
HAL Id: hal-02483113
https://hal.science/hal-02483113

Submitted on 18 Feb 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Analysis and Formal Modeling of Systems Behavior
Using UML/Event-B

Kenza Kraibi, Rahma Ben Ayed, Simon Collart-Dutilleul, Philippe Bon,
Dorian Petit

To cite this version:
Kenza Kraibi, Rahma Ben Ayed, Simon Collart-Dutilleul, Philippe Bon, Dorian Petit. Analysis and
Formal Modeling of Systems Behavior Using UML/Event-B. journal of communications, 2019, 14 (10),
pp.980-986. �10.12720/jcm.14.10.980-986�. �hal-02483113�

https://hal.science/hal-02483113
https://hal.archives-ouvertes.fr

Analysis and Formal Modeling of Systems Behavior Using

UML/Event-B

Kenza Kraibi1, Rahma Ben Ayed1, Simon Collart-Dutilleul1,2, Philippe Bon1,2, and Dorian Petit1,3
1 Institut de Recherche Technologique Railenium, F-59300, Famars, France.

2 IFSTTAR-COSYS-ESTAS, F-59666, Villeneuve d’Ascq, France.
3 Université Polytechnique Hauts-de-France, LAMIH UMR CNRS 8201, F-59313 Valenciennes, France.

Email: kenza.kraibi@railenium.eu; rahma.ben-ayed@railenium.eu; simon.collart-dutilleul@ifsttar.fr;

philippe.bon@ifsttar.fr; dorian.petit@uphf.fr

Abstract —The verification of safety properties of critical

systems, such as railway signaling systems, is better achieved

by formal reasoning. Event-B as a formal method, allows to get

safe and reliable systems. Nevertheless, modeling with Event-B

method requires some knowledge on mathematical logic and set

theory. In opposition, UML (Unified Modeling Language) is a

commonly used graphical language, but it does not guarantee

the verification of safety properties. This paper presents an

approach combining UML and Event-B. In fact, we focus in this

work on modeling the systems behavior with the joint use of

some UML behavioral diagrams. The UML models are then

translated into Event-B models for the systems validation as

well as the verification of safety properties using B tools. This

methodology is illustrated by an application on a case study of

railway signaling system.

Index Terms— Event-B, UML, Behavior, Formal Verification,

Safety, Railway Signaling.

I. INTRODUCTION

The dynamic behavior of critical systems is often

expressed by formalism of automata or state machines as

well as by various notations of graphical sequencing

procedures. However, the absence of explicit

formalization of these notations does not facilitate

modeling. Within PRESCOM project, we are interested

in modeling and analyzing formally the behavior of

railway signaling systems. Railway signaling is, by

nature, safe train movement management. It is based

either on directives, in the form of procedures to be

respected by railway actors, or it specifies dynamic

behaviors to be respected for the control-command

systems programming.

The goal of this work is to formalize the structuring of

dynamic behaviors and define an explicit syntax for their

description. UML [1] as a known standard allows better

understanding of the system structure but it lacks precise

semantic description and does not guarantee the formal

verification and validation which are highly

recommended for safety-critical systems such as railway

Manuscript received September 15, 2018; revised October 25, 2018.

This work was supported by IRT Railenium within PRESCOM
project.

Corresponding author email: kenza.kraibi@railenium.eu

doi:10.12720/jcm.v.n.p-p

signaling systems. As for the formal Event-B method [2],

the extension of B method [3], its models have a strictly

defined semantics and leave no possibility of divergence

in their interpretation. However, these models require

more advanced expertise and especially a good level in

mathematics. In order to model graphically and reason

formally on the specification, we use on the one hand

UML behavioral dynamic diagrams: sequence and state

machine. On the other hand, we translate the UML

models into Event-B models for the systems validation as

well as the verification of safety properties. In fact, our

proposition is the joint use of sequence and state machine

diagrams using a UML profile. This profile allows the

restriction of UML modeling by combining both of the

behavioral diagrams. Once the UML models are

transformed into Event-B models, they are validated

using the formal proof techniques.

This paper is organized as follows. Section 2 gives an

overview of the approach. Section 3 emphasizes the

application of this approach to a railway case study.

Then, section 4 illustrates related work and discussion.

Finally, we conclude and provide some ideas for future

work.

II. METHODOLOGY

Fig. 1 illustrates our three-stepped methodology. In a

first step, we model in UML the system behavior

stemmed from an informal specification. For this

purpose, we use several types of UML diagrams: class,

sequence and state machine diagrams, in order to obtain a

complete model or almost complete in Event-B. In a

second step, the models are transformed into Event-B.

For the class diagram modeling and transformation, we

opt for the use of B4MSecure tool to get sets, variables

and invariants. The latter is recently used to structure B

specifications of railway operating rules considering

safety properties [4], [5]. B4MSecure does not handle the

transformation of sequence and state machine diagrams.

For this reason, the proposed work can be an extension of

this tool. Thereafter, in a third step, we proceed with the

validation of the scenarios and the verification of safety

properties.

Step 1: Modeling of Behavior. In UML sequence

diagrams, an exchanged message between the actors of

the system can be sending of a signal, invocation of an

operation and creating or destructing an object. When the

message is an invocation of a class operation, the state’s

changes of the class attributes cannot be specified directly

in a sequence diagram. It is necessary to provide a

specification for these states changes to complete the

modeling of system behavior. Otherwise, the

transformation of the invocations of class operations will

provide only the signatures of Event-B events [6]. This

can be performed by conditions in class operations in the

UML class diagram. But, UML class diagram is

structural in nature.

We suggest here to model the state machine diagrams,

which corresponds to an instance of a class, and to

specify the state machine guards and transitions. Then,

we define a UML profile which combines sequence and

state machine diagrams. This profile regroups the

different possible state changes in the sequence diagram

for each message. Fig. 2 describes this UML profile:

- "Trans": extension of the meta-class

"Transition" with tagged values "guard" (constraint) and

"action" (behavior).

- "msg": extension of the meta-class "Message"

takes "Trans" as the type of its first tagged value "trans"

and defines "refine" to present the refined message if any.

Step 2: Transformation from UML to Event-B. A

message is defined by a guard, one or more actions and

the refined message (in case this message refines another

one). Therefore, each message sending and receiving

gives rise to an event. The event "message0 ≙ ..." is the

translation of a message where the tagged value "refine"

is empty, whereas the event {message1 ref message0 ≙ ...}

is the translation of a message where "refine" takes as

value "message0".

In order to represent the messages sequencing of

UML sequence diagrams, we use a variable of sequence

"seq" whose value is incremented at each event execution

in order to guarantee this sequencing ("msgn+1" starts

only after "msgn").

EVENTS

msgn ≙ guard: guardmsgn & seq = n

action: actmsgn || seq := seq + 1

msgn+1 ≙ guard: guardmsgn+1 & seq= n+1

action: actmsgn+1 || seq := seq + 1

In sequence diagrams, combined fragments group

conditional structures such as parallelism, loop and

alternative.

The parallel fragment contains several asynchronous

messages. They are transformed by regrouping their

actions together in one single event in the form of parallel

actions:

"parallel_event ≙ guard: grd action: actmsg1 || actmsg2".

 Despite the enforcing of synchrony in this Event-B

translation, we avoid the indeterministic sequencing of

events when messages are translated separately into

events [7].

Fig. 1. Steps of the methodology

Fig. 2. UML profile combining sequence and state
machine diagrams

The reference fragment serves for including an

interaction into another one in the same level of

hierarchy. However, we transform this fragment into an

event, that contains only the guard and the action of

sequencing, in the abstract machine. Then, the messages

of the reference interaction will be translated in the

refinement machine in the form of new events refining

the reference event.

EVENTS

interaction ≙ guard: seq = n

 action : seq := seq + 1
 EVENTS

 Message ref interaction ≙ guard: grdMessage

 action: actMessage

In the alternative, each message sending and reception

is transformed into an event. The 'else' message is

presented by an event triggered when all the other guards

are not satisfied.

EVENTS

msg1 ≙ guard: grd1 & not(grdmsg2)

action: actmsg1

msg2 ≙ guard: grdmsg2 & not(grdmsg1)

action: actmsg2

msg3 ≙ guard: not(grdmsg1) & not(grdmsg2)

action: actmsg3

A loop combined fragment is repeated at least

"minint" times. As long as a guard "grdloop" is true, the

loop continues, at most "maxint" times. The variable

"itloop" specifies here the iteration number. Each

message in the loop is translated into an event “msgij“.

The variable "seqloop" ensures the internal sequencing of

the loop events. When "grdloop" is no longer satisfied or

the "maxint" iterations are reached, the loop stops: the

sequencing variable of the entire interaction "seq" is

incremented in an additional event "msgi'” in order to

leave the loop. Then, the next event “msgi+1" is triggered.

EVENTS

msgi-1 ≙ guard: grdmsgi-1 & seq = i-1

action: actmsgi-1 || seq := seq+1

msgi1 ≙ guard: grdloop & grdmsgi1 & seq = i &

seqloop = 1 & itloop < maxint

action: actmsgi1 || seqloop := seqloop+1

msgi2 ≙ guard: grdmsgi2 & seqloop=2 & seq=i

action: actmsgi2||seqloop:= seqloop+1

msgi3≙ guard: grdmsgi3 & seqloop=3 & seq=i

action : actmsgi3 || itloop:=itloop+1 ||

seqloop:=1

 msgi' ≙ guard: (not(grdloop) or itloop = maxint)

& (itloop>minint)

 action: seq:=seq+1

msgi+1 ≙ guard: grdmsgi+1 & seq = i+1

action: actmsgi+1 || seq := seq+1

Step 3: Formal Verification and Validation. The

obtained models must be proved in order to ensure the

verification of safety properties and to validate the system

behavior. There are several techniques for the formal

verification and validation, we use in this approach

"Atelier B" tool which makes possible discharging the

proof obligations. In addition, we use the animation tool

"ProB" [8], that identify the errors which are not easily

discovered by "Atelier B". These tools are advocated as a

way of increasing confidence in the system

specifications. They are used in a complementary

manner. In fact, "Atelier B" generates the proof

obligations and proves automatically some of them.

"ProB" animates the Event-B specifications, detects the

invariants violations, and thus eases the continuation of

the second stage of interactive proof.

III. APPLICATION TO RAILWAY SIGNALING CASE STUDY

The application of formal methods to the railway

domain have been investigated by previous research

projects: PERFECT1 for modeling railway operating rules

[4], [5] and NExTRegio 2 for modeling the railway

signaling system. The ultimate goal is to produce

methods for modeling railway systems efficiently while

ensuring safety. As a continuity of these railway projects,

PRESCOM reveals in particular the modeling of systems

behavior. To illustrate the approach, we apply the

methodology to a railway case study, also studied by

1PERFECT: http://www.agence-nationale-

recherche.fr/Projet-ANR-12-VPTT-0010
2 NExTRegio: an IRT Railenium project in partnership

with SNCF Réseau and Clearsy Systems Engineering.

Abrial in [2]: Train Control System that helps the traffic

regulator to control the train movements. We rely on the

same requirements specification as Abrial's case study.

Step 1: Modeling. The system is in charge of

controlling the reservation process and the trains

movements. The reservation process performs the

reservation of routes, the positioning of points and the

signal setting. The control of train movement manages

the process of occupying and freeing the routes. Fig. 3

shows a part of the system specification as a UML class

diagram. The model contains several state machine and

sequence diagrams. We present only the Route state

machine and the route reservation interaction. Fig. 4

describes the behavior of a Route instance. Fig. 5 shows

two interactions: route reservation and route formation.

Step 2: Model Transformation. Fig. 6 illustrates an

excerpt of the Event-B models resulting from the UML

sequence diagrams of Fig. 5. In the abstract machine, two

events are generated from the route reservation

interaction. The events signatures are obtained from the

messages. Guards and actions are obtained from the

transitions of state machine. "route_formation" event

contains only the sequencing variable. As explained in

section 2, the messages of the reference interaction are

translated in the refinement. Fig. 6 shows the

transformation of reference interaction. Both of the

"point_position" and the "form_route" events refine

"route_formation".

SYSTEM

M

SETS

ROUTE; BLOCK

CONSTANTS

rtbl // routes containing blocks

VARIABLES

seq, // sequencing variable

resrt, resbl //reserved routes and blocks

INVARIANT

 Resrt ⊆ ROUTE ∧ resbl ⊆ BLOCK

 ∧ seq ∈ ℕ ∧ rtbl ∈ BLOCK↔ROUTE

 ∧dom (rtbl) = BLOCK ∧ ran (rtbl) = ROUTE

INITIALISATION resrt :=∅ || resbl :=∅|| seq := 0

EVENTS

 reserve_route ≙

 ANY rr

 WHERE rr ∈ROUTE ∧ rr ∉resrt ∧ seq = 0

 ∧ rtbl-1[{ rr }] ∩ resbl = ∅

 THEN resrt := resrt ∪ {rr} || seq := seq + 1

 || resbl := resbl ∪ rtbl-1 [{ rr}]

 END;

 route_formation ≙

 SELECT seq = 1

 THEN seq := seq + 1

 END

END

Fig. 3. Class diagram of the system

Fig. 4. State machine diagram of Route

Fig. 5. Sequence diagram of route reservation and route formation
Fig. 6. Abstract Machine

REFINEMENT

M_ref

REFINES

M

SETS

POINT //Points set

VARIABLES

frm, //Set of formed routes

pst //Set of positioned points

INVARIANT

frm ⊆ resrt

∧ pst ⊆ POINT

INITIALISATION

frm := ∅

EVENTS

//reserve_route is also refined here

 point_position ref route_formation ≙

 ANY

 pp, rr

 WHERE

 pp ∈POINT - pst

 ∧ rr ∈ resrt - frm

 ∧ seq = 1

 THEN

 seq := seq + 1

 ∧ pst := pst ∪ {pp }

 END;

 form_route ref route_formation ≙

 ANY

 rr, pp

 WHERE

 rr ∈ resrt - frm

 ∧ pp ∈ pst

 ∧ seq = 2

 THEN frm := frm ∪ {rr}

 ∧ seq := seq + 1 END

END

Step 3: Formal Verification and Validation. In order

to check safety properties and validate the Event-B

models, we use B tools, "Atelier B" for the proof and

"ProB" for the animation. Actually, safety requirements

of railway signaling are expressed in B language in the

form of constraints while modeling in UML. Then, they

are imported during the transformation into Event-B

models. We notice that the obtained Event-B models

verify the identified railway safety properties. Among

them, we quote:

- To avoid overtaking, a reserved block cannot be

occupied by any other train than the one which reserved

it. In other words, for each block belonging to the set of

occupied blocks "occbl", an occupied block by a train is a

reserved block by this train. This is expressed by this

invariant:

! block.(block : occbl => reserve(block) =

occupy(block))

with reserve : BLOCK +-> TRAIN and occupy :

BLOCK +-> TRAIN are two partial functions from the set

of "BLOCK" to the set of "TRAIN".

- The occupied blocks cannot change their state to

free without ensuring if the train has left these blocks.

Specifically, each block neither reserved nor occupied is

not associated to any train:

-

! block.(block : BLOCK-{occbl \/ resbl} => block /:

dom(reserve) & block /: dom(occupy))

IV. RELATED WORK AND DISCUSSION

Our approach combines a diagrammatic modeling

notation (UML) with a formal modeling notation (Event-

B). Essentially, UML diagrams model graphically the

specification, in particular the behavioral aspect of the

system, whereas Event-B serves for the verification of

safety properties.

In this scope, several UML/B and UML/Event-B

coupling approaches have been studied. In [9], [10], a

methodology suggests combining UML and B for

modeling a railway case study (level crossing) using

UML use case, class and state machine diagrams.

However, this methodology lacks modeling the dynamic

proceeding. Similarly, for [11], the proposed verification

approach, using UML class, collaboration and state

machine diagrams beside B method, does not address this

issue. This same issue is nevertheless raised in [4], [5],

where a UML/B modeling approach is proposed for the

validation of railway safety operating rules using

B4MSecure tool. Authors of this work show the limits of

scenarios modeling in B4MSecure.

In [12], a UML modeler is proposed: UML-B plugin

which is a UML-like and graphical front-end for Event-B.

This graphical approach restrains modeling of UML class

diagrams and state machine diagrams [13], [14]. It lacks

some characteristics comparing with standard UML tools

with respect to the Object Management Group (OMG),

e.g. the enumeration for class diagram and the terminate

pseudo-state for state machine diagram. In [15], the

authors use sequence diagrams and transform them to B

by expressing the sequence in the refinement as

operations call, which is not possible in Event-B.

In [6], the authors present the translation of use case

and sequence diagrams into Event-B. Despite its

modeling of system behavior, this method provides only

the signatures of events and does not express explicitly

the state change of variables, i.e. the obtained events of

Event-B model do not contain the body specification.

Fig. 6. Refinement

Whereas [7] focuses on the translation of activity

diagrams into Event-B for distributed and parallel

applications. This approach does not guarantee a parallel

execution of the events, and it is presented as an

interlaced execution of indeterministic events. Most of

these works, do not consider refinement.

Our contribution in this paper deals with this

shortcoming in addition to the dynamic proceeding

modeling issue.

In a nutshell, the proposed methodology relies on:

Specifying the body of Event-B events besides their

signatures, considering the expression of complex

behaviors such as parallelism, loop and alternative ones

and taking in consideration the refinement.

V. CONCLUSION AND FUTURE WORK

In this paper, a UML/Event-B approach for analysis

and formal modeling of systems behavior is presented. As

a first step, we model the system from an informal

specification using several UML diagrams. Furthermore,

we combine the UML sequence and state machine

diagrams by means of a UML profile. Then, the dynamic

behavioral models of UML are transformed to Event-B

models. Finally, we proceed with the formal verification

and validation using B tools. In order to illustrate the

contribution, this approach is applied on a case study of a

railway signaling system.

The use of UML and Event-B for modeling the

behavior of safety-critical systems aims at two-fold goal.

It makes easier to communicate and more understandable

through the UML graphical modeling. In addition, it

deals with different issues related to the formal validation

of dynamic behavioral systems using Event-B formal

method. The exploration of these transformation results

allows identifying some limits of the syntax and the

semantics of Event-B language with respect to the

behavioral modeling. In fact, the underlying Event-B

syntax and semantics do not allow modeling the behavior

of the system without the use of ad-hoc variables such as

those used for the combined fragments transformation

(loop fragment for example).

Our goal is to seek for a better standardization of

structuring dynamic behaviors and in particular for an

explicit syntax for their specification. Also, we are

working on the development of the transformation plugin

from UML into Event-B as well as the expression of the

constraints in a language which can be validated by UML

modeler and transformed automatically to Event-B

constraints, for instance OCL language [16].

ACKNOWLEDGMENT

This work is supported by PRESCOM (Global safety

proofs for modular design/PREuves de Sécurité globale

pour la COnception Modulaire) as a part of IRT

Railenium projects in collaboration with ClearSy Systems

Engineering.

REFERENCES

[1] OMG: Unified Modeling Language (OMG UML),

superstructure. Technical report, version 2.4. 1. Tech. rep.,

Object Management Group (2011)

[2] Abrial, J.R.: Modeling in Event-B: System and software

engineering. Cambridge University Press, New York, NY,

USA (2010)

[3] Abrial, J.R.: The B-Book: Assigning programs to

meanings. Cambridge University Press, New York, NY,

USA (1996)

[4] Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Idani, A.,

Ledru, Y.: B formal validation of ERTMS/ETCS railway

operating rules. In: International Conference on Abstract

State Machines, Alloy, B, TLA, VDM, and Z, Springer

(2014) 124{129}

[5] Ben Ayed, R., Collart-Dutilleul, S., Bon, P., Ledru, Y.,

Idani, A.: Formalismes basés sur les rôles pour la

modélisation et la validation des régles d'exploitation

ferroviaires. Technique et Science Informatiques (TSI)

34(5) (2015) p495{521}

[6] Weixuan, S., Hong, Z., Yangzhen, F., Chao, F.: A method

for the translation from UML into Event-B. In: Software

Engineering and Service Science (ICSESS), 2016 7th IEEE

International Conference on, IEEE (2016) 349{352}

[7] Ben Younes, A., Jemni Ben Ayed, L.: Using UML activity

diagrams and Event B for distributed and parallel

applications. In: Computer Software and Applications

Conference, 2007. COMPSAC 2007. 31st Annual

International. Volume 1., IEEE (2007) 163{170}

[8] Leuschel, M., Butler, M.: ProB: A model checker for B. In:

FME. Volume 2805., Springer (2003) 855{874

[9] Boulanger, J.L., Bon, P., Mariano, G.: From UML to B {a

level crossing case study. WIT Transactions on The Built

Environment 88 (2006)

[10] Boulanger, J.L.: Formal methods applied to industrial

complex systems: Implementation of the B method. John

Wiley & Sons (2014)

[11] Truong, N.T., Souquières, J.: Verification of UML model

elements using B. Journal of Information Science and

Engineering 22 (2006) 357{373}

[12] Snook, C., Butler, M.: UML-B: Formal modeling and

design aided by UML. ACM Transactions on Software

Engineering and Methodology (TOSEM) 15(1) (2006)

92{122}

[13] Snook, C., Butler, M.: UML-B and Event-B: An

integration of languages and tools. (2008)

[14] Said, M.Y., Butler, M., Snook, C.: A method of refinement

in UML-B. Software & Systems Modeling 14(4) (2015)

1557{1580}

[15] Truong, N.T., Souquières, J.: Test of object-based

specifications using B notations. (2005)

[16] Ledang, H., Souquières, J.: Integration of UML and B

specification techniques: Systematic transformation from

OCL expressions into B. In: Software Engineering

Conference, 2002. Ninth Asia-Pacific, IEEE (2002)

495{504}

[17] S. Chen, B. Mulgrew, and P. M. Grant, “A clustering

technique for digital communications channel equalization

using radial basis function networks,” IEEE Trans. on

Neural Networks, vol. 4, pp. 570-578, July 1993.

[18] J. U. Duncombe, “Infrared navigation—Part I: An

assessment of feasibility,” IEEE Trans. Electron Devices,

vol. ED-11, pp. 34-39, Jan. 1959.

[19] C. Y. Lin, M. Wu, J. A. Bloom, I. J. Cox, and M. Miller,

“Rotation, scale, and translation resilient public

watermarking for images,” IEEE Trans. Image Process.,

vol. 10, no. 5, pp. 767-782, May 2001.

Kenza Kraibi received her Master’s

degree from the Department of Computer

Science, Faculty of Science, Mohammed

V University, Rabat, in 2017. Currently,

she is a Ph.D. student in the Computer

Science field in IRT Railenium, France.

Her research fields of interest are mainly

in global safety proofs for modular

design, railway signaling, formal methods

and safety of critical systems.

Rahma Ben Ayed is a research engineer

in IRT Railenium since 2016. She

received her Ph.D. in ESTAS laboratory

of COSYS department at the French

Institute of Sciences and Technologies of

Transport, Planning and Networks

(IFSTTAR) in 2016. Her thesis deals with

the UML / B modeling for the validation

of the safety requirements of railway operating rules. In 2011,

she obtained her master's degree in software engineering and

decision support and, in 2010, her engineering degree from the

National School of Computer Science (ENSI) in Tunisia.

Simon Collart-Dutilleul is a doctor of the

University of Savoy in 1997. He then

occupied a post of lecturer at Centrale

Lille from 1999 until 2012. He supports an

Habilitation to lead research in 2008.

Since 2012 he is a director of research at

ESTAS laboratory of IFSTTAR where he

conducts works on the validation of

railway safety constraints using formal methods. Co-author of

more than one hundred scientific publications, his research

areas are rail transport systems, transport safety and formal

methods and discrete event systems. He currently heads the

ERTMS workgroup at IFSTTAR.

Philippe Bon is a researcher in ESTAS

laboratory of COSYS department at the

French Institute of Sciences and

Technologies of Transport, Planning and

Networks. He holds a Ph.D. from the

University of Lille since 2000. His work

focuses on the implementation of

requirements traceability throughout the

design cycle of railway systems. He has participated in several

research projects related to the use of formal methods for

traceability and validation (SafeCode, TUCS, Perfect).

Dorian Petit is a researcher in LAMIH

and an assistant professor in Polytechnic

Hauts-de-France University with a Ph.D.

in Computer Science from Valenciennes

University in 2003. He has been a head

of IT department of IUT from 2008 to

2011 and researcher during 2012 in

ESTAS laboratory of COSYS

department at the French Institute of Sciences and Technologies

of Transport, Planning and Networks. His work focuses on the

quality of software development in particular using formal

methods and on the assessment of software for safety-critical

systems.

