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Chapter 1

Adaptive design criteria motivated by
a plug-in percentile estimator

Rodrigo Cabral-Farias, Luc Pronzato and Maria-João Rendas

1.1 Introduction

Increasingly complex numerical models are involved in a variety of modern
engineering applications, ranging from evaluation of environmental risks to
optimisation of sophisticated industrial processes. Study of climat change is
an extremely well-known example, while its current use in other domains
like pharmaceutics (the so-called in vitro experiments), aeronautics or even
cosmetics are less well known of the general public. These models allow the
prediction of a number of variables of interest for a given configuration of
a number of factors that potentially affect them. Complex models depend
in general on a large number of such factors, and their execution time may
range from a couple of hours to several days.

In many cases, collectively falling in the domain of risk analysis, the in-
terest is in identifying how often, under what conditions, or how strongly, a
certain phenomenon may happen. In addition to the numerical model that
predicts the variable of interest, it is then necessary to define a probabilis-
tic structure in the set of its input factors, most often using a frequenciest
approach. “How often” requires then the evaluation of the probability of
occurence of the event of interest, while “how strongly” implies the determi-
nation of the set of the most extreme possible situations. In the former case
we face a problem of estimation of an exceedance probability, while in latter
is usually referred to as percentile estimation. For instance, in a study of the
risk of flooding in a given coastal region, in the first case we want to estimate
the probability α that a certain level of inundation η will not be exceeded,
while in the second we are interest in the inundation level η that, with prob-
ability α, is not exceeded. In the context of the current planetary concern
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with the rise of the sea level, in the first case we may want to estimate the
probability that it does not exceed one meter in a given region, while in the
second the goal is to estimate the rise that, with 99% probability, will not be
exceeded. We remark that both when estimating an exceedance probability
or a percentile, most often the user is also interested in the delineation of
the set of corresponding input configurations, a problem that often goes by
the name of estimation of excursion sets. In the previous sea level example,
where the parameters may be the evolution of tides, wave amplitudes, etc.,
one is interested in finding set of configurations of these factors that would
entail a rise higher than a given η. Note that while the estimation of such
a set is closely related to the other two problems, the three problems are,
formally speaking, distinct problems.

A brute force approach to any of these problems would consider running
the mathematical/numerical model for a representative set of configurations
of input factors, and checking for each one whether the condition of interest
is met or not. While this may be a viable alternative for very simple models,
with a very small number of input factors, it cannot produce an answer
in feasible time in any of the examples mentioned above: the size of any
truly “representative set” allowing the observation of the (most often rare)
situations of interest would be gigantic, each individual model run taking
itself a long time.

State of the art methods resort, instead, to carefully chosen sets of config-
urations of the input factors, which are incrementally chosen by taking into
consideration all previous model runs: they adaptively sample the model’s
input space, concentrating the computational effort in regions that are close,
in a convenient sense, to the target excursion set. While efficient adaptive
methods for exceedance probabilities have been proposed in the past [1, 2],
mush less work has been devoted to the estimation of percentiles, which, as
we will see later, is fundamentally more difficult.

This paper investigates wether the efficient solutions available for the eas-
ier problem of estimation of an excursion set can help finding solutions to the
closely related percentile estimation problem, providing increased efficiency
when compared to current methods. To formally relate the two problems,
we introduce first a new percentile estimator (section 1.3), whose error anal-
ysis (under the assumption of small errors) enables the definition of a new
family of criteria (section 1.4). We discuss their numerical implementation
and complexity (section 1.5), and present a numerical study comparing their
performance (section 1.6.3). The results obtained in the set of case-studies
considered confirm the idea behind this study, showing that estimates of the
percentile obtained on designs incrementally build to estimate the probabil-
ity of exceedance of the current percentile estimate, converge to the correct
value even when started with a poor initial design and for difficult situations.
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1.2 Problem formulation and background

1.2.1 Problem formulation

Consider a real scalar function f : A → R, where A ⊂ Rd and let pA be the
probability distribution of the input factors of f . We denote by x a generic
point of A, and by f(x) the value output by f to input configuration x.

Two characteristics of f are of interest in this paper. The η-exceedance
probability αη, defined by1

αη
4
= Ex∼pA {x : f(x) ≥ η} ,

and the α-percentile of f , which is the “inverse” of the exceedance probability

ηα
4
= {inf

y
: αy = α} .

Obviously, ηαη? = η? and αη?α = α?. It is also easily verified that ηα is a
non-increasing function of α and αη a non-increasing function of η.

The following two problems are addressed in this paper.

Problem 1 Percentile estimation.

Given a set of observations Xn
4
= {(xi, f(xi)), i = 1, . . . , n} and an α ∈ [0, 1],

estimate the α-percentile of a function f . We denote it generically by η̂α(Xn).

Problem 2 Chose next observation (design problem).
Given a set of observations Xn of function f and an α ∈ [0, 1] chose the next
observation point xn+1 ∈ A that leads to the best η̂α(Xn+1).

The problems above are not well-posed, since the notion of “best perfor-
mance” is not properly defined in Problem 2, and no criterion is given for
choosing η̂α(Xn) in Problem 1. They can be made precise in a Bayesian frame-
work, by endowing f with a probability structure, i.e., assuming that the
function f is randomly drawn according to a given distribution. For entities
living in an infinite-dimensional space, like f , this distribution usually takes
the form of a Gaussian process [7], i.e., for any finite collection Xn = {xi}ni=1

of n points in A, the vector f(Xn) is normally distributed, with mean µ(Xn)
and a covariance matrix RXn whose (i, j)-the element is [RXn ](i,j) = C(xi, xj)
for some symmetric semi-positive definite operator C. Under this assumption,
the function values at any collection of finite points conditioned on observa-
tions Xn are jointly normal random variables, with known distribution (with
a covariance Rf |Xn that depends on the design Xn and a mean µf |Xn that
depends also on the observed values {f(xi)}ni=1). This induces a conditional

1 Symbol
4
= indicates definitions and Ep{·} denotes expectation under distribution p.
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distribution on the value of ηα (for any fixed α ∈ [0, 1]). In the same manner,
the conditional distribution of the errors of any percentile estimator η̂α is also
well defined. A good performance criterion for the choice of η̂α in Problem 1
is thus the minimum expected posterior square error. The optimal estimator
η̂?α(Xn) under this setting is simply its expected value under the posterior
distribution:

η̂?α(Xn)
4
= Ef |Xn [ηα] . (1.1)

The same criterion can be used to give a precise meaning to the notion of
best sampling point in Problem 2: using a myopic one-step-ahead approach
the best point is the one that yields minimum expected squared error of η̂?α
if that point is added to the design.

Note that although simply defined, the optimal estimator above can only
be computed by resorting to heavy numerical simulations from the posterior
distribution of f , as discussed in [1, 4, 5]where both Problems 1 and 2 are
addressed. We will come back to its implementation in a subsequent section
of this chapter.

Problems analogue to those defined above can be formulated for the es-
timation of αη, the exceedance probability. As above, the assumption of a
Gaussian process prior allows the definition of criteria appropriate for both
the estimation and design problems. However, as we present below, while
the optimal Bayesian estimate above is hard to compute, the derivation of
the optimal (minimum mean-square error) estimate α̂?η(Xn) of αη is much
simpler. The expression for the estimate is the following [2]:

α̂?η(Xn)
4
= Ef |Xn [Ex∼pA (I[f(x) ≥ η])] , (1.2)

where I[·] is the indicator function of a set. Under the Gaussian assumption,
analytical expressions for the posterior distribution of the indicator function
at each domain point are known. Therefore, by exchanging the order of ex-
pectations in (1.2), we have

α̂?η(Xn)
4
= Ex∼pA

[
Ef |Xn (I[f(x) ≥ η])

]
= Ex∼pA

[
Φ

(
µf |Xn(x)− η√

rf |Xn(x)

)]
,

(1.3)
where Φ(·) is the cumulative distribution function of the standard normal
variable and µf |Xn(x) and rf |Xn(x) are the mean and variance of the function
at point x conditioned on the observations (see Appendix 1 for details on the
evaluation of the conditional mean and variance). Nevertheless, the presence
of the expected value over the input factors of f in the above expression
(Ex∼pA) indicates that its precise computation may be problematic.

To summarise, while the assumption of a Gaussian process model for f en-
ables a precise mathematical formulation of both Problems 1 and 2 for which
optimal solutions are known, these solutions are computationally infeasible
unless for simple functions defined over low-dimensional input spaces. We will
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define later an alternative percentile estimator which we will subsequently
use to derive sub-optimal design criteria, that may be efficient alternatives to
the computationally demanding optimal Bayesian criterion. First, we present
literature results that will prove useful in the rest of the paper.

1.2.2 Background

We start by presenting the more computational version of eq. (1.1) used in
[1, 4] and the corresponding sampling criteria for point xn+1. To approximate
the expectation operator Ef |Xn [·] in (1.1), Mx independent and identically

distributed (i.i.d.) samples {xi}Mx
i=1 are drawn from pA. Then, Mf realizations

on the set of Mx points of the function, f ji = {f j(xi)}Mf

j=1 are drawn from the
posterior distribution. From the j-th set of Mx samples, one sample from the
posterior distribution of the percentile ηjα can be approximately obtained as
follows:

ηjα
4
= η : Ex∼pA

(
I
[
Ef |Xn [f(x)] ≥ η

])
= α

' f j(bMx(1−α)c) . (1.4)

where f j(r) denotes the r-th rank order statistic of f ji . Using these posterior

samples of η|Xn the optimal estimator can then be approximated by

η̂?α(Xn) ' 1

Mf

Mf∑
j=1

ηjα
4
= η̂MC

α . (1.5)

In the same manner, the mean square error of its error is also directly ap-
proximated using a number of realisations f j simulated from the posterior
distribution of f :

Ef |Xn
[
(ηα(f)− η̂α(f))

2
]
' 1

Mf

Mf∑
j=1

(
ηjα − η̂MC

α

)2
, (1.6)

Clearly, the approximation (1.6) above could be used as an ideal sampling
criterion to choose xn+1, since it directly approximates the mean square error
of η̂?(Xn). However, since it depends on f(xn+1), it does not define a proper
design criterion.

A solution to the issue above, presented in [1] and [4], is to consider that
the estimate depends on the new design point xn+1 but the expectation in the
mean squared error criterion is conditioned only on the previous observations
Xn. Using nested conditional expectations, we can write this criterion as a
function of x = xn+1 as follows:
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J?n(x;α) = Ef |Xn
[
(ηα − η̂α(Xn+1))

2
]
. (1.7)

This criterion can be approximated at a point x by the following Monte-Carlo

method: first, Nf realisations {fk}Nfk=1 are drawn according to the posterior
distribution of f |Xn. Then, a posterior sample of the percentile ηkα is calcu-
lated as the (bMx(1 − α)c)-th order statistics, and the estimate η̂MC

α (X kn+1)
is computed relying itself on Mf independent realizations of f |X kn+1. Finally,
J?n(x;α) can be approximated as follows:

J?n(x;α) ' 1

Nf

Nf∑
k=1

(
ηkα − η̂MC

α (X kn+1)
)2

. (1.8)

Note that the computational cost of this criterion is very high, since it re-
quires drawing Nf realisations of f |Xn(xn+1) and NfMf trajectories of f |Xn.
Moreover, evaluation of each η̂MC

α (X kn+1) requires one sorting operation on
Mx points.

An alternative criterion for adaptive estimation of a percentile has been
presented in [5]. It is based on the (sub-optimal) empirical estimate of ηα
implicitly defined by:

η̂emp
α (Xn)

4
= η : α = Ex∼pA

(
I
[
Ef |Xn [f(x)] ≥ η

])
. (1.9)

This estimator can be approximated by Monte-Carlo using the (bMx(1− α)c)-
th order statistic of the predicted function evaluated at randomly drawn Mx

input values. Observe that the empirical estimate η̂emp
α directly uses the Bayes

estimate of f as if it was the true function, completely neglecting the uncer-
tainty about its unobserved values.

In [5], the authors present two criteria for sampling xn+1 based on disper-
sion measures of the estimator η̂emp

α (Xn+1) conditioned on Xn. One criterion
is based on the minimization of

Jprob
n (x;α) = |Ef |Xn

[
αη̂emp

α (Xn)(f)
]
− α| , (1.10)

where αη̂emp
α (Xn+1)(f) denotes the exceedance probability for a percentile fixed

at η̂emp
α (Xn+1) as a function of the random function f . This criterion corre-

sponds to the absolute deviation from the target probability of exceedance
α that we obtain with respect to the optimal estimate of α using Xn and
setting the percentile to its estimate η̂emp

α (Xn+1).
The second sampling criterion is based on the conditional variance of the

empirical estimator:

JVar
n (x;α) = Varf |Xn [η̂emp

α (Xn+1)] . (1.11)
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The authors of [5] argue that this criterion should be seen as an information
criterion and, as such, the new design point xn+1 should maximize it.

A detailed analysis of which order relations on the predicted function val-
ues may be inverted when a new observation is added to the dataset is put
forward in [5]. Using results of this analysis, the authors show that analyt-
ical expressions for Jprob

n (x;α) and JVar
n (x;α) can be obtained. Even if the

evaluation of Jprob
n (x;α) and JVar

n (x;α) does not require computationally ex-
pensive conditional sampling of the trajectories of f as in the approximation
(1.8) of J?n(x;α), the computational complexity involved in the evaluation of
Jprob
n and JVar

n is nonetheless still high, requiring O(M2
x) operations.

Unfortunately, no MATLAB code implementing these two criteria is pub-
licly available. For this reason, the numerical study presented in a later section
of this chapter will not consider them.

The estimators presented above are deeply rooted in the inverse relation
between percentiles and exceedance probabilities. Several authors have ad-
dressed the definition of adaptive design algorithms for the estimation of the
η-exceedance probability αη. Most notably in [2], several sampling criteria
adapted for this setting have been introduced. They are all based on the
expectation of quantities related to the mean squared error of the optimal
estimate α̂?η(Xn+1) conditioned on Xn and collectively presented under the
name of stepwise uncertainty reduction (SUR) criteria.

While in the initial publication [2] the conditional expectations involved in
the SUR criteria are approximated by Monte-Carlo, the subsequent reference
[3] presents analytical expressions for some of the SUR criteria which require
integration only over the input factors. Most remarkably, it is shown [3] that,
while the exact determination of the conditional expected mean-square value
of α̂∗η(Xn+1) involves a double integration over A, a simple upper bound on

the criterion – which we will designate here simply by JSUR
n (x;α) – is much

easier to compute, requiring only a simple integration over A (see Appendix
1). Since the upper bound JSUR

n (x;α) is much easier to compute than the
criterion directly targeting the mean square error and often leads to designs
with similar performance, in this paper we use it as the state-of-the-art design
criterion for the estimation of exceedance probabilities.

1.3 The plug-in estimator

We have seen above that the empirical estimate η̂emp
α completely neglects the

uncertainty affecting the predicted values of f . We propose in this paper a
new estimator, which is implicitly defined by

η̂plgα (Xn)
4
= η : α = Ex∼pA

(
I
[
Ef |Xn [f(x) ≥ η

])
. (1.12)
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This new estimator is thus defined as the percentile that would lead to an
optimal estimate of α, see eq. (1.2), equal to the target α:

α = α̂?
η̂plgα

(Xn) . (1.13)

Note the subtle but important distinction between (1.9) and (1.12) regard-
ing the expression to which conditional expectation is applied, f(x) in the
empirical estimate, which leads to the predicted value at point x, and the
event f(x) ≥ η in the expression above, which is the conditional (given Xn)
probability that the function at x is larger than η. The plug-in estimator de-
fined above can be considered as a compromise between the simple empirical
estimate, which totally neglects uncertainty

pf |Xn(u)← δ
(
u− Ef |Xn [f(x)]

)
,

where δ(·) is the Dirac’s delta measure, and the consideration, as done by the
optimal estimate, of the full posterior distribution for f , which incorporates
the statistical dependency between its values at different points x.

Numerical computation of η̂plgα (Xn) is efficiently done by numerical search
of the (scalar) root of the monotone equation α − α̂?η(Xn) = 0. The search
can be initialised at any simple estimate, e.g. at η = η̂emp(Xn).

1.4 Adaptive “plug-in” criteria

We exploit now the dual relation (1.12) between η̂plgα and α̂?η. Under the

assumption of small errors, defining η̂plgα as the solution of (1.13) allows us
to establish an approximate relation between the error in the estimation of
the exceedance probability for a given percentile and the error of estimation
of the percentile corresponding to that exceedance probability.

Rewrite (1.13) as

α = Ex∼pA

[∫ ∞
η̂plgα (Xn)

pf |Xn(u) du

]

and define

Fn(α, η)
4
= α− Ex∼pA

[∫ ∞
η

pf |Xn(u) du

]
. (1.14)

For both α̂?η(Xn) and η̂plgα (Xn), Fn is zero:

Fn(α̂?η(Xn), η) = 0, Fn(α, η̂plgα (Xn)) = 0 .

Denote the ideal (mean square error) Bayesian sampling criteria for xn+1

targeting the mean square error of α?η(Xn+1) and η̂plgα (Xn+1) by J?n(x; η) and
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Jplg
n (x;α), respectively:

J?n(x; η)
4
= Ef |Xn

[
(αη − α̂?η(Xn+1))2

]
,

Jplg
n (x;α)

4
= Ef |Xn

[
(ηα − η̂plgα (Xn+1))2

]
.

In a first-order approximation, valid if η̂plgα (Xn+1)) ' ηα, we have

Fn+1(α, η̂plgα (Xn+1)) 'Fn+1(α̂?η(Xn+1), ηα)

+
∂Fn+1

∂α

∣∣∣∣
α̂?η(Xn+1),ηα

(α− α̂?η(Xn+1))

+
∂Fn+1

∂η

∣∣∣∣
α̂?η(Xn+1),ηα

(η̂plgα (Xn+1)− ηα) ,

where ηα denotes the true percentile. Since

∂Fn+1

∂α

∣∣∣∣
α̂?η(Xn+1),ηα

= 1,
∂Fn+1

∂η

∣∣∣∣
α̂?η(Xn+1),ηα

= Ex∼pA
[
pf |Xn+1

(ηα)
]
,

we obtain a relation between the error in the estimation of η and the error
in the estimation of α:

(
η̂plgα (Xn+1)− ηα

)
'

(
∂Fn+1

∂η

∣∣∣∣
α̂?η(Xn+1),ηα

)−1 (
α− α̂?η(Xn+1)

)
.

Applying expectation to the previous equation conditioned on the avail-
able observations Xn, leads us to the following approximate relation between

J
plg

n (x;α) and Jn(x; η):

Jplg
n (x;α) ' Ef |Xn

[(
Ex∼pA

[
pf |Xn+1

(ηα)
])−2 (

α− α̂?η(Xn+1)
)2]

. (1.15)

The expression above indicates that when estimating η the error is the
smallest for points x which inclusion in the design lead to large values of
Ex∼pA

[
pf |Xn+1

(ηα)
]
, i.e., that may increase the average value (over x ∼ pA)

of the value at η of future posterior densities.
Points for which pf(x)|Xn(η) ' 0 will most probably lead to a value

Ex∼pA
[
pf |Xn+1

(ηα)
]
' Ex∼pA

[
pf |Xn(ηα)

]
. However, the addition of points

x at which the uncertainty of pf(x)|Xn is small while its value at ηα is large
(meaning that x belongs to region of the level line f(x) = ηα where the func-
tion is well known) only marginally increase the value of Ex∼pA

[
pf |Xn+1

(ηα)
]
,

by slightly improving knowledge about the function values in that region.
On the contrary, addition to Xn of points x belonging to regions where
pf(x)|Xn(ηα) is bounded away from zero but the uncertainty of pf(x)|Xn is

large may result in a significant increase with respect to Ex∼pA
[
pf |Xn(ηα)

]
.
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Criteria based on relation (1.15) appropriately target, thus, the exploration
of regions whose possible inclusion (or not) in the region contributing to α is
highly uncertain.

The conditional expectation in the right-hand-side of (1.15) does not de-
fine a proper design algorithm, for two reasons: first, the true value of ηα in
pf |Xn+1

(ηα) and α̂?η(Xn+1) is unknown. Second, even ηα was known, the ex-
pression involves the expectation of a complex nonlinear function of f without
closed-form expression.

Below, four criteria motivated by (1.15) are be presented by assuming
progressively strong hypotheses and/or simplifications.

1.4.1 Monte-Carlo approximation

Approximation of Jplg
n (x;α) in equation (1.15) depends on the unknown ηα,

and thus is not computable. A common solution is to replace the ηα by a cur-
rent estimator η̂α(Xn). Note that any of the estimators previously presented
can be used: the optimal η̂?α(Xn), the empirical η̂emp

α (Xn), or the plug-in
η̂plgα (Xn) estimator. The expectation with respect to x ∼ pA in (1.15) can
then be approximated using Monte-Carlo.

Similarly to what has been presented for J?n(x;α), see equation (1.8), the
approximation of Jplg

n (x;α) for each candidate point x = xn+1 requires Nf

i.i.d. samples {fk}Nfk=1 drawn from the distribution of f(x)|Xn. For each ob-
servation set X kn+1 completed with the sample (xn+1, f

k), we can compute
Ex∼pA [pf |Xkn+1

(η̂α(Xn))] and α?η̂α(Xn)(X
k
n+1). Both of these quantities, which

are expectations over x ∼ pA, can be evaluated using Monte-Carlo, by sam-
pling Mx samples from x ∼ pA, leading to

Jplg
n (x;α) ' JMC

n (x;α)
4
=

1

Nf

Nf∑
k=1

[
(α− α?η̂α(Xn)(X

k
n+1))

Ex∼pA [pf |Xkn+1
(η̂α(Xn))]

]2
. (1.16)

1.4.2 Monte-Carlo approximation assuming
independency

A simpler expression can be obtained by neglecting the statistical depen-
dency between the two factors (Ex∼pA [pf |Xn+1

(ηα)])−2 and (α− α̂?η(Xn+1))2

in (1.15):

Jplg
n (x;α) ' Ef |Xn

[(
Ex∼pA [pf |Xn+1

(ηα)]
)−2]

J?n(x; ηα) = Ln(x;α)J?n(x; ηα) ,
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where we implicitly defined Ln(x;α). Note that both factors depend on ηα,
which, again, must be replaced by its estimate η̂α(Xn).

Factor J?n(x; η̂α(Xn)) coincides with one of the SUR criteria studied in
[2, 3], see section 1.2.2, which can be efficiently replaced by its upper-bound
JSUR
n (x, η̂α(Xn)). Factor Ln(x;α) must be approximated by Monte-Carlo, as

done for Jplg
n (x;α):

Ln(x;α) ' LMC
n (x;α)

4
=

1

Nf

Nf∑
k=1

(Ex∼pA [pf |Xkn+1
(η̂α(Xn))])−2 . (1.17)

Replacing Ln(x;α) by this Monte-Carlo approximation, leads to a second
design criterion (“independent / Monte-Carlo”) for the estimation of the α-
percentile of f :

J iMC
n (x;α)

4
= LMC

n (x;α)J?n(x; η̂α(Xn)) . (1.18)

1.4.3 Assuming independency and neglecting
uncertainty

If we further neglect the uncertainty about the function values, as predicted
by f(x)|Xn, when evaluating the outer expectation in Ln(x;α), i.e., consider
that

Xn+1 ' X̃n+1
4
= {(x1, f(x1)), · · · , (xn, f(xn)), (x, µf |Xn(x))} , (1.19)

where in the last element the unknown value f(x) is approximated by
µf |Xn(x), Ln(x;α) can be further approximated by

Ef |Xn
[(
Ex∼pA [pf |Xn+1

(ηα)]
)−2] '(Ex∼pA [pf |X̃n+1

(η̂α(Xn))]
)−2

4
= K−2n (x; η̂α(Xn)) . (1.20)

Contrary to Ln(x;α), computation of the factor K−2n (x; η̂α(Xn)) does not
require sampling from f |Xn at each candidate design point, but only a Monte-
Carlo approximation of the expectation over x ∼ pA. This leads to a third,
simpler, design criterion (“independent / deterministic”) for the estimation
of the percentile:

J id
n (x;α)

4
= K−2n (x; η̂α(Xn)) J?n(x; η̂α(Xn)) . (1.21)
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1.4.4 Using SUR design criterion for exceedance
probability

A fourth design criterion JSUR
n (x;α) is obtained by simply dropping factor(

Ex∼pA
[
pf |Xn+1

(ηα)
])−2

within the expectation in equation (1.15), keeping

only factor
(
α− α̂?η(Xn+1)

)2
. This is equivalent to neglecting the variation of(

Ex∼pA
[
pf |Xn+1

(ηα)
])−2

with the candidate point x, which is approximately
valid when the remaining uncertainty is small, i.e., when design Xn is rich.,
and further observation points do not significantly decrease the posterior
uncertainty.

This leads to the use, for percentile estimation, of a SUR criterion Jn(x;αη)
for the estimation of the probability of exceedance of the percentile ηα. The
dependency on ηα is handled as before, replacing it by the current estimate
of ηα:

Jn(x;α)
4
= J?n(x; η̂α(Xn)) = Ef |Xn

[
(α− α̂?η̂α(Xn)(Xn+1))2

]
. (1.22)

As previously discussed, this criterion can be efficiently approximated by the
upper bound JSUR

n (x; η̂α(Xn)).

1.5 Numerical Implementation

We address now possible implementations of the two approximations on which
the criteria presented in the last section are based: Monte-Calor approxima-
tion of expected values, and replacement of the true percentile by its current
estimate.

All the alternative criteria presented in the previous section extensively
ressort to Monte-Carlo to approximate expected values (over x ∼ pA and
over f(x) ∼ f(x)|Xn). A major problem may affect the integration over the
input factors, which we illustrate using J ID

n (x;α), given by the product of
Jn(x;α) and Kn(x;α), see equation 1.20). Unless µf |Xn+1

(xi) − η̂α(Xn) is
within a few posterior standard deviations (ρ ≥ 4), pf(xi)|Xn+1

(η̂α(Xn)) ' 0,
i.e. xi does not significantly contribute to the expected value, and

Kn(x;α) ' M2
x(∑

xi∈I(Xn) pf(xi)|Xn+1
(η̂α(Xn))

)2 ,

where (remember that rf |Xn(x) is the posterior variance at point x)

I(Xn)
4
= {x : (µf |Xn(x)− ηα)2 ≤ ρ2 · rf |Xn(x)} .
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When rf |Xn(x) is small – and in particular in regions of fast variation of f –
the set of Monte-Carlo points falling in set I(Xn) can be empty unless a very
dense sampling from pA is done, i.e., unless Mx is very large. If the number of
Monte Carlo samples inside I(Xn) is not large enough, the numerical estimate
of Ex∼pA

[
pf(x)|Xn+1

(η̂α(Xn))
]

will be close to zero for all candidate design
points, failing to correctly indicate the expected error in the estimation of ηα
if the points are added to the design. The same problem also affects, although
to a lesser extent, the numerical determination of JSUR

n , which also involves
an expectation over x ∼ pA.

Increasing Mx such that I(Xn) is non-empty with large probability would
require infeasibly large values. Instead, the problem can be overcome by using
an importance sampling scheme, that increases the density of the samples in
the regions where the integrated function may have values away from zero. We
implemented an importance sampling method that adds new Nrand samples
normally distributed around each candidate point that belongs to the set
I(Xn) defined above2:

pis =
Mx

NrandNis +Mx
pA +

Nrand
NrandNis +Mx

Nis∑
k=1

N (xmck ;σ2
mc) .

Above, {xmck }
Nis
k=1 is the set of grid points in I(Xn), and σ2

mc is chosen such
that the density of Monte Carlo points is increased by Nrand times relative
to pA at each point in I(Xn). The importance weights for the computation
of the integral are thus pA(xi)/pis(x

i).
Criteria J ID

n and J iMC
n both weight JSUR

n by a multiplicative factor, LMC
n

and K−2n , respectively, that depend on the (posterior) density for the field
values at the current percentile estimate η̂α. As discussed before, these factors
should induce concentration of future design points in the neighbourhood of
the currently detected level-set {x ∈ A : µf |Xn(x) = η̂α}. This set cannot
be empty when η̂α is the empirical estimate η̂emp

α , guaranteeing that the
criteria will target the most relevant regions of the input space according to
the observations made so far. However, this level-set can be empty for the
plug-in estimate η̂plgα , in particular when the value of α is close to either 0 or
1. If this happens, the numerical evaluation of the criterion becomes highly
sensitive to the assumed probabilistic model as well as to the effectiveness
of the Monte-Carlo integration. We expect thus that replacing ηα by η̂emp

α ,
instead of η̂plgα to be a more robust choice when implementing these criteria.

2 N (µ, σ2) denotes the normal density with mean µ and variance σ2.
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1.6 Numerical study

1.6.1 Comparison study

The paper presents a comparative study of percentile estimators and adaptive

design algorithms. The set of compared estimators is E 4= {η̂emp
α , η̂plgα , η̂?α},

• the plug-in estimate η̂plgα , see eq. (1.12);
• the empirical estimate η̂emp

α , see eq. (1.9);
• the optimal Bayesian estimate η̂?α given by eq. (1.1).

The set D 4
= {JSUR

n , J ID
n J iMC

n , J?n} of the following four adaptive design
criteria are considered
• the SUR criterion JSUR

n (x;α), see page 7 in section 1.2.2;
• the independent/deterministic criterion J ID

n (x;α), equation (1.21)
in section 1.4.3;

• the independent/Monte-Carlo criterion J iMC
n (x;α), equation (1.18)

in section 1.4.2;
• the optimal Bayesian criterion J?n(x;α), equation 1.8 of section

1.2.2.

Four distinct implementations of criteria JSUR
n , J ID

n and J iMC
n are tested

(see section 1.5)
• using η̂plgα with no importance sampling;
• using η̂emp

α with no importance sampling;
• using η̂plgα with importance sampling;
• using η̂emp

α with importance sampling.

We will occasionally denote by I the set of these four implementation choices.
The combination (d, i) of a design criterion d ∈ D and an implementation

i ∈ I will be designated by “design algorithm”. A total of 3× 4 + 1 distinct
design algorithms, collectively denoted by AD are thus studied.

We designate by “solution” a combination of estimator and design algo-
rithm. There are thus 4×13 = 52 different solutions, collectively represented
by S, under comparison.

1.6.2 Methodology

Comparison of design methods faces the same difficulties as the comparison
of optimisation methods: the performance of each method depends strongly
on the characteristics of the function it is applied to. Our study relies on the
observation of the performance of the set of solutions S on a set of problems
C with diverse characteristics, in particular of their robustness with respect
to particular challenges attached to each problem p ∈ C.
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As far as possible, solutions are compared under the same conditions,
adapted to the dimension of the input space of the case-study. In particular,
the same Gaussian process model is used, with a constant trend and a Matèrn
5/2 isotropic kernel [7], and the same initial design is used by all solutions in
all problems. Also, the geometry of the set of candidate design points is the
same for all functions with the same dimension d of the input space of the
function. Further details are given in section 1.6.3.

1.6.2.1 Case studies

The 52 distinct solutions in S described above will be compared in the same
set of problems C =

{
(f, α), α ∈ α(f), f ∈ F

}
where

F 4= {Ackley,F1,Gramacy,Branin,Goldprice} ,

is the set of (deterministic, one- and two-dimensional) functions considered
in the study and α(f) defines the set of percentiles ηα estimated for function
f , see Table 1.1. Each problem (or case-study) in C is thus a combination of
a function and a value of α, generically denoted by fα. There are a total of
|C| = 11 distinct problems (or case-studies) on which the solutions are tested.
We will occasionally use notation Cd, d = 1, 2 to denote the set of case-studies
for d-dimensional functions, |C1| = 7 and |C2| = 4

Figure 1.1 gives a graphical representation of C (for d = 2 a 3D plot is
given at the right of the corresponding rows). Analytical expressions of the
test functions are given in Appendix 2.

Table 1.1 Test functions

function

α(f) d Challenges

Ackley

{0.3, 0.8} 1
Simple monotone function. The two values of α considered enable

observation of the performance in regions of different gradient values.
F1
{0.1, 0.17, 0.32} 1

Quasi-oscillating function with several peaks. Precision up to three

decimals is required to correctly identify all modes contributing to α
.

Gramacy

{0.037, 0.1} 1 Non-stationary function.

Branin
{0.02, 0.9} 2

Non-stationary function. Level sets with very different topologies for

the values of α considered.
Goldprice
{0.005, 0.14} 2

Non-stationary function. Level-sets with several connected compo-
nents at distinct gradient values.
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Fig. 1.1 Set of case-studies C. Functions Ackley, F1, Gramacy, Branin and Goldprice (top
to bottom) and corresponding level-sets for the set of percentiles indicated in Table 1.1.
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1.6.2.2 Performance indicators.

Performance of both estimators in E and design algorithms in AD is assessed
through the errors in the estimation of the percentiles ηα:

• the relative performance of estimators is assessed by comparing the errors
of the estimates obtained using the same design points, i.e., for the same
problem fα ∈ C and the same da ∈ AD.

• the relative merit of the possible implementations of design criteria is
assessed by comparing statistics of the errors, on the same case-study
fα ∈ C, of the same estimate e ∈ E using designs of the same size k ∈
{N0 + 1, . . . , N}, identified by same design criterion d ∈ D.

• the relative performance of design criteria is assessed comparing the errors
of the same estimate e ∈ E in the same case-study f |α ∈ C, using the same
implementation choice i ∈ I.

The performance profile (of an estimator, a criterion or a design algorithm)
is an aggregated plot that allows visualisation of overall relative performance
[11]. Let εs,p(k) denote the errors observed when applying solution s ∈ S to
case-study f |α for a design of size k. Consider factorisations of the solution
set the form S = T × G, where T is the set of solution choices that we want
to compare. The performance profile of choice t ∈ T for the (finite) set of
case-studies C is the longitudinal curve indexed by k defined by

Pt,C(k; t)
4
= #

{
f |α ∈ C, g ∈ G : ε(t,g),f |α = min

t′∈T
ε(t′,g),f |α(k)

}
, k = 1, 2, . . .

(1.23)
i.e., Pt,C(k, t) counts the number of problems in C for which the solutions
s = (t, g) are the best over the set of solutions that only differ in t. For
individual values of k we will designate Pt,C(k; t) as the score of t in C.

1.6.3 Numerical results

This section presents the actual numerical comparison of design criteria, es-
timators and implementations, using the methodology outlined above. We
consider first (section 1.6.3.1) the relative performance of the three estima-
tors η̂emp

α , η̂plgα and η̂?α. In a second step, we will address (section 1.6.3.2) the
impact of the implementation of each of the criteria: which (current) esti-
mator should be used, does importance sampling actually prevent possible
numerical integration problems? Once the best (or preferable) estimator and
most appropriate implementation choices are identified, we finally address
(section 1.6.3.3) the comparison of the design criteria.
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In all numerical experiments, the following choices and parameters have
been used

• pA is always the uniform distribution over the domain of f .
• Initial designs are regular rectangular grids (for all case-studies the input

domain is an interval in Rd) with N0 = 4 points for d = 1 and N0 = 9
points for d = 2.

• Design points are chosen amongst the elements of a regular grid covering
the function domain. We use NC = 40 for d = 1 and NC = 30× 30 = 900
for d = 2.

• Importance sampling is done as presented in section 1.5, using Nrand = 10.
• The determination of an error requires the knowledge of the true value of

the estimated ηα, which are unknown for the set of problems considered.
We replace them by “ground truth” values ηgtα obtained, for case-study f |α,
by using the entire set of NC grid points. Whenever “error” is mentioned
below, it means deviation with respect to ηgtα .

• Design criterion J?n does not require an estimate of ηα, and is not affected
by the numerical problems that motivate the use of importance sampling.
There is thus a single implementation of thus criterion. Being based on
Monte-Carlo, this estimator is random. To assess its variability, we per-
formed four independent executions of J?n for each f |α. In the paper we
only present results of the application of J?n to the one-dimensional case-
studies C1, (using Mf = Nf = 20), since its application to problems in C2
would require larger values of Mf and Nf leading to impractically large
computational times.

• All computations of field estimation and uncertainty characterisation
based on Gaussian Process models rely on the Matlab package STK (Small
Toolbox for Kriging) [8]. All models consider an isotropic Matèrn correla-
tion and a linear trend.

1.6.3.1 Estimators performance

This section compares the performance of the estimators E . Figure 1.2 shows
the performance profiles – separately for d = 1 (left), and d = 2 (right) –
of the three estimators: η̂emp

α (red), η̂plgα (green) η̂?α (blue). i.e., for T ≡ E in
(1.23). For each design size k the errors of the three estimates are compared
on a total of Npts = NI ×ND×NC distinct designs, where NI is the number
of distinct criteria implementations, ND is the number of criteria and NC is
the number of case-studies Table 1.2 presents the values of NI , ND, NC and
Npts for d = 1, 2.

The figure reveals a clear overall superiority of η̂emp
α , which, except for

very small design sizes and d = 1, provides the most often the estimate with
lowest error. No noticeable preference can be established between η̂plgα and
η̂?α.
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Table 1.2 Size of test cases for performance profiles of Figure 1.2.

d NI ND NC Npts N
f |α
pts (all) N

f |α
pts (large)

1 4 4 7 112 176 64

2 4 3 4 48 132 48

Fig. 1.2 Performance profiles of estimators (all implementations of all criteria, all case-
studies, all adaptive designs). Left: 1D functions, right: 2D functions.

The performance plots in Figure 1.2 do not enable to appreciate how the
relative performance may depend on the characteristics of each case-study.
Table 1.3 presents a dual result, aggregating all design sizes, but computing

separately for each f |α, the number of times N
f |α
η̂α

that each η̂α ∈ E had the
lowest error. To enable observation of the behaviour at convergence a score
NL
s which considers only the largest 4 designs is also presented. The best

estimate is shown in bold. The total number of design algorithms for each

entry of this table, N
f |α
pts = NI × ND × Ndes, is indicated in Table 1.2 for

d = 1 and d = 2 (Ndes = 11 for all designs and Ndes = 4 when only the four
largest designs are considered).

The table confirms the large-sample superiority of η̂emp
α for all case-studies,

in particular when d = 2 (last four lines of Table 1.3). This observation holds
when all design sizes are considered, except for the markedly oscillating func-
tion F1 for which η̂plgα has the lowest error best slightly more often than the
other two estimates. Indeed, for this type of functions, the series predicted
from small designs may span only a small subset of the actual function values,
preventing the order statistic η̂emp

α from reflecting the actual distribution of
function values. The other two estimates, by taking into account the uncer-
tainty in the predicted field partially overcome this limitation, integrating
the possibility of function values outside the observed range.

Quite surprisingly, Table 1.3 reveals a rather disappointing behaviour of
η̂?α. This may either indicate lack of robustness of this model-based estimator,
which is heavily dependent on the prior probabilistic model for f , or that our
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Table 1.3 Number of times each estimate has lowest error (over all implementations of

all criteria, considering several design sizes).

Function/α NL
plg N

L
emp N

L
? NA

plg N
A
emp N

A
?

Ackely/0.3 0 59 5 16 124 36

Ackely/0.8 0 52 12 4 123 49

F1/0.1 6 33 25 65 51 60

F1/0.17 16 37 11 82 47 47

F1/0.32 13 39 12 69 54 53

Gramacy/0.1 11 33 20 37 85 54

Gramacy/0.037 6 37 21 21 115 40

Branin/0.02 16 22 10 22 96 14

Branin/0.9 4 36 8 5 115 12

Goldprice/0.005 1 40 7 12 70 49

Goldprice/0.14 0 48 0 0 132 0

choice of parameters Mf and Nf does not enable a sufficiently rich sampling
from the posterior distributions.

The analysis above establishes the relative merits of the estimators. How-
ever, it does not enable assessment of how their relative merits may depend
on the characteristics of f . For each f ∈ F let δe,e′;f (k) denote, for each
f ∈ F and pair of estimators (e, e′), the set of differences of their absolute
errors on the designs of size k produced by the same design algorithm:

δe,e′;f (k)
4
=
{∣∣ε(e,d),fα(k)

∣∣− ∣∣ε(e′,d),fα(k)
∣∣ , d ∈ AD , α ∈ α(f)

}
,

where AD is the set of design algorithms, and α(f) the set of values of α
studied for function f .

Each histogram in Figures 1.3 and 1.4 uses sets {δe,e′;f (k)}Nk=n. In Figure
1.3, n = N0 + 1, while in Figure 1.4 n = N − 3, such that only the four
largest designs are considered. When fα ∈ C1, the histograms in Figure 1.3
collect Ndes × |AD| × α(f) and thus 352 (528) values of δe,e′;fα for functions
Ackley and Gramacy (for function F1), and 264 data points for Branin and
Goldprice. The histograms in Figure 1.4 use, respectively, 128 (192) and 96
error differences.

The height of the histograms around the origin reflects how frequently
the error levels of estimates e and e′ are similar, while their queues indicate
situations when one estimator is significantly better than the other. The
blue histograms correspond to δplg,emp;f : positive queues indicate that η̂plgα
has much larger error than η̂emp

α , and negative queues the reverse situation.
The green histograms, for δplg,?;fα , compare the two model-based estimators
η̂plgα and η̂?α: positive queues indicate outliers of η̂plgα with respect to η̂?α and
negatives ones outliers of η̂?α. Finally, the red histograms collect values of
δemp,?;fα ,with positive queues indicating outliers of η̂emp

α and strong negatives
queues outliers of η̂?α.
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We present below a detailed analysis of these histograms for each func-
tion. Notation � reads “has slightly better performance then”, � “has better
performance than”, and ' “has similar performance as”.

• (η̂emp
α � η̂?α � η̂plgα ) Function Ackley is the “easiest” function considered:

it is smooth and monotone. Indeed, the support of the corresponding his-
tograms is the most narrow around the origin. For all data sizes η̂emp

α and
η̂?α have consistently similar errors, with small probability of relative
outliers, the red histograms having a strong peak at the origin and very
weak queues. In both Figures, the other two (blue and green) histograms
are very similar, both exhibiting a mode at positive values near the origin
and a second mode at larger values, indicating that η̂plgα has larger er-
rors than the other two estimates, showing that neglecting the joint
distribution of the predicted field does indeed lead to a degraded perfor-
mance when the field is highly correlated as in this case. These two clusters
correspond to the two values of α considered, that have distinct levels of
difficulty (different derivatives of the function at the level set): the mode
at larger values to α = 0.3 and the other mode, at values almost one order
of magnitude smaller, for α = 0.8. This shows that the percentile errors
increase with the strength of the gradient of the function at the
target percentile value.

• (η̂plgα � η̂?α � η̂emp
α ) For function F1, it is the green histogram of Figure

1.3 that presents a large peak at the origin, showing a strong agreement
between η̂plgα and η̂?α. The fact that only the green and blue histograms
have non-zero values for the negative semi-axis confirms the tendency for
smaller errors of η̂plgα indicated in Table 1.3. The differences attenuate
when the designs are larger, see Figure 1.4. The shape of the blue and
red histograms for all designs sizes, shows that η̂emp

α may, for this func-
tion, perform worse than the two other estimators for designs of
small size. Figure 1.4 shows that this difference becomes weaker for larger
designs.

• (η̂plgα � η̂?α � η̂emp
α ) For function Gramacy, the histograms reveal an over-

all similar behaviour of all estimates (all red, blue and green curves
showing a major central peak), in particular of η̂?α and η̂plgα (in green). This,
together with the symmetry of the red and the blue histograms around
the origin confirms that for this function the other two estimates may
sometimes be better than η̂emp

α . We verified that the two modes that
can be identified in the blue (red) histogram, one for small positive (neg-
ative) values and the other for large (positive) negative values, do not
correspond to the two values of α considered for this function, indicating
rather that poor designs are produced by some design algorithms, leading
to poor performance of the two model-based estimates. Figure 1.4 shows
that for larger designs all estimates present similar errors (notice the dif-
ference in scale), and that no estimate seems to presents a systematically
better behaviour.
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• (η̂emp
α � η̂?α � η̂plgα ) The histograms for function Branin show that η̂emp

α

often produces estimates with smaller errors: the red (blue) histogram
is zero for negative (positive) values. Note that η̂plgα occasionally produces
(with low probability) slightly worse estimates than η̂?α, as the lobe at small
positive values of the green histogram shows, this difference remaining at
large designs. We verified that the histograms for different values of α have
a similar shape, with heavier queues for α = 0.02, for which the gradient
is larger over the corresponding level-set.

• (η̂emp
α � η̂?α � η̂plgα )The histograms for function Goldprice indicate a lack

of convergence of some design algorithms/estimates, revealed by the al-
most equal scale in Figures 1.3 and 1.4: all histograms basically retain the
same shape as in 1.3 slightly more concentrated towards the origin. This
important remark flags a failure of the designs to provide enough infor-
mation for identifying the models on which these estimators are based,
even for the largest designs considered, when η̂emp

α is always the best
estimate. The relative symmetry of the red and blue histograms together
with the concentration of the green histogram around the origin indicates
that the deviations of η̂plgα and η̂?α with respect to η̂emp

α are similar. The
positive skewness of the green histogram indicates that η̂plgα nearly al-
ways performs worst than η̂?α, even for larger designs (and even worse
with respect to η̂emp

α ).

Fig. 1.3 Histograms of differences of absolute errors of estimators (by function, for all

implementations of all criteria, for all designs sizes). Left to right, top to bottom: Ackely,
F1, Gramacy, Branin and Goldprice.

In summary,
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Fig. 1.4 Histograms of differences of absolute errors of estimators (by function, for all

implementations of all criteria, four largest designs). Left to right, top to bottom: Ackley,

F1, Gramacy, Branin and Goldprice.

• Unless – like it is the case for function F1 – the observed function matches
the characteristics of the fitted Gaussian Process model, η̂emp

α is a robust
and numerically efficient alternative to η̂plgα and η̂?α.

• The new estimate introduced in the paper, η̂plgα , offers for the majority
of case-studies a performance comparable to the optimal estimate η̂?α at
a much lower computational complexity, showing that full reliance on the
Gaussian Process based uncertainty predictions does not necessarily lead
to better percentile estimates.

• As it might be expected, our experiments confirm the impact of the gra-
dient of f at the level-set defined by the estimated percentile on its esti-
mation error.

1.6.3.2 Implementation

We address now the impact of the two implementation choices discussed be-
fore: (a) which estimate of ηα should be used in the design criteria JSUR

n , J ID
n

and J iMC
n ? (b) does importance sampling, as proposed in section 1.5 lead to

numerically stable implementations?
Figure 1.5 addresses the first question, showing performance profiles com-

paring the errors of solutions that differ only on the estimate (η̂plgα in the
red line, and η̂emp

α for the blue line) is used in the computation of the design
criteria. The scores in the top plots are computed over the entire set of esti-
mates E , and the bottom only for the most robust estimator η̂emp

α . The plots
show that the designs found by the implementations that use η̂emp

α lead in
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general to better designs for both d = 1 and d = 2, large and small designs,
and rather independently of the estimator that produces the estimate.

Fig. 1.5 Performance profile for estimate used in the computation of the criteria. Left:
d = 1, right: d = 2. Top: all estimates in E, bottom: only η̂emp

α .

Fig. 1.6 Impact of the estimate used in the implementation of the criteria. Branin func-
tion, α = 0.02. Left: all estimates, right: empirical estimate only. The largest four designs

are considered.
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Figure 1.6 illustrates this considering function Branin with α = 0.02.
The points (εplg(k), εemp(k)) in this plot enable the comparison of the er-
rors εplg(k) of the estimates obtained with the largest four designs produced
by implementations that use η̂emp

α against εemp(k), the errors of solutions that
only differs in using an implementation based on η̂plgα . The red line represents
(εplg(k) = εemp(k)). The color of the symbols codes the criterion used, as in-
dicated in the legend of the figure. The left plot considers all three estimates,
while the right plot shows only η̂emp

α . We can see that except for JSUR (red
dots) use of η̂plgα almost always leads to larger errors than use of η̂emp

α : all blue
and green points fall to the right of the red line, where εplg(k) > εemp(k).

Figure 1.7 shows the (20 points) designs for this case-study generated
using the two implementations of J iMC

n that use importance sampling. In
the left, the implementation using η̂plgα , in the right the one that uses η̂emp

α

(see Figure 1.1 for the target region for this case-study). We see that the
implementation that uses η̂plgα placed the design points far from the level
curves corresponding to the correct ηα. In this – rather extreme – case-study,
the equation µ̂f |Xn(x) = η̂plgα has no solution (explaining the absence of
contour lines in the plot), clearly violating the small error assumption behind
both J ID

n and J iMC
n . Use of the η̂emp

α in their implementation leads to design
points closer to the regions contributing to the exceedance probability, as
shown in the right plot.

Fig. 1.7 Design build using J iMC
n using η̂plgα (left) and η̂emp

α (right) and importance
sampling for the function Branin, with α = 0.02.

We consider now the impact of the second implementation choice, concern-
ing the use of importance sampling. We illustrate this problem considering
one-dimensional functions only, for which, given the smaller uncertainty af-
fecting the field posteriors, its impact may be the largest.

Figure 1.8 plots the evolution of the estimation errors of η̂emp
α (as designs

are adaptively increased) for functions F1 (with α = 0.1 and α = 0.32) and
Gramacy (with α = 0.1) for designs produces by implementations that use
η̂emp
α . The legends detail the color/line-style/symbol codes used.
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Leaving aside the cyan lines, which correspond to J?n, comparison of lines
with the same color (red, gree or blue) but with different line-styles, which
differ only on the use (or not) of importance sampling, show a real impact
of importance sampling for J ID

n and J iMC
n , for which it leads to faster con-

vergence to the ground truth value. The stochastic variability it induces in
JSUR
n often degrades performance presenting no clear advantage.

Fig. 1.8 Evolution of the estimation errors. Top: function F1/α = 0.1 and α = 0.32.
Bottom Gramacy/α = 0.1.

Figure 1.9 (right) shows the designs found by implementations of J ID
n

using η̂emp
α for the top plot of Figure 1.8, with (left) and without (right)

importance sampling (numbers indicate the order by which design points
have been chosen): without importance sampling no design points are placed
in the vicinity of the true level-set.

Fig. 1.9 Design produced by JID
n implemented with (left) and without (right) importance

sampling and using η̂plgα . Function F1, α = 0.1.

In summary,
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• As it might be anticipated, implementations based on η̂emp
α are more robust

than those that use η̂plgα , in particular when α is close to 0 or 1.
• Importance sampling is able to attenuate numerical problems associated

to J ID
n and J iMC

n with limited computational complexity. It is particu-
larly important in situations of low posterior uncertainty. It presents no
advantage for JSUR

n .

1.6.3.3 Criteria

We finally address the relative merits of the different criteria studied. Since
even our moderate choices of Mf and Nf lead to infeasibly large computation
times for d = 2, we compare only the other three criteria: JSUR

n , J ID
n and J iMC

n .
Figure 1.10 shows performance profiles of JSUR

n , J ID
n and J iMC

n – for d = 1
(left) and d = 2 (right) – computed only from the errors of η̂emp

α . The top row
considers the two implementations of the criteria based on η̂emp

α , while the
bottom row retains only the implementation of each criterion that uses η̂emp

α

and importance sampling. The overall evolutions of the relative performance
of the criteria as design size grows are identical for both the top and the
bottom rows, but differ largely between d = 1 and d = 2. For one-dimensional
functions JSUR

n and J ID
n show a similar ability of producing the best designs,

while for d = 2 the JSUR
n leads to better final (larger) designs and J ID

n provides
the best mid-size designs. J iMC

n is rarely the best method, irrespective of the
value of d.

To assess how different the errors of the estimates obtained with the designs
produced by distinct criteria can differ, Figures 1.11 and 1.12 present, for
each function — respectively for all designs and for the four larger designs
– empirical cumulative distribution functions of the differences of absolute
errors of designs of the same size produced by the three criteria, considering
only implementations that use η̂emp

α . The black vertical line indicates the zero
value, and concentration of the cumulative distribution functions around this
line indicate that the corresponding estimates agree.

We can first notice that no criteria leads to systematically smaller errors
than the other two for all case-studies.

When all designs are considered, see Figure 1.11, we can see that for d = 1
all criteria lead to similar performance, but JSUR

n ' J ID
n � J iMC

n for function
Ackley, no clear classification can be established for function F1 (the different
peaks of the function being discovered at distinct design sizes for the different
criteria), and J ID

n ' J iMC
n � JSUR

n for function Gramacy. For d = 2 J ID
n �

J iMC
n � JSUR

n for both functions. The behaviour for function Ackley when
only the errors in the four largest designs are considered does not change, see
Figure 1.11, and Jsur ' J iMC

n � J ID
n for F1, while all three criteria perform

similarly for Gramacy, with JSUR
n performing slightly better than J iMC

n . For
d = 2 J ID

n � J iMC
n � JSUR

n for Branin and J ID
n � J iMC

n � JSUR
n for function

Goldprice.
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Fig. 1.10 Performance profile for JSUR
n , JID

n and J iMC
n criteria. Left: d = 1, right: d =

2. Top: η̂emp
α , implementations using η̂emp

α . Bottom: η̂emp
α , implementation importance

sampling and η̂emp
α .

We conclude thus that even if there is no marked preference for the new cri-
teria J ID

n and J iMC
n relative to JSUR

n , they often lead to similar and improved
performance, while being prone, for all functions, to (rare) larger errors than
those of the simpler criterion JSUR

n . The designs found with J ID
n and J iMC

n

lead to similar error levels (for the same design size) except for for F1, for
which our implementation of J iMC

n tends to perform the worst.
Finally, we present in Figure 1.13 the designs found by the implementations

of the three criteria that use η̂emp
α together with importance sampling for

one difficult case-study: the function Branin with α = 0.02. The plots show
a color code of the interpolated field and (in red) the inferred level-lines
µf |Xn(x) = η̂α. This figure confirms that, as we might expect, that although
not necessarily leading to better percentile estimates, JSUR

n is better able
to correctly locate the three separate components of the level-line. Figure
1.14 shows the evolution of the absolute errors ofη̂emp

α as the design size is
increased. In the top plot, which corresponds to the designs shown in Figure
1.13, we can see that the error of the estimate produced by either J ID

n or J iMC
n

is lower (except for the final design point) demonstrating that the problems
of estimation of excursion sets, probability of exceedance and percentile are
indeed different problems. While JSUR

n seems to outperform the other two
criteria for the estimation of excursion sets, in many situations, as for the
case-studies in this Figure, it leads to worse estimations of the percentile.
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Fig. 1.11 Empirical cumulative distribution functions of differences of absolute errors of

the criteria (all designs, implementations that use η̂emp
α ). Left to right, top to bottom:

Ackley, F1, Gramacy, Branin and Groldprice functions.

Fig. 1.12 Empirical cumulative distribution functions of differences of absolute errors of

the criteria (four largest designs, implementations that use η̂emp
α ). Left to right, top to

bottom: Ackley, F1, Gramacy, Branin and Groldprice functions.

1.7 Conclusions

The paper proposes two new new adaptive design criteria for the estimation
of ηα, the α-percentile of a function. Both criteria are modifications of cri-
terion JSUR

n [2], which quantifies the expected error in the dual problem of
estimation of the exceedance probability αη. Design construction proceeds,
when using these methods, by alternating between the choice of a new point
by optimising the criterion for a current estimate of the percentile ηα, and
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Fig. 1.13 Designs found for function Branin with α = 0.02. Top: JSUR
n with (left) and

without (right) importance sampling.Bottom, JID
n (left) and J iMC

n (right),implementations
using η̂emp

α and importance sampling.
α
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Fig. 1.14 Evolution of the absolute errors of η̂emp

α during construction of the designs.

Top: function Branin (α = 0.3 and α = 0.8). Bottom: function Goldprice (α = 0.005 and
α = 0.14).

update of the percentile estimate, additionally integrating the observation at
the added point. The case-studies considered gives evidence that this alter-
nating procedure converges in a few design points to the true value of the
estimated percentile.

At the root of the derivation of the new criteria proposed is a the (novel)
plug-in estimator η̂plgα proposed, which is based on the duality between ηα
and αη, initially expected to achieve a compromise between the simplicity of
the empirical estimate of the percentile η̂emp

α and the complexity of the full
optimal Bayesian estimate η̂?α. The numerical experiments presented reveal,
on a number of distinct case-studies, that η̂plgα has performance similar to our
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implementation of optimal Bayes estimator, but no better error performance
– in the set of deterministic functions used – than the numerically simple and
robust empirical estimate η̂emp

α . We are convinced that this “negative result”
is interesting in itself, showing in a number of concrete examples that appli-
cation of model-based estimators to very small designs as the ones considered
here must be done with care, being prone to performance degradation when
the function does not match the model assumptions.

The two new criteria for percentile estimation derived in the manuscript,
J ID
n and J iMC

n , both implement a multiplicative correction of criterion JSUR
n .

The computation of these multiplicative factors is computationally demand-
ing, requiring a delicate integration over x ∼ pA of the posterior density at
the current percentile estimate η̂α. We observed the influence of the choice
of the estimate – either the new plug-in estimate η̂plgα or the classic empirical
estimate η̂emp

α – used in the evaluation of the design criterion in the conver-
gence of this alternating process. Our numerical experiments show that the
empirical estimate η̂emp

α , which always defines a non-empty level-set in the
predicted field, should be preferred to η̂plgα to ensure convergence in difficult
problems. The computation of both multiplicative correction factors, of J ID

n

and J iMC
n , is prone to numerical instabilities, in particular when the uncer-

tainty of the predicted field is small. We verified in a number of concrete
examples that importance sampling may attenuate the problem, at the cost
of increased computational complexity.

The performance of designs build by alternating estimation of ηα and
application of criteria JSUR

n , J ID
n and J iMC

n is compared on a set of 11 case-
studies, derived from 3 one-dimensional and 2 two-dimensional functions. In
all cases the estimates converged in a few design points to the correct per-
centiles. Our experiments show no clear evidence that the more complex new
criteria J ID

n and J iMC
n outperforms the direct application of JSUR

n , making
this latter criterion a competitive choice for adaptive estimation of percentile
estimation: its numerical complexity is smaller, it is less prone to numerical
problems, and leads to designs with nearly identical performance. In fact,
its performance comes close to – or even improves on – the performance of
practical implementations of the ideal model-based criterion J?n. Figure 1.8
illustrates this. The four lines cyan lines in each plot of this figure show the
evolution of the (absolute) error during four statistically independent defi-
nitions of designs of size 15 using JSUR

n . To keep computation time within
acceptable limits, the implementation of J?n uses only Mf = 20 realisations
from the posterior pf |Xn and draws only Nf = 20 independent samples at
each evaluation of J?n. The significant variability of the generated designs,
which is apparent from the fluctuation of the corresponding estimates, is at
least comparable to the error level of the other criteria (similar results were
obtained for the other case-studies), showing that the values of Mf and Nf
used are not sufficiently large to guarantee that J?n leads to smaller error than
the other tested criteria. Given the much heavier computational complexity
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of J?n, we conclude that, in practice, J?n is an unattractive alternative with
respect to any of other three criteria.

To the best of our knowledge, the possibility of using JSUR
n for adaptive

percentile estimation had not been demonstrated in the past. Given the much
lower numerical complexity of JSUR

n when compared to the design algorithms
that have been proposed in the literature for the problem of percentile esti-
mation, e.g. in [5], this finding provides a practical alternative under limited
computational budgets.
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Appendix 1

Posterior mean and variance of f under the Gaussian procees
assumption

For a Gaussian process with mean function µ(x) and covariance function
C(x, x′), its mean and variance conditioned on n observations at point x,
µf |Xn(x) and rf |Xn(x) respectively, are given by the following expressions [7]:

µf |Xn(x) = µ(x) + r(x,Xn)TR−1Xn(f(XN )− µ(XN )) , (1.24)

rf |Xn(x) = C(x, x)− r(x,Xn)TR−1Xnr(x,Xn) , (1.25)

where r(x,Xn) = [C(x, x1) · · · C(x, xn)]
T

, RXn is the covariance matrix of

the n observations, f(Xn) = [f(x1) · · · f(xn)]
T

and µ(Xn) = [µ(x1) · · · µ(xn)]
T

.

SUR design criteria for exceedance probability estimation

A SUR criterion introduced in [2] for sampling xn+1, when we aim at esti-
mating a probability of exceedance αη is the conditional mean square error
of the optimal estimator:

J?n(x; η) = Ef |Xn
[
(αη − α̂?η(Xn+1))2

]
. (1.26)

Notice that α̂?η(Xn+1) given Xn+1 is a random variable depending on f(x),
therefore the above expectation is an expectation with respect to (w.r.t.) f(x)
conditioned on Xn.

By developing the expectation, it can be shown [3] that (1.26) can be
rewritten as follows
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J?n(x; η) =

γn − Ez1∼A{Ez2∼A{Ef |Xn
[
Pf |Xn+1

(f(z1) ≥ η)Pf |Xn+1
(f(z2) ≥ η)

]
}} ,
(1.27)

where γn does not depend on x = xn+1. Therefore, minimizing J?n(x; η) is
equivalent to the maximization of the double expectation of

Ef |Xn
[
Pf |Xn+1

(f(z1) ≥ η)Pf |Xn+1
(f(z2) ≥ η)

]
.

In [3], it was shown that the conditional expectation above can be written
analytically as a function of the bivariate normal cumulative distribution. As
a consequence, evaluation of J?n(x; η) can be carried out without requiring
computationally expensive conditional sampling of the trajectories of f .

By applying the generalized Minkowski inequality and the Cauchy-Schwarz
inequality, it can also be shown [2] that J?n(x; η) can be upper-bounded as
follows:

J?n(x; η) ≤ JSUR
n (x; η)

4
= Ez∼A{Ef |Xn [Pf |Xn+1

(f(z) ≥ η)(1− Pf |Xn+1
(f(z) ≥ η))]} .

(1.28)

In a similar way as for J?n(x; η), the inner conditional expectation can be eval-
uated analytically as a function of bivariate normal cumulative distribution.
For details on the analytical expressions of the conditional expectations in
J?n(x; η) and JSUR

n (x; η) see [3].
Its important to notice that to approximate JSUR

n (x; η) with Monte-Carlo,
a set of i.i.d. draws from a single random variable z ∼ A is required, while
for J?n(x; η) sampling from the tuple (z1, z2) is required. Thus, for the same
approximation accuracy a much smaller number of samples must be required
to evaluate JSUR

n (x; η). This leads to a much smaller computational complex-
ity of approximation of JSUR

n (x; η), when compared to the approximation of
J?n(x; η).

Appendix 2

We present below the analytical expressions of the functions used in the study,
see [9] and [10].
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Ackley(x) = a+ exp(1)− a exp

(
−b
√
x2

d

)
− exp

(
1

d
cos(2πx)

)
, x ∈ [0, 1] ,

a = 20, b = 0.2 and d = 4.

F1(x) = 2 (x− 0.75)
2

+ sin (5πx− 0.4π)− 0.125, x ∈ [0, 1] .

Gramacy(x) = (a x− 2) exp
(
−(a x− 2)2

)
, x ∈ [0, 1] ,with a = 8.

Branin(x1, x2) = a
(
x2 − bx21 + cx1 − r

)2
+ s(1− t) cos(x1) + s ,

x1 ∈ [−5, 10] , x2 ∈ [0, 15] ,

a = 1, b = 5.1/(4π2),= 5/π,= 10, s = 10, t = 1/(8π).

Goldprice(x) =
[
1 + (x1 + x2 + 1)

2 (
19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22

)]
×
(

30 + (2x1 − 3x2)
2 (

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
))

x1 ∈ [−2, 2] , x2 ∈ [−2, 2] .
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de Statistique, 2010.

2. J. Bect, D. Ginsbourger, L. Li, V. Picheny, and E. Vazquez. Sequential design of

computer experiments for the estimation of a probability of failure. Statistics and
Computing, 22(3):773–793, 2012.

3. C. Chevalier, J. Bect, D. Ginsbourger, E. Vazquez, V. Picheny, and Y. Richet. Fast
parallel kriging-based stepwise uncertainty reduction with application to the identifi-

cation of an excursion set. Technometrics, 56(4):455–465, 2014.
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