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Chapter 0
Relativistic methods for calculating Electron
Paramagnetic Resonance (EPR) parameters

Hélène Bolvin and Jochen Autschbach

Abstract Basic concepts for calculating electronic paramagnetic resonance are dis-
cussed, with a focus on methods that are suitable for molecules containing heavy
elements. Inclusion of relativistic effects is essential in such calculations. Selected
examples are presented to illustrate practical applications of these theoretical meth-
ods

Preliminaries: Units, Notation, Acronyms

The reader is assumed to be familiar with basic concepts of quantum mechanics
– including relativistic methods covered in other chapters – and basic concepts of
computational chemistry. SI units are employed. Nuclear motion is not considered;
the focus is on electronic structure and the resulting magnetic properties. The sym-
bols · and× indicate inner and outer products, respectively, for vectors and matrices
or tensors. Bold-italic notation such as r, Ŝ,µ is used for vectors and vector opera-
tors, while upright-bold such as a,G,µ is used for matrices and rank-2 tensors.

The following acronyms are used occasionally in the text:

AO atomic orbital (basis function or actual AO)
CAS complete active space
DFT Density Functional Theory (usually KS, ‘pure’ and generalized KS variants)
EM electro-magnetic
GIAO gauge-including atomic orbital
HF Hartree-Fock
HFC hyperfine coupling

Please address correspondence to either one of the authors. Hélène Bolvin, Laboratoire de Physique
et de Chimie Quantiques, Université Toulouse 3, 118 Route de Narbonne, 31062 Toulouse, France,
e-mail: bolvin@irsamc.ups-tlse.fr. Jochen Autschbach, Department of Chemistry, Uni-
versity at Buffalo, State University of New York, e-mail: jochena@buffalo.edu
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KS Kohn-Sham
MO molecular orbital
NR non-relativistic (calculation excluding any relativistic effects)
PV principal value (of a tensor)
PAS principal axis system (of a tensor)
QM quantum mechanical (e.g. in reference to Dirac, Schrödinger Eqs.)
SO spin-orbit (usually means calculation also includes SR effects)
SOS sum over states
SR scalar relativistic (relativistic calculation without SO effects)
WFT wave-function theory
ZFS zero-field splitting

0.1 Introduction and Background: EPR parameters and Spin
Hamiltonians

Many of the chemical species encountered in the laboratory and in everyday life
have non-degenerate closed shell ground states. But there are also many exceptions,
such as open shell metal complexes, stable radicals, and most atoms. In the absence
of external electromagnetic (EM) fields, such species may afford a degenerate elec-
tronic ground state and degenerate excited states. Species with closed-shell ground
states may also afford degenerate excited states such as excited spin triplets. The
term degeneracy means that an electronic state λ with energy Eλ may have dλ state
components |λ, a〉, with a = 1 . . . dλ, such that each |λ, a〉 and any linear com-
bination thereof is a solution to the field-free quantum mechanical (QM) equation
describing the system (e.g. Schrödinger equation, Dirac equation, approximate two-
component relativistic QM methods, as discussed elsewhere in this Handbook) with
the same energy Eλ. The index λ may simply be a number counting the energy
levels of the system, or it may be a spectroscopic symbol characterizing a state of
interest, or a symmetry label, or a combination thereof. The discussion excludes
cases of accidental degeneracy.

Electron paramagnetic resonance (EPR) [1–4] is a primary tool for studying de-
generate and nearly degenerate electronic states experimentally. An external mag-
netic field B splits the degeneracy (Zeeman effect) to yield a new set of states. EM
radiation of a suitable frequency may then induce transitions among them and allow
to measure the energy splittings spectroscopically. The parameters extracted from
the spectra (vide infra) contain a wealth of information about the electronic structure
and molecular structure.

To illustrate the effect utilized in EPR spectroscopy, consider a single unpaired
electron and – first – neglect spin-orbit (SO) coupling. This situation represents a
spin doublet (a two-fold degenerate state) with spin quantum number S = 1/2. If
there is no external magnetic field, the two possible orientations of the spin projec-
tion onto a quantization axis (MS = ±1/2) have the same energy. Associated with
the spin angular momentum vector S is a magnetic dipole moment µe = −geβeS,
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with βe = eh̄/(2me) being the Bohr magneton and ge the free electron g-value or g-
factor with a current experimental value [5] of 2.002 319 304 361 53 (53). The Dirac
equation predicts ge = 2 exactly. Therefore, ge = 2 is used occasionally in the fol-
lowing. The small differences in the values of ge are due to quantum electrodynamic
corrections.

For S = 1/2 the magnetic moment associated with the spin has two projections
onto a quantization axis. If a static external magnetic field is applied, the direction
of B defines the quantization axis. With the field present, the quantized projections
of µe do not have the same energy. In classical physics, the energy of a magnetic
dipole µ in a magnetic fieldB is

E = −µ ·B (0.1)

The lowest energy is for µ andB being anti-parallel, and the highest energy is for µ
and B being parallel. This is the physical mechanism that keeps a compass needle
pointing toward the magnetic north pole. Quantum mechanically, a semi-classical
Zeeman Hamiltonian that describes such an effect for a quantized spin magnetic
moment is

ĤZ = geβeŜ ·B (0.2)

with Ŝ being the spin vector operator. The negative sign in (0.1) is canceled by the
negative sign relating µe to the spin. One may choose a coordinate system such that
B is oriented along the z axis, with amplitudeB0. The Hamiltonian (0.2) then reads

ĤZ = geβeB0Ŝz (0.3)

The eigenvalues are those of Ŝz times geβeB0, i.e. ±(1/2)geβeB0. The magnetic
field lifts the degeneracy of the spin doublet. A transition from the lower energy
level (B and S ‘anti-parallel’) to the higher one (B and S ‘parallel’) requires an
energy of

∆E = hν = geβeB0 (0.4)

In the equation above, ν is the frequency of EM radiation used to induce the tran-
sition. The frequency is approximately 28 GHz / T. In a typical EPR spectrometer,
B0 is 0.34 T (3,400 Gauss), which translates to a free electron spin-1/2 resonance
frequency of about 9.5 GHz. This is radiation in the X-band microwave region of
the EM spectrum. For general spin values S, the degeneracy of the projection is
2S + 1. A magnetic field splits these into 2S + 1 individual states. Absorption of a
photon of EM radiation entails conservation of angular momentum. The photon has
an angular momentum of h̄, corresponding to one atomic unit (au), and therefore
the selection rule is that transitions with ∆MS = 1 are allowed.

One may repeat the calculation for the spin IK of some nucleus no.K, by substi-
tuting the electron spin magnetic dipole moment by the nuclear spin magnetic dipole
moment µK = gKβNIK . Here, gK is the g-factor for a given nuclear isotope, and
βN = eh̄/(2MP ) is the nuclear magneton, with MP being the proton mass. The
latter is approximately 2000 times greater than the electron mass, and therefore
the associated transition energies for nuclear spins are in the radio-frequency range
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(tens of MHz) at magnetic field strengths used in EPR spectrometers. Transitions
between nuclear spin projections are observed directly in nuclear magnetic reso-
nance (NMR). At EPR spectrometer field strengths, the energy splitting for nuclear
transitions is very small and one may assume equal Boltzmann populations of the
nuclear spin projection states in the absence of other magnetic fields. However, there
is a magnetic coupling of electronic and nuclear magnetic moments called hyperfine
coupling (HFC). Hyperfine coupling gives rise to hyperfine structure of EPR spectra
when nuclei with non-zero spin are present.

There is another type of fine structure that can be observed in EPR experiments
for systems with S ≥ 1. For a given magnetic field strength B0, the 2S + 1 spin
projections with differentMS would be expected to be equally spaced energetically,
meaning that any of the possible 2S allowed transitions with ∆MS = 1 give res-
onances at the same frequency. However, at lower field strengths the spectra may
exhibit 2S distinct features at lower field strengths [1], which indicates unequal en-
ergetic separations of the MS components in the presence of the field. This fine
structure can be traced back to a removal of the degeneracy of the spin multiplet
already at zero field. The effect is therefore called zero field splitting (ZFS). A spin
S ≥ 1 implies that there are two or more unpaired electrons. The physical origin
of ZFS is a magnetic interaction between pairs of electrons, either directly (a dipo-
lar spin-spin interaction arising from relativistic corrections to the electron-electron
interaction) or mediated via SO coupling (which has one- and two-electron contri-
butions). The ZFS can therefore be associated with relativistic effects. For systems
with heavy elements, as well as for many lighter systems, the SO contribution to
ZFS is the dominant one.

The observed electronic magnetic moment resulting from an electronically de-
generate state may differ from what is expected based solely on the spin quantum
number. For instance there may be an orbital degeneracy present in an electronic
state, meaning that the observed magnetic moment is not only due to an electron
spin but also due to an orbital angular momentum. The interaction with the external
field can be expressed via the total angular momentum J , which is obtained from
the vector addition of the quantized spin and orbital angular momenta, S and L. As
an example, the S = 1/2, L = 1 (2P ) ground state of the fluorine atom has a total
angular momentum quantum number J = 3/2, with total spin and orbital angular
momentum parallel, giving a 4-fold degenerate state (MJ ranging from +3/2 to
−3/2) whose components split in the presence of a magnetic field. Transitions in
the EPR experiment may be observed for ∆MJ = 1. Instead of Equation (0.4), the
transition frequencies are determined by

∆E = hν = gJβeB0 (0.5)

with gJ = 4/3 for the fluorine 2P3/2 state, instead of 2. Here, gJ is the Landé g-
factor; the experimentally observed g-factor obtained from matching the measured
resonance frequency with Equation (0.5) for known field strengthB0 is very close to
this number. The large difference of gJ from the free-electron ge = 2 arises because
the state reflects not only a spin doublet but also an orbital triplet.
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In the absence of orbital degeneracy, an orbital magnetic moment and deviations
of observed g-factors from the free electron value may arise because of SO coupling.
For organic doublet radicals with only light elements, S = 1/2,MS = ±1/2 are
basically good quantum numbers. However, even in this situation the observed g-
factors may differ from 2 (typically ranging from 1.9 to 2.1) because of SO coupling.
Because of the small deviations, it is sometimes preferred to report g-shifts ∆g =
g−ge (often in units of parts per thousand (ppt)), in analogy to NMR chemical shifts.
Since SO coupling is a relativistic effect, the presence of g-shifts for orbitally non-
degenerate states directly indicates relativistic effects. If SO coupling is strong, S
and MS may not be good quantum numbers at all. In this case, g-shifts can become
very large even in the absence of orbital degeneracy (meaning an absence of orbital
angular momentum in the corresponding scalar relativistic (SR) state). A case in
point is the doublet ground state of NpF6 for which the observed [6] g-factor is
−0.6.

To summarize: A degenerate paramagnetic electronic state gives rise to a more
or less complicated pattern of EPR resonances. Given the potential influence of SO
coupling, orbital angular momenta, and ZFS, the spectrum is usually interpreted
and quantified by invoking the concept of a pseudo-spin S rather than the actual
electron spin S. The value of S defines the degeneracy, 2S + 1, of the state that is
split by the magnetic field into components with different MS . The various effects
discussed above can be included in a phenomenological pseudo-spin Hamiltonian,
which, in lowest order, reads

ĤS = βeB · g · Ŝ + IK · aK · Ŝ + Ŝ · d · Ŝ (0.6)

The parameters in the Hamiltonian are determined by requiring that the transitions
with ∆MS = 1 between its eigenstates reproduce the observed spectrum. The
spin Hamiltonian is designed such that its elements within the set of fictitious spin
eigenstates are the same as the matrix elements of the true Hamiltonian within the
set of true eigenstates. It supposes a correspondence between pseudo-spin and true
eigenstates, up to a phase factor common to all the vectors. While this assignment
can be rather arbitrary, the basic requirement is that the spin Hamiltonian in the
fictitious space transforms in coherence as the real Hamiltonian does in the real
space, either by time inversion or by the spatial symmetries of the molecule. [7]

On the right-hand side of Equation (0.6) are, from left to right, the pseudo-spin
operators for the Zeeman interaction, the HFC interaction, and the ZFS. Only the
pseudo-spin related to the electronic state is treated quantum mechanically. The
nuclear spin and external magnetic field are parameters. In Equation (0.6), g, aK ,
and d are 3 × 3 matrices parametrizing the various interactions. The fact that they
are written in matrix form reflects the possibility that the observed interactions may
be anisotropic. For example, observed g-factors for a molecule with axial symmetry
may be very different if the magnetic field is oriented along the axial direction or
perpendicular to it. Higher order terms requiring additional sets of parameters in
Equation (0.6) may be required to reflect the full complexity of an EPR spectrum,
as discussed in Section 0.3.
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The matrices g and aK are often referred to as the g-‘tensor’ and the HFC ‘ten-
sor’. It was pointed out in the book by Abragam & Bleaney [4] that they are in
fact not proper rank-2 tensors. Following a suggestion by Atherton [1], one may
refer to them as the Zeeman coupling matrix (g) and the HFC matrix (aK) instead.
The g-factor observed for a magnetic field in the direction of a unit vector u in the
laboratory coordinate system is given by

gu = ±(u · ggT · u)1/2 (0.7)

(superscript T indicating a matrix transpose). One may define a hyperfine coupling
associated with a particular quantization direction chosen for the pseudo-spin in a
similar way. The corresponding objects G = ggT and AK = aKaTK are rank-2
tensors whose eigenvalues and eigenvectors define the squares of the principal val-
ues (PVs) of g and aK and a principal axis system (PAS) of each of the interactions.
For example, the principal g-factors correspond to the g-factors that are observed
when the direction of the magnetic fieldB coincides with one of the principal axes.
Section 0.4 addresses the question of the signs of the PVs of the Zeeman and HFC
interaction in more detail.

Section 0.2 sketches different computational relativistic methods by which to
obtain the EPR parameters in the spin Hamiltonian of Equation (0.6) from first prin-
ciples. As already mentioned, SO coupling plays an important role. HFC can also be
strongly impacted by SR and SO relativistic effects. Selected illustrative examples
are presented in Section 0.5.

0.2 Computational methods for EPR parameter calculations

0.2.1 Representation of the pseudo-spin Hamiltonian in an
ab-initio framework

Equation (0.6) and generalizations thereof presents some conceptual challenges
when addressing the problem by relativistic or non-relativistic (NR) molecular quan-
tum mechanics. The reason is that the pseudo-spin operator Ŝ may have little in
common with the electron spin operator Ŝ if SO coupling or ZFS are strong, or if
the orbital angular momenta are not quenched. What can be done instead follows
roughly the following sequence [3], if a calculation starts out with a pure spin-
multiplet (i.e. from a NR or SR reference without orbital degeneracy) and if effects
from SO coupling can be dealt with as a perturbation:

• Define a Hamiltonian Ĥ0 for the system in the absence of external EM fields and
find its eigenstates with energies Eλ, spin degeneracies dλ, and corresponding
orthonormal QM eigenfunctions |λ, a〉.

• Consider a perturbation: a homogeneous external fieldB for the Zeeman interac-
tion, the hyperfine magnetic field from a nuclear spin magnetic moment µK , or
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spin-dependent perturbations. Define a corresponding perturbation Hamiltonian
Ĥ′. The effects from SO coupling may also be absorbed into Ĥ′. The perturba-
tions are assumed to be weak enough such that one can identify the eigenstates
of Ĥ0 + Ĥ′ corresponding to a multiplet λ of Ĥ0 of interest. Diagonalization of
the matrix H0 + H′ representing the Hamiltonian in the complete set (or a large
subset) of eigenstates of Ĥ0, or finding a selected number of eigenfunctions and
eigenvalues with techniques such as the Davidson or Lanczos algorithms, would
give the eigenfunctions and energies for the perturbed system. Typically, there
would be a mixing among eigenvectors belonging to a multiplet λ as well as
some admixture from components of other multiplets.

• Instead, select a multiplet λ with degeneracy dλ of interest corresponding to Ĥ0,
and seek a dλ × dλ matrix representation Heff of an effective Hamiltonian Ĥeff
with the following properties: (i) the eigenvalues of Heff are the same as those
of H0 + H′ for the perturbed multiplet λ. (ii) The eigenvectors of Heff describe
how the components of the unperturbed multiplet mix under the perturbation.
There are various ways by which Heff can be calculated. A well-known approach
is by perturbation theory as an approximation to second order, which gives for a
matrix element related to the multiplet λ:

〈λa|Ĥeff|λa′〉 = δaa′Eλ + 〈λa|Ĥ(a)|λa′〉−
∑
µ6=λ

dµ∑
b=1

〈λa|Ĥ(b)|µb〉〈µb|Ĥ(c)|λa〉
Eλ − Eµ

(0.8)
Here, Ĥ(a), Ĥ(b), and Ĥ(b) are parts of Ĥ′ such that the overall matrix element
(minus the δaa′Eλ part) affords terms that are linear in B or IK , or bi-linear in
electron spin operators.

• Apart from a constant shift on the diagonal, the matrix representation of the
pseudo-spin Hamiltonian, Equation (0.6), written in terms of |MS 〉 pseudo-spin
projects is then supposed to have the same elements as those of Heff. For the
Zeeman interaction, the contribution to Heff should be linear in B. Then, Ĥ(a)

and Ĥ(b) are the Zeeman operator (in a suitable relativistic form) and Ĥ(c) addi-
tionally considers SO effects. If Ĥ(a) and Ĥ(b) are instead QM operators linear
in IK describing the nuclear hyperfine field, a mapping onto the HFC part of the
pseudo-spin Hamiltonian can be made. Finally, if Ĥ(a) is the dipolar spin-spin
interaction operator, and Ĥ(b) and Ĥ(c) represent SO interactions, one obtains an
effective Hamiltonian quadratic in the electron spin which represents ZFS.

In the previous approach, the matching between real and fictitious states is made
according to |λ,M〉 ≡ |S ,MS 〉 since the model space is a spin multiplet; it sup-
poses a similarity between the real spin and the pseudo-spin. This is only valid in
the weak SO limit but the procedure permits the calculation of the spin Hamiltonian
parameters for all values of the pseudo-spin S [8]. Equation (0.8) misses quadratic
contributions which may be important [9].

The value of the pseudo-spin S defines the size of the model space. If the state
of interest, usually the ground state, is d-fold degenerate or nearly degenerate, S
is chosen such that d = 2S + 1. In the case of weak SO coupling and a spatially
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non degenerate state 2S+1Γ where Γ is a non degenerate irreducible representation
(irrep) of the system’s point group, the SO coupling with the excited states splits the
spin degeneracy. This ZFS splitting is on the order of a few cm−1 and gives the fine
structure to the EPR spectra. In some cases, the ZFS splitting may be on the order
of several ten cm−1 and high-field high-frequency EPR (HF-HF EPR) is necessary
to detect the transitions between these components. In this case, one usually takes
S = S. When the ground state is spatially degenerate or if there are very low lying
excited states, there are large orbital contributions to the magnetic moment and the
choice of the spin Hamiltonian becomes more complicated and must be treated case
by case.

For systems where SO coupling is strong, a close correspondence of a degenerate
electronic state of interest with an electron spin multiplet may simply not exist.
A corresponding QM method used to determine the electronic states may already
include SO coupling in some form, possibly along with a spin-spin interaction term.
In this case, the ZFS effects are included in the electronic spectrum. It is shown next
how the pseudo-spin Hamiltonian parameters for the Zeeman and HFC interactions
can be extracted from such QM calculations. For further discussion see Section 0.3.

When the SO coupling is large, the degeneracy of the states is related to sym-
metry. For odd-electron systems, the degeneracy is even due to Kramers’ theorem.
Four-fold degenerate irreps only appear in the cubic and icosahedral groups, along
with six-fold in the latter. Therefore, except for highly symmetric molecules, the
ground-state of Kramers systems is modeled using S = 1/2. For even-electron
systems, if there is a high-order rotation axis, states may be doubly degenerate and
S = 1/2 represents a non-Kramers doublet. Only cubic and icosahedral groups
may have higher degeneracies. Therefore, the states of even-electron systems with a
heavy elements are usually non-degenerate or in the case of symmetry, can be con-
sidered as non-Kramers doublets. In lanthanide and actinide complexes, the term
of the free ion 2S+1LJ is split due to the environment of the ligands. This splitting
is usually on the order of some tens of cm−1 for lanthanides since the 4f orbitals
are mostly inner-shell and interact weakly with the environment. The splitting of
the free ion term of an actinide is larger since the 5f orbitals interact more with
the ligands, even forming covalent bonds for the early actinides; it can be on the
order of several hundred cm−1. Therefore, in the case of heavy elements, states are
at the most doubly degenerate or nearly degenerate and there are usually no EPR
transitions with excited states, except for cubic systems.

An ab-initio calculation provides the 2S + 1 quasi-degenerate wave functions
|λ, a〉a=1,2S+1 in the absence of external magnetic field, defining the model space,
and the corresponding energies Ea. Let

ĤZ = −βeµ̂ ·B (0.9)

be the Zeeman operator, with µ̂ being a corresponding dimensionless time-odd
QM magnetic moment operator. The Zeeman interaction is characterized by the
three matrices of the magnetization operator (µu)a,b = 〈λ, a|µ̂u|λ, b〉 with a, b ∈
[1, 2S + 1] and u = x, y, z being defined in the physical space. Hyperfine matrices
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can be defined analogously. These matrices are further discussed in Sections 0.3 and
0.4.

The approach is outlined in this section for the Zeeman interaction and a dou-
blet of Kramers states (S = 1/2). In this case, there is no ZFS and the spin
Hamiltonian reduces to the Zeeman term. In the basis of the pseudo-spin projec-
tion eigenfunctions |MS 〉, the operator Ŝk (k = x, y, z) is represented by a matrix
Sk = (1/2)σk, with σk being one of the 2 × 2 Pauli spin matrices. The magnetic
field vector is expressed in terms of its components as B = (B1, B2, B3). The
matrix representation of the spin Hamiltonian for the Zeeman interaction then reads

H =
∑
k

hkSk with hk = βe
∑
l

Blglk (0.10)

The eigenvalues are easily obtained as ± the square roots of the eigenvalues of H2,
which is already diagonal because of SkSl + SlSk = (δkl/2) ( 1 0

0 1 ):

H2 =
1

4

(∑
k h

2
k 0

0
∑
k h

2
k

)
(0.11)

Therefore, the energy difference ∆E for the two spin projections is
2[(1/4)

∑
k h

2
k]1/2 = [

∑
k h

2
k]1/2, i.e.

∆E = βe

[∑
k,l

BkBl
∑
m

gkmglm

]1/2
= βe

[∑
k,l

BkBlGkl

]1/2
(0.12)

In the previous equation, Gkl is an element of the tensor G introduced below Equa-
tion (0.7).

Next, consider a quantum mechanical framework with a doublet state with two
wavefunction components,ψ1, ψ2, assumed to be orthonormal for convenience. Fur-
ther, for the time being it is assumed that the doublet components ψ1 and ψ2 have the
time reversal properties of a Kramers pair. In the basis {ψ1, ψ2}, the QM Zeeman
operator can also be expressed with the help of the spin-1/2 matrices, as

H′ =
∑
k

h′kSk with
h′1 = −2βe Re〈ψ2|µ̂|ψ1〉 ·B
h′2 = −2βe Im〈ψ2|µ̂|ψ1〉 ·B
h′3 = −2βe〈ψ1|µ̂|ψ1〉 ·B

(0.13)

Note that 〈ψ1|µ̂|ψ1〉 ·B = −〈ψ2|µ̂|ψ2〉 ·B because of the time reversal symmetry.
As with the pseudo-spin Hamiltonian, one can calculate twice the square root of the
eigenvalues of H′2 to obtain the energy splitting in the presence of a magnetic field.
The result can be rearranged as follows:

∆E =
[∑

k

h′k
2
]1/2

= βe

[
2
∑
k,l

BkBl

2∑
a=1

2∑
b=1

〈ψa|µ̂k|ψb〉〈ψb|µ̂l|ψa〉
]1/2

(0.14)
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A factor 1/2 enters inside the square root when the double sum is introduced, to
avoid double counting of contributions. By comparison of Equations (0.14) and
(0.12), one finds for the elements of the tensor G:

Gkl = 2

2∑
a=1

2∑
b=1

〈ψa|µ̂k|ψb〉〈ψb|µ̂l|ψa〉 (0.15)

At this point, the assumption that ψ1 and ψ2 transform as a Kramers pair can be
dropped, because any linear combination obtained from {ψ1, ψ2} by unitary trans-
formation gives the same tensor G from Equation (0.15). Therefore, a computation
of G can utilize a pair of doublet wavefunction components without imposing time
reversal symmetry explicitly. The reader is reminded that the definition of the mag-
netic moment operator components in Equation (0.15) excludes pre-factors of βe.
As written, Equation (0.15) assumes a complete one-particle basis set to represent
ψ1 and ψ2, such that there is no dependence of the results on the gauge origin chosen
for the external magnetic field. In calculations with finite basis sets, an origin depen-
dence can be avoided by adopting a distributed gauge origin such a gauge-including
atomic orbitals (GIAOs). When distributed origin methods are not available, cal-
culations of magnetic properties of complexes with one paramagnetic metal center
often place the metal center at the gauge origin.

The eigenvectors of G represent the molecule-fixed PAS of the Zeeman inter-
action, sometimes referred to as the ‘magnetic axes’ of the system under consider-
ation [10]. The square roots of the eigenvalues are absolute values of the principal
g-factors. The signs of the g-factors are not obtained directly. For further discussion,
see Section 0.4.

The tensor A plays an analogous role for HFC as G plays for the Zeeman in-
teraction. Therefore, after a QM operator F̂K has been defined for the hyperfine
interaction as follows:

ĤHFC = F̂K · µK = gKβN F̂K · IK (0.16)

the HFC tensor for a Kramers doublet can be calculated via

Akl = 2(gKβN )2
2∑
a=1

2∑
b=1

〈ψa|F̂Kk|ψb〉〈ψb|F̂Kl|ψa〉 (0.17)

For hyperfine coupling, a natural choice for the gauge origin of the hyperfine field
is the nucleus for which the HFC tensor is calculated.

A different route has been proposed [11] for calculating G for arbitrary values
of S , which is briefly discussed in Section 0.3. The expression given in Equation
(0.45) is the same as (0.15) for S = 1/2. As for the S = 1/2 case, the expression
for G of Equation (0.45) should be adaptable for calculations of HFC.
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0.2.2 Wavefunction based methods for EPR calculations

Popular starting points for wavefunction-based computations of EPR parame-
ters are complete active space self consistent field (CASSCF) calculations and
related restricted and generalized active space approaches [12], often followed
by perturbation-theory (PT) based treatments of dynamic correlation on top of
CASSCF. For the latter, second-order perturbation theory (CASPT2) [13] and n-
electron valence state perturbation theory (NEVPT) [14] are in relatively widespread
use. Limitations arise from an insufficient description of spin polarization with the
size of active spaces commonly achievable in these types of calculations, which is
detrimental for HFC calculations. g-factors, ZFS parameters, and magnetic suscepti-
bilities, on the other hand, can be obtained with good accuracy. Recently developed
combinations of active-space methods with density matrix renormalization group
(DMRG) techniques allow for larger active spaces, which is beneficial for treating
electron correlation as well as spin polarization. ‘Proof of concept’ calculations of
HFC appear promising [15]. Linear response methods have also been developed
for multi-configurational SCF wavefunctions in order to generate spin polarization
suitable for HFC calculations without the need of very large active spaces [16]. In
principle, multi-reference coupled-cluster (MRCC) methods should be suitable for
EPR parameter calculations. To the authors’ knowledge, relativistic MRCC calcu-
lations have not been used to predict EPR parameters at the time of writing this
article.

Relativistic effects have been / can be included in wavefunction-based EPR cal-
culations in a variety of ways, for instance: (i) by using all-electron SR Hamiltonians
or SR effective core potentials (ECPs) to generate wavefunctions for a range of elec-
tronic states, followed by treatment of SO coupling via state-interaction (SI), [17]
(ii) by including SR and SO effects either via an all-electron Hamiltonian [18] or
with ECPs from the outset, (iii) by calculating SR components of a spin-multiplet
and treatment of SO coupling as a perturbation in the EPR step [3]. In case (ii), SO
effects are treated fully variationally whereas in case (i) a SO Hamiltonian matrix
is calculated in a limited basis of active-space wavefunctions and subsequently di-
agonalized. Approach (iii) is applicable in the weak SO coupling limit. Note that
without application of specialized techniques the use of a relativistic ECP for a
given atom prevents calculations of the HFC for the same atom because the inner
core nodal structure of the valence orbitals is needed. An order-by-order treatment
of SO coupling via perturbation theory is also viable, for instance based on four-
component relativistic perturbation theory [19] after separation of SR and SO com-
ponents of the QM operators.

0.2.3 Hartree-Fock and Kohn-Sham methods for EPR calculations

The approaches to obtaining EPR parameters outlined above assume that the wave-
function components of a degenerate state of interest are available explicitly from
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a calculation. With single-reference methods such as Hartree-Fock (HF) theory and
Kohn-Sham (KS) Density Functional Theory (DFT) and generalized KS methods,
the usual approach in the absence of strong SO coupling is to start from a spin-
unrestricted SR calculation. For brevity, HF theory is considered as a special case
of a generalized KS hybrid functional from here on. The use of a spin-unrestricted
single-determinant reference typically leads to spin contamination: while the spin-
unrestricted KS reference can be designed as an eigenfunction of Ŝz it is not
necessarily an eigenfunction of Ŝ2. Regarding DFT, Perdew et al. have pointed
out that some degree of spin contamination is good because the KS reference is
not the true wavefunction [20]. Spin polarization is generated straightforwardly in
spin-unrestricted calculations but can be severely over- or under-estimated. Single-
reference KS methods with approximate functionals are often not suited to represent
degenerate states. The calculation then results in breaking of spin or spatial symme-
try of the wavefunction, or both. Projection techniques can be used to restore lost
symmetries.

In the absence of orbital degeneracy, the components of a pseudo-spin dou-
blet can often be treated reasonably well by standard spin-unrestricted KS meth-
ods for the purpose of calculating EPR spin Hamiltonian parameters. In a SR or
NR framework, the g-factors then simply become equal to ge, while the isotropic
average of the HFC matrix, the isotropic HFC constant, is calculated from averag-
ing gKβN 〈ψ|F̂Kk|ψ〉 over k, with |ψ〉 being the MS = +1/2 component of the
doublet. There is also extensive literature on utilizing the same expectation value
approach within single-reference correlated wavefunction methods. Extensions to
treat cases with S > (1/2), and ways for additional inclusion of SO coupling via
first-order perturbation theory, have been devised. The reader can find details in
References 21–27 and citations to original literature provided therein.

Some of the KS methods that are currently in use for relativistic EPR parame-
ter calculations with SO coupling being included variationally [28–30] employ two
different approaches. The first utilizes a variant of Equation (0.13), but within a
single-electron framework where the many-electron wavefunctions are replaced by
one-electron orbitals. In the second approach, three separate SCF cycles are typi-
cally performed, with different quantization axes of spin, magnetic moment, or total
angular momentum, and the quantization axis is identified with the directional index
‘k’ of Equations (0.10) and (0.13).

The first approach [28, 30] as it was devised and implemented in a two-
component relativistic form is quasi spin-restricted and limited to Kramers dou-
blets. An SCF calculation is performed with the unpaired electron distributed over
two degenerate frontier orbitals, with occupations of 1/2 each. In the absence of SO
coupling, these would be an α and β spin pair of orbitals with identical spatial com-
ponents. The method has some resemblance to restricted open-shell HF (ROHF) but
is not the same. After the SCF step, one of these orbitals, say ϕ, is chosen to rep-
resent the component φ1 of the Kramers pair of orbitals. Its conjugate φ2 is then
constructed from φ1. Written explicitly in terms of real (R) and imaginary (I) parts
of the two spin components of the SCF orbital ϕ, the Kramers pair is
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φ1 =

(
ϕRα
ϕRβ

)
+ i

(
ϕIα
ϕIβ

)
(0.18a)

φ2 =

(
−ϕRβ
ϕRα

)
+ i

(
ϕIβ
−ϕIα

)
(0.18b)

For calculations of g-factors, the matrix elements of the Zeeman operator are then
calculated as in Equation (0.13), but with the orbital pair {φ1, φ2}, and then pro-
cessed similar to Equations (0.14), (0.15) to yield the g-factor. Alternatively, the h′k
of Equation (0.13) are directly identified with the hk terms of Equation (0.10), and
the g-matrix elements can be extracted from the calculation results without detour
via G. HFC matrix elements can be calculated in an analogous way. However, due
to the lack of spin polarization the performance of the quasi-restricted approach
is unsatisfactory for the latter. The performance for g-factors has frequently been
satisfactory.

Regarding the ‘three SCF cycles’ techniques, van Wüllen and co-workers have
provided a justification for their use in KS calculations [31]. The approach is illus-
trated for HFC [30]: The expectation value of the HFC part of the EPR spin Hamil-
tonian taken with a Kohn-Sham determinant calculated with a spin-quantization axis
u

E(u) =
∑
i

ni〈ϕu
i |IK · a · Ŝ |ϕu

i 〉 =
∑
k,l

aklIKk
∑
i

ni〈ϕu
i |Ŝl|ϕu

i 〉 (0.19)

with k, l ∈ {x, y, z}. The ϕu
i are assumed to be orbitals obtained from a ‘gen-

eralized collinear’ KS calculation with selected spin-quantization axis u, and the
ni are the occupation numbers. Assume next that u is along the Cartesian direc-
tion k, that the orbitals are Ŝk eigenfunctions, that the electron spin S is the same
as the pseudo-spin S , and that the KS determinant is a solution corresponding to
〈Sk〉 = MS = S = S . One then finds

∑
i ni〈ϕki |Ŝl|ϕki 〉 = S δkl, such that

E(k) = S
∑
l

aklIKl (0.20)

Instead, calculate an analogous expectation value, but this time with the QM hy-
perfine operator gKβN F̂ · IK and with the actual relativistic generalized-collinear
two-component KS orbitals,

E(k) = gKβN
∑
l

∑
i

ni〈ϕki |F̂Kl|ϕki 〉IKl (0.21)

One can now map the result (0.20) for the pseudo-spin onto the result (0.21) calcu-
lated by KS, which gives

akl =
gKβN

S

∑
i

ni〈ϕki |F̂Kl|ϕki 〉 (0.22)
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An analogous approach is possible for calculations of g-factors, which gives with
the QM Zeeman operator −βeµ̂ ·B

gkl = − 1

S

∑
i

ni〈ϕki |µ̂l|ϕki 〉 (0.23)

Both for the Zeeman and HFC matrices, one can form the rank-2 tensors AK and
G afterwards and diagonalize them in order to obtain the PAS. As with variational
wavefunction methods, GIAO basis sets are sometimes employed in order to gener-
ate Zeeman coupling matrices that are strictly origin invariant.

Within the generalized-collinear KS framework, it is also possible to obtain el-
ements of the ZFS tensor d, from the magnetic anisotropy of the KS energy with
respect to the spin quantization axis u. With the pseudo-spin Hamiltonian and a
MS = S pseudo-spin eigenfunction, one obtains

EZFS(u) = S (S − 1

2
)u · d · u (0.24)

As for the other parts of the EPR spin Hamiltonian, the result of a QM calculation
of E(u) for different directions of u can then be mapped onto Equation (0.24).
The approach was first introduced in References 31, 32, where the reader can find
comments regarding some subtleties leading to the S (S − 1/2) factor instead of
S 2. For weak SO coupling, E(u) can also be calculated by perturbation theory.
In this case, the ‘sum over states’ (SOS) - like equation (0.8) can be interpreted as
the result of a double perturbation of the energy by SO coupling and the dipolar
ZFS interaction, and a KS coupled-perturbed analog can be devised instead. For
details, see Reference 31. In cases where SO coupling dominates the ZFS, and for
spin triplets, there is another KS route: Starting with a closed-shell reference state,
one calculates energy differences between the reference and a triplet state of interest
by time-dependent linear response (‘time-dependent DFT’) within a framework that
includes SO coupling variationally or as a perturbation.

0.2.4 Operators for the Zeeman and HFC interactions

In principle, the Zeeman and hyperfine operators that are used in QM calculations of
EPR parameters should match the Hamiltonian used for calculating the wavefunc-
tions or KS orbitals in order to avoid picture-change errors. For further details, the
reader is referred to the chapters in this Handbook that are concerned with details of
relativistic calculations of NMR parameters within various relativistic frameworks,
because derivatives of the Zeeman and hyperfine operators with respect to the ex-
ternal field components and the nuclear spin magnetic moment components, respec-
tively, are needed for those calculations. In order to render this chapter somewhat
self-contained, for illustration, the Zeeman and hyperfine one-electron operators are
provided here for the NR case, for the two-component zeroth-order regular approx-
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imation (ZORA), and for the four-component case in its standard notation where
diamagnetism is not explicit. For brevity, field-dependent two-electron operators
are not listed.

Assuming point nuclei for the hyperfine terms, the gauge origin for the exter-
nal field coinciding with the coordinate origin, and Coulomb gauge for the nuclear
and external vector potential, the nonrelativistic Zeeman (Z) and HFC one-electron
operators read

NR : ĥZ =
βe
h̄

[(r × p̂) + h̄σ] ·B

= βe[L̂+ 2Ŝ] ·B (0.25a)

ĥHFC
K =

2βe
h̄

µ0

4π
[
rK
r3K
× p̂] · µK (0.25b)

+ βe
µ0

4π
[σ · {µK(∇ · rK

r3K
)− (µK ·∇)

rK
r3K
}] (0.25c)

Curly brackets, {· · · }, in the operator expressions indicate that derivatives are only
taken inside the operator, not of functions to its right hand side. As elsewhere in this
chapter, µK = gKβNIK . Further, rK is the electron-nucleus distance vector and
rK its length. The Zeeman operator is a sum of contributions from orbital and spin
angular momentum. Likewise, in the hyperfine operator there is the ‘Paramagnetic
nuclear Spin – electron Orbital’ (PSO) term in Equation (0.25b) which is indepen-
dent of the electron spin, and there is the electron spin dependent sum of the Fermi
contact (FC) and spin dipole (SD) operators in Equation (0.25c). The usual expres-
sions for the FC and SD operators are obtained by taking the derivatives of rK/r3K ,
which gives

NR : ĥFC
K = βe

µ0

4π

8π

3
δ(rK)σ · µK (0.26a)

ĥSD
K = βe

µ0

4π

3(σ · rK)(µK · rK)

r5K
(0.26b)

The ‘contact’ part of the name of the FC operator refers to the presence of the Dirac
δ-distribution.

Due to the fact that code for calculating matrix elements of these operators with
Gaussian-type atomic orbital (AO) basis functions is rather widely available, nonrel-
ativistic operators are sometimes used in relativistic calculations of EPR parameters.
For the Zeeman operator, the relativistic corrections from the operator are likely
small because it samples the valence and outer regions of light and heavy atoms.
The hyperfine operators are to be used in relativistic calculations only with caution,
because of the singular behavior evident from Equations (0.26a, 0.26b). Due to their
local nature it is possible to use them for light nuclei in a system that also contains
heavy elements, because then the relativistic effects are not generated around the
nucleus for which the HFC is calculated. It may also be possible to generate esti-
mates of a heavy-element HFC if the relevant orbitals have high angular momentum
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and the HFC is dominated by the PSO mechanism. It is certainly not physically
meaningful to use the nonrelativistic hyperfine operators in other relativistic scenar-
ios such as HFC tensors of heavy alkali metal atoms or for small radicals containing
mercury (see Section 0.5).

When adopting the two-component ZORA framework, the operators relevant for
the Zeeman and HFC interactions read

ZORA : ĥZ =
βe
2h̄

[K(r × p̂) + (r × p̂)K] ·B (0.27a)

+
βe
2
σ ·
{
B(∇ · Kr)− (B ·∇)Kr

}
(0.27b)

ĥHFC
K =

βe
h̄

µ0

4π
[KrK
r3K
× p̂+

rK
r3K
× p̂K] · µK (0.27c)

+
βeµ0

4π
[σ · {µK(∇ · KrK

r3K
)− (µK ·∇)

KrK
r3K
}] (0.27d)

The function K = 2mec
2/(2mec

2 − V ) is a ‘relativistic kinematic factor’ that typ-
ically shows up in equations derived within the ZORA framework. Formally, the
NR limit is obtained for K → 1. In this case, (0.27a) becomes the orbital Zeeman
(OZ) operator, (0.27b) becomes spin Zeeman, (0.27c) becomes PSO, and (0.27d)
becomes FC+SD. It therefore makes sense to adopt the same terminology with two-
component methods such as ZORA, Douglas Kroll Hess (DKH) beyond first order,
and other approximate or formally exact two-component methods that afford oper-
ators of similar structure. In the vicinity of heavy nuclei, K is very different from
unity which generates the desired relativistic effects. It is noted that for point nuclei
with a charge below 118 there is no ‘contact’ term (i.e. a delta distribution) [33],
because it is suppressed by K → 0 for rK → 0 in the operator. Above 118 the
ZORA method breaks down for hyperfine effects because the singularities of s1/2
and p1/2 orbitals at the nucleus become too strong. [33] With extended nuclei, the
behavior is more realistic.

The one-electron Zeeman and hyperfine operators in the four-component (Dirac)
framework involve the 4× 4 Dirac α matrices:

Dirac : ĥZ =
ce

2
r ×α ·B (0.28)

ĥHFC
K =

ceµ0

4π

rK
r3K
×α · µK (0.29)

Unlike the NR and two-component versions, the operators do not explicitly include
derivative terms. However, the derivative terms are implicitly contained in the for-
malism because of the relation between the large (upper) and small (lower) compo-
nents of the electronic wavefunctions or orbitals.

For HFC that is nominated by s orbitals (heavy alkali metals and Hg in particu-
lar), finite nucleus effects can be large. There are different ways to treat finite nuclear
volume effects [34]. Due to the ubiquity of Gaussian-type basis functions in quan-
tum chemical calculations, the spherical Gaussian nuclear model is in widespread
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use. Here, the charge distribution ρK of nucleus A is ‘smeared out’ by a Gaussian
function as

ρK(R) = ZK

(
ξK
π

)3/2

e−ξK |R−RK |2 (0.30)

The exponent ζK is inversely proportional to the mean square radius 〈R2
K 〉 of the

nucleus:
ζK =

3

2〈R2
K〉

(0.31)

The root mean square nuclear radius is, in turn, related to the nuclear mass MK (in
amu) as follows:

〈R2
K 〉1/2 = (0.863M

1/3
K + 0.570) fm (0.32)

The electron-nucleus attraction term for nucleus A with charge ZK in the Hamilto-
nian for point nuclei,

V point
K = − 1

4πε0

ZK
rK

(0.33a)

changes to

V gauss.
K = − 1

4πε0

ZK
rK

P (1/2, r̃2K) (0.33b)

with r̃2K = ζKr
2
K . Further,

P (a, x) =
1

Γ (a)

∫ x

0

ta−1e−t (0.34)

is the lower incomplete Gamma function ratio. Assuming as a first approximation
that the magnetization density of the nucleus can also be described by a spherical
Gaussian, the vector potential for a point nucleus,

Apoint
K =

µ0

4π

µK × rK
r3K

(0.35a)

changes to

Agauss.
K =

µ0

4π

µK × rK
r3K

P (3/2, r̃2K) (0.35b)

The presence of the incomplete Gamma function terms in the expressions serves
to dampen the inverse powers of rK such that the resulting potential and vector
potential remain finite as rK → 0. In calculations, there are two effects: The first one
is via the potential (0.33b) and affects the electron spin and orbital magnetizations
around the nucleus. The second one is the modification of the hyperfine operators
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by (0.35b). In combination, they tend to reduce the magnitude of hyperfine coupling
constants.

0.3 Higher-order EPR parameters, and mapping of ab-initio to
pseudo-spin functions

This section focuses on ZFS and the Zeeman interaction as examples. The HFC
can be treated in an analogous fashion as the Zeeman interaction as far as higher
order pseudo-spin Hamiltonian terms are concerned. For a unified formalism and
examples see Reference 35.

The larger the pseudo-spin S , the more degrees of freedom there are. Higher-
order of spin operators are then added to the spin Hamiltonian to describe the sup-
plementary degrees of freedom. Higher orders include terms with polynomials of
order l, m and n in the components of Ŝ , B and I respectively, symbolically de-
noted here as a term of order S lBmIn where l, m and n are non-negative integers
and l + m + n is even to preserve time even parity of the Hamiltonian. An excep-
tion concerns the description of non-Kramers doublets. This point is presented in
Section 0.5. The expansion is limited to l ≤ 2S since all matrix elements of the
operators with l > 2S are zero. The ZFS term corresponds to m = n = 0

ĤZFSS = ĤZFS(2) + ĤZFS(4) + · · · (0.36)

where ĤZFS(l) is a term of order l even in S . The term linear in the magnetic field,
with m = 1 and n = 0 is the Zeeman term

ĤZS = ĤZ(1) + ĤZ(3) + · · ·
= βe(µ̂(1) + µ̂(3) + · · · ) ·B

(0.37)

where µ̂(l) is a term of order l odd in S . The next term with m = 2 describes the
quadratic contribution in the magnetic field. This term is usually negligible due the
smallness of the magnetic interaction. [36]

According to the irreducible tensor operator decomposition, the preceding terms
can be written as

ĤZFS(l) =

l∑
m=−l

al,mTl,m(Ŝ ) (0.38)

and

µ̂u(l) =

l∑
m=−l

bul,mTl,m(Ŝ ) (0.39)

where µ̂u(l) is the component of µ̂l in direction u and Tlm are the tesseral combina-
tions of the spherical-tensor operators Tl,m
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Tl,m(Ŝ ) = 1√
2
[(−1)m Tl,m(Ŝ ) + Tl,−m(Ŝ )]

Tl,−m(Ŝ ) = i√
2
[(−1)m+1 Tl,m(Ŝ ) + Tl,−m(Ŝ )]

(0.40)

with 0 ≤ m ≤ l. Equation 0.39 becomes for l = 1

µ̂u(1) = bu1,1Ŝx + bu1,−1Ŝy + bu1,0Ŝz (0.41)

with u = x, y, z. This defines nine parameters bu1,m corresponding to the elements of
the g matrix. Equation 0.41 corresponds to the first term of Equation 0.6 and appears
for all values of S ≥ 1/2. The third term of Equation 0.6 appears for S ≥ 1

ĤZFS(2) = a2,2
1√
2
(Ŝ 2

x − Ŝ 2
y ) + a2,−2

1√
2
(ŜxŜy + ŜyŜx) + a2,1

1√
2
(ŜxŜz + ŜzŜx)

+a2,−1
1√
2
(ŜyŜz + ŜzŜy) + a2,0

1√
6
(2Ŝ 2

z − Ŝ 2
x − Ŝ 2

y )

(0.42)
The five parameters a2,m defines the symmetric and traceless d tensor. The cubic
term in S contributes to the Zeeman interaction for S ≥ 3/2,

µ̂u(3) =

3∑
m=−3

bu3,mT3,m(Ŝ ) (0.43)

All T3,m(Ŝ ) can be expressed as a product of 3 spin components Ŝu defining a
third-rank tensor g′.

ĤZ(3) = βeB · g′ · Ŝ 3 (0.44)

where g′ is a third-rank tensor.
In the case of weak SO coupling, the |λ, a〉 wave functions correspond closely

to the SR components |λ′, a〉. Without SO coupling, the |λ′, a〉 functions are the
2S + 1 spin components of the real spin and degenerate. These |λ′,M〉 behave
properly under all spin operations, time inversion and spatial symmetries of the
molecule and can be assigned to the pseudo-spin states |λ′,MS〉 ≡ |S ,MS〉. As it
has been shown in Section 0.2.1, the spin Hamiltonian parameters can be calculated
in this case by a perturbative approach using wave functions which do not include
SO effects.

In the case where SO coupling is included in the QM calculation, the assignment
of the |λ, a〉 functions to pseudo-spin functions becomes more difficult. There are
currently two types of methods to calculate the spin Hamiltonian parameters from
the Ea and the three matrices µu of the electron magnetic moment represented in
the basis of |λ, a〉 calculated by the ab-initio methods. i) either by projecting the
Zeeman matrices using the Irreducible Tensor Operators algebra. [10] Since these
latter operators form a basis of orthogonal and linearly independent matrices, each
matrix has a unique expansion in this basis set. ii) or by mapping the matrix elements
of the real and pseudo-spin matrices one by one once the correspondence between
the real and pseudo-spin states is performed.

For the projection technique, one considers first that the term linear in S is the
dominant one in the ĤZS operator and the tensor G = g gT can be calculated as [11]
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G =
6

S (S + 1)(2S + 1)
A (0.45)

where the tensor A (not to be confused with A of Equation (0.17)) is defined as

Ak,l =
1

2
tr(µk µl) (0.46)

The diagonalization of G provides the absolute values of the g factors gi = ±
√
Gi

with i = X,Y, Z. Eq. 0.45 is equivalent to Eq. 0.15 in the case S = 1/2.
The matching technique consists in rotating the three matrices µk (k = x, y, z)
i) in the Euclidean space of spatial coordinates Rk,l

µl
′

=
∑
k

Rk,l′µ
k with k = x, y, z and l′ = x′, y′, z′ (0.47)

where R is a 3*3 rotation matrix of the Cartesian coordinates.
ii ) in the Hilbert space generated by |λ, a〉 (a = 1, 2S + 1).

(µk)′ = R† · µk · R for all k = x, y, z (0.48)

whereR is a rotation in the (1 + 2S )2 Hilbert space
These rotations are performed in order to put the three matrices µk (k = x, y, z)

to suit the matrices of the spin Hamiltonian. The rotations in coordinate space may
rotate the real space in the principal axis of the D or A for example. Then the rota-
tions in the Hilbert space of wave functions may diagonalize the µZ matrix, make
µX real and µY imaginary. No information is lost during these transformations. In
the final form, one can fit the spin Hamiltonian parameters on the matrix elements
of the µ′k (k = x′, y′, z′) matrices. The deviation through the fitting procedure can
be evaluated and scores the propensity of the model to reproduce the ab-initio data.
But this procedure need some symmetry in order to find the proper rotations.

For the calculation of the ZFS parameters, one needs the assignment of the com-
bination of the |λ, a〉 to the pseudo-spin states |S ,M 〉. One must find a rotation
R in the model space such the transformed wavefunctions fulfill the time inversion
properties Θ̂|λ,M 〉 = (±1)(S−M )|λ,−M 〉. The real Hamiltonian, including the
interactions attributed to the ZFS, is diagonal in the basis of the |λ, a〉 if SO cou-
pling and the dipolar two-electron spin-spin interaction are included variationally in
the ground state. In the new basis set, it becomes

HZFS = R† ·E · R (0.49)

where E is the diagonal matrix with Ea,b = Eaδa,b. Then, these matrix el-
ements match the matrix elements of the pseudo-spin matrix HZFS

M ,M ′ =

〈S ,M |ĤZFSS |S ,M 〉
If SO coupling is weak, the |λ, a〉 derives mostly of a pure spin state 2S+1Γ

with components |λ′,M〉 where M is the projection on the quantification axis of
the real spin. This assignment is easily performed using the effective Hamiltonian
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technique [37] briefly outlined in Sec. 0.2.1.

P|λ, a〉 =
∑
M

Ci,M |λ′,M〉 (0.50)

where P is the projector on the pure spin space. The effective Hamiltonian in this
target space is

HZFS
eff = C−1 ·E · C (0.51)

where Ci,M = Ci,M . Ci,M is not an orthogonal matrix since it is a projector. The
wave functions |λ′,M〉 satisfy all the properties of transformations of spin with time
inversion and spin operators since they are eigenfunctions for a real spin. Equations
0.49 and 0.51 are closely related. In the case of weak SO coupling, C is close to
being orthogonal and the effective Hamiltonian procedure is a convenient way to
obtain the rotationR, eventually using an orthogonalization procedure. This proce-
dure is applicable for all values of S while for large values of S the determination
of R becomes more complicated due to the increase of the number of degrees of
freedom.

The spin Hamiltonian is designed in order to reduce as much as possible the
number of parameters to fit the EPR spectra. In the case of high S , many of the
spin Hamiltonian parameters are negligible. In the case of weak SO coupling, the
Zeeman interaction is almost isotropic and the magnetic anisotropy arises from the
ZFS term. The determination of the ZFS tensor is then the key step of the fitting.

In the case of S = 1, without any spatial symmetry, the three |λ, a〉 are not de-
generate and are not magnetic to first order 〈λ, a|µ̂u|λ, a〉 = 0. Magnetic properties
arise from the off-diagonal matrix elements. The spin Hamiltonian expressed in the
principal axis of the d tensor with an isotropic Zeeman interaction writes

ĤS = βegB · Ŝ + dXŜ 2
X + dY Ŝ 2

Y + dZŜ 2
Z

= βegB · Ŝ +D
(
Ŝ 2
Z − 1

3S (S + 1)
)

+ E(Ŝ 2
X − Ŝ 2

Y )
(0.52)

In the basis set{
|0X〉 = 1√

2
(−|1, 1〉+ |1,−1〉), |0Y 〉 = i√

2
(|1, 1〉+ |1,−1〉), |0Z〉 = |1, 0〉

}
where |0u〉 is the spin state with M = 0 in the direction u

ĤS |0X〉 |0Y 〉 |0Z〉
〈0X | 1

3D − E −iβegBZ iβegBY
〈0Y | iβegBZ 1

3D + E −iβegBX
〈0Z | −iβegBY iβegBX − 2

3D

(0.53)

Fig. 0.1 represents the variation of the energy of the three states as a function of
B for the three directions X , Y and Z for g = 2, D = 10 cm−1 and E = 1
cm−1. The largest magnetization (slope of the E = f(B) curve) is obtained for
|0X〉 and |0Y 〉 when the field is applied along Z since |0X〉 and |0Y 〉 are the closest
and the Zeeman interaction couples them in this direction. When D < 0, these two
states are lower than |0Z〉 and the ground state is magnetic along Z; smaller is E,
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Fig. 0.1 Energy versus magnetic field for S = 1 as solution of Eq. 0.53 for g = 2, D = −10
cm−1 and E = 1 cm−1

larger the magnetic interaction between these states is. This corresponds to an axial
magnetization in direction Z.

The spin Hamiltonian of Equation 0.52 is widely used for S = 3/2 systems as
well. It will be shown in Section 0.5 that the cubic term in S is negligible in the
case of weak SO coupling. In the basis of the |S ,M 〉, its matrix is

ĤS |3/2〉 |1/2〉 | − 1/2〉 | − 3/2〉
〈3/2| D + 3

2
βegBZ

√
3

2
βeg (BX − iBY )

√
3E 0

〈1/2|
√
3

2
βeg (BX + iBY ) −D + 1

2
βegBZ βeg (BX − iBY )

√
3E

〈−1/2|
√
3E βeg (BX + iBY ) −D − 1

2
βegBZ

√
3

2
βeg (BX − iBY )

〈−3/2| 0
√
3E

√
3

2
βeg (BX + iBY ) D − 3

2
βegBZ

(0.54)
The energies from diagonalization of this spin Hamiltonian are plotted as functions
of B for g = 2, D = −10 cm−1 and E = 1 cm−1 on Fig. 0.2. The two Kramers
doublets |±1/2〉 and |±3/2〉 are split by an energy 2

√
D2 + 3E2. WithD < 0, the

|±3/2〉 doublet is the lowest. WhenE = 0, the |±3/2〉 doublet is purely axial along
Z with a magnetization of 3/2g while the |±1/2〉 doublet has a magnetization 1/2g
along Z and g along X and Y . The E parameter induces some | ± 1/2〉 component
in the ground state in zero field and couples the two doublets through the Zeeman
interaction. The magnetization becomes less axial. When D is large, the second
Kramers doublet may not be detected by EPR, even with HF-HF EPR. In this case,
the ground Kramers doublet can be modeled with a restricted model space with
S = 1/2 ; the spin Hamiltonian is then pure Zeeman and the g matrix is purely
axial gZ = 3g and gX = gY = 0 for D < 0 and gZ = g and gX = gY = 2g for
D > 0.

Most cases with large values of S are in the weak SO coupling limit with S
close to the real spin S of the spin-free state. When there is no very low lying
state, the orbit contribution arises through second-order coupling with the excited
states, the Zeeman interaction is almost isotropic and the anisotropic behavior of
the magnetization arises from the D tensor. In this case, whatever the value of S is,
the effective Hamiltonian technique permits a simple assignment between the ’real’
wave functions to the pseudo-spin components.
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Fig. 0.2 Energy versus magnetic field for S = 3/2 as solution of Eq. 0.54 for g = 2, D = −10
cm−1 and E = 1 cm−1

0.4 Signs of EPR g-factors and hyperfine couplings

In the Zeeman term of Eq. 0.6, the matrix g links the pseudo-spin operator Ŝ , which
acts in the spin space, with the magnetic field, which acts in the physical space. Ro-
tations in each of the two spaces are a-priori disconnected and, consequently, the
matrix g is not a tensor. It is rather arbitrary since any rotation in the spin space
affects the g matrix but gives the same electronic magnetic moment µ, which is
the physical observable coupling to the magnetic field. The g-factors are calculated
as the square roots of the principal values of the G tensor of Equation 0.15, which
therefore determines the absolute values of the g-factors but does not provide any
information about their sign. Experimentally, the g-factors are deduced from Equa-
tion 0.7. Conventional EPR does not provide the sign of the g-factors. In the weak
SO limit, they are close to ge ' 2 and they are positive.

Let X,Y, Z denote the magnetic axes of a system. Pryce has shown [38] that
the sign of the product gXgY gZ determines the direction of the precession of the
magnetic moment around the magnetic field. Experimentally, this sign has been
measured for octahedral compounds where the three factors are identical. Negative
signs were deduced relative to the sign of the hyperfine coupling [39] for PaCl2–

6
as well as [40] for UF–

6. The sign of gXgY gZ was found to be negative as well for
[NpO2(NO3)3]− [41].

The sign of gXgY gZ defines the sign of the Berry phase of a pseudo-spin applied
in an applied magnetic field. [42] In the case of S = 1/2,

µXµY µZ = i gXgY gZI2 (0.55)

where µu represents the electron magnetic moment µ̂u in the basis of the doublet
state components, as defined in Section 0.2.1, and I2 is the 2 × 2 identity matrix.
This product of matrices is invariant by rotation in the Hilbert spin space and there-
fore does not need any assignment between the two physical wave functions with
the |S ,M 〉 pseudo-spin eigenfunctions. Eq. 0.55 is easily calculated ab-initio and
gives access to the sign of the product of the three g-factors.
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In the case of symmetric molecules, the degree of arbitrariness of the matrix g
can be reduced by imposing symmetry constraints on the pseudo-spin. More specif-
ically, the pseudo-spin may be required to behave under spatial rotations θ̂ as a spin
operator, up to a multiplicative function. [43] The two physical kets |λ, 1〉 and |λ, 2〉
span an irrep Γ of the point group of the molecule, while the two components |α〉
and |β〉 of a spin S = 1/2 span an irrep ΓS . If one can find a real scalar function φ
such

|λ, 1〉 = φ |α〉
|λ, 2〉 = θ̂|λ, 1〉 = φ |β〉 (0.56)

the two |λ, 1〉 and |λ, 2〉 are properly defined for the rotations of the molecule. This
implies that Γ = Γφ⊗ΓS with Γφ being the irrep of φ. Since the pseudo-spin and the
multiplet are supposed to have the same degeneracy, Γφ must be a one-dimensional
symmetry species. For example, in the case of the octahedral AnXq–

6 complexes
with 5f1 configuration, the ground state is of symmetry E5/2u and ΓS = E1/2g .
It follows that Γφ = A2u since E5/2u = A2u ⊗ E1/2g: the decomposition of Eq.
(0.56) is uniquely defined and one can determine the signs of the g-factors. [44]. By
symmetry, the three principal g-factors are equal and their sign is equal to the sign
of the product.

The case of the neptunyl ion, NpO2+
2 , is different. [45] The free ion is linear and

has a non-zero principal g‖-factor in the direction ‖, parallel to the molecular axis.
The components g⊥ perpendicular to the axis are zero, however. This means that
gXgY gZ = 0, i.e. this product conveys no information about the sign of g‖. InD∞h,
the ground state of neptunyl is E5/2u and ΓS = E1/2g . There is, however, no one-
dimensional irrep satisfyingE5/2u = Γ⊗E1/2g and therefore the decomposition as
in Eq. (0.56) is not possible. With equatorial ligands, the symmetry of the neptunyl
is lowered, either toD3h, e.g. in [NpO2(NO3)3]−, or toD4h, e.g. in [NpO2Cl4]2−. In
both cases, the two equatorial g⊥-factors are equal and g‖ has the sign of the product
of the three g-factors. This sign is experimentally negative for the first complex. [41]
According to Eq. 0.55, ab-initio calculations give a negative sign for the nitrate
complex but a positive sign for the chloride. The ground state of [NpO2(NO3)3]− is
of symmetry E1/2, and in the D3h double group ΓS = E1/2. The scalar φ function
belongs either to A′1 or to A′2 since E1/2 = A′1(2) ⊗ E1/2. The decomposition of
Equation 0.56 leads in both cases to the same negative sign of g‖ < 0, but one of
the solutions gives g⊥ > 0 while the other one gives g⊥ < 0. In this case, the use
of symmetry arguments does not produce a unique sign of g⊥. In the same way, the
ground state of [NpO2Cl4]2− is of symmetry E3/2u, ΓS = E1/2g , and φ belongs to
either B1u or B2u. Both solutions give g‖ > 0 but one gives g⊥ > 0 while the other
one gives g⊥ < 0. Therefore, the individual signs of the g-factors of these neptunyl
complexes can not be determined. It has been proposed [43] that the sign of g-factors
in the case of an arbitrarily distorted complex could be determined by considering
an adiabatic distortion of the complex towards a symmetric system for which the
signs are well defined. But the analysis above shows that even in symmetrical cases,
the signs of individual g-factors may not be unique.

While the sign of the product of the three g-factors can be related to an ob-
servable, namely the sense of the precession of the magnetic moment around the
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magnetic field, it appears that it is not possible in general to determine a specific
sign of each individual g-factor, even in the case of molecules with high symmetry.
Anyhow, the decomposition of Eq. 0.56 permits constructing a set of doublet com-
ponents which behave as the components of a spin under the symmetry operations
of a molecule.

0.5 Selected case studies

In this section, selected examples are presented where EPR parameters have been
calculated with relativistic two-step complete active space (CAS) wavefunction
methods (treating SO coupling by state interaction) and KS methods, drawing from
the authors’ research.

In the CAS approaches, first, the wave functions are calculated in the absence of
magnetic fields and, in a second step, EPR parameters are deduced from the wave
functions. In two-step approaches, the quality of the wave function depends on the
quality of the basis set, on the size of the active space, on the introduction of the
dynamical correlation, and on the number of states included in the state interaction
for the calculation of the SO coupling. In all cases, for a metal in nd(f)l configura-
tion, minimal active space includes the l electrons in the 5(7) nd(f) orbitals. Such
a minimal active space is often sufficient for the description of f elements as far as
g-factors and ZFS is concerned. In order to get accurate HFC interactions, the active
spaces must allow for spin polarization to take place. For transition metals, also for
ZFS and g-factors the active spaces should be increased with some correlating or-
bitals, namely the double shell nd′ orbitals and some orbitals of the ligands, namely
the orbitals the most involved in the bonding with the metal ion. Except for lan-
thanides, the inclusion of the dynamical correlation with perturbation theory tends
to improve the results. For the state interaction, all the states with the same spin as
the ground term of the free ion arising from the nd(f)l configuration are usually
included. The lowest states with S ± 1 should often be included as well.

Once the wave functions are calculated, the model space must be chosen. In the
case of Kramers doublets, the spin Hamiltonian comprises only the Zeeman term
linear in S and the g-factors are calculated according to Equation 0.15. It is il-
lustrated below with the example of neptunyl NpO2+

2 . For non-Kramers doublets,
a ZFS parameter must be added as shown below for the plutonyl PuO2+

2 . The case
S = 1 is illustrated with a complex of Ni(II) where the pseudo-spin is very close
to the real spin. Two examples are presented for S = 3/2 : a complex of Co(II)
with a ZFS splitting and a octahedral complex of Np(IV) without ZFS splitting but
with a large third-order term in the pseudo-spin Hamiltonian. Finally, the S = 2
case is illustrated with a high-spin complex of Fe(VI) where there is a low lying
SF state. These calculations are all based on the second-order DKH operator with
SO coupling treated by an atomic mean-field integral procedure. This section con-
cludes with selected examples for hyperfine coupling extracted from KS calcula-
tions, where the relativistic effects are treated with the help of ZORA.
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The neptunyl ion NpO2+
2 is a linear complex of Np6+ in 5f1 configuration. [45]

The 5f orbitals split due the interaction with the two oxygen atoms, the three or-
bitals of symmetry σ and π are antibonding and are destabilized. The remaining
four orbitals, δ and φ, are non bonding and are occupied with the single elec-
tron. The ground state is of symmetry E5/2u of the D∞h group and is close to
the MJ = ±5/2 components of the J = 5/2 term of the free ion. Results are sum-
marized in Table 0.1 g‖ = ±4.23 is close to the 2gJJ = 30/7 value of the free ion
limit for a |5/2,±5/2〉 doublet. The spin and orbital contributions to the g-factors
are determined by turning off the orbital and spin term respectively in the Zeeman
interaction. The orbital contribution is the largest and opposite to the spin one, as it
is the case for the free ion where spin and orbit are in opposite direction since the
open shell is less than half filled and L > S.

The g-factors of the ground state of NpO2+
2 were measured by EPR spectroscopy

in the solid state diluted either in CsUO2(NO3)3 or in Cs2UO2Cl4. The g-factors of
the excited states were deduced from the absorption bands in a magnetic field. In the
first environment, three nitrate ligands are in the equatorial plane of NpO2 leading
to a local D3h symmetry while in the latter, there are four chloride with a local D4h

symmetry. In the first complex, the φ orbitals split by interaction with the orbitals of
the equatorial ligands and their orbital moment is partially quenched. It gives rise to
a magnetic moment in the equatorial direction (see Table 0.1) dominated by the spin
contribution; in this case, spin and orbit are opposite. In D4h, the δ orbitals split by
mixing with the orbitals of the ligands quenching their orbital moment. One obtains
again a magnetic moment in the equatorial plane almost as large as the axial one.
It should be noticed that in this case, the spin and orbital contributions of the axial
component have the same sign, and are therefore additive. The main effect of the
environment is to affect the ratio of δ and φ orbitals in the ground state and it is this
ratio which determines the magnetic properties. The effect of the ligands is so large
in the chloride environment that there is no relationship anymore with the properties
of the free actinyl ion.

As pointed out already, even-electron systems may have doubly degenerate states
in presence of rotational symmetry, or almost degenerate states with a small energy
gap. In this case, the pseudo-spin is S = 1/2. But, while in the spin space the
kets behave as Θ̂|1/2,±1/2〉 = ±|1/2,∓1/2〉 under time reversal, with Θ̂ being
the time-reversal operator, in the real space Θ̂|λ, a〉 = |λ, a〉 since there is an even
number of electrons. The states |λ, a〉 have no magnetic moment but the magnetic

Table 0.1 Calculated and experimental g-factors for NpO2+
2 and PuO2+

2 . gS and gL are the spin
and orbital contributions to the calculated g-factors. Data taken from References 45, 46.

NpO2+
2 [NpO2(NO3)3]– [NpO2Cl4]2– PuO2+

2 [PuO2(NO3)3]–

‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥ ‖ ⊥
calc g ± 4.24 0.00 -3.49 ± 0.23 1.76 ± 1.50 6.09 0.00 5.92 0.00

gL ± 5.76 0.00 -4.69 ∓ 0.63 1.72 ∓ 2.42 9.90 0.00 9.62 0.00
gS ∓ 1.52 0.00 1.20 ± 0.86 0.04 ± 0.92i -3.80 0.00 -3.68 0.00

exp 3.36;3.405 0.20;0.205 1.32;1.38 1.30 5.32 0.00
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moment arises from the coupling between the two states 〈λ, a|µ̂|λ, b〉 6= 0 if a 6= b.
It follows that the spin Hamiltonian takes the following form

ĤS = g‖βeŜzBz +∆Ŝx (0.57)

assigning the |1/2,±1/2〉 ≡ 1√
2
(|λ, a〉±i|λ, b〉). The second term of Equation 0.57

is a ZFS term linear in S and is not even with time reversal. In this equation, x and y
do not refer to spatial directions and the Hamiltonian is not invariant under rotations.
g‖ is a number. Although ill defined for symmetries, this Hamiltonian is used to fit
EPR spectra of non Kramers systems and its parameters can be determined from
ab-initio calculation.

The plutonyl ion PuO2+
2 is the analog of NpO2+

2 with a 5f2 configuration. The
ground state is of 4g symmetry, close to the MJ = ±4 of the ground free ion 3H4

term. The calculated g-factor (see Table 0.1) is close to 2gJJ = 6.4 of the free ion.
The equatorial component is zero and the spin and orbital contributions to the axial
component have opposite signs. The EPR spectrum of plutonyl has been measured
diluted in a diamagnetic crystal, forming [PuO2(NO3)3]– clusters. The equatorial
moment remains zero, even with the lowering of the symmetry since there is an
even number of electrons in the molecule. In this case, the splitting of the φ orbitals
has less effect than in neptunyl since the configuration of the ground state remains
mostly φ1δ1.

In the complex [Ni(II)(HIM2−py)2(NO3)]+, the Ni(II) ion (3d8 configuration)
is in a pseudo-octahedral environment. Magnetization measurements, HF-HF-EPR
studies, and frequency domain magnetic resonance spectroscopy (FDMRS) studies
indicated the presence of a very large Ising-type anisotropy with an axial ZFS pa-
rameterD = −10.1±0.1cm−1 and a rhombic ZFS parameter ofE = 0.3±0.1cm−1

[47]. The spectrum is fitted with an isotropic giso = 2.17. In an octahedral ligand
field, the SR ground state is a 3A2g with a t62ge

2
g configuration. This state is orbitally

non-degenerate and triply degenerate for the spin. With SO coupling, it becomes
a T2 state and remains triply degenerate. A distortion of the octahedral environ-
ment removes this degeneracy, creating three non-degenerate states. SO coupling is
dominated by coupling to a 3T2g state with configuration t52ge

3
g . The latter is triply

degenerate in octahedral symmetry and also splits in three states when the symme-
try is lowered. The model space consists in the three states arising from the ground
3A2g state and S = 1.

According to SO-CASPT2 calculations, the 3T2g state splits in three components
at 7750, 10088 and 10504 cm−1 above the energy of the ground state. This large
splitting is at the origin of the large ZFS in this molecule. According to Equation
0.51, one gets D = −11.53 cm−1 and E = 0.48 cm−1. The directions of the
principal axes of the d tensor are depicted on Fig. 0.3. The norms of the projections
of the model wave functions in the target space P|λ, a〉 are 0.99 and their overlap
about 10−4. It follows that the matrix C is close to being orthogonal, and close to
the rotation matrix R of Equation 0.49. Equations 0.49 and 0.51 provide similar
results.
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Fig. 0.3 The [Ni(II)(HIM2−py)2(NO3)]+ molecule. The thick arrows shows the direction of the
axial magnetization and the thiner arrows the two other principal axes of the d tensor.

The g-factors determined by the projection procedure, Equation (0.45), and the
matching procedure are the same gX = 2.21, gY = 2.22 and gZ = 2.30. The
principal axes of the g tensor are very close to those of the d tensor even if the
molecule has no symmetry. The g-factors are almost equal and the Zeeman inter-
action is almost isotropic. This means that the magnetic behavior is dictated by
the principal axes of the ZFS tensor d. The spin contribution to the g-factors is
gSX = gSY = 1.998, gSZ = 1.992 and the orbital contributions are gLX = 0.225
gLY = 0.222 and gLZ = 0.306. As expected for a weak SO case, the spin contribu-
tion is by far the largest. But it is isotropic and close to 2. The orbit contribution is
smaller, but it brings the departure from the free electron and the anisotropy of the
Zeeman interaction.

In HgCo(NCS)4, the Co(II) ion has a 3d7 configuration and is in a pseudo-
tetrahedral environment. The [Co(NCS)4]2– molecule belongs to the S4 point group.
In Td, the ground state would be a four-fold degenerate 4A2, but in the lower sym-
metry, this state splits in two Kramers doublets. The spin Hamiltonian parameters
were deduced from susceptibility data measured with a SQUID in the range 1.7-300
K [48]; D lies between 10 and 11 cm−1, g‖ = 2.168, and g⊥ = 2.251.

The splitting between the two Kramers doublets calculated with SO-CASPT2 is
16.2 cm−1. Due to the symmetry of the molecule, all spin Hamiltonian tensors have
the same principal axis and the spin Hamiltonian takes the following form

ĤS = βe

(
g⊥BXŜX + g⊥BY ŜY + g‖BZŜZ

)
+ βe

(
g′⊥BXŜ 3

X + g′⊥BY Ŝ 3
Y + g′‖BZŜ 3

Z

)
+D

(
Ŝ 2
Z −

5

4

)
+ E

(
Ŝ 2
X − Ŝ 2

Y

)
(0.58)
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The matrix g′ is reduced to its diagonal elements. The ZFS tensor d is calculated
by the effective Hamiltonian technique ; the Z axis lies along the C2 axis, and D =
8.1 cm−1 and E = 0. The validity of the effective Hamiltonian procedure can
be assessed by the projection of the |λ, a〉 on the |λ′,M〉, more than 0.99 and the
overlap between the projected vectors, less than 10−4. The projection technique
provides the tensor A defined in Eq. 0.45 leading to g‖ = 2.173 and g⊥ = 2.255.
The matching technique permits the determination of both linear and cubic terms
: one gets g‖ = 2.178, g′‖ = −0.002, g⊥ = 2.263, g′⊥ = −0.004. The Zeeman
interaction is mostly isotropic and the cubic term is negligible. The two techniques
give close but not similar g-factors due to the neglect of the cubic term in the first
one. These values are in very good agreement with the experimental ones. The spin
(orbital) contributions are for g⊥ 1.992 (0.271), for g′⊥ -0.0002 (-0.004), for g‖
1.989 (0.189) and for g′‖ -0.0002 (-0.002). The spin contribution is again the largest,
isotropic and close to 2. The orbital one is more anisotropic and provides the only
contribution to the cubic term. As it was the case for the Ni(II) complex, in the
weak SO limit, the anisotropy of the magnetic property is determined by the ZFS
interaction.

Another description is to consider the two Kramers doublets independently, each
being described by a S = 1/2. One gets for the first Kramers doublet g1‖ = 2.18
and g1⊥ = 4.50 and for the second one g2‖ = 6.52 and g2⊥ = 0.1. This description
does not give information on the second order Zeeman interaction between the two
Kramers doublets. But in the case of a large ZFS, the transition between the two
Kramers doublets can not be induced even using HFHF EPR and one only deter-
mines the magnetic properties of the ground Kramers doublet. In this scheme, the
magnetic anisotropy is described by the Zeeman interaction.

Another example for S = 3/2 is the NpCl2–
6 cluster diluted in Cs2ZrCl6. The

Np4+ ion has a 5f3 configuration and is in an octahedral environment. The ground
state is a quartet F3/2u (using Mulliken’s notation, or Γ8 in Bethe’s notation) [49].
In the principal axis system, the spin Hamiltonian takes the form

ĤS = βegŜ ·B + βeg
′
(
BXŜ 3

X +BY Ŝ 3
Y +BZŜ 3

Z

)
(0.59)

Due to the cubic symmetry, ĤZ(1) is isotropic, ĤZ(3) is invariant by ’changing ’ the
axis by permutation X ←→ Y ←→ Z but is not isotropic. There are two de-
grees of freedom, the two scalar g and g′ which were deduced from EPR measure-
ments as g = −0.516 and g′ = 0.882. These two numbers define the magnetization
of the two pairs of Kramers doublets, 〈±3/2|µu| ± 3/2〉 = ∓( 3

2g + 27
8 g
′) and

〈±1/2|µu| ± 1/2〉 = ∓( 1
2g + 1

8g
′). The matching technique permits to find the

rotation R in the model space which assign the |λ, a〉 to the |S ,M 〉. One can find
two possible assignments as was already pointed out by Bleaney, corresponding to
the permutation

{
Ψ3/2 ↔ Ψ−1/2;Ψ−3/2 ↔ Ψ1/2

}
. One of the solutions transforms

under rotations as a spin S = 3/2 while the other one does not. The solution given
above fitting the EPR spectrum does not. From calculations one gets g = −0.406
and g′ = 0.785. The spin and orbital contributions are 0.027 and -0.460 for g and
-0.250 and 1.285 for g′. The accordance with the experimental values is reasonable.
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The spin and orbital contributions are opposite, the orbital one being the largest as
in the free ion. The cubic term is by far non negligible, it is larger than the linear
one, and opposite in sign. Due to the high symmetry of the complex, there is no
ZFS. However, the cubic term plays an essential role for the Zeeman interaction.

When the complex is distorted, one gets two Kramers doublets with different
energies. The two g-tensors are not collinear. Two pseudo-spins models can be used:
Either one considers two distinct S = 1/2 each with its own g-tensor, and the
two g-tensors are not collinear. The two spin spaces are coupled through 2nd order
Zeeman interaction. It is usually the way one describes the low-energy spectra of
lanthanide ions. Another way is to describe the model space as an S = 3/2 case.
The g and g′ tensor are not collinear in general, and even if this space is more
complete that the previous description, the parameters are less intuitive.

In the [FeLCl] complex with L=β-diketiminate, the Fe(II) is in 3d6 high-spin
configuration with a S = 2 ground state. EPR measurements in the X band gives
a quasidegenerate MS = ±2 ground doublet with an axial g = 10.9 and a small
splitting of ∆ = 0.35 cm−1 . The next component of the spin quintet are estimated
to be higher than 150 cm−1 [50]. In a pure spin quintet, the MS = ±2 compo-
nents have a g-factor of 6. The experimental value shows that there is a large orbital
contribution due a partially quenching of the orbital moment and a low lying state.
The CASPT2 calculation shows that without SO coupling the first excited state is
another spin quintet lying 516 cm−1 above the ground state. With the SO coupling,
the spin quintet becomes a ground doublet split by 0.34 cm−1 and the other com-
ponents are 118, 132 and 180 cm−1 above. The g-factors of the ground doublet
modelled with a S = 1/2 are given in Table 0.2. The magnetization is along the
Fe-Cl bond with g = 10.9 in perfect accordance with the experimental value. The
spin contribution of 7.99 is the expected value for a spin quintet and one notices
a large orbital contribution due to the low lying quintet state. The five components
issued from the spin quintet may be modelled with a S = 2 pseudo-spin. In the
case where all the matrices are collinear, the spin Hamiltonian is the following

ĤS = βe

(
gXBXŜX + gYBY ŜY + gZBZŜZ

)
+ βe

(
g′XBXŜ 3

X + g′YBY Ŝ 3
Y + g′ZBZŜ 3

Z

)
+D

(
Ŝ 2
Z − 2

)
+ E(Ŝ 2

X − Ŝ 2
Y ) +D′

(
Ŝ 4
Z −

34

5

)
+ E′

(
Ŝ 4
X − Ŝ 4

Y

)
(0.60)

The matrices g′ and d′ are reduced to their diagonal elements. All the spin parame-
ters have been determined. Z is along the Fe−Cl axis. The g-factors and their spin
and orbital contributions are summarized in Table 0.2. For the ZFS tensors, one finds
D= -58.0 cm−1, E = 2.0 cm−1, D′ = 3.3 cm−1 and E′ = 0.1 cm−1. The tensor of
second order is largely dominant. While the rhombic term E models the splitting
between the two MS = ±2 components, the parameter D′ of the term of fourth
order is necessary to model the whole spectrum of energy of the five pseudo-spin
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Table 0.2 g-factors of FeLCl calculated with two model spaces S = 1/2 and S = 2 . gS and gL

are the spin and orbital contributions.

S = 1/2 S = 3/2
g g g′

x y z x y z x y z
calc g 0.0 0.0 10.903 2.104 1.983 3.108 -0.0154 -0.013 -0.094

gS 0.0 0.0 7.994 2.000 1.965 2.000 -0.016 -0.012 0.000
gL 0.0 0.0 2.909 0.104 0.018 1.108 0.002 -0.001 -0.094

exp 0.0 0.0 10.9

Table 0.3 Isotropic 199Hg HFC constants, in units of MHz, calculated with different relativistic
methods. a

HgF HgAg
NR PN 9 173 2 068
ZORA PN 21 958 3 404
ZORA FN 19 171 3 094
4-component PN 18 927 3 690
4-component FN 16 895 3 285
Expt. 22 163 2720

a PN = point nucleus, FN = finite nucleus (spherical Gaussian model), ZORA =
zeroth-order regular approximation 2-component method. For citations of the

original data see Table 3 of Reference 51.

components. It should be noticed that, due to the large coupling with the excited
spin quintet, the projection of the five wave function in the target space is reduced
to 0.89 and 0.95. For the Zeeman interaction, as in Co(NCS)4, the linear term is
largely dominant and the cubic one is negligible. The spin contribution is isotropic
and close to 2 while the orbital contribution is very important in the Z direction,
larger than 1, and negligible in the two other ones.

Electronic EPR parameters can be calculated in many different cases. In transi-
tion metal complexes, the pseudo-spin is usually the spin of the ground state. In the
case of a large ZFS, the model space can be reduced to the lower components and
effective values of g-factors are measured and calculated. When the pseudo-spin is
equal to the spin, the spin contribution to the g-factor is isotropic and close to 2. The
anisotropy of g arises from orbital contributions. For large values of the pseudo-
spin, the higher order terms, in S 3 for the Zeeman interaction and in S 4 the ZFS
interaction are much smaller than the S and S 2 terms. Except in the case of a low
lying excited state, the anisotropy of the magnetic properties arises from the ZFS
tensor, the g-factors being almost isotropic.

In the case of complexes with heavy elements, the pseudo-spin is rarely larger
than 2. Usually, the spin and orbital components are in opposite directions for less
than filled open shells and in the same direction otherwise, as a reminiscence of the
free ion. But in the case of the quenching of some orbitals due to the interaction
with the ligands, this rule can be skewed for actinides.
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Fig. 0.4 237Np HFC constant of NpF6 versus scaling of SO Hamiltonian integrals in the ground
state calculation (λ = 0 means SR, λ = 1 means full SO). HF and DFT calculations (PBE func-
tional) of Ref. 30 utilizing Eq. (0.22).

Regarding HFC, there are few examples highlighting the role of relativistic ef-
fects and finite nuclear volume effects better than 199Hg. Table 0.3 lists a collection
of calculated (DFT, with a hybrid functional for NR and ZORA and a non-hybrid
functional for the 4-component calculations) and experimental data for the radicals
HgH and HgF. The increase of the Hg HFC from NR to relativistic calculations,
in particular for HgH, is rather spectacular. The effect is mainly due to SR effects
from the relativistic increase of the spin density at the Hg nucleus. The effects from
a finite nuclear volume are also very large, roughly on the order of 10% relative to
the total, and decrease the HFC. SO effects on mercury HFC constants tend to be
relatively minor because it is dominated by contributions from the Hg 6s orbital.

The situation is different for the 5f1 complex 237Np and 19F HFC constants of
NpF6. Experimentally, the isotropic HFC constants were found to be −1995 MHz
for 237Np and−73 MHz for 19F. For Np, the HFC tensor is isotropic due to the octa-
hedral symmetry of the complex. For 19F, there are two unique tensor components,
a‖ in the direction of the Np–F axes and a degenerate pair of a⊥ perpendicular to the
Np–F axes, with a‖ = −132, a⊥ = −42 MHz experimentally. The unpaired elec-
tron is described at the SR level by a non-bonding Np 5f orbital of δ symmetry with
respect to the Np–F axes. Without SO coupling, the isotropic Np HFC is calculated
to be much too small in magnitude, by a factor of 3 to 5 depending on the compu-
tational method. Spin polarization is responsible for the residual Np HFC and most
of the fluorine HFC at the SR level. Under the SO interaction, there is a very dom-
inant contribution to the Np HFC from the PSO mechanism. This mechanism can
be interpreted as follows: Via SO coupling, the unpaired spin at Np creates a para-
magnetic orbital current density in the 5f shell which then interacts magnetically
with the nuclear spin. The NMR shielding tensors for diamagnetic molecules afford
a similar mechanism, except that a paramagnetic orbital current density is induced
by the external magnetic field rather than via an unpaired spin and SO coupling.

Figure 0.4 shows the 237Np HFC constant for NpF6 calculated with HF theory and
DFT using Equation (0.22). The horizontal axis indicates a parameter λ used to scale
the SO Hamiltonian integrals in the ground state calculations, meaning that λ = 0
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gives the SR limit. The fact that the data exhibit significant curvatures show that
SO effects beyond first order are important and reduce the HFC magnitude. Indeed,
calculations where SO coupling is treated with a linear-response method (to produce
the PSO mechanism) over-estimate the Np HFC by 15% or more, depending on the
functional used for the calculations. Further details and citations of prior studies
where such SO scaling has been used can be found in Reference 30.

For 19F, CASSCF calculations recently indicated [52] that without SO coupling
the HFC tensor anisotropy is not correctly predicted. With SO coupling, the cal-
culations predict a‖ to be twice as large in magnitude as a⊥, with the latter close
to experiment. The magnitude of the calculated a‖ appears to be underestimated.
However, the measurements were performed on a solid, with NpF6 diluted in a UF6
host crystal, while the calculations were for an isolated molecule. It is presently
unknown precisely how solid state packing affects the fluorine HFC tensors.

The CAS calculations of g-tensors and ZFS discussed above were performed
with the MOLCAS suite of programs. For the benefit of the reader, details of the
computations are given here. NpO2+

2 , [NpO2(NO3)3]−, [NpO2Cl4]2−, PuO2+
2 and

[PuO2(NO3)3]–: Results are given with ano.rcc basis sets of TZP quality at the SO-
CASPT2 level with CAS(7,10) comprising the 7 5f orbitals and the two bonding σ
and π orbitals. The environment is described by ECP and point charges. The state
interaction for the calculation of the SO coupling is performed with 6 spin doublets.
[Ni(II)(HIM2−py)2(NO3)]+: Results are given with ano.rcc basis sets of TZP qual-
ity on the Ni and DZP on the ligands at the SO-CASPT2 level with CAS(8,10)
comprising the 8 3d electrons within a double shell of d orbitals. The state interac-
tion for the calculation of SO coupling is performed with 10 triplets and 15 singlets.
Similar calculations are published in reference [53]. HgCo(NCS)4: Calculations
are performed with ano.rcc basis sets of TZP quality for the [Co(NCS)4]2– com-
plex. The complex is embedded in point charges describing the rest of the crystal.
Hg2+ ions are described by ECPs and other ions by point charges within a radius
of 10 Å. The cluster is described at the SO-CASPT2 level with 10 spin quartets
and 40 spin doublets using a CAS(7,5) (7 electrons in the 5 3d orbitals). NpCl2–

6 :
Calculations are performed with ano.rcc basis sets of TZP quality for the [NpCl6]2–

complex. The complex is embedded in point charges and model potentials describ-
ing the rest of the crystal. Hg2+ ions are described by ECPs and other ions by point
charges. The cluster is described at the SO-CASPT2 level with 35 quartets and 84
doublets using a CAS(3,7) (3 electrons in the 7 5f orbitals). [LFeCl]: Results are
given with ano.rcc basis sets of TZP quality on the Fe and DZP on the ligands at
the SO-CASPT2 level with CAS(6,5) comprising the 6 3d electrons within the 5 3d
orbitals. The state interaction for the calculation of SO coupling is performed with
5 quintets, 15 triplets and 10 singlets.
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0.6 Summary

There is a large variety of techniques available for ab-initio calculations of EPR pa-
rameters. Nonetheless, it can be a complicated task to extract EPR spin Hamiltonian
parameters from ab-initio calculations if SO coupling is strong, if the degeneracy of
the state of interest is higher than two-fold, or for non-Kramers doublets. In the limit
of weak SO coupling, the effective Hamiltonian technique is well established. For
strong SO coupling, the wavefunctions should include SO coupling variationally or
via state interaction. KS methods can be an effective alternative to wavefunction
based methods.
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