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Abstract —The verification of safety properties of critical 

systems, such as railway signaling systems, is better achieved 

by formal reasoning. Event-B as a formal method, allows to get 

safe and reliable systems. Nevertheless, modeling with Event-B 

method requires some knowledge on mathematical logic and set 

theory. In opposition, UML (Unified Modeling Language) is a 

commonly used graphical language, but it does not guarantee 

the verification of safety properties. This paper presents an 

approach combining UML and Event-B. In fact, we focus in this 

work on modeling the systems behavior with the joint use of 

some UML behavioral diagrams. The UML models are then 

translated into Event-B models for the systems validation as 

well as the verification of safety properties using B tools. This 

methodology is illustrated by an application on a case study of 

railway signaling system. 
 
Index Terms— Event-B, UML, Behavior, Formal Verification, 

Safety, Railway Signaling. 

 

I. INTRODUCTION 

The dynamic behavior of critical systems is often 

expressed by formalism of automata or state machines as 

well as by various notations of graphical sequencing 

procedures. However, the absence of explicit 

formalization of these notations does not facilitate 

modeling. Within PRESCOM project, we are interested 

in modeling and analyzing formally the behavior of 

railway signaling systems. Railway signaling is, by 

nature, safe train movement management. It is based 

either on directives, in the form of procedures to be 

respected by railway actors, or it specifies dynamic 

behaviors to be respected for the control-command 

systems programming.  

The goal of this work is to formalize the structuring of 

dynamic behaviors and define an explicit syntax for their 

description. UML [1] as a known standard allows better 

understanding of the system structure but it lacks precise 

semantic description and does not guarantee the formal 

verification and validation which are highly 

recommended for safety-critical systems such as railway 
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signaling systems. As for the formal Event-B method [2], 

the extension of B method [3], its models have a strictly 

defined semantics and leave no possibility of divergence 

in their interpretation. However, these models require 

more advanced expertise and especially a good level in 

mathematics. In order to model graphically and reason 

formally on the specification, we use on the one hand 

UML behavioral dynamic diagrams: sequence and state 

machine. On the other hand, we translate the UML 

models into Event-B models for the systems validation as 

well as the verification of safety properties. In fact, our 

proposition is the joint use of sequence and state machine 

diagrams using a UML profile. This profile allows the 

restriction of UML modeling by combining both of the 

behavioral diagrams. Once the UML models are 

transformed into Event-B models, they are validated 

using the formal proof techniques.  

This paper is organized as follows. Section 2 gives an 

overview of the approach. Section 3 emphasizes the 

application of this approach to a railway case study. 

Then, section 4 illustrates related work and discussion. 

Finally, we conclude and provide some ideas for future 

work. 

II. METHODOLOGY 

Fig. 1 illustrates our three-stepped methodology. In a 

first step, we model in UML the system behavior 

stemmed from an informal specification. For this 

purpose, we use several types of UML diagrams: class, 

sequence and state machine diagrams, in order to obtain a 

complete model or almost complete in Event-B. In a 

second step, the models are transformed into Event-B. 

For the class diagram modeling and transformation, we 

opt for the use of B4MSecure tool to get sets, variables 

and invariants. The latter is recently used to structure B 

specifications of railway operating rules considering 

safety properties [4], [5]. B4MSecure does not handle the 

transformation of sequence and state machine diagrams. 

For this reason, the proposed work can be an extension of 

this tool. Thereafter, in a third step, we proceed with the 

validation of the scenarios and the verification of safety 

properties. 

 

 



Step 1: Modeling of Behavior. In UML sequence 

diagrams, an exchanged message between the actors of 

the system can be sending of a signal, invocation of an 

operation and creating or destructing an object. When the 

message is an invocation of a class operation, the state’s 

changes of the class attributes cannot be specified directly 

in a sequence diagram.  It is necessary to provide a 

specification for these states changes to complete the 

modeling of system behavior. Otherwise, the 

transformation of the invocations of class operations will 

provide only the signatures of Event-B events [6]. This 

can be performed by conditions in class operations in the 

UML class diagram. But, UML class diagram is 

structural in nature.  

 

We suggest here to model the state machine diagrams, 

which corresponds to an instance of a class, and to 

specify the state machine guards and transitions. Then, 

we define a UML profile which combines sequence and 

state machine diagrams. This profile regroups the 

different possible state changes in the sequence diagram 

for each message. Fig. 2 describes this UML profile: 

 

- "Trans": extension of the meta-class 

"Transition" with tagged values "guard" (constraint) and 

"action" (behavior). 

- "msg": extension of the meta-class "Message" 

takes "Trans" as the type of its first tagged value "trans" 

and defines "refine" to present the refined message if any.  

 

Step 2: Transformation from UML to Event-B. A 

message is defined by a guard, one or more actions and 

the refined message (in case this message refines another 

one). Therefore, each message sending and receiving 

gives rise to an event. The event "message0 ≙ ..." is the 

translation of a message where the tagged value "refine" 

is empty, whereas the event {message1 ref message0 ≙ ...} 

is the translation of a message where "refine" takes as 

value "message0". 

In order to represent the messages sequencing of 

UML sequence diagrams, we use a variable of sequence 

"seq" whose value is incremented at each event execution 

in order to guarantee this sequencing ("msgn+1" starts 

only after "msgn"). 

 

EVENTS  

msgn ≙ guard: guardmsgn & seq = n   

action: actmsgn || seq := seq + 1  

msgn+1 ≙  guard: guardmsgn+1 & seq= n+1  

action: actmsgn+1 || seq := seq + 1  
 

In sequence diagrams, combined fragments group 

conditional structures such as parallelism, loop and 

alternative.  

The parallel fragment contains several asynchronous 

messages. They are transformed by regrouping their 

actions together in one single event in the form of parallel 

actions:  

"parallel_event ≙ guard: grd action: actmsg1 || actmsg2". 

 Despite the enforcing of synchrony in this Event-B 

translation, we avoid the indeterministic sequencing of 

events when messages are translated separately into 

events [7]. 

Fig. 1. Steps of the methodology 

Fig. 2. UML profile combining sequence and state 
machine diagrams 



The reference fragment serves for including an 

interaction into another one in the same level of 

hierarchy. However, we transform this fragment into an 

event, that contains only the guard and the action of 

sequencing, in the abstract machine. Then, the messages 

of the reference interaction will be translated in the 

refinement machine in the form of new events refining 

the reference event. 

 

EVENTS  

interaction ≙  guard: seq = n 

           action : seq := seq + 1 
    EVENTS 

    Message ref interaction ≙  guard: grdMessage 

                  action: actMessage 

 

In the alternative, each message sending and reception 

is transformed into an event. The 'else' message is 

presented by an event triggered when all the other guards 

are not satisfied.  

EVENTS  

msg1 ≙  guard: grd1 & not(grdmsg2)  

action: actmsg1  

msg2 ≙  guard: grdmsg2 & not(grdmsg1)  

action: actmsg2  

msg3 ≙ guard: not(grdmsg1) & not(grdmsg2)  

action: actmsg3 

 

A loop combined fragment is repeated at least 

"minint" times. As long as a guard "grdloop" is true, the 

loop continues, at most "maxint" times. The variable 

"itloop" specifies here the iteration number. Each 

message in the loop is translated into an event “msgij“. 

The variable "seqloop" ensures the internal sequencing of 

the loop events. When "grdloop" is no longer satisfied or 

the "maxint" iterations are reached, the loop stops: the 

sequencing variable of the entire interaction "seq" is 

incremented in an additional event "msgi'” in order to 

leave the loop. Then, the next event “msgi+1" is triggered. 
 

EVENTS  

msgi-1 ≙ guard: grdmsgi-1 & seq = i-1  

action: actmsgi-1 || seq := seq+1  

msgi1 ≙ guard: grdloop & grdmsgi1 & seq = i & 

seqloop = 1 & itloop < maxint   

action: actmsgi1 || seqloop := seqloop+1  

msgi2 ≙  guard: grdmsgi2 & seqloop=2 & seq=i  

action: actmsgi2||seqloop:= seqloop+1 

msgi3≙ guard: grdmsgi3 & seqloop=3 & seq=i  

action : actmsgi3 || itloop:=itloop+1 || 

seqloop:=1  

     msgi' ≙  guard: (not(grdloop) or itloop = maxint) 

& (itloop>minint)  

  action: seq:=seq+1  

msgi+1 ≙ guard: grdmsgi+1 & seq = i+1  

action: actmsgi+1 || seq := seq+1  
 

Step 3: Formal Verification and Validation. The 

obtained models must be proved in order to ensure the 

verification of safety properties and to validate the system 

behavior. There are several techniques for the formal 

verification and validation, we use in this approach 

"Atelier B" tool which makes possible discharging the 

proof obligations. In addition, we use the animation tool 

"ProB" [8], that identify the errors which are not easily 

discovered by "Atelier B". These tools are advocated as a 

way of increasing confidence in the system 

specifications. They are used in a complementary 

manner. In fact, "Atelier B" generates the proof 

obligations and proves automatically some of them. 

"ProB" animates the Event-B specifications, detects the 

invariants violations, and thus eases the continuation of 

the second stage of interactive proof. 

III. APPLICATION TO RAILWAY SIGNALING CASE STUDY 

The application of formal methods to the railway 

domain have been investigated by previous research 

projects: PERFECT1 for modeling railway operating rules 

[4], [5] and NExTRegio 2  for modeling the railway 

signaling system. The ultimate goal is to produce 

methods for modeling railway systems efficiently while 

ensuring safety. As a continuity of these railway projects, 

PRESCOM reveals in particular the modeling of systems 

behavior. To illustrate the approach, we apply the 

methodology to a railway case study, also studied by 

 
1PERFECT: http://www.agence-nationale-

recherche.fr/Projet-ANR-12-VPTT-0010 
2 NExTRegio: an IRT Railenium project in partnership 

with SNCF Réseau and Clearsy Systems Engineering. 



Abrial in [2]: Train Control System that helps the traffic 

regulator to control the train movements. We rely on the 

same requirements specification as Abrial's case study. 

 

Step 1: Modeling. The system is in charge of 

controlling the reservation process and the trains 

movements. The reservation process performs the 

reservation of routes, the positioning of points and the 

signal setting. The control of train movement manages 

the process of occupying and freeing the routes. Fig. 3 

shows a part of the system specification as a UML class 

diagram. The model contains several state machine and 

sequence diagrams. We present only the Route state 

machine and the route reservation interaction. Fig. 4 

describes the behavior of a Route instance. Fig. 5 shows 

two interactions: route reservation and route formation. 

 

Step 2: Model Transformation. Fig. 6 illustrates an 

excerpt of the Event-B models resulting from the UML 

sequence diagrams of Fig. 5. In the abstract machine, two 

events are generated from the route reservation 

interaction. The events signatures are obtained from the 

messages. Guards and actions are obtained from the 

transitions of state machine. "route_formation" event 

contains only the sequencing variable. As explained in 

section 2, the messages of the reference interaction are 

translated in the refinement. Fig. 6 shows the 

transformation of reference interaction. Both of the 

"point_position" and the "form_route" events refine 

"route_formation". 

 

SYSTEM  

M 

SETS  

ROUTE; BLOCK 

CONSTANTS  

rtbl // routes containing blocks 

VARIABLES  

seq, // sequencing variable  

resrt, resbl //reserved routes and blocks 

INVARIANT  

 Resrt ⊆ ROUTE ∧ resbl ⊆ BLOCK  

 ∧ seq ∈ ℕ ∧ rtbl ∈ BLOCK↔ROUTE 

 ∧dom (rtbl) = BLOCK ∧ ran (rtbl) = ROUTE  

INITIALISATION resrt :=∅ || resbl :=∅|| seq :=  0  

EVENTS 

 reserve_route ≙  

 ANY  rr 

 WHERE  rr ∈ROUTE ∧ rr ∉resrt ∧ seq = 0  

  ∧ rtbl-1[{ rr }] ∩ resbl = ∅  

 THEN  resrt := resrt ∪ {rr} || seq := seq + 1  

  || resbl := resbl ∪ rtbl-1 [{ rr}]  

 END; 

 route_formation ≙  

 SELECT  seq = 1  

 THEN  seq := seq + 1  

 END 

END 

 

Fig. 3. Class diagram of the system 

Fig. 4. State machine diagram of Route 

Fig. 5. Sequence diagram of route reservation and route formation 
Fig. 6. Abstract Machine 



REFINEMENT  

M_ref 

 

REFINES  

M 

 

SETS  

POINT //Points set 

 

VARIABLES   

frm, //Set of formed routes 

pst //Set of positioned points 

 

INVARIANT   

frm ⊆ resrt  

∧ pst ⊆ POINT 

 

INITIALISATION  

frm := ∅  

 

EVENTS  

//reserve_route is also refined here 

 point_position ref route_formation ≙  

 ANY   

  pp, rr 

 WHERE   

  pp ∈POINT - pst  

  ∧ rr ∈ resrt - frm  

  ∧ seq = 1 

 THEN   

  seq := seq + 1 

  ∧ pst := pst ∪ {pp }  

 END; 

 form_route ref route_formation ≙  

 ANY   

  rr, pp 

 WHERE   

  rr ∈ resrt - frm  

  ∧ pp ∈ pst  

  ∧ seq = 2 

 THEN  frm :=  frm ∪ {rr}  

  ∧ seq := seq + 1 END  

END 

 

 

 

Step 3: Formal Verification and Validation. In order 

to check safety properties and validate the Event-B 

models, we use B tools, "Atelier B" for the proof and 

"ProB" for the animation. Actually, safety requirements 

of railway signaling are expressed in B language in the 

form of constraints while modeling in UML. Then, they 

are imported during the transformation into Event-B 

models. We notice that the obtained Event-B models 

verify the identified railway safety properties. Among 

them, we quote:  

 

- To avoid overtaking, a reserved block cannot be 

occupied by any other train than the one which reserved 

it. In other words, for each block belonging to the set of 

occupied blocks "occbl", an occupied block by a train is a 

reserved block by this train. This is expressed by this 

invariant:  

! block.(block : occbl => reserve(block) = 

occupy(block))  

with reserve : BLOCK +-> TRAIN and occupy : 

BLOCK +-> TRAIN are two partial functions from the set 

of "BLOCK" to the set of "TRAIN". 

 

- The occupied blocks cannot change their state to 

free without ensuring if the train has left these blocks. 

Specifically, each block neither reserved nor occupied is 

not associated to any train: 

-  

! block.(block : BLOCK-{occbl \/ resbl} => block /: 

dom(reserve) & block /: dom(occupy)) 

IV. RELATED WORK AND DISCUSSION 

Our approach combines a diagrammatic modeling 

notation (UML) with a formal modeling notation (Event-

B). Essentially, UML diagrams model graphically the 

specification, in particular the behavioral aspect of the 

system, whereas Event-B serves for the verification of 

safety properties.  

 

In this scope, several UML/B and UML/Event-B 

coupling approaches have been studied. In [9], [10], a 

methodology suggests combining UML and B for 

modeling a railway case study (level crossing) using 

UML use case, class and state machine diagrams. 

However, this methodology lacks modeling the dynamic 

proceeding. Similarly, for [11], the proposed verification 

approach, using UML class, collaboration and state 

machine diagrams beside B method, does not address this 

issue. This same issue is nevertheless raised in [4], [5], 

where a UML/B modeling approach is proposed for the 

validation of railway safety operating rules using 

B4MSecure tool. Authors of this work show the limits of 

scenarios modeling in B4MSecure.  

 

In [12], a UML modeler is proposed: UML-B plugin 

which is a UML-like and graphical front-end for Event-B. 

This graphical approach restrains modeling of UML class 

diagrams and state machine diagrams [13], [14]. It lacks 

some characteristics comparing with standard UML tools 

with respect to the Object Management Group (OMG), 

e.g. the enumeration for class diagram and the terminate 

pseudo-state for state machine diagram. In [15], the 

authors use sequence diagrams and transform them to B 

by expressing the sequence in the refinement as 

operations call, which is not possible in Event-B.  

 

In [6], the authors present the translation of use case 

and sequence diagrams into Event-B. Despite its 

modeling of system behavior, this method provides only 

the signatures of events and does not express explicitly 

the state change of variables, i.e. the obtained events of 

Event-B model do not contain the body specification. 

Fig. 6. Refinement 



Whereas [7] focuses on the translation of activity 

diagrams into Event-B for distributed and parallel 

applications. This approach does not guarantee a parallel 

execution of the events, and it is presented as an 

interlaced execution of indeterministic events. Most of 

these works, do not consider refinement.  

 

Our contribution in this paper deals with this 

shortcoming in addition to the dynamic proceeding 

modeling issue.  

 

In a nutshell, the proposed methodology relies on: 

Specifying the body of Event-B events besides their 

signatures, considering the expression of complex 

behaviors such as parallelism, loop and alternative ones 

and taking in consideration the refinement. 

V. CONCLUSION AND FUTURE WORK 

In this paper, a UML/Event-B approach for analysis 

and formal modeling of systems behavior is presented. As 

a first step, we model the system from an informal 

specification using several UML diagrams. Furthermore, 

we combine the UML sequence and state machine 

diagrams by means of a UML profile. Then, the dynamic 

behavioral models of UML are transformed to Event-B 

models. Finally, we proceed with the formal verification 

and validation using B tools. In order to illustrate the 

contribution, this approach is applied on a case study of a 

railway signaling system.  

 

The use of UML and Event-B for modeling the 

behavior of safety-critical systems aims at two-fold goal. 

It makes easier to communicate and more understandable 

through the UML graphical modeling. In addition, it 

deals with different issues related to the formal validation 

of dynamic behavioral systems using Event-B formal 

method. The exploration of these transformation results 

allows identifying some limits of the syntax and the 

semantics of Event-B language with respect to the 

behavioral modeling. In fact, the underlying Event-B 

syntax and semantics do not allow modeling the behavior 

of the system without the use of ad-hoc variables such as 

those used for the combined fragments transformation 

(loop fragment for example).  

 

Our goal is to seek for a better standardization of 

structuring dynamic behaviors and in particular for an 

explicit syntax for their specification. Also, we are 

working on the development of the transformation plugin 

from UML into Event-B as well as the expression of the 

constraints in a language which can be validated by UML 

modeler and transformed automatically to Event-B 

constraints, for instance OCL language [16]. 

ACKNOWLEDGMENT 

This work is supported by PRESCOM (Global safety 

proofs for modular design/PREuves de Sécurité globale 

pour la COnception Modulaire) as a part of IRT 

Railenium projects in collaboration with ClearSy Systems 

Engineering. 

REFERENCES 

[1] OMG: Unified Modeling Language (OMG UML), 

superstructure. Technical report, version 2.4. 1. Tech. rep., 

Object Management Group (2011) 

[2] Abrial, J.R.: Modeling in Event-B: System and software 

engineering. Cambridge University Press, New York, NY, 

USA (2010) 

[3] Abrial, J.R.: The B-Book: Assigning programs to 

meanings. Cambridge University Press, New York, NY, 

USA (1996) 

[4] Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Idani, A., 

Ledru, Y.: B formal validation of ERTMS/ETCS railway 

operating rules. In: International Conference on Abstract 

State Machines, Alloy, B, TLA, VDM, and Z, Springer 

(2014) 124{129} 

[5] Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Ledru, Y., 

Idani, A.: Formalismes basés sur les rôles pour la 

modélisation et la validation des régles d'exploitation 

ferroviaires. Technique et Science Informatiques (TSI) 

34(5) (2015) p495{521} 

[6] Weixuan, S., Hong, Z., Yangzhen, F., Chao, F.: A method 

for the translation from UML into Event-B. In: Software 

Engineering and Service Science (ICSESS), 2016 7th IEEE 

International Conference on, IEEE (2016) 349{352} 

[7] Ben Younes, A., Jemni Ben Ayed, L.: Using UML activity 

diagrams and Event B for distributed and parallel 

applications. In: Computer Software and Applications 

Conference, 2007. COMPSAC 2007. 31st Annual 

International. Volume 1., IEEE (2007) 163{170} 

[8] Leuschel, M., Butler, M.: ProB: A model checker for B. In: 

FME. Volume 2805., Springer (2003) 855{874 

[9] Boulanger, J.L., Bon, P., Mariano, G.: From UML to B {a 

level crossing case study. WIT Transactions on The Built 

Environment 88 (2006) 

[10] Boulanger, J.L.: Formal methods applied to industrial 

complex systems: Implementation of the B method. John 

Wiley & Sons (2014) 

[11] Truong, N.T., Souquières, J.: Verification of UML model 

elements using B. Journal of Information Science and 

Engineering 22 (2006) 357{373} 

[12] Snook, C., Butler, M.: UML-B: Formal modeling and 

design aided by UML. ACM Transactions on Software 

Engineering and Methodology (TOSEM) 15(1) (2006) 

92{122} 

[13] Snook, C., Butler, M.: UML-B and Event-B: An 

integration of languages and tools. (2008) 

[14] Said, M.Y., Butler, M., Snook, C.: A method of refinement 

in UML-B. Software & Systems Modeling 14(4) (2015) 

1557{1580} 

[15] Truong, N.T., Souquières, J.: Test of object-based 

specifications using B notations. (2005) 

[16] Ledang, H., Souquières, J.: Integration of UML and B 

specification techniques: Systematic transformation from 

OCL expressions into B. In: Software Engineering 

Conference, 2002. Ninth Asia-Pacific, IEEE (2002) 

495{504} 

[17] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering 

technique for digital communications channel equalization 

using radial basis function networks,” IEEE Trans. on 

Neural Networks, vol. 4, pp. 570-578, July 1993. 



[18] J. U. Duncombe, “Infrared navigation—Part I: An 

assessment of feasibility,” IEEE Trans. Electron Devices, 

vol. ED-11, pp. 34-39, Jan. 1959. 

[19] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller, 

“Rotation, scale, and translation resilient public 

watermarking for images,” IEEE Trans. Image Process., 

vol. 10, no. 5, pp. 767-782, May 2001. 

 

Kenza Kraibi received her Master’s 

degree from the Department of Computer 

Science, Faculty of Science, Mohammed 

V University, Rabat, in 2017. Currently, 

she is a Ph.D. student in the Computer 

Science field in IRT Railenium, France. 

Her research fields of interest are mainly 

in global safety proofs for modular 

design, railway signaling, formal methods 

and safety of critical systems. 

 

Rahma Ben Ayed is a research engineer 

in IRT Railenium since 2016. She 

received her Ph.D. in ESTAS laboratory 

of COSYS department at the French 

Institute of Sciences and Technologies of 

Transport, Planning and Networks 

(IFSTTAR) in 2016. Her thesis deals with 

the UML / B modeling for the validation 

of the safety requirements of railway operating rules. In 2011, 

she obtained her master's degree in software engineering and 

decision support and, in 2010, her engineering degree from the 

National School of Computer Science (ENSI) in Tunisia. 

 

Simon Collart-Dutilleul is a doctor of the 

University of Savoy in 1997. He then 

occupied a post of lecturer at Centrale 

Lille from 1999 until 2012. He supports an 

Habilitation to lead research in 2008. 

Since 2012 he is a director of research at 

ESTAS laboratory of IFSTTAR where he 

conducts works on the validation of 

railway safety constraints using formal methods. Co-author of 

more than one hundred scientific publications, his research 

areas are rail transport systems, transport safety and formal 

methods and discrete event systems. He currently heads the 

ERTMS workgroup at IFSTTAR. 

 

Philippe Bon is a researcher in ESTAS 

laboratory of COSYS department at the 

French Institute of Sciences and 

Technologies of Transport, Planning and 

Networks. He holds a Ph.D. from the 

University of Lille since 2000. His work 

focuses on the implementation of 

requirements traceability throughout the 

design cycle of railway systems. He has participated in several 

research projects related to the use of formal methods for 

traceability and validation (SafeCode, TUCS, Perfect). 

 

 

Dorian Petit is a researcher in LAMIH 

and an assistant professor in Polytechnic 

Hauts-de-France University with a Ph.D. 

in Computer Science from Valenciennes 

University in 2003. He has been a head 

of IT department of IUT from 2008 to 

2011 and researcher during 2012 in 

ESTAS laboratory of COSYS 

department at the French Institute of Sciences and Technologies 

of Transport, Planning and Networks. His work focuses on the 

quality of software development in particular using formal 

methods and on the assessment of software for safety-critical 

systems. 


