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Vertex Approximate Gradient Discretization preserving positivity for

two-phase Darcy flows in heterogeneous porous media

February 18, 2020

K. Brenner,1 R. Masson1 and E.H. Quenjel1

Abstract

In this article, a new nodal discretization is proposed for two-phase Darcy flows in heterogeneous porous
media. The scheme combines the Vertex Approximate Gradient (VAG) scheme for the approximation of
the gradient fluxes with an Hybrid Upwind (HU) approximation of the mobility terms in the saturation
equation. The discretization in space incorporates naturally nodal interface degrees of freedom (d.o.f.)
allowing to capture the transmission conditions at the interface between different rock types for general
capillary pressure curves. It is shown to guarantee the physical bounds for the saturation unknowns as well
as a nonnegative lower bound on the capillary energy flux term. Numerical experiments on several test
cases exhibit that the scheme is more robust compared with previous approaches allowing the simulation
of 3D large Discrete Fracture Matrix (DFM) models.

1 Introduction

Two-phase Darcy flows are widely used in many subsurface applications such as oil and gas recovery, basin
modeling, geological storage, geothermal energy or hydrogeology. These models lead to Partial Differential
Equations (PDEs) accounting for strongly coupled nonlinear processes typically involving viscous, buoyancy
and capillary forces [6, 18, 39]. The high heterogeneity of natural porous media entails a large range of
velocities and time scales in the transport of the phase saturations. Capillary driven flow dynamics can also
occur at interfaces between different rock types where highly nonlinear transmission conditions take place. The
abrupt change of the pore sizes at such interfaces induces spatially discontinuous capillary pressure curves at
the Darcy scale triggering the discontinuity of the phase saturation and pressure solutions [44, 21, 16, 17, 11].
These discontinuities play a major role and should be accurately captured in many important processes such
as capillary driven imbibition in oil recovery or capillary barrier effects in oil migration and gas storage.
This is particularly enhanced in the case of Discrete Fracture Matrix (DFM) models which exhibit highly
contrasted permeabilities and capillary pressure curves between the fracture network and the surrounding
matrix domains [9, 35, 42, 38, 34, 12, 13, 2, 31, 14, 1, 3, 45, 4].

The objective of this work is to propose a numerical method for two-phase Darcy flows with the ability
to simulate accurately and efficiently large and highly heterogeneous models. Having typically in mind large
DFM simulations for which tetrahedral meshes are commonly used to cope with the geometrical complexity
of the fracture networks, the discretization in space will be based on nodal degrees of freedoms (d.o.f.). It
will provide a much lower number of d.o.f. on tetrahedral meshes than the number of cells for cell-centered
discretizations like Multi-Point Flux Approximations (MPFA) [31, 3, 45] or the number of faces for face based
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discretizations like the Mixed Hybrid Finite Element (MHFE) method [34, 2] or the Hybrid Finite Volume
scheme [1]. The additional asset of nodal discretizations compared with cell centered discretizations is to
include d.o.f. at rock type interfaces as long as the mesh is conforming with the heterogeneities of the porous
medium. These nodal pressures and saturations unknowns will be used to enforce the Darcy normal flux
continuity equations combined with the saturation jump condition [16, 11, 27]. In this work, we will consider
the Vertex Approximate Gradient (VAG) discretization developed in [27, 12, 13] for two-phase Darcy flows in
heterogeneous media. The VAG scheme is based on nodal d.o.f. like Control Volume Finite Element (CVFE)
methods but it also includes the cell d.o.f. which are eliminated at the linear algebra level at each Newton
iteration without any fill-in. These cell d.o.f. provide an additional flexibility in the choice of the control
volumes in order to avoid mixing different rock types at nodal control volumes. It has been shown in [27] to
be more accurate than usual CVFE discretizations.

The time integration will be chosen implicit to avoid severe time step restrictions in high velocity regions
such as fractures. It will be also fully coupled to account for the strong coupling between the pressure and
saturation unknowns in the transmission conditions at different rock type interfaces. As noticed in [5], the
pressure and saturation unknowns cannot be decoupled at such different rock type interfaces to preserve the
stability of the discretization.

The selected numerical method should also provide a robust nonlinear convergence of the Newton type
solver to allow for large time steps, typically at the time scale of the matrix in DFM simulations. Let us refer
to [41, 37] for alternative linearization schemes to the Newton method which aim to the improvement of the
nonlinear solver. In this work, the additional nonlinear solver robustness will be first achieved by extension of
the Hybrid Upwind (HU) transport scheme to the VAG discretization framework. The HU transport scheme
has been introduced in [24, 28] as an alternative to the Phase Potential Upwind (PPU) scheme [10, 22] for
the approximation of the mobility terms in the saturation equation. In the framework of Two-Point Flux
Approximation (TPFA), it has been recently shown in [32, 33, 4] to provide additional nonlinear convergence
robustness thanks to better smoothness properties of the HU two-point monotone fluxes compared with the
PPU fluxes. Note that in [33, 4], the transmission conditions at different rock type interfaces are accounted
for using a single interface unknown, typically the saturation or capillary pressure. This cannot account for
general capillary pressure curves for which the pressure and saturation primary unknowns must remain fully
coupled at the interface for the well posedness and stability of the discretization. This motivates the fully
coupled approach adopted in this work. The extension of the HU scheme to the VAG discretization has
to cope with the non-monotonicity of the Multi-Point VAG gradient capillary flux. It results that the HU
numerical flux used for the saturation equation cannot be monotone like in [33, 4] where it is combined with a
TPFA of the gradient capillary flux. Nevertheless, it can still be positivity preserving in the spirit of [30, 40]
which suffices to guarantee the physical bounds on the saturations as well as the positivity of the capillary
energy flux term.

A second ingredient for the robustness of the nonlinear convergence is related to the choice of the primary
unknowns at interface nodes between different rock types. Following [13], our choice is based on a general-
ization of switch of variable techniques allowing to take into consideration general capillary pressure curves
including non strictly increasing, typically constant, capillary pressures.

The remaining part of the paper is outlined as follows. In Section 2, the two-phase Darcy flow model is
described as well as our assumptions on the data set. Note that the flow will be considered incompressible and
immiscible to simplify the presentation and in order to focus on the issues related to the geological complexity
of the porous medium. In Section 3, we survey the VAG discretization and the choice of the primary unknowns
accounting for general capillary pressure curves at different rock type interfaces. The transport scheme is
introduced in a general framework using numerical fluxes with monotonicity and consistency conditions which
are shown to guarantee the physical bounds on the saturation unknown and the existence of a solution at
fixed total velocity. Two examples of such numerical fluxes are proposed, namely the PPU VAG scheme and
the HU VAG scheme. Finally, Section 4 exhibits the additional robustness of the HU VAG scheme compared
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with the PPU VAG scheme on several test cases including large and highly heterogeneous DFM models.

2 Two-phase Darcy flow model

Let Ω be a polyhedral bounded domain of Rd (d ≥ 1) and (0, tf ) be the time interval. The wetting phase is
indexed by w and the non-wetting phase by nw. The porous medium domain Ω is constituted by several rock
types partitioning the domain in a set of polyhedral open subsets (Ωrt)rt∈RT such that Ω =

⋃
rt∈RT Ωrt, where

RT is the set of rock types. We consider the incompressible and immiscible two-phase Darcy flow model in
heterogeneous porous medium defined by the following system of equations set on Qtf = Ω× (0, tf )

φ(x)∂ts
α + divVα = 0,

Vα = −ηα(x, sα)Λ(x)(∇pα − ραg),

pc = pnw − pw ∈ P̃c(x, snw),

snw + sw = 1,

(2.1)

with α ∈ {nw,w}. In (2.1) φ(x) denotes the medium porosity, Λ(x) the medium permeability tensor, sα the
phase saturation, pα the phase pressure, Vα the phase Darcy velocity, and pc the capillary pressure. The mass
density ρα of each phase α ∈ {nw,w} is assumed constant. The gravity acceleration vector is denoted by g
and its norm by g. The phase mobility function, defined as the ratio of the relative permeability kαr (x, sα)
to the constant phase dynamic viscosity µα, is denoted by ηα(x, sα). We denote by P̃c(x, s) the monotone
graph extension of the capillary pressure function. As prescribed in the following set of assumptions, the
dependence on x of P̃c and of ηα is assumed piecewise constant on each rock type subdomain.

To fix ideas, the system (2.1) is completed by an initial datum on the non-wetting phase saturation and
by the boundary conditions

Vα · n = 0 on ΓN × (0, tf ), pα = pαDir on ΓDir × (0, tf ) for α ∈ {nw,w},

where n is the unit normal vector to ΓN oriented outward to Ω, and {ΓN ,ΓDir} a partition of ∂Ω such that∣∣ΓDir
∣∣ > 0.

The following assumptions are made on the model’s data set. Note that the following restrictions on the
capillary pressure curves are motivated to provide a common setting for the proofs of Propositions 3.1, 3.2
and 3.3. In practice, as exhibited in the Numerical Section, the discretizations presented in Section 3 work
for general capillary pressure curves including unbounded functions.

(A1) The porosity φ belongs to L∞(Ω) with 0 < φ ≤ φ(x) ≤ φ for a.e. x ∈ Ω.

(A2) The permeability tensor Λ ∈ L∞(Ω)d×d is symmetric and uniformly elliptic i.e. there exist Λ,Λ > 0
such that

Λ |v|2 ≤ Λ(x)v · v ≤ Λ |v|2 for a.e. x ∈ Ω, for all v ∈ Rd.

(A3) Let Pc,rt(s
nw) be a given capillary function for the rock type rt ∈ RT , which is assumed to be continuous,

piecewise C1 and non-decreasing on [0, 1]. We define its monotone graph extension by

P̃c,rt(s) =


[
−∞, Pc,rt(0)

]
if s = 0,

Pc,rt(s) if s ∈ (0, 1),[
Pc,rt(1),+∞

]
if s = 1,
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and we set
P̃c(x, s) =

∑
rt∈RT

P̃c,rt(s)1Ωrt(x), for a.e. x ∈ Ω,

where 1Ωrt is the characteristic function of the subdomain Ωrt.

(A4) For each α ∈ {nw,w}, the mobility function ηα is given by

ηα(x, s) =
∑

rt∈RT
ηαrt(s)1Ωrt(x), for a.e. x ∈ Ω,

where ηαrt is a non-decreasing continuous function on R such that ηαrt(s) = 0 for all s ≤ 0 and ηα(s) =
ηα(1) for all s ≥ 1. This extension of the mobilities on R is required for the proof of the physical bounds
on the saturation. It is also used to derive the consistency properties (ii) and (iii) of the numerical fluxes
as specified in Remark 3.1.

We assume in addition that the total mobility function η(x, s) = ηnw(x, s) + ηw(x, 1 − s) is such that
there exists ηmin > 0 with

η(x, s) ≥ ηmin for a.e. x ∈ Ω and for all s ∈ R.

Figure 1: Example of a 2D heterogeneous medium Ω partitioned in three rock type subdomains.

The discretization developed in the next section is essentially based on the total velocity formulation for
which we recall the following definition of the total velocity:

VT = −
∑

α∈{nw,w}

ηα(x, sα)Λ(x)(∇pα − ραg). (2.2)

This allows to express the phase Darcy velocities at given total velocity VT as follows:

Vnw = fnw(x, snw)VT +
ηnw(x, snw)ηw(x, 1− snw)

η(x, snw)
Λ(x)

(
−∇pc + (ρnw − ρw)g

)
= fnw(x, snw)VT︸ ︷︷ ︸

fractional flow term

+
ηnw(x, snw)ηw(x, 1− snw)

η(x, snw)
(−Λ(x)∇pc)︸ ︷︷ ︸

capillary term

+
ηnw(x, snw)ηw(x, 1− snw)

η(x, snw)
(ρnw − ρw)Λ(x)g︸ ︷︷ ︸

gravity term

, (2.3)

and Vw = VT −Vnw with the non-wetting phase fractional flow function defined by

fnw(x, s) =
ηnw(x, s)

η(x, s)
. (2.4)
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As a result of Assumption (A4), for β ∈ {fnw, η}, we can readily define the rock type fractional flow fnw
rt

and total mobility ηrt functions such that

β(x, s) =
∑

rt∈RT
βrt(s)1Ωrt(x).

3 Positive VAG discretization of two-phase Darcy flows in heterogeneous
medium

3.1 VAG fluxes and porous volumes

The VAG discretization of two-phase Darcy flows introduced in [26] considers generalized polyhedral meshes
of Ω in the spirit of [25]. It is recalled in the following to fix the notations and for the convenience of the
reader.

Let M be the set of cells that are disjoint open polyhedral subsets of Ω such that
⋃
K∈M k = Ω. For all

k ∈M, xk denotes the so-called center of the cell k under the assumption that k is star-shaped with respect
to xk. We then denote by Fk the set of faces of the cell k ∈ M and by F =

⋃
k∈MFk the set of faces of the

mesh. Remark that the faces are not assumed to be planar, hence the term “generalized polyhedral mesh”.
For σ ∈ F , let Eσ be the set of edges of the face σ and Vσ the set of vertices of σ. We denote by E =

⋃
σ∈F Eσ

the set of all edges of the mesh. For each k ∈ M we define the set of nodes of the cell k by Vk =
⋃
σ∈Fk Vσ,

and we also denote by V =
⋃
K∈M Vk the set of all vertices of the mesh, and by Ms, the subset of cells

sharing the node s ∈ V. It is then assumed that for each face σ ∈ F , there exists a so-called center of the face
xσ ∈ σ \

⋃
e∈Eσ e such that

xσ =
∑
s∈Vσ

βσ,s xs, with
∑
s∈Vσ

βσ,s = 1, and βσ,s ≥ 0 for all s ∈ Vσ.

Moreover the face σ is assumed to be defined by the union of the triangles Tσ,e defined by the face center xσ
and each edge e ∈ Eσ.

Note also that the mesh is supposed to be conforming w.r.t. the partition of Ω in subdomains Ωrt, rt ∈ RT ,
and w.r.t. the partition {ΓN ,ΓDir} of ∂Ω. We then denote by VDir the set of nodes located at the boundary

Γ
Dir

.

The VAG discretization has been introduced in [25] for diffusive problems on heterogeneous anisotropic
media. It is based on the following vector space of degrees of freedom:

XD = {vk ∈ R, vs ∈ R, k ∈M, s ∈ V}.

A finite element discretization is built using a tetrahedral sub-mesh ofM and a second order interpolation at
the face centers xσ, σ ∈ F defined for all vD ∈ XD by

Iσ(vD) =
∑
s∈Vσ

βσ,svs.

The tetrahedral sub-mesh is defined by T = {Tk,σ,e, e ∈ Eσ, σ ∈ Fk, k ∈ M} where Tk,σ,e is the tetrahedron
joining the cell center xk to the triangle Tσ,e (see Figure 2).

For a given vD ∈ XD, we define the function πT vD ∈ H1(Ω) as the continuous piecewise affine function
on each tetrahedron of T such that πT vD(xk) = vk, πT vD(s) = vs, and πT vD(xσ) = Iσ(vD) for all K ∈ M,
s ∈ V, σ ∈ F . The nodal finite element basis functions associated to this interpolation operator are denoted
by ϕk, ϕs, k ∈M, s ∈ V.
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Figure 2: (Left): example of one cell k with a tetrahedron Tk,σ,e of the sub-mesh T . (Right): example of VAG
fluxes in a cell k.

The VAG scheme is a control volume scheme in the sense that it amounts, for each d.o.f. not located at
the Dirichlet boundary and each phase, to a volume balance equation. The two main ingredients are therefore
the conservative fluxes and the porous volumes. For uD ∈ XD, the VAG fluxes Fk,s(uD) connect the cell
k ∈ M to the nodes s ∈ Vk (see Figure 2). They are derived from the finite element variational formulation
(see [25] for details) leading to the following generalized fluxes definition

Fk,s(uD) =

∫
k
−Λ(x)∇πT uD · ∇ϕsdx =

∑
s′∈Vk

Ts,s′

k (uk − us′), (3.1)

with

Ts,s′

k =

∫
k

Λ(x)∇ϕs′ · ∇ϕsdx.

Following [26], the porous volumes are obtained by distributing the porous volume of each cell k to its
nodes s ∈ Vk. For each k ∈ M, we define a set of non-negative volume fractions (ak,s)s∈Vk\VDir

satisfying∑
s∈Vk\VDir

ak,s < 1, and we set

φk,s = ak,s

∫
k
φ(x)dx.

Then, we consider for all k ∈M and s ∈ V \ VDir:

φk =

∫
k
φ(x)dx−

∑
s∈Vk\VDir

φk,s, φs =
∑
k∈Ms

φk,s.

It is shown in [26] that the weights (ak,s)s∈VK\VDir
can be chosen to avoid artificial drain enlargement at

nodes sharing cells with highly contrasted permeabilities. Roughly speaking it suffices to select these weights
proportional to the permeabilities of the cells k ∈Ms around a given node s.

3.2 Choice of the primary unknowns

From the conformity assumption of the mesh w.r.t. the rock type partition of the domain, a single rock type
rtk ∈ RT is defined for each cell k ∈ M. Let us denote by χs = {rtk, k ∈ Ms} ⊂ RT the subset of rock
types at the node s ∈ V. Let us also set χk = {rtk} for all k ∈M. The choice of the primary unknowns plays
an important role to improve the nonlinear convergence of the Newton-Raphson algorithm used to solve the
nonlinear system at each time step of the simulation. As usual the first primary unknown is a given phase
pressure. To fix ideas, we hereafter consider the non-wetting phase pressure. The second primary unknown
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must account for the transmission conditions at the nodes s located at the interface between different rock
types i.e. such that #χs ≥ 2. In the following we use the general framework introduced in [13] and based
on a parametrization of the monotone graph extensions P̃c,rt of the capillary pressure functions. For each
ν ∈M∪ V, non-decreasing continuous functions{

Pc,χν (τ),
Snw
χν ,rt(τ), for all rt ∈ χν ,

(3.2)

are built for τ ∈ [0, 1] such that
Pc,χν (τ) ∈ P̃c,rt(Snw

χν ,rt(τ)), for all rt ∈ χν ,
Snw
χν ,rt(0) = 0, Snw

χν ,rt(1) = 1, for all rt ∈ χν ,
Pc,χν (0) = minrt∈χν Pc,rt(0), Pc,χν (1) = maxrt∈χν Pc,rt(1),
Pc,χν (τ) +

∑
rt∈χν S

nw
χν ,rt(τ) is strictly increasing.

Then, we set
Sw
χν ,rt(τ) = 1− Snw

χν ,rt(τ).

For the analysis, the functions (3.2) are extended outside the interval [0, 1] as follows:
Snw
χν ,rt(τ) = τ if τ ∈ R \ [0, 1],

Pc,χν (τ) = Pc,χν (0) + τ if τ < 0,
Pc,χν (τ) = Pc,χν (1) + τ − 1 if τ > 1.

(3.3)

The main advantage of this framework is to incorporate in the construction of the functions (3.2) the saturation
jump conditions at different rock type interfaces and to take into account general capillary pressure functions.
A first simple example of such construction is simply to set τ = snw for #χν = 1 and

τ =
pc −minrt∈χν pc,rt(0)

maxrt∈χν pc,rt(1)−minrt∈χν pc,rt(0)
,

for #χν > 1. This choice has two drawbacks, it is not robust in terms of nonlinear convergence in dried zones,
and it does not apply to non invertible capillary pressure functions such as constant capillary pressures. The
second example implemented in the numerical section uses τ = snw for #χν = 1 and the parametrization
defined in [13] for #χν > 1. This parametrization is based on switch of variables and applies to general
capillary functions including vanishing capillary diffusion and capillary barriers. We refer to the numerical
section for examples of such parametrizations.

Using the above framework, given the primary unknowns pnw
D = (pnw

ν )ν∈M∪V and τD = (τν)ν∈M∪V , we
define 

pc,D = (pc,ν)ν∈M∪V , with pc,ν = Pc,χν (τν),
pw
D = (pw

ν )ν∈M∪V , with pw
ν = pnw

ν − pc,ν ,
Φα
D = pαD + ραgZD, with ZD = (zν)ν∈M∪V ,

sαk = Sαχk,rtk(τk), k ∈M,

sαk,s = Sαχs,rtk
(τs), s ∈ V, k ∈Ms.

(3.4)

It results from these definitions that the pressures at a given node s are uniquely defined while the saturations
at the node s depend on the rock type of each cell k ∈ Ms, capturing the saturation jumps at rock type
interfaces, as illustrated in Figure 3. This set of notations is used in the remaining of the paper.
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Figure 3: Discrete phase pressures and saturations in the four cells ki, i = 1, · · · , 4 sharing the vertex s.

3.3 Two-phase Darcy flow VAG discretization

Given the primary unknowns pnw
D and τD, we respectively denote the gravity and capillary gradient VAG

fluxes by Gk,s and Ck,s for all k ∈M, s ∈ Vk. They are defined by{
Gk,s = (ρnw − ρw)gFk,s

(
ZD

)
,

Ck,s = Ck,s(τD) = Fk,s(pc,D).
(3.5)

The total velocity VAG fluxes are denoted by

V T
k,s = V T

k,s(p
nw
D , τD),

for all k ∈ M, s ∈ Vk. Their definition depend on the approximation of the mobilities and will be discussed
in subsection 3.5. Given V T

k,s, Gk,s, Ck,s, we introduce the following VAG non-wetting phase Darcy fluxes for
all k ∈M, s ∈ Vk:

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
,

and we define the VAG wetting phase Darcy fluxes by

Fw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
= V T

k,s −Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
.

The VAG non-wetting phase Darcy fluxes Fnw
k,s are assumed to satisfy the following continuity, monotonicity

and consistency properties.

• Continuity : Fnw
k,s is continuous w.r.t. all its arguments.

• Monotonicity: Fnw
k,s is non-decreasing w.r.t. its first argument and non-increasing w.r.t. its second

argument,

• Consistency:

(i) For any snw ∈ [0, 1], let (τk, τs) be such that snw = snw
k = snw

k,s, and set sw = 1− snw. Then, for any

V T
k,s, Gk,s, Ck,s, it holds that

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
= fnw

rtk
(snw)V T

k,s +
ηnw

rtk
(snw)ηw

rtk
(sw)

ηrtk(snw)

(
Gk,s + Ck,s

)
.

(ii) For all (τk, τs) such that τk ≤ 0 and τs ≤ 0, and all V T
k,s, Gk,s, Ck,s, it holds that

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
= 0.
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(iii) For all (τk, τs) such that τk ≥ 1 and τs ≥ 1, and all V T
k,s, Gk,s, Ck,s, it holds that

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
= V T

k,s.

Remark 3.1. Let us remark that the consistency properties (i)-(ii)-(iii) result from the extension of the
mobilities given by Assumption (A4) combined with the property that for any (τk, τs) ∈ R × R such that
ηnw

rtk
(snw
k ) = ηnw

rtk
(snw
k,s), η

w
rtk

(1− snw
k ) = ηw

rtk
(1− snw

k,s), it holds for any V T
k,s, Gk,s, Ck,s that

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
=
ηnw

rtk
(snw
k )

ηrtk(snw
k )

V T
k,s +

ηnw
rtk

(snw
k )ηw

rtk
(1− snw

k )

ηrtk(snw
k )

(
Gk,s + Ck,s

)
.

This last property will hold true for both constructions presented in Subsection 3.5.

The discretization of the accumulation term at each cell and node makes use of the porous volumes φk,s,
k ∈M, s ∈ Vk \ VDir. More precisely, it is defined by the functions

γαk (τ) = Sαχk,rtk(τ), k ∈M,

γαs (τ) =
∑
k∈Ms

φk,s
φs

Sαχs,rtk
(τ), s ∈ V \ VDir.

(3.6)

For N ∈ N∗, let us consider the time discretization t0 = 0 < t1 < · · · < tn−1 < tn · · · < tN = tf of the time
interval [0, tf ]. We denote the time steps by ∆tn = tn − tn−1 for all n = 1, · · · , N .

Then, for a given τ0
D ∈ [0, 1]M∪(V\VDir) at initial time, and given τs,Dir ∈ [0, 1], pnw

s,Dir, s ∈ VDir at the
Dirichlet boundary nodes, the scheme looks for (pnw,n

D , τnD), n = 1, · · · , N solutions of the following system of
equations for α ∈ {nw,w}:

φk
∆tn

(
γαk (τnk )− γαk (τn−1

k )
)

+
∑
s∈Vk

Fαk,s
(
τnk , τ

n
s , V

T
k,s(p

nw,n
D , τnD), Gk,s, Ck,s(τ

n
D)
)

= 0, k ∈M,

φs
∆tn

(
γαs (τns )− γαs (τn−1

s )
)

−
∑
k∈Ms

Fαk,s
(
τnk , τ

n
s , V

T
k,s(p

nw,n
D , τnD), Gk,s, Ck,s(τ

n
D)
)

= 0, s ∈ V \ VDir,

pnw,n
s = pnw

s,Dir, τns = τs,Dir, s ∈ VDir,

(3.7)

Let us point out that, summing the conservation equations over both phases entails that the fluxes V T,n
k,s =

V T
k,s(p

nw,n
D , τnD) fulfill the discrete divergence-free property∑

s∈Vk

V T,n
k,s = 0 for all k ∈M,

∑
k∈Ms

V T,n
k,s = 0 for all s ∈ V \ VDir. (3.8)
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3.4 Physical bounds on the saturations and existence result

We now focus on two prominent properties of the VAG scheme (3.7) where numerical fluxes Fnwk,s , k ∈ M,
s ∈ Vk are assumed to satisfy the continuity, monotonicity and consistency assumptions. First we prove that
any solution of (3.7) satisfies the physical bounds on the saturations. In view of (3.3), this is equivalent to
show that τnD ∈ [0, 1]M∪V . Secondly, we establish the existence of a solution of such a finite volume scheme.

Proposition 3.1. Let be given numerical fluxes Fnwk,s , k ∈M, s ∈ Vk satisfying the continuity, monotonicity

and consistency assumptions. Then, for a given τ0
D ∈ [0, 1]M∪(V\VDir) at initial time, and given τs,Dir ∈ [0, 1]

at Dirichlet boundary nodes s ∈ VDir, any solution (pnw,n
D , τnD), n = 1, · · · , N , of the scheme (3.7) satisfies

τnD ∈ [0, 1]M∪V for all n = 1, · · · , N. (3.9)

Proof. Let us set V T,n
k,s = V T

k,s(p
nw,n
D , τnD) and Cnk,s = Ck,s(τ

n
D) for the sake of shortness. From the Dirichlet

boundary condition, the property only needs to be established for all cells and all non Dirichlet nodes. The
property τnν ∈ [0, 1] is satisfied by assumption for n = 0 for all ν ∈ M∪ (V \ VDir). Proceeding by induction,
for n ≥ 1, let us assume that τn−1

ν ∈ [0, 1] for all ν ∈M∪ (V \ VDir). If there exists k ∈M (to fix ideas) such
that

τnk = min
ν∈M∪(V\VDir)

τnν < 0,

then one has

γnw
k (τn−1

k ) = γnw
k (τnk ) +

∆tn

φk

∑
s∈Vk

Fnw
k,s

(
τnk , τ

n
s , V

T,n
k,s , Gk,s, C

n
k,s

)
.

Using the fact that γnw
k is an increasing function on (−∞, 0] as given in (3.3) we infer that γnw

k (τnk ) < 0.

According to the monotonicity property of the numerical flux functions Fnw
k,s at fixed V T,n

k,s , Gk,s, C
n
k,s, and to

their consistency property (ii), it results that

γnw
k (τn−1

k ) <
∆tn

φk

∑
s∈Vk

Fnw
k,s

(
τnk , τ

n
k , V

T,n
k,s , Gk,s, C

n
k,s

)
= 0,

which leads to a contradiction. The same conclusion remains true if the minimum of τnD is reached for a node
value.

Similarly if there exists k ∈M (to fix ideas) such that

τnk = max
ν∈M∪(V\VDir)

τnν > 1,

then γnw
k (τnk ) > 1 since γnw

k is increasing for all τ > 1. Thus, according to the monotonicity property of the

numerical flux functions Fnw
k,s at fixed V T,n

k,s , Gk,s, C
n
k,s, and to their consistency property (iii), one has

γnw
k (τn−1

k ) > 1 +
∆tn

φk

∑
s∈Vk

Fnw
k,s

(
τnk , τ

n
k , V

T,n
k,s , Gk,s, C

n
k,s

)
= 1 +

∆tn

φk

∑
s∈Vk

V T,n
k,s = 1,

Note that the last equality is obtained thanks to the divergence-free property on the total velocity (3.8).
We hence obtain that γnw

k (τn−1
k ) > 1, which yields a contradiction. Again, the same conclusion holds if the

maximum of τnD is reached for a node value. We deduce that the proposition holds for n which concludes the
proof by induction.
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Proposition 3.2. Let be given numerical fluxes Fnwk,s , k ∈M, s ∈ Vk satisfying the continuity, monotonicity

and consistency assumptions. Let be given τ0
D ∈ [0, 1]M∪(V\VDir) at initial time, and τs,Dir ∈ [0, 1] at Dirichlet

boundary nodes s ∈ VDir. Let us also assume that the total velocity fluxes V T,n
k,s are given for all k ∈M, s ∈ Vk

and n ∈ {1, · · · , N} such that the conservation equations (3.8) hold for all n ∈ {1, · · · , N}. Then, there exists
a solution τnD, n = 1, · · · , N of the scheme (3.7).

Proof. In the sequel, we prove by induction on the time step n ∈ {1, · · · , N} that there exists τnD solving the
fully implicit finite volume scheme (3.7). The proof is based on Leray-Shauder’s topological degree criterion

[20]. Let us set D =M∪V and
◦
D =M∪ (V \ VDir), and let us introduce the mapping H from [0, 1]×R

◦
D to

R
◦
D defined by

Hk(µ, τ ◦D) =
φk

∆tn

(
γnw
k (τk)− γnw

k (τn−1
k )

)
+ µ

∑
s∈Vk

Fnw
k,s

(
τk, τs, V

T,n
k,s , Gk,s, Ck,s(τD)

)
,

Hs(µ, τ ◦
D

) =
φs

∆tn

(
γnw
s (τs)− γnw

s (τn−1
s )

)
− µ

∑
k∈Ms

Fnw
k,s

(
τk, τs, V

T,n
k,s , Gk,s, Ck,s(τD)

)
,

for all k ∈ M and s ∈ V \ VDir and where the fixed Dirichlet values τs = τs,Dir, s ∈ VDir are used in the flux
functions Fnw

k,s . We can then make use of the arguments developed in the proof of Proposition 3.1 to show
that any solution of H(µ, τ ◦

D
) = 0 satisfies

0 ≤ τν ≤ 1, for all ν ∈M∪ (V \ VDir), for all µ ∈ [0, 1].

Additionally, the functionH is continuous with respect to τ ◦
D

and µ thanks to the continuity of the saturations,

the flux functions Fnw
k,s and the capillary fluxes Ck,s. Now, let us consider B a ball of R

◦
D with a sufficiently

large radius. For instance, one can take B = B(0, 2). As a consequence, there exists no solution fulfilling

H(µ, τD) = 0,

on the boundary of the compact ballB = B(0, 2). Accordingly, the associated topological degree Degree(H(µ, ·), B)
is constant for whatever value of µ. In particular, for µ = 0 the scheme is trivially solvable and therefore
Degree(H(0, ·), B) 6= 0. Thereby, the proposed discrete system obtained for µ = 1 has at least one solution
which concludes the proof.

The proposed discrete framework allows for pure non-wetting and wetting phases on each side of an
interface with two different rocktypes. As a result, the uniqueness of the solution for vanishing total velocities
might not hold. In any way, it is not known how to address the uniqueness issue in the VAG scheme context
due to the non-monotonicity of Ck,s(τ

n
D).

3.5 Examples of numerical fluxes Fαk,s
3.5.1 Phase Potential Upwind (PPU) VAG discretization

The PPU discretization relies on the upwinding of each phase mobility w.r.t. the sign of the phase Darcy
flux. In the VAG discretization framework, taking into account the saturation jumps, it leads to the following
VAG phase Darcy flux

V α
k,s = ηαrtk(sαk )

(
Fk,s(Φ

α
D)
)+
− ηαrtk(sαk,s)

(
Fk,s(Φ

α
D)
)−
,
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where we have used the notation a± = max(±a, 0) for a ∈ R. It is a classical approach (see e.g. [6]) already
developed for the VAG discretization in [26, 27] and which can be recast in the total velocity formulation
framework (3.7) following [10, 22].

3.5.2 Hybrid Upwinding (HU) VAG discretization

The second example is based on the total velocity formulation (2.3) combined with a monotone two-point flux
approximation of each fractional flow, gravity and capillary terms separately:

Fnw
k,s

(
τk, τs, V

T
k,s, Gk,s, Ck,s

)
= fnw

k,s V
T
k,s︸ ︷︷ ︸

fractional flow flux

+ Dcap
k,s Ck,s︸ ︷︷ ︸

capillary flux

+Dg
k,s Gk,s︸ ︷︷ ︸

gravity flux

. (3.10)

This type of approach has been introduced in [24, 28] and is known to be more diffusive than the classical
PPU approach. Nevertheless, it has been recently shown in [32, 33], in the framework of Two-Point Flux
Approximations (TPFA), that these fluxes provide additional robustness of the Newton nonlinear solver,
thanks to their additional smoothness property compared with the PPU fluxes. They are termed Hybrid
Upwinding (HU) fluxes by the authors [32, 33] and we adopt this terminology in the sequel. We propose here
an extension of the HU fluxes to the VAG discretization framework with the following key features:

(i) nodal unknowns at the interface between different rock types allow to capture the saturation jump
conditions and contribute to balance the additional diffusion of the HU fluxes versus the PPU fluxes,

(ii) the parametrization framework combined with fully coupled primary unknowns (pnw, τ) at interfacial
nodes allow to account for general capillary pressure functions, including entry pressures and non in-
vertible capillary pressures,

(iii) despite the non monotonicity of the VAG capillary fluxes Ck,s(τ
n
D) = FK,s(pc,D), the physical bounds

are guaranteed on the variable τ and on the saturations as shown in Proposition 3.1.

We detail below the discretization of each term including the total velocity flux, such that the continuity,
monotonicity and consistency properties of the VAG non-wetting phase Darcy fluxes (3.10) are satisfied.

Fractional flow term: an upwind scheme with respect to the discrete total velocity flux V T
k,s is commonly

used as in [28] for the approximation of the fractional flow term. To begin with, we specify the discretization
V T
k,s of the total velocity, setting

V T
k,s = V T

k,s(p
nw
D , τD) =

∑
α∈{nw,w}

η̂αrtk(pnw
D , τD)Fk,s(Φ

α
D), (3.11)

where η̂αrtk(pnw
D , τD) is the phase mobility approximation at the interface between the cell k and the node s.

Several options are possible for this approximation. First, in the spirit of PPU fluxes, one may consider the
standard upwind approximation with respect to the sign of the flux Fk,s(Φ

α
D) i.e.

η̂αrtk(pnw
D , τD) =

{
ηαrtk(sαk ) if Fk,s(Φ

α
D) ≥ 0,

ηαrtk(sαk,s) if Fk,s(Φ
α
D) < 0.

(3.12)

Upstream mobilities in the total velocity can not allow a control of the gradient of a reference pressure since
the VAG fluxes Fk,s(Φ

α
D) are of multi-point nature. This motivates the alternative use of the cell centered

approximation defined as follows
η̂αrtk(pnw

D , τD) = ηαrtk(sαk ). (3.13)
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Note that Propositions 3.1 and 3.2 are established at given total velocities, hence independently of the mobility
choice in the total velocity. A numerical comparison between the upwind mobilities (3.12) and the cell centered
mobilities (3.13) in the definition of the total velocity flux is presented in Section 4. Finally, the fractional
flow approximation uses the classical upwind Godunov monotone scheme

fnw
k,s = fnw

k,s (τk, τs, V
T
k,s) =

{
fnw

rtk
(snw
k ) if V T

k,s ≥ 0,

fnw
rtk

(snw
k,s) if V T

k,s < 0.
(3.14)

Capillary term: in the context of the VAG discretization, as opposed to TPFA discretizations, the capillary
gradient flux is not monotone [15, 23]. Hence, undershoots or overshoots on the phase saturations may be
generated on poor quality meshes and in the case of strong heterogeneities or anisotropies. To solve this
issue, the discretization of the capillary fluxes is performed in the positive methodology thanks to a first order
upwind approximation of the mobility terms as performed for instance in [40]. For a parameter F ∈ R, let us
define

Dup
k,s(τk, τs, F ) =



ηnw
rtk

(snw
k )ηw

rtk
(sw
k,s)

ηrtk(snw,n−1
k )

if F ≥ 0,

ηnw
rtk

(snw
k,s)η

w
rtk

(sw
k )

ηrtk(snw,n−1
k )

if F < 0.

(3.15)

The capillary term is therefore defined by

Dcap
k,s = Dup

k,s(τk, τs, Ck,s). (3.16)

Gravity term: following [24, 28], the gravity term is discretized using the classical upwind approximation
of the mobilities, which can be written as

Dg
k,s = Dup

k,s(τk, τs, Gk,s) (3.17)

Remark 3.2. The explicit approximation ηrtk(snw,n−1
k ) of the total mobility in (3.15) and (3.17) is chosen

since it leads in practice to a significant improvement in the nonlinear convergence and preserves the mono-
tonicity and consistency properties of the numerical fluxes. The numerical experiments show that this choice
does not impair the stability nor the accuracy of the scheme. This can be explained by the much smoother
time variation of the total mobilities compared with the variation of the phase mobilities.

Remark 3.3. Let us notice an important property of the upwind scheme used in the discretization of capillary
diffusion and gravity fluxes. Let us define

Dk(s
nw
k ) =

ηnw
rtk

(snw
k )ηw

rtk
(sw
k )

ηrtk(snw,n−1
k )

≥ 0.

In view of (3.15) we observe that(
Dcap
k,s (τk, τs, F )−Dk(s

nw
k )
)
F =

ηnw
rtk

(snw
k )

ηrtk(snw,n−1
k )

(
ηw

rtk
(sw
k,s)− ηw

rtk
(sw
k )
)
F+

−
ηw

rtk
(sw
k )

ηrtk(snw,n−1
k )

(
ηnw

rtk
(snw
k,s)− ηnw

rtk
(snw
k )
)
F−.

Therefore since the functions s 7→ ηnw
rtk

(s) and s 7→ −ηw
rtk

(1− s) are non-decreasing, and since the graphs P̃c,rt
are monotone, we deduce that

Dcap
k,s (τk, τs, F ) F (pc,k − pc,s) ≥ Dk(s

nw
k ) F (pc,k − pc,s).
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An additional asset of the HU VAG finite volume scheme resulting from Remark 3.3 is to ensure a non-
negative lower bound on the capillary energy flux term as stated in the following Proposition.

Proposition 3.3. Let (pnw,n
D , τnD), n = 1, · · · , N , be a solution of the HU VAG finite volume scheme (3.7)-

(3.10)-(3.11)-(3.14)-(3.15)-(3.17). Then, it satisfies

0 ≤
∑
k∈M

∑
s∈Vk

Dcap
k,s

(
τnk , τ

n
s , Ck,s(τ

n
D)
)
Fk,s(p

n
c,D)(pnc,k − pnc,s). (3.18)

Proof. Let us set

Wk =
∑
s∈Vk

Dcap
k,s

(
τnk , τ

n
s , Ck,s(τ

n
D)
)
Fk,s(p

n
c,D)(pnc,k − pnc,s)

In view of Remark 3.3 one has

Dcap
k,s Fk,s(pc,D) (pc,k − pc,s) ≥ Dk(s

nw
k ) Fk,s(pc,D) (pc,k − pc,s).

Using (3.1) and ∇(
∑
s∈Vk

(pnc,k − pnc,s)ϕs)|k = −∇πT pc,D|k implies that

Wk ≥ Dk(s
nw
k )

∫
k
∇πT pc,D · Λ(x)∇πT pc,Ddx ≥ 0. (3.19)

The result follows by summing over the cells k.

4 Numerical experiments

In this section we perform several numerical experiments whose aim is to compare the robustness and the
efficiency of the PPU and HU VAG schemes. We also investigate the impact of the approximation of the
total mobility for the HU VAG scheme using either the upwind choice (3.12) denoted by HU-EtaKs, or the
centered choice (3.13) denoted by HU-EtaK.

In the following simulations, the time stepping is defined by ∆t1 = ∆tinit and for all n ≥ 1 by

∆tn+1 = max(∆tmax, 1.2∆tn),

in case of a successful time step ∆tn, and ∆tn+1 =
∆tn

2
, in case of non convergence of the Newton algorithm

in 25 iterations.
At each time step, the nonlinear system is solved using a Newton algorithm. The cell unknowns are elim-

inated without any fill-in before solving the linear system using a GMRES iterative algorithm preconditioned
by the CPR-AMG preconditioner [43, 36]. To obtain a more robust convergence of the nonlinear solver, a
damping of the Newton step forces a maximum variation of 1 of the τ discrete unknown. This strategy is
applied for all test cases and all schemes. The GMRES stopping criterion on the relative residual is fixed to
10−6. The Newton solver is convergent if the relative residual is lower than 10−5 or if the weighted maximum
norm of the Newton increment is lower than 10−4. We denote by N4t the number of successful time steps,
by NChop the number of time step chops, by NNewton the average number of Newton iterations per successful
time step, and by NGMRES the average number of GMRES iterations per Newton iteration. Finally, CPU (s)
stands for the CPU time in seconds.
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4.1 Test problem I : oil migration in a 1D basin with capillary barrier

As exhibited in Figure 4, we consider the basin domain Ω = (0, Lx)× (0, Ly)× (0, Lz) with Lx = Ly = 10 m
and Lz = 800 m including a drain rock type on Ω2 = (0, Lx) × (0, Ly) × (0, Lz2 ) and a barrier rock type
on Ω1 = Ω \ Ω2. Tables 1 and 2 gather the petrophysical properties of the porous medium as well as the
hydrodynamical and thermodynamical laws of the wetting (water) and non-wetting (oil) phases. Note that
the permeability and porosity are chosen homogeneous for this test case in order to emphasize the capillary
barrier effect at the interface between the drain and barrier subdomains. The basin is initially saturated by
water and the oil phase is injected at the bottom boundary z = 0 using the Dirichlet input boundary condition
snw = 0.5 on the time interval t ∈ [0, t1]. For t ∈ [t1, tf ] the input Dirichlet boundary condition is changed to
snw = 0, with t1 = 400 years and tf = 800 years. The pressure is fixed to pnw = 8.1 106 Pa at z = 0 and to
pw = 105 Pa at z = Lz. The oil phase rises by gravity until it reaches a stationary state corresponding to the
trapping of the oil phase in the drain for z ∈ (ztrap,

Lz
2 ), with

(ρw − ρnw)g(
Lz
2
− ztrap) = 6 105,

which yields ztrap = 200 m with the gravity acceleration set to g = 10 m.s−2.

Figure 4: Geometry of the basin with the barrier subdomain Ω1, the drain subdomain Ω2, and the initial
wetting phase saturation. The non-wetting phase is injected at the bottom boundary during the time interval
[0, t1] using the input boundary condition snw = 0.5.

Quantity Notation Dimension Ω1 Ω2

Porosity φ [−] 0.2 0.2
Permeability Λ

[
m2
]

10−13 10−13

Relative permeability kαr,rt(s
α) [−] (sα)2 (sα)2

Capillary pressure Pc,rt(s
nw) [Pa] 6. 105 0

Table 1: Petrophysical and hydrodynamical properties on the drain Ω1 and barrier Ω2 subdomains.
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Quantity Notation Dimension Value

Oil density ρnw

[
Kg/m3

]
700

Water density ρw

[
Kg/m3

]
1000

Oil viscosity µnw [Pa.s] 0.005
Water viscosity µw [Pa.s] 0.001

Table 2: Oil and water phase thermodynamical properties.

The discretization is a uniform Cartesian mesh of size nx × ny × nz with nx = ny = 1 and nz even.
Following [13], the parametrization (3.2) of the capillary pressure graphs is defined by τ = snw for all d.o.f.
with a single rock type and is defined by

Snw
{rt1,rt2},rt2(τ) =

{
τ, τ ∈ [0, 1),
1, τ ∈ [1, 3],

Snw
{rt1,rt2},rt1(τ) =

{
0, τ ∈ [0, 2),
τ − 2, τ ∈ [2, 3],

Pc,{rt1,rt2}(τ) =


0, τ ∈ [0, 1),
6. 105(τ − 1), τ ∈ [1, 2),
6. 105, τ ∈ [2, 3],

at all nodes located at the interface between both rock types at z = Lz
2 (see Figure 5).

Figure 5: (Top): capillary pressure as a function of the non-wetting phase saturation for both rock types.
(Bottom): capillary pressure and non-wetting phase saturations as functions of the parameter τ ∈ [0, 3].

From Figure 6, one can check that the HU VAG scheme is, as could be expected, slightly more diffusive
than the PPU VAG scheme. On the other hand, both schemes capture in an excellent way the saturation jump
at the interface between both rock types and they are fully matched on the fine mesh. Figure 7 exhibits that,
even on the coarse mesh, there is no significant differences between the centered and the upwind choice of the
mobilities in the definition of the total velocity for this test case. The numerical performance of the nonlinear
solver is exhibited on Figure 8 using a coarse time stepping defined by ∆tinit = 1 year and ∆tmax = 10 years

16



on the fine mesh nz = 200. It is clearly seen that the HU VAG schemes are significantly more efficient than
the PPU VAG scheme even on this 1D test case.

Figure 6: Test I : non-wetting phase saturations as a function of z at different times t = 200, 410, 800 years,
obtained for the PPU and HU-EtaK VAG schemes both on the 200 cells (right) and 20 cells (left) meshes.

Figure 7: Test I : non-wetting phase saturations as a function of z at different times t = 200, 410, 800 years,
obtained for the HU-EtaK and HU-EtaKs VAG schemes on the 20 cells mesh.

Figure 8: Test I : accumulated number of Newton iterations as a function of time for the PPU, HU-EtaK and
HU-EtaKS VAG schemes on the 200-cell mesh with large time steps.
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4.2 Test problem II : Large DFM test case

This test case compares the robustness of the PPU and HU VAG schemes on a large 3D Discrete Fracture
Matrix (DFM) model using the continuous pressure two-phase Darcy flow model described for example in
[12, 13]. The PPU VAG scheme for such two-phase DFM models was discussed in [12, 13] and the HU VAG
scheme can be readily extended to such DFM models.

The DFM model is exhibited in Figure 9 with the domain Ω = (0, 85) × (0, 60) × (0, 140) m, it has been
kindly provided by the authors of the Benchmark [7, 8]. The matrix rock type is denoted by m and the fracture
network rocktype by f . The fracture aperture is set to df = 1 cm and the fracture network is homogeneous
with isotropic tangential permeability Λf = 10−11 m2 and porosity φf = 0.2. The matrix is homogeneous
with isotropic permeability Λm = 10−14 m2 and porosity φm = 0.4.

The relative permeabilities are defined by kαr,f (sα) = (sα)1.2 and kαr,m(sα) = (sα)2, α ∈ {nw,w} and the

capillary pressure is fixed to Pc,m(snw) = −bm log(1 − snw), bm = 104 Pa in the matrix and to Pc,f (snw) =
−bf log(1 − snw), bf = 103 Pa in the fracture network. The fluid dynamic viscosities and mass densities are
already defined in Table 2.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary conditions are imposed at
the output boundary {0, 85} × (0, 20) × (110, 140) with a wetting phase pressure of pw = 2. 106 − ρwgz Pa
and sw

m = 1, as well as at the input boundary {0} × (40, 60)× (0, 30) ∪ (0, 30)× (40, 85)× {0} with snw
m = 0.9

and pw = 4. 106 − ρwgz Pa. The remaining boundaries are impervious and the final simulation time is fixed
to tf = 3600 days. The time stepping is defined by ∆tinit = 0.1 day, and ∆tmax = 100 days.

Figure 9: Large DFM model meshed with 495233 tetrahedra and 66908 fracture faces.

Following [13], the parametrization (3.2) of the capillary pressure graphs is defined by τ = snw for all cells
and for all nodes not belonging to the fracture network, and is defined by

Snw
{m,f},f (τ) =

{
τ, τ ∈ [0, τ1),

1− (τ1 + (1− τ1)
bf
bm − τ)

bm
bf , τ ∈ [τ1, τ2),

(4.1)

Snw
{m,f},m(τ) =

 1− (1− τ)
bf
bm , τ ∈ [0, τ1),

τ − τ1 + 1− (1− τ1)
bf
bm , τ ∈ [τ1, τ2),

(4.2)
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Pc,{m,f}(τ) =

{
−bf ln(1− τ), τ ∈ [0, τ1),

−bm ln(τ1 + (1− τ1)
bf
bm − τ), τ ∈ [τ1, τ2),

(4.3)

at all fracture nodes and faces, with τ1 = 1− (
bf
bm

)
bm

bm−bf and τ2 = τ1 + (1− τ1)
bf
bm (see Figure 10).

Figure 10: (Top): capillary pressure as a function of the non-wetting phase saturation for both the fracture
(f) and matrix (m) rock types with bm = 104 and bf = 103 Pa. (Bottom): capillary pressure and fracture and
matrix non-wetting phase saturations as functions of the parameter τ ∈ [0, τ2).

Figure 11 exhibits very small differences between the saturations obtained by the PPU and HU-EtaK
VAG schemes. The same result has been checked between the HU-EtaK and EtaKs VAG schemes. Table 3
and the left Figure 12 compare the numerical efficiency of the three VAG schemes, showing again a nonlinear
convergence of the HU schemes both more robust (no time step failure for HU against 4 time step chops for
PPU) and more efficient (average of 4 Newton iterations for HU against almost 7 for PPU) resulting in an
overall gain in CPU time of a factor roughly 2 in favor of the HU VAG schemes. The right Figure 12 exhibits
the CFL numbers in the matrix and in the fracture network computed for a tracer transported by the total
velocity field with the time steps of the VAG HU-EtaKs simulation. One can check that the time steps used
in this simulation are at the scale of the matrix transport resulting in very large CFL numbers in the fracture
network.
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Figure 11: Test II : non-wetting phase saturation in the matrix (top) and in the fracture network (bottom)
at final simulation time obtained for the PPU (left) and HU-EtaK (right) VAG schemes.

Figure 12: Test II : (left): accumulated number of Newton iterations as a function of time for the different VAG
schemes. (Right): CFL numbers in the matrix and in the fracture network as a function of time computed
for a tracer transported by the total velocity field with the total velocity field and time steps of the VAG
HU-EtaKs simulation.

20



Scheme #M N∆t Nchop NNewton NGMRes CPU (s)

VAG PPU 495k cells 80 4 6.8 28 8200
VAG HU-EtaKs 495k cells 69 0 4.1 32 4492
VAG HU-EtaK 495k cells 69 0 4.0 31 4094

Table 3: Test II : numerical behavior of the simulation for the large DFM test case.

4.3 Test problem III : ORUNI DFM test case

This test case considers the large DFM model exhibited in Figure 13 with Ω = (0, 300)3 m. The Discrete
Fracture Network (DFN) including 1000 fractures is derived from the ORUNI network described in [19]. This
DFN and its triangulation has been kindly provided by the authors. Then, the 3D mesh has been generated
by Patrick Laug starting from the triangulation of the DFN and using the mesh generation tools described in
[29]. The quality of the DFN triangulation and of the subsequent tetrahedralization clearly play an essential
role in the numerical performance of the simulation.

The fracture aperture is set to df = 1 cm and the fracture network is homogeneous with isotropic tangential
permeability Λf = 10−10 m2 and porosity φf = 0.2. The matrix is homogeneous with porosity φm = 0.4 and
isotropic permeability Λm either equal to 10−13 m2 or 10−16 m2.

The relative permeabilities are defined by kαr,f (sα) = sα and kαr,m(sα) = (sα)2, α ∈ {nw,w} and the

capillary pressure is fixed to Pc,m(snw) = −bm log(1 − snw), bm = 105 Pa in the matrix and to Pc,f (snw) =
−bf log(1 − snw), bf = 103 Pa in the fracture network. The fluid dynamic viscosities and mass densities are
defined in Table 2.

The reservoir is initially saturated with the wetting phase. Dirichlet boundary conditions are imposed
at the top boundary with a wetting phase pressure pw = 107 Pa and saturation sw

m = 1. At the bottom
boundary a uniform non-wetting phase flow rate is injected in the fractures with a total flow rate of 22.6 m3

per day. The remaining boundaries are impervious and the final simulation time is fixed to tf = 5400 days.
The time stepping is defined by ∆tinit = 1 day, and ∆tmax = 180 days.

Figure 14 exhibits that the saturation solutions obtained at final simulation time by the PPU and HU-
EtaKs schemes for Λm = 10−13 m2 are very close. Table 4 and the left Figure 15 compare the numerical
behavior of both discretizations. The HU version appears again much more robust providing much fewer time
step chops than the PPU scheme for Λm = 10−13 m2. Consequently the time steps are much smaller for
the PPU simulation which also results in a lower average number of GMRES iterations and similar average
numbers of Newton iterations per successful time step. All together the HU-EtaKs simulation is 2.7 times
faster than the PPU simulation. The right Figure 15 exhibits, as in the previous test case, the very large CFL
numbers in the fracture network typical of time steps at the scale of the matrix. For the high matrix fracture
permeability ratio, with Λm = 10−16 m2, the PPU simulation has been stopped after more than 100 time
step chops for which it has only reached the simulation time of roughly 90 days in 373 time steps and more
than 4000 Newton iterations. The Newton solver oscillates even for relatively small time steps preventing the
time step from increase sufficiently. On the other hand, the VAG HU scheme is able to simulate this highly
heterogeneous large DFM test case in a reasonable amount of time steps.
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Figure 13: DFM model with the ORUNI DFN of 1000 fractures [19] meshed with 1.7 106 tetrahedra [29].

Figure 14: Test III : non-wetting phase saturation in the matrix (top) and in the fracture network (bottom) at
final simulation time obtained for Λm = 10−13 m2 with the PPU (left) and HU-EtaKs (right) VAG schemes.
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Figure 15: Test III : (left): accumulated number of Newton iterations as a function of time for the VAG PPU,
HU-EtaKs and HU-EtaK VAG schemes for Λm = 10−13 m2. (Right): CFL numbers in the matrix and in the
fracture network as a function of time computed for a tracer transported by the total velocity field with the
total velocity field and time steps of the VAG HU-EtaKs simulation.

Scheme
Λf
Λm

N∆t Nchop NNewton NGMRes CPU (s)

VAG PPU 103 245 57 11.6 12 104500
VAG HU-EtaKs 103 87 15 10.8 18 38500
VAG HU-EtaK 103 115 21 9.9 15 45200

VAG PPU 106 x x x x x
VAG HU-EtaK 106 261 62 14.6 26.4 160000

Table 4: Test III : numerical behavior of the simulation for the ORUNI DFM test cases.

5 Conclusions

In this article, the combination of the VAG discretization for the approximation of the gradient fluxes with the
HU approximation of the mobility terms in the saturation equation is shown to provide additional robustness
compared with the usual PPU approximation of the mobilities on highly heterogeneous two-phase Darcy flow
test cases. The nodal interface unknowns allow to capture the saturation jumps at the interfaces between
different rock types, providing comparable accuracy for both the HU and PPU VAG schemes on heterogeneous
test cases. Thanks to this additional robustness and to the efficiency of nodal discretizations on tetrahedral
meshes, the HU VAG scheme makes possible the simulation of large and highly heterogeneous DFM models as
exhibited in the numerical section. In perspective, we plan to investigate the efficiency of the HU VAG scheme
for the simulation of two-phase Darcy flow discontinuous pressure DFM models accounting for fractures acting
both as barrier or drains for which the PPU VAG scheme has been introduced in [14].
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