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Quantum molecular dynamics (QMD) simulations are used to calculate the equation of state, structure, and
transport properties of liquid gallium along the principal shock Hugoniot. The calculated Hugoniot is in very
good agreement with experimental data up to a pressure of 150 GPa as well as with our earlier classical molecular
dynamics calculations using a modified embedded atom method (MEAM) potential. The self-diffusion and
viscosity calculated using QMD agree with experimental measurements better than the MEAM results, which
we attribute to capturing the complexity of the electronic structure at elevated temperatures. Calculations of the
DC conductivity were performed around the Hugoniot. Above a density of 7.5 g/cm3, the temperature increases
rapidly along the Hugoniot, and the optical conductivity decreases, indicating simple liquid metal behavior.

DOI: 10.1103/PhysRevE.91.063101 PACS number(s): 52.25.−b, 02.70.−c, 52.65.−y, 52.50.−b

I. INTRODUCTION

Gallium is a complex element with four equilibrium and
several metastable allotropic phases known to exist [1–3]. The
low-pressure A11 equilibrium phase has a relatively complex,
partially covalent molecular crystal structure that retains some
character into the metallic liquid [4–7]. In marked contrast to
more typical elements such as hydrogen, nitrogen, and oxygen,
where the closure of the band gap with pressure has been
associated with the disappearance of covalent bonds [8–10],
gallium remains (with iodine) among the few elements where
the existence of covalent bonds has been experimentally
established in the metallic A11 phase.

While liquid Ga has been extensively studied both exper-
imentally and theoretically, measurements at high pressures
have thus far been limited due to its low melting temperature
of 303 K. Experimental measurements of the principal shock
Hugoniot (the locus of final states accessible by a single
shock compression wave) were reported in 2001 by Fritz and
Carter [11]. In this paper, we use quantum molecular dynamics
(QMD) simulations to study the evolution of the dynamical,
structural, and transport properties of liquid gallium along the
principal shock Hugoniot.

In quantum molecular dynamics [12] (QMD), also called
ab initio molecular dynamics, the electrons receive a quantum
mechanical treatment within the context of finite temperature
density functional theory (FT-DFT), while the ions are prop-
agated classically on the corresponding Born-Oppenheimer
surface. Albeit computationally expensive, this method has
been extensively used in the past few years to predict the
properties of various systems and for a broad range of extreme
conditions characterized by large temperature, pressure, and/or
radiation field [8,13,14]. QMD simulations can be combined
with linear response theory, which is particularly attractive, as
it provides a consistent set of dynamical, electrical, and optical
properties from the same simulations and for a broad range of
densities and temperatures [15,16].

*danielsheppard@lanl.gov

For gallium, this method has previously been applied [17]
to study the properties of the liquid phase at ambient density
(6.09 g/cm3) for temperatures below 1000 K. Using a limited
number of atoms (e.g., 64) in the simulation supercell and
a limited k-point grid, the method reproduced the structure
of the liquid and the experimental DC conductivity while
the experimental diffusion coefficient was underestimated by
a factor of two. The present study builds on this previous
work by reporting simulations where both the convergence
of supercell and k-point grid sizes were investigated, and by
simulations performed along the principal Hugoniot up to a
pressure of 150 GPa. We find that the calculated Hugoniot is
in very good agreement with both the experimental data [11]
and recent classical molecular dynamics calculations [18,19]
performed using a modified embedded atom method (MEAM)
potential [1]. Whereas the liquid diffusivity and viscosity ob-
tained with the classical MEAM approach departs significantly
from the experimental data, the present QMD simulations
are in better agreement. Finally, the DC optical conductivity
increases with increasing density below 7.5 g/cm3 (∼20 GPa)
due to increasing structural correlations, but then decreases at
higher densities and pressures as a simple liquid metal behavior
is recovered.

II. METHOD AND COMPUTATIONAL DETAILS

A. Quantum molecular dynamics in VASP

To calculate the Ga Hugoniot, we performed QMD simula-
tions using the Vienna ab initio simulation package (VASP), a
plane-wave pseudopotential code developed at the University
of Vienna [20]. We used periodic supercells with up to 500
atoms initially arranged in an FCC crystal structure. Density
functional theory calculations were preformed using the gener-
alized gradient approximation with the PW91 functional [21].
We used a Vanderbilt ultrasoft pseudopotential [22,23] with a
plane-wave cutoff energy of 300 eV to perform the molecular
dynamics simulations. The value chosen was checked by
performing simulations using a higher cutoff energy. With this
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plane-wave cutoff, the resulting internal energy and pressure
converged to 0.01 eV/atom and 0.1 GPa, respectively.

To determine the principal shock Hugoniot, we performed
isokinetic simulations where the temperature is fixed by a
direct rescaling of the velocities. Within this ensemble, the
volume and particle number are also constant while the
temperature is chosen in order to span the Hugoniot points.
We recall that the Rankine-Hugoniot equation [24] relates the
specific volume V̄ = 1/ρ, internal energy U , and pressure P

at initial and final states (subscript 1 and 2, respectively) as

(U1 − U2) + 1
2 (V̄1 − V̄2)(P1 + P2) = 0. (1)

The shock Hugoniot, or adiabat, is the locus of final conditions
{V̄2,U2, and P2} that satisfy this equation. The internal energy
per atom U = 3

2 kB T + E
N

is computed as the sum of the
ion-kinetic energy and the time average of the DFT potential
energy E, where kB is the Boltzmann constant and N is the
number of atoms in the simulation supercell. The pressure P

is computed in a similar fashion using the Hellmann-Feynman
forces derived from the DFT potential energy. The simulations
were advanced using time steps of 3 fs for a total simulation
time of 15–25 ps. The resulting steady-state properties were
least-square fitted to quadratic functions in P and T for each
isochore to obtain the Hugoniot points that satisfy Eq. (1).

B. Dynamical properties

The self-diffusion coefficient D is computed from the
trajectory after the system has equilibrated. This is calculated
via two methods: by mean-square displacement (MSD),

D = 1

6t
|〈Ri(t) − Ri(0)|2〉, (2)

and by the velocity autocorrelation function,

D = 1

3

∫ ∞

0
〈Vi(t) · Vi(0)〉dt, (3)

where Ri is the position of atom i, Vi is the velocity of atom i,
and t is the time. Brackets indicate statistical summations over
all atoms and time origins. In this case the interval between
time origins is �t so every step serves as a time origin.

The shear-viscosity (η) for the QMD runs is calculated
directly from the autocorrelation function of the off-diagonal
components of the pressure tensor [25],

η = V

kBT

∫ ∞

0
〈Pαβ (t) · Pαβ(0)〉dt. (4)

To improve statistical precision we average over the five
independent components of the pressure tensor, Pxy , Pyz, Pzx ,
(Pxx-Pyy)/2, and (Pyy-Pzz)/2.

To compare η and D to experimental numbers where only
the viscosity or diffusivity are given, we use the empirical
formula established for several metals by Chisholm et al. [26],

Dηb

kBT
= c, (5)

where c = 0.18 for Ga and b = V
1/3
A , with VA the atomic

volume.

C. Optical properties

Following each QMD simulation, a total of five uncor-
related configurations were selected from an equilibrated
portion of the molecular dynamics trajectory. For each con-
figuration, we calculate the optical conductivity using the
Kubo-Greenwood formulation [27–29]. This gives the real
part of the electrical conductivity, as a function of frequency
ω and at a particular k point, as

σ1(k,ω) = 2π

3ω


nb∑
j=1

nb∑
i=1

3∑
α=1

[F (εi,k) − F (εj,k)]

×〈�j,k|∇α|�i,k〉2δ(εj,k − εi,k − ω). (6)

In Eq. (6), we use atomic units, with the electron charge
e, Planck’s constant �, and the electron mass me all set to
unity. The i and j summations range over the nb discrete
bands (orbitals) included in the triply periodic calculation
for the cubic supercell volume element 
. The α sum is
over the three spatial directions and improves the statistics.
F (εi,k) is the Fermi weight corresponding to the energy εi,k

for the ith band at k. In practice, because of the finite
simulation volume and resulting discrete eigenvalues, the δ

function must be broadened [15,16]. We use a Gaussian
broadening that is as small as feasible without recovering
the local oscillations in the optical conductivity resulting
from the discrete band structure. We use a PAW (projected
augmented wave) [30] pseudopotential to calculate the matrix
elements appearing in Eq. (6). The PAW formulation, which is
equivalent to an all-electron calculation, provides a simple
formulation of the matrix elements without the nonlocal
terms usually appearing in other pseudopotential formulations.
The simulation parameters were otherwise kept constant, and
the use of two different pseudopotentials for the dynamical
and optical calculations was solely guided by performance
considerations since the resulting dynamical properties were
otherwise identical.

III. RESULTS AND DISCUSSION

A. Dynamical properties along the shock Hugoniot

As initial conditions for the cohesive energy U1 and the
atomic volume V̄1 = 1/ρ1, we considered both the experi-
mental and the calculated values of the A11 structure reported
previously [1].

Figure 1 shows the effect of the QMD simulation param-
eters on the resulting principal Hugoniot. We first consider
the influence of the reference state (U1, V1, P1) in Eq. (1).
The principal Hugoniot calculated is similar whether we
use the experimental or calculated values for the A11 cohesive
energy and density. The most noticeable influence is observed
at the highest densities investigated in this work. When using
the experimental reference state, U1 = −2.97 eV/atom; ρ1

= 5.94 g/cm3, the Hugoniot point found at a density of 10.0
g/cm3 is about 7% lower than when using the calculated
GGA values, U1 = −2.94 eV/atom; ρ1 = 5.7478 g/cm3. In
either case, the 54-atom supercell gives a good description
of the variation of experimental pressure along the Hugoniot.
Consequently, we will use the GGA reference state as initial
conditions for consistency, despite the slight improvement
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FIG. 1. (Color online) Principal Hugoniot of liquid Ga obtained
by experiments (Fritz [11]) and the present QMD simulations. The
results are displayed as a function of (left) density and (right) particle
velocity up . The QMD simulations involved 54, 108, or 256 particles
in the simulation cell, and exp and GGA denote which reference state
is used (see text).

shown in Fig. 1(b), where the pressure is plotted as a function
of particle velocity up. Here we see that the experimental
reference state gives a slightly stiffer Hugoniot, which is in
better agreement with the experimental data from Fritz and
Carter [11]. We also note that increasing the supercell size to
108 or 256 atoms does not significantly improve the agreement
with the experimental data, suggesting that a 54-atom unit
cell is sufficient for calculating Hugoniot pressure-volume
relationships.

However, simulation supercell size effects make a signif-
icant difference when considering the temperature variation
predicted along the Hugoniot. Figure 2 compares the tempera-
tures obtained for three supercells. The temperatures along the
Hugoniot differ by several thousand Kelvin. We attribute this
to long-wavelength correlations present in Ga, which require
larger supercells to capture, and the internal energy per atom
that results. The three calculations are performed at the � point,
and the convergence in the electronic structure is obtained by
simply increasing the number of atoms. Increasing the number
of k points for the 108-atom supercell does not significantly
alter the internal energies or the pressure calculated, suggesting
that size effects only play a large role when predicting
Hugoniot temperatures. Previous calculations of Ga liquid
properties only used 64 atoms in the simulation cell [4,5].
Despite the slow convergence of the predicted temperature
along the Hugoniot the experimentally observable properties
(pressure, particle speed, and shock speed) are well converged
by 256 atom simulations.

Figure 2 also shows a direct comparison with the results
of classical molecular dynamics simulations performed using
the MEAM potential developed by Baskes et al. for Ga [1].
The MEAM calculations were performed using 1372 atoms
starting in a liquid configuration that had been equilibrated at
T = 308 K and zero pressure. The calculated equilibrium den-
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FIG. 2. (Color online) Variation of the temperature as a function
of pressure along the principal Hugoniot of liquid Ga using either
QMD or classical MEAM [18] molecular dynamics simulations.

sity was 5.983 g/cm3, slightly below the experimental density
of 6.078 g/cm3. From this configuration, the uniaxial Hugo-
niostat technique developed by Maillet et al. [31] was used to
reach the equilibrium Hugoniot state for a specified final vol-
ume V̄2 by equilibrating for 50 ps using the Hugoniostat equa-
tions of motion, and averaging the system properties (pressure
and temperature) for the final 40 ps. The Hugoniot was
determined by taking incremental compression steps of 2%.
Calculations were performed to determine the effect of system
size, with no difference detected between samples of 1372 and
10976 atoms. While this potential was adjusted with input from
ab initio calculations similar to those performed here, it is still
remarkable to notice the level of agreement in the prediction
of the principal Hugoniot points for the 108-atom supercell,
even at the higher densities where the electronic structure
significantly departs from the ambient conditions where the
MEAM was fit. At the higher Hugoniot points, temperature
effects start to play a significant role, but the classical MEAM
potential still provides a surprisingly accurate description.

This is further seen in Fig. 3, where we compare the particle
and shock velocities, as well as pressure, along the Hugoniot
as computed using the classical MEAM potential [18] and the
current QMD calculations. The MEAM Hugoniot is somewhat
softer (by 10%) than both experiment and QMD results at the
highest pressures considered here; this is most clearly seen in
Fig. 3(c) and may also be contributing to the temperature
discrepancy seen in Fig. 2. As noted previously [18], this
softening can be corrected by adjusting a cubic anharmonicity
factor δ, which represents the pressure derivative of the bulk
modulus in the Rose universal equation of state [32]:

Eu(R) = −Ec

(
1 ∗ a∗ + re

R
δa∗3

)
e−a∗

, (7)
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FIG. 3. (Color online) Comparison between the QMD (circles)
and classical MEAM [18] (solids lines) molecular dynamics sim-
ulations, and experimental measurements [11] (triangles), of the
principal Hugoniot of liquid Ga.

with

a∗ = α

(
R
re

− 1

)
and α2 = 9V̄ B

Ec

, (8)

where Ec, re, V̄ , and B are the cohesive energy, nearest-
neighbor distance, atomic volume, and bulk modulus, respec-
tively, all evaluated at equilibrium in the reference structure.
Eu(R) is the energy per atom of the reference structure as
a function of nearest-neighbor distance R. For the case of
Ga, the FCC structure was chosen as the reference structure
and initial fit of the MEAM potential to ab initio calcula-
tions was performed [1]. This original Ga MEAM potential
resulted in a cubic anharmonicity δ = 0.097 to obtain better
agreement with the cold compression curve and the pressure
derivative of the bulk modulus predicted using ab initio
molecular dynamics [1], although a modified δ = 0.127 was
subsequently suggested from the shock Hugoniot [18]. This
simple modification extends the range of validity of the MEAM
potential and enables calculation of the thermodynamical
properties up to 150 GPa, as shown in Fig. 3(c) for both values
of this parameter.

Figure 3(a) shows that for low particle velocities, the
MEAM variation of the shock velocity as a function of particle
velocity follows the ab initio results toward lower values than
the experimental results. This can be directly associated to
the different equilibrium volume obtained using GGA for the
A11 structure. As reported in Ref. [18], the GGA equilibrium
volume for the A11 structure is V̄ GGA = 20.15 Å3/atom, about
3% higher than the experimental V̄ GGA = 19.47 Å3/atom.

For the shock and particle velocities, Fig. 3(a) shows a very
good agreement with the ab initio results for all the conditions
along the principal Hugoniot studied here. Both values of the δ

parameter tested lead to rather similar Hugoniot conditions in
either P or us versus up space, with good agreement between
the MEAM calculations, the ab initio calculations, and the
experimental data.

B. Liquid structural and transport properties

The structural properties of the liquid are examined via the
pair correlation function g(r). Figure 4 shows the correlation
function and the mean-square displacement at ambient density
(ρ = 6 g/cm3) and a temperature T = 1000 K for which both
experimental data [33] and previous ab initio calculations [17]
are available. The pair correlation function agrees nicely with
previous ab initio and MEAM calculations. Comparisons
of g(r) for MEAM and QMD along the Hugoniot will be
addressed later. Figure 4(a) shows that g(r) converges rather
rapidly with respect to number of particles, but this is less
so for the mean-square displacement, which can be used to
calculate the diffusion coefficient from Eq. (2). A �-point
calculation with a 54-atom supercell does not lead to a
converged mean-square displacement. Also when calculating
the trajectory with the � point only and without scaling the
density as performed in Ref. [17], the resulting pressure is
negative by a few GPa. The MSD displacement converges
slowly with system size compared to the convergence of the
pressure. We attribute this slow convergence of the MSD
to the fact that a limited simulation does not capture the
complexity of the Ga electronic structure and thus does not
lead to the correct metallic state for the system. The simulation
performed with 256 atoms in the simulation cell leads to
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FIG. 4. (Color online) (a) ab initio pair correlation function g(r)
(b) and mean-square displacement for liquid Ga at normal density
and for a temperature of T = 1000 K. The number of atoms in the
simulation cell is indicated in the graph.
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temperature of T = 1000 K. The number of atoms in the simulation
cell is indicated in the graph.

a diffusion coefficient D = 8.66 × 10−5 cm2s−1 compared
to D = 8.35 × 10−5 cm2s−1 for the 500-atom cell, which
corresponds to a 4% difference. Given this difference we feel
using the 256-atom cell is an acceptable cost-accuracy tradeoff
for calculating diffusion constants. The much lower diffusivity
obtained by Holender et al. [17], D = 6.5 × 10−5 cm2s−1

at a temperature of T = 982 K and an effective density of
ρ = 5.89 g/cm3, was obtained using only 64 atoms in the
simulation cell. The MSD shown in Fig. 4(b) suggests that
these earlier results were insufficiently converged with respect
to system size.

This convergence with respect to system size can also
be seen in the velocity auto-correlation function VAC(t) =
〈Vi(t) · Vi(0)〉 in Fig. 5(a), which appears to indicate con-
vergence by 108 atoms. However, the Fourier transform of
the VAC, Fig. 5(b), demonstrates that convergence of the the
low-frequency behavior requires 256 atoms, as with the MSD.

Figure 6 shows a comparison of the ab initio calculations
with the experimental data [34,35] and the classical results
obtained using the MEAM potential [1]. We performed
calculations of diffusion and viscosity using Eqs. (2)–(4)
for (ρ = 5.76 g/cm3, T = 823 K), and (ρ = 5.55 g/cm3,
T = 1163 K). These two points correspond to conditions
where experimental measurements of the viscosity have been
performed. A third point at (ρ = 6.0 g/cm3, T = 1000 K)
is included to illustrate the sensitivity of diffusion and
viscosity to pressure and density. Equation (5) was used to
convert the Tippelskirch’s viscosity measurements [35] to
diffusivity data. The strong overlap of direct measurements
of the diffusivity from Riedl [34] with those converted from
Tippelskirch’s data give us confidence in using Eq. (5) as
a vehicle for comparison. Figure 6 shows that Ga is more
mobile than predicted from MEAM calculations, and these
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FIG. 6. (Color online) Variation of the (a) density, (b) diffusivity,
and (c) viscosity as a function of temperature for liquid Ga.
Experimental results: Riedl (filled red triangles) [34]; Tippelskirch
(empty blue triangles) [35]. Simulation: MEAM (green squares);
QMD(black circles).

present QMD results are in better agreement with experimental
data. The MEAM calculations deviate from the experimental
data as the temperature approaches the melting point. The
low-temperature behavior is not completely surprising as one
expects that the mismatch in the equilibrium volume would
have a greater impact upon the dynamical properties as one
approaches melting.

This discrepancy in diffusivity between quantum and
classical MD simulations and experimental data carries over
to the viscosity. The MEAM potential was developed based
on ab initio calculations of static equilibrium properties such
as lattice constant, cohesive energy, and bulk modulus. It is
not surprising that it cannot accurately capture ab initio results
for dynamical quantities, especially at low temperatures where
small energy differences in the barrier for diffusion can lead
to large differences in the rate.

We now turn to the evolution of the structural properties
along the Hugoniot. All simulations were performed as close
to Hugoniot points as possible. Figure 7 shows the variation
of the pair correlation function, g(r), for conditions along the
Hugoniot. As the density and temperature increase along the
Hugoniot, the correlation in the liquid decreases as shown
by the first maximum in the pair correlation function varying
from a value around 3.5 at ρ = 6.5g/cm3 to around 3.2 at
ρ = 7.5 g/cm3.

At a density of 6.5 and 7.5 g/cm3, the QMD calculations
starting from an FCC structure remain in that structure for
our limited simulation times. These simulations were started
in a liquid state to circumvent overcoming the heat of fusion
close to the melting point. It should be noted that calculating
chemical properties near the melt transition is dangerous
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because determining equilibrium can be illusive. Thus, we
do not predict an increase in the melting temperature as a
function of density as commonly found for other simple metals.
We conjecture that this behavior is more likely due to the
usual overestimation of the melting temperature due to the
limited number of atoms used in the simulation cell and limited
simulation time.

The slow decrease in correlation along the low-pressure
points of the Hugoniot is directly related to the small tem-
perature variation taking place for densities up to 8.5 g/cm3.
As the density further increases above this value, temperature
significantly increases to reach up to 8430 K at the highest
density. A rapid decrease in the correlation of the system is
associated with this significant temperature elevation with the
maximum of the pair correlation function now significantly
broadened and reduced to a value close to one. A direct
comparison with the correlation functions obtained using
the MEAM potential shows an overall agreement with the
QMD results with, however, some noticeable differences. The
MEAM system appears less correlated between 7.5 and 9.2
g/cm3 with a pronounced shoulder around 3 Å. This shoulder
is associated with the formation of dimers that remain up to
very high pressures. We further note that to provide for the
stability of the A11 structure, the MEAM parameters were
selected to promote the formation of dimers. This may result
in an overestimation of the dimerization in the liquid state, as
the QMD results do not show any dimer formation for any of
the conditions simulated along the Hugoniot.

C. Electrical properties

Before studying the variation of the electrical properties
near the Hugoniot, we first turn to the value obtained at ambient
density and a temperature T = 800 K, where experimental
measurements as well as previous ab initio results are
available [17,33]. Figure 8(a) shows the k-point convergence
performed on a single snapshot of 108 atoms using up to 103 k

points in the Brillouin zone as defined within the Monkhorst-
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FIG. 8. (Color online) Optical conductivity for Ga at ρ = 6.0
g/cm3 and T = 800 K. (a) Convergence of the optical conductivity as
a function of k points for a single snapshot of a 108-atom supercell.
(b) Convergence of the optical conductivity as a function of k points
for a single snapshot of a 256-atom supercell. (c) Average optical
conductivity for multiple snapshots and Drude fit of conductivity.

Pack scheme. The number of k points needed to converge the
DC conductivity illustrates the fact that optical properties have
a slower convergence rate than the thermodynamical properties
with respect to k-point sampling. For a larger supercell of 256
atoms, shown in Fig. 8(b), the DC conductivity converges
faster with the number of k points. For the 256-atom cell,
43 k points was our computational upper limit because of
memory limitations. Figure 8(c) shows the optical conductance
averaged over five uncorrelated configurational snapshots from
the MD runs. The optical conductance was calculated using 83

and 43 k points for the 108- and 256-atom cells, respectively.
The conductance was then fit to a Drude form to extract the
DC conductance at ω = 0.

Once converged, we find that the DC conductivity slightly
departs from a Drude-like form near zero frequency. However,
this departure from Drude-like behavior decreases with the
size of the supercell [Fig. 8(c)]. We attribute this to numerical
inaccuracy and statistical error close to zero frequency. It is
tempting to attribute this dip near zero frequency in σ1(ω) to
a small minimum in the density of states around the Fermi
energy. A similar feature was previously identified for the
A11 phase and was interpreted as the competing influence
of the molecular and metallic nature of the solid phase [4,5].
However, upon examination of the density of states, we see
no evidence to suggest this is the case. Holender et al. [17]
suggested that the calculation performed by Gong et al. [5],
at the � point only, did not capture the complexity of the
electronic structure with such a limited simulation cell. We find
that the number of states around the fermi level does not change
as the number of k points are increased. This suggests that the
sensitivity of the conductivity, Eq. (6), with respect to k-point
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FIG. 9. (Color online) Variation of the DC conductivity, σDC(ω)
near the Hugoniot for the 108-atom cell (blue diamonds), and σDC(ω)
from Fig. 8(c) for the 256-atom cell (red circle). Experimental
measurements of DC conductivity in the solid [36] and liquid [33]
phase are shown as green squares. Solid and solid-like phases shown
with open shapes.

sampling is due to some dispersion in the bands. We believe
that the inaccurate description of the electronic structure is
also the origin of the poor description of the thermodynamical
properties found in the previous section. While the result found
here confirms, to first order, the calculation performed by
Holender et al. [17], we emphasize that the better converged
calculations presented here still indicate a small deviation from
a Drude form in the liquid. Given the trend with cell size
we expect that if we could afford to perform this calculation
with more atoms this deviation would disappear. This result
confirms that this system behaves very closely to a simple
metal as suggested earlier [17].

The value of the DC conductivity obtained [σDC(ω) =
2.97 × 106(
m)−1] compares well with the experimental
result [33], [σDC(ω) = 2.79 × 106(
m)−1] near this condition.
This result is also in better agreement with the experimental
value than the previous ab initio calculations performed using
64 atoms, eight k points, a norm conserving potential and
within the LDA approximation [17] [2.0–2.5 × 106(
m)−1].
We see in Fig. 8(a) that the calculation using only 23 k

points leads a DC conductivity in better agreement with their
reported value and much closer to a Drude form, which shows
that previous calculations were not fully converged in either
k-points sampling and/or particle number.

We now turn to the behavior of the optical conductivity as
both the density and temperature increase along the Hugoniot.

Due to computational limitations we use a 108-atom cell and
83 k points. Figure 9 shows QMD calculations of σDC near the
Hugoniot in blue. Experimental conductivity measurements in
liquid-Ga [33] versus temperature are shown in green with the
density values extracted from the density-temperature relations
in Ref. [35]. The first two Hugoniot calculations are very close
to the melt transition, making it very difficult to determine
a true equilibrium state via QMD. Liquid-like snapshots are
shown in solid blue diamonds. Solid-like configurations are
shown with open diamonds. There is a large difference in
correlation between solid- and liquid-like structures, which
is reflected in the calculated values of σDC. This difference
is readily seen in experimental measurements of σDC in the
liquid [33] and solid [36]. Given the difficulty in reaching
equilibrium via QMD close to the melt transition, experimental
measurements are needed to ascertain the conductivity for
temperatures below 1000 K along the Huginiot. Above a
density of 7.5 g/cm3 the temperature increases rapidly along
the Hugoniot. This increase in temperature corresponds to an
optical conductivity recovering simple liquid-metal behavior
where the DC conductivity as a function of temperature
decreases.

IV. CONCLUSION

Using ab initio molecular dynamics simulations, we cal-
culate the thermodynamic and transport properties of liquid
gallium up to 150 GPa. These simulations show that the
MEAM potential accurately reproduces the ab initio dynamic
properties, although it was fit only to equilibrium ab initio
data. The discrepancies remaining with the experimental
data for the diffusivity and viscosity can thus be attributed
to either a shortcoming of the DFT at describing liquid
gallium or a problem with the accuracy of experimental
measurements. There are several factors contributing to the
DC conductivity along the Hugoniot. The DC conductivity is
dominated by density increasing correlation and causing an
increase in conductivity at densities below 7.5 g/cm3 along
the Hugoniot trajectory. Above 7.5 g/cm3, at a shock pressure
of approximately 20 GPa, temperature rapidly increases, thus
decreasing the conductivity.
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