 (x)K 2 ∇u 2 ) = - c κ 2 (x) div(κ 2 (x)K 1 ∇u 1 ) + c κ 2 (x) div(κ 2 (x)K 2 ∇u 1 ) = - c κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇u 2 ).
On the other hand, we know -c∆

K 1 u 1 -∆ K 2 u 2 = λ 2 (cu 1 + u 2 ) = 0.
Hence, we have:

- 1 κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇u 1 ) = 0. We recall that -1 κ 2 (x) div(κ 2 (x)(K 1 -K 2 )∇•
) is an elliptic operator. Hence, with u 1 | ∂Ω = 0 on the boundary, we know that u 1 = 0. Hence, we deduce u 2 = -cu 1 = 0 in Ω, which gives N (T ) = 0. 5.2. Constant Coefficient Case. In this section, we consider the simultaneous control problem for the system:

(5.9)

∂ 2 t U -D∆U = Bf 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, where U =   u 1 . . . u n   , B =   b 1 . . . b n   and D = diag(d 1 , • • • , d n ).
Then the system can be written as

           (∂ 2 t -d 1 ∆)u 1 = b 1 f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, . . . (∂ 2 t -d n ∆)u n = b n f 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω, u j = 0 on ]0, T [×∂Ω, 1 ≤ j ≤ n, u j (0, x) = u 0 j (x), ∂ t u j (0, x) = u 1 j (x), 1 ≤ j ≤ n.
Recall that the Kalman rank condition for this case is rank[D|B] = n if and only if all d j are distinct and b j = 0, 1 ≤ j ≤ n(See [START_REF] Ammar-Khodja | A Kalman rank condition for the localized distributed controllability of a class of linear parbolic systems[END_REF]). Without loss of generality, we may assume that

d 1 < d 2 < • • • < d n .
We want to prove the exact controllability for this case(Theorem 2.8).

5.3. Proof of Theorem 2.8. By Theorem 2.1, we only need to prove the unique continuation properties for eigenfunctions. Here we only state some facts without repeating the same trick as before. Define

N (T ) = {V ∈ (L 2 × H -1 ) n : (b 1 v 1 + b 2 v 2 + • • • + b n v n )(x, t) = 0, ∀(x, t) ∈]0, T [×ω}.
Then, N (T ) is a finite dimensional closed subspace of D(A ), and stable by the action of the operator A , it contains an eigenfunction of A , where A = 0 -Id -D∆ 0 .

Thus there exist β ∈ C and

V β = (V 1 , V 2 ) such that A V β = βV β , i.e.
(5.10)

-∆V 1 = -β 2 D -1 V 1 If β = 0, (-β 2 ) -k (-∆) k V 1 = D -k V 1 and (-∆) k B t V 1 = (-β 2 ) k B t D -k V 1 . Since V 1 solves the Laplace eigenvalue problem, we know that V 1 is analytic in Ω which ensures that B t V 1 = b 1 v 1 1 + • • • + b n v n 1 = 0 in the whole domain Ω. Thus (5.11) 0 = [B t V 1 |(-β 2 ) -1 (-∆)B t V 1 | • • • |(-β 2 ) -n (-∆) n B t V 1 ] = [D|B] t D 1-n V 1 Since rank[D|B] = n, it is invertible. This gives that V 1 = 0.
If β = 0, we immediately obtian that V 1 = 0 by the boundary condition. Now we assume that the matrix (D, B) does not satisfy the Kalman rank condition. Then we know that either there exist d j 1 and d j 2 such that d j 1 = d j 2 , or there exists some b j = 0. We want to show the unique continuation property fails in both cases. One can refer to [START_REF] Fattorini | Some remarks on complete controllability[END_REF] for more details.

For the first case b j = 0, we know that (∂ 2 td j ∆)u j = 0 in ]0, T [×Ω, by the conservation of energy, the solution u j cannot be zero at any time if the initial data is not zero.

For the second case, we consider the unique continuation property of the eigenfunctions as follows:

                         -d 1 ∆φ 1 = λ 2 φ 1 in Ω, . . . -d j 1 ∆φ j 1 = λ 2 φ j 1 in Ω, -d j 2 ∆φ j 2 = λ 2 φ j 2 in Ω, . . . -d n ∆φ n = λ 2 φ n in Ω, φ j = 0 on ∂Ω, 1 ≤ j ≤ n, b 1 φ 1 + • • • + b n φ n = 0 in ω,
Since we have the relation d j 1 = d j 2 , we know that there exists a non-zero solution (0,

• • • , 0, φ, - b j 1 b j 2 φ, 0, • • • , 0)
, where φ is an eigenfunction for -d j 1 ∆ of eigenvalue λ 2 . Hence, we cannot obtain the exact controllability in this case.

To conclude, we have obtained that the Kalman rank condition is a sufficient and necessary condition for the exact controllabilty.

Two Generic Properties. If we define ∆

K 1 = ∆ = d 2
dx 2 and n = 2, we have shown that not every smooth metric can give us a unique continuation result in dimension 1 (see Subsection 5.1). Then we want to prove a generic property for the metrics which can give the unique continuation result in dimension 1. We introduce the following space of smooth metrics to be sections of a bundle

M = {g ∈ C ∞ (Ω, T * Ω ⊗ T * Ω) : g(x)(v x , v x ) > 0, for 0 = v x ∈ T x Ω}.
Let Ω =]0, π[. Proposition 5.4. In dimension 1, suppose that we fix the Laplacian ∆ = d 2 dx 2 in ]0, π[ with its spectrum σ(∆). Then the set

G uc = {g ∈ M : σ(∆ g ) ∩ σ(∆) = ∅} is residual in M.
Proof. First, we notice that any connected one dimensional Riemannian manifold is diffeomorphic either to R or to S 1 . We already know that σ(∆) = {k 2 } k∈N . In our setting, we have g = c(x)dx 2 . Then by change of variables, y = 

(∆ g ) ∩ σ(∆) = ∅. Consider a solution u 1 , u 2 of        u ′′ 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in ]a, b[, u 1 , u 2 ∈ H 1
0 (]0, π[). Now, assume that u 1 = 0. Then u 2 = 0 in ]a, b[. Hence, by the unique continuation property for the eigenfunctions, we know that u 2 = 0. This means that the system has only trivial solution in this case. It is the same for u 2 = 0.

Assume that u 1 = 0 then u 1 = 0 in ]a, b[(otherwise u 1 = 0 everywhere by the unique continuation property) and therefore u 2 = 0. Then u 1 and u 2 are both eigenfunctions. Hence λ 2 ∈ σ(∆ g ) ∩ σ(∆) = ∅, which is a contradiction. So for every g ∈ G uc , the system has only the trivial solution (0, 0).

From now on and until the end of the section, we restrict to the 2 dimensional case d = 2. For any smooth metric g, we can define a Laplace-Beltrami operator -∆ g . Definition 5.6. Define the map:

E α : H 2 (Ω) ∩ H 1 0 (Ω) × M → H -1 by E α (u, g) = (∆ g + α)u.
Remark 5.7. -∆ g is a Fredholm operator of index 0, and E α g = E α (•, g) is also a Fredholm map of index 0(see [36]). Here α is just a parameter. In the later proof, we will let α take all possible values in the spectrum of the given Laplacian.

From now on, we fix one metric g 0 and the associted operator -∆ g 0 . Lemma 5.8. For any λ fixed and any element f ∈ H -1 , λ / ∈ σ(∆ g ) if and only if f is a regular value (i.e. the tangential map at this point is surjective) of E λ g :

H 2 (Ω) ∩ H 1 0 (Ω) → H -1 . Proof. Let E λ g (u) = E λ (u, g) = f . At this point u, the tangential map DE λ g : T u (H k (Ω) ∩ H 1 0 (Ω)) → H -1 (Ω) is given by DE λ g (v) = (∆ g + λ)v, since ∆ g + λ is a linear operator. λ / ∈ σ(∆ g
) is equivalent to that ∆ g + λ is bijective, which means f is a regular value of E λ g . Our proof mainly rely on the following theorem: 

= ϕ(•, b) is a Fredholm map of index < k, then the set {b ∈ B : f is a regular value of ϕ b } is residual in B.
One can find a proof in [START_REF] Abraham | Transversality in manifolds of mappings[END_REF].

Lemma 5.10. If λ ∈ σ(∆ g 0 ) is a regular value of E λ , then the set {g ∈ M : λ / ∈ σ(∆ g )} is residual in M.
Proof. Just apply Theorem 5.9, combining with Lemma 5.8. Now we have to check with the hypothesis, that is to verify that λ ∈ σ(-∆ g 0 ) is a regular value for E λ . In the following, we will use D 1 to denote the differential in the direction of H 2 (Ω) ∩ H 1 0 (Ω) and D 2 to denote the differential in the direction of M. Now let us check that the image of D 2 E λ is dense in dimension 2. We will use the conformal variations of the metric g. Here we choose r ∈ C ∞ 0 (Ω)

(5.12)

D 2 E λ (rg) = lim s→0 (∆ g+srg -∆ g )u s = lim s→0 1 s 1 |(1 + sr)g| 1 2 ∂ i |(1 + sr)g| 1 2 (1 + sr) -1 g ij ∂ j u -∆ g u = lim s→0 1 s 2 -2 2 (1 + sr) -2 ∂ i rg ij ∂ j u + 1 1 + sr ∆ g u -∆ g u = -r∆ g u
Let us assume that v is orthogonal to D 2 E λ (rg) for all r, then:

(5.13)

0 = Ω vD 2 E λ (rg)dµ g = Ω v(-r∆ g u)dµ g = Ω r(λu -λ)vdµ g .
Since (5.13) holds for any r ∈ C ∞ 0 (Ω) we obtain that: (5.14) (λuλ)v = 0. Now, we can check that λ is a regular value of E λ .

Lemma 5.11. In dimension 2, λ ∈ σ(∆ g 0 ) is a regular value of E λ .

Proof. Let (u, g) satisfy E λ (u, g) = (∆ g + λ)u = λ, then at the point (u, g), we have

DE λ (v, h) = (∆ g + λ)v + D 2 E λ (h).
Now we need to verify the surjectivity of this map. If y ∈ Im(∆ g + λ) ⊥ , then y is a weak solution of (∆ g + λ)y = 0, and y is smooth. Let us assume that y is orthogonal to D 2 E λ (rg). Then according to (5.14), we obtain that:

(λuλ)y = 0.

First, we claim that u cannot be a constant. Assume that u is a constant function, ∆ g u = 0 and (∆ g + λ)u = λ gives that u = 1. But this does not satisfy the boundary condition. Hence, u cannot be a constant. In particular, u ≡ 1. Now we obtain that λuλ ≡ 0. If λuλ = 0 at x 0 , there exists a open neighbourhood N such that λuλ = 0 in N. Then y ≡ 0 in N. Hence, we know that y vanishes in a subdomain of Ω. Then by the unique continuation property, we know y = 0 in Ω. This leads to the surjectivity of the map DE λ , which means that λ ∈ σ(-∆ g 0 ) is a regular value of E λ . Now we can deduce that the set

G λ = {g ∈ M : λ / ∈ σ(∆ g )} is residual in M.
Proposition 5.12. In dimension 2, suppose that we fix one metric g 0 and the associated Laplacian ∆ g 0 with its spectrum σ(∆ g 0 ). Then the set

G uc = {g ∈ M : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M.
Proof. Define:

G uc = ∩ λ∈σ(∆g 0 ) G λ .
G is a intersection of countably many residual sets, so it is still residual in M. And for any metric g ∈ G uc , σ(∆ g )∩σ(∆ g 0 ) = ∅. Assume that λ 0 ∈ σ(∆ g )∩σ(∆ g 0 ), which gives that g / ∈ G λ 0 . That contradicts to the fact that g ∈ G uc = ∩ λ∈σ(∆) G λ . Hence, for fixed Laplacian ∆ with its spectrum σ(∆ g 0 ), the set {g ∈ M : σ(∆ g ) ∩ σ(∆ g 0 ) = ∅} is residual in M. Corollary 5.13. In dimension 2, fix the canonical Laplace operator ∆, for every metric g ∈ G uc , the system

       ∆u 1 = -λ 2 u 1 , ∆ g u 2 = -λ 2 u 2 , u 1 + u 2 = 0 in ω ⊂ Ω, u 1 , u 2 ∈ H 1 0 ( 
Ω), has only trivial solution u 1 = u 2 = 0.

Constant Coefficient Case with Multiple Control Functions

In this section, we prove Theorem 2.10. First we study the information given by the Kalman rank condition. Without loss of generality, we assume that the diagonal The proof of Proposition 6.1 is given in the Appendix. Now we can prove Theorem 2.10.

Proof of Theorem 2.10. We follow the same procedure. Applying Hilbert uniqueness method, we can estabish the observability inequality: (6.1)

||V (0)|| 2 (L 2 ×H -1 ) n ≤ C T 0 ω |B * V | 2 dxdt,
where B * is the adjoint form of the matrix B, and

V = (V 1 , • • • , V s ) t ∈ R n 1 × • • • × R ns = R n .
Then we can estabilsh a similar weak observability inequality:

(6.2) ||V (0)|| 2 (L 2 ×H -1 ) n ≤ C T 0 ω |B * V | 2 dxdt + C||V (0)|| 2 (H -1 ×H -2 ) n .
Then argue by contradiction. Suppose that the weak observability inequality is false, then there exists a sequence (V k (0)) k∈N such that (6. 

P s B s Q 1 • • • P s B s Q s   =   d n-1 1 E 1 • • • P 1 B 1 Q s . . . . . . . . . d n-1 s P s B s Q 1 • • • E s  
Now, consider the general term P i B i Q j :

P i B i Q j = P i B i Q i Q -1 i Q j = E i Q -1 i Q j . Hence, P [D|B]Q =   d n-1 1 E 1 • • • E 1 Q -1 1 Q s . . . . . . . . . d n-1 s E s Q -1 s Q 1 • • • E s  
Now we define the column transform T 1 :

T 1 =      Id n 1 -1 d 1 Q -1 1 Q 2 • • • -1 d n-1 1 Q -1 1 Q s 0 Id n 2 • • • 0 . . . . . . . . . . . . 0 0 • • • Id ns     
It is easy to see that T 1 is invertible and rank(P [D|B]Q) = rank(P [D|B]QT 1 ).

P [D|B]QT 1 =       d n-1 1 E 1 0 • • • 0 d n-1 2 E 2 Q -1 2 Q 1 ( d n-1 2 d 2 - d n-1 2 d 1 )E 2 • • • ( d n-1 2 d n-1 2 - d n-1 2 d n-1 1 )E 2 Q -1 2 Q s . . . . . . . . . . . . d n-1 s E s Q -1 s Q 1 • • • • • • ( d n-1 s d n-1 s -d n-1 s d n-1 1 )E s      
.

Step by step, we can do the Gaussian elimination and find an invertible matrix T such that: 

P [D|B]QT =      d n-1 1 E 1 0 • • • 0 * d n-1 2 ( 1 d 2 -1 d 

Definition 2 . 6 (Remark 2 . 7 .

 2627 Kalman rank condition). Define [D|B] = [D n-1 B| • • • |DB|B]. We say (D, B) satisfies the Kalman rank condition if and only if [D|B] is full rank. In our setting, (D, B) satisfies the Kalman rank condition if and only if all d j are distinct and b j = 0, 1 ≤ j ≤ n(See [6, Remark 1.1]).

  (3) γ(s) is differentiable and dγ ds = H -r 0 (γ(s)) if γ(s) ∈ G\G 2,+ . Remark 3.3. We denote the Melrose cotangent compressed bundle by b T * M and the associated canonical map by j : T * M → b T * M . j is defined by j(x, y, ξ, η) = (x, y, xξ, η).

Corollary 5 . 5 .

 55 )ds. Hence, σ(∆ g ) = σ( d 2 dy 2 ) = { k 2 π 2 L 2 } k∈N . If σ(∆ g ) ∩ σ(∆) = ∅, we obtain that for some k and l, L = kπ l ∈ πQ, i.e. π 0 c(x) dx ∈ πQ. Fix ∆ = d 2 dx 2 ,for every metric g ∈ G uc , the system (5.2) has a unique solution u 1 = u 2 = 0.Proof. By the definition of G uc , we know σ

Theorem 5 . 9 (

 59 Transversality theorem). Let ϕ : H × B → E be a C k map, H, B, and E Banach manifolds with H and E separable. If f is a regular value of ϕ and ϕ b

d 1 -d 1 ∆)U 1 = B 1 F 1

 11111 matrix D has the form D =   Id n 1 . . . d s Id ns   , where 1≤i≤s n i = n and d i (1 ≤ i ≤ s) are all distinct. And we can always rearrange the lines of the system (2.2) to ensure that this property is verified:]0,T [ (t)1 ω (x) in ]0, T [×Ω, . . . (∂ 2 td s ∆)U s = B s F 1 ]0,T [ (t)1 ω (x) in ]0, T [×Ω,for every 1 ≤ i ≤ s, where U i = of size n i × m. Proposition 6.1. (D, B) satisfies the Kalman rank condition if and only if rank(B i ) = n i ≤ m. Remark 6.2. If m = 1, we know that rank(B i ) = n i ≤ 1. Thus, we obtain n i = 1 and B i = b i = 0. This implies that every entry of control matrix B is nonzero and all speeds d i are distinct. We recover the result of Remark 1.1 in [6]. If m ≥ 2, we can allow some block d i Id n i is of size n i × n i , with n i ≥ 2. For example, take D = diag(1, 1, 2) and B = know that rank[D|B] = 3 which means that the matrix [D|B] is of full rank.

3 ) 2 ×H - 1 ) 5 )| 2  d n-1 1 P 1 B 1 Q 1 • • • P 1 B 1

 32152111111 ||V k (0)|| 2 (L ||V k (0)|| 2 (H -1 ×H -2 ) n → 0.Hence, there are s microlocal defect measures (µ i ) s i=1 corresponding to V i .(6.6)T 0 ω |B * V k | 2 dxdt = T 0 ω | s i=1 B * i V k i | 2 dxdt.Since µ i and µ j are singular from each other, for i = j, we know by Cauchy-Schwarz inequality, dxdt → 0, which gives thatB i B * i µ i | ω×]0,T [ = 0. Since rank(B i B * i ) = rank(B i ) = n i , we know B i B *i is invertible. Hence we know µ i | ω×]0,T [ = 0. The rest of the proof is similar to the single control case.Appendix A. Proof of Proposition 6.1Proof of Proposition 6.1. First, we calculate the form of [D|B]:[D|B] =[D n-1 B| • • • |DB|B]Now we define r i = rank(B i ). Thus, for each i, we can find invertible matricesP i of size n i × n i and Q i of size m × m such that P i B i Q i = Id r i 0 0 0 def = E i . Then define P = diag(P 1 , • • • , P s ) and Q = diag(Q 1 , • • • , Q s ).We know that P and Q are invertible. Hence, we obtain rank[D|B] = rank(P [D|B]Q). Now we rewrite thatP [D|B]Q = 

1 )E 2

 12 Then rank[D|B] = rank(P [D|B]Q) = rank(P [D|B]Q) = s i=1 r i ≤ s i=1 n i . Hence, n = rank[D|B] = s i=1 r i ≤ s i=1 n i = n. This implies that rank[D|B] = n ⇐⇒ ∀i, r i = n i .

[36] K. Uhlenbeck. Generic properties of eigenfunctions. Amer. J. Math., 98(4):1059-1078, 1976.
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We consider a smooth metric in dimension 1, g = c(x)dx 2 . Then we can define the Laplace-Beltrami operator in the sense:

(5.1)

). Now we consider the unique continuation problem:

(5.2)

In general, the unique continuation of eigenfunctions does not hold.

Theorem 5.1. There exists a smooth Riemannian metric g = c(x)dx 2 , and two eigenfunctions u 1 , u 2 of ∆ g and d 2 dx 2 on ]0, π[ associated with eigenvalue 1 such that 

It is easy to check that c ≥ 0. Since we want g to be a Riemannian metric, we need c > 0. Let us discuss in different cases,

2 , a[, we know that χ ′ (x) < 0, χ(x) > 0. Hence, we have χ ′ (x) sin x + χ(x) cos x < 0; [START_REF] Alabau | Indirect controllability of locally coupled wave-type systems and applications[END_REF] 

So we can conclude that c > 0 and g is a Riemannian metric.

We want to show that c is C ∞ near π 2 . Let f (x) = (χ ′ (x) sin x + χ(x) cos x) 2 and g(x) = K 2χ 2 sin 2 x, then we obtain c(x) = f g . We claim that there exist f , g ∈ C ∞ and f ( π 2 ) = 0, g( π 2 ) = 0 such that f (x) = (x -π 2 ) 2 f (x) and g(x) = (x -π 2 ) 2 g(x).