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Abstract—The importance of Big Data is nowadays established,
both in industry and research fields, especially stream processing
for its capability to analyze continuous data streams and provide
statistics in real-time. Several data stream processing (DSP)
platforms exist like the Storm, Flink, Spark Streaming and
Heron Apache projects, or industrial products such as Google
MillWheel. Usually, each platform is tested and analyzed using
either specifically crafted benchmarks or realistic applications.
Unfortunately, these applications are only briefly described and
their source code is generally not available. Hence, making quick
evaluations often involves rewriting complete applications on
different platforms. The lack of a generic prototype application
also makes it difficult for a developer to quickly evaluate the
impact of some design choices.

To address these issues, we present NAMB (Not only A Micro-
Benchmark), a generic application prototype generator for DSP
platforms. Given a high-level description of a stream processing
application and its workload, NAMB automatically generates the
code for different platforms. It features a flexible architecture
which makes it easy to support new platforms. We demonstrate
the benefits of our proposal to quickly generate application
prototypes as well as benchmarks used in published papers.
Overall, our approach provides easily replicable, comparable and
customizable prototypes for data stream platforms. Moreover,
NAMB provides similar performance in terms of latency and
throughput to existing benchmarks, while only requiring a simple
high-level description.

Index Terms—Application Generation, Application Prototype,
High-Level description, Data Stream Processing

I. INTRODUCTION

New trends in Big Data require to process high-rate un-
bounded data flows in almost real-time. Data Stream Process-
ing (DSP) is a popular approach to deal with this constraint
in many fields, from social networks to IoT. As most ap-
plications need to manage sensible data and require a high
level of responsiveness, the continuous flow of incoming data
needs to be processed in a quick and correct manner. Many
platforms have been developed to tackle the problem, such as
the Flink [1], Storm [2], Heron [3] Apache projects or the
Spark Streaming [4] extension, as well as industrial solutions
such as Google Millwheel [5]. All of them propose different
approaches and architectures to address the same challenge,
namely optimizing the stream processing performances by
assuring reliability, high throughput and low latency among
other features.

To analyze different platforms or test topology designs, it
is necessary to use a variety of test applications. However,
writing several applications to encompass all the possible

implementation designs may be costly and time-consuming.
Current works commonly use test applications as benchmarks
or mocks of production applications. Most of the available test
applications tend to be bounded to the platform or scenario
they are evaluated on. As a consequence, it makes those
applications hardly usable in other contexts. Moreover, this
ad-hoc approach does not always allow an easy tuning of
the application. Indeed, even some slight changes of the
application characteristics require modification of the source
code. This becomes a limitation when the source is not
available, or when the application internals are not correctly
explained. Thus, a reference solution is missing. We feel the
necessity for a flexible and generic approach that is context-
and platform-agnostic. That would allow to easily configure
the fundamental DSP applications characteristics, together
with a detailed workload description.

In this paper, we present Not only A Micro-Benchmark
(NAMB), a framework that, given a generic application model,
will automatically generate the defined application. It builds
over our previous work where we introduced the idea of a
generic high-level model to describe DSP applications [6].
NAMB is based over fundamental data stream characteristics
and supports an easy and quickly configurable topology de-
scription. Based on this description, it can generate code for
various platforms. Thanks to its high-level definition schema,
NAMB allows for an easy and quick generation of a large
set of micro-benchmarks as well as prototypes of realistic
applications.

Our contributions are as follows:
• Based on a detailed analysis of the fundamental char-

acteristics of DSP applications, we propose a high-level
model to precisely describe each element of a typical
application.

• We propose NAMB, a platform for fast and flexible
generation of prototype applications based on their high-
level description.

• Additionally to an internal synthetic generation, we in-
clude the support to connect NAMB to an external Kafka
cluster.

• We demonstrate how NAMB can be used to evaluate the
impact of design choices and create complex prototypes
to analyze DSP systems, only by using high-level models
instead of editing the application code.

• We make available a public release of NAMB at https:
//github.com/ale93p/namb, ready for Storm, Flink and

https://github.com/ale93p/namb
https://github.com/ale93p/namb


Heron.

II. RELATED WORK

Our objective is to create application prototypes that would
help to run different kinds of tests on DSP systems. We
firstly analyze representative applications used in literature
to evaluate DSP systems, such as benchmarking applications.
Secondly, we consider the proposed solutions for application
generation.

A. Benchmark Applications
The first benchmark application appositely developed to

benchmark streaming data is Linear Road [7]. The authors
define implementation guidelines for a benchmarking appli-
cation. Their proposal simulates a real scenario: an urban
expressway system. Its objective is to monitor real-time traffic
to adapt the tolling price to the road congestion.

Currently, the most popular benchmark application is the
Yahoo! Streaming Benchmark [8]. The application (Fig. 1)
analyzes advertisement interactions on the Web. The data
reaches the application as an stream of events from Kafka.
They are deserialized and parsed into different fields, keeping
only the ad view events. They are then assigned to a campaign
id from a Redis database. Finally, events are counted by
campaign id. The Yahoo! Benchmark has been widely used
by companies to evaluate their solutions [9], [10], [11]. It has
been implemented for Storm, Flink and Spark Streaming.

Fig. 1: Yahoo Streaming Benchmark Design [8]

Yahoo! also presented two other typical industrial topologies
in [12]: PageLoad and Processing. They are used to manage
real-time advertisement events. Both are presented as a set
of standard queries without any details regarding the actual
workload.

In StreamBench [13], the authors define a set of workloads,
characterizing them in terms of data type and computational
complexity. They then propose 7 different benchmark applica-
tions representing those scenarios. The applications are tested
with two different real-world data sets (textual and numeric).

BigDataBench [14] is devised for both batch and streaming
platforms with a focus on Internet services. BigDataBench
is composed of a large set of applications, each related to
a specific Internet service, such as: Search Engine, Social
Network, E-Commerce, Bioinformatics and Multimedia Pro-
cessing. JStorm[15] and Spark Streaming[4] are currently
supported.

The authors in [16] propose RIoTBench, a suite designed
specifically for IoT. They analyze the characteristics and the
behavior of common applications in this context, describing
common task patterns used in streaming applications for IoT.
The suite regroups a large set of IoT micro-benchmarks as
well as a set of representative IoT applications, to cover all
these patterns.

In [17] the WordCount standard application is presented. It
is commonly implemented as a test and example application
by the various stream processors. In addition, the authors
introduced two applications with real datasets: an air quality
monitoring application and a flight delay analysis.

When an application is developed for benchmarking it is
commonly designed with a specific objective in mind, such
as evaluating specific metrics or particular platform mech-
anism. They are limited by a static compositions of tasks,
other than by the platform-specific implementation. Although
most of these applications are representative of real industrial
workflows or they replicate common DSP queries, they may
not match the user-specific environmental needs. This lack of
flexibility and generality does not allow customized workflow
compositions or an easy cross-platform evaluation.

B. High-Level Models and Generation

Several higher-level languages for DSP [18] have been
proposed. The main objective is to introduce mechanisms or
concepts previously not supported, or optimize the application
generation.

Apache Beam [19], [20] tries to enclose all the key mech-
anisms that a DSP system should support, through a common
set of Java APIs for the different streaming platforms. A
particular attention is paid to the windowing mechanism, and
a new model for windowing is proposed. It can support out-of-
order data arrivals along with session windowing. Then, Beam
Runners translate the Beam APIs into platform-specific code,
allowing cross-platform development and ensuring a common
set of functions between all of them.

SECRET [21] defines a general semantic do describe the
different Stream Processing Engines (SPEs) mechanisms. The
framework aims to compare and ease the understanding of
SPEs internal behaviors, which are normally differently im-
plemented. In their paper, the authors mainly focus on the
windowing mechanism implementing a framework aimed to
continuously monitor the window status of the application.

The authors of SpinStreams [22] present a framework to
optimize the tasks implementation in DSP applications. Given
a topology description in xml and the java functions to describe
the tasks workload, SpinStreams applies operators fission (task
replication) and fusion (merging two or more tasks into a
single one) to optimize the query executions and improve
application performances.

Another example of query language for DSP is Piglet [23],
an extension to Pig Latin [24] directed to Stream Process-
ing functions. Given an high-level description of the stream
processing queries, Piglet generates application code for the
different SPEs. They define a SQL-based API to write the



application that generalizes the supported platforms features.
Similarly to SpinStreams, they rewrite the application code to
optimize the query execution.

The above works propose high-level description models to
define DSP topologies. They expose programming languages
APIs to write the code, or require actual code for user-
defined functions. The main objective is to generate executable
application code for the different SPEs. At the same time, they
focus on optimizing the query planning or introducing and
generalize missing DSP features to these engines.

Our work goes on a different direction. We aim to generate
prototype applications, with a simulated workload, i.e., we
don’t require the user to specify the internal code of each task.
This approach would allow a quick and easy definition of the
topology graph, without the need of writing the application
code, through an high-level and simple description of the
workflow [6].

III. MOTIVATION AND CHALLENGES

We just showed that the literature already provides us
with a large variety of streaming applications and application
generators. However, we think that this past work presents
various limitations:

• Context-Specific: those applications are commonly de-
signed for specific platforms or specific scenarios such
as IoT or Internet services, limiting their applicability to
other fields of study.

• Code-Bounded: applications and generators require to
write actual code. As already pointed out, this can be
time-consuming, especially for quick evaluations.

• Complex Reproducibility: most applications, especially
micro-benchmarks, do not specify the kind of workload
that is implemented. They usually define a general ob-
jective of the evaluation – e.g. I/O intensive, maximal
throughput – without a detailed definition of the tasks
internals, making most of the times the evaluation not
reproducible;

• Static Nature: an imprecise description of the pipeline
and hard-coded configurations do not allow a quick and
easy tuning of the applications proposed in the literature,
preventing an easy study of different implementation
choices;

• Unavailability: Last but not least, the software presented
in the literature are often not publicly available.

These drawbacks point to a lack of an easy-to-design and
generic solution, that could be used in every context and that
could be quickly adapted to the underlying environment. For
such reasons, we think it is necessary to have a prototype
application generator that could address those limitations, i.e.
that is: (i) generic: able to run on or be adapted to any kind
of streaming platform or environment, so as to support current
and future data stream frameworks and features; (ii) flexible:
with a well defined description model of the workflow, that
can be quickly and easily customized; (iii) available: as open-
source, so as to be ready-to-used and continuously improved
by the community.

To achieve these objectives, we need an initial description
and model of a typical data stream application. Thus, we first
define several fundamental characteristics common to DSP ap-
plications (Section IV), which have a significant impact on the
characterization of an application workload. We then abstract
these characteristics in a set of parameters configurable by the
user through a high-level set of configurations (Section V).
Finally, we implement a framework that, given this model,
will automatically generate the application to be deployed
(Section VI).

IV. FUNDAMENTAL CHARACTERISTICS

Streaming applications are composed by a pipeline of tasks
that continuously process data flowing into the application.
For this reason we divide DSP applications fundamental
characteristics into two categories: data stream and workflow.
The former defines the input stream of the application. The
latter describes how the data is transferred between tasks and
how it is processed. The two categories are interdependent as
the workflow is impacted by the characteristics of the data
stream.

A. Data Stream

a) Data Characteristics: Data variety is a base char-
acteristic of Big Data. Data can be of various types, from
text to binary, as well as of different size depending on the
application.

b) Input Rate: Data may arrive at different rates and
following different distributions, from simple Constant Bit
Rate (CBR), to bursty traffic.

B. Workflow

a) Connection: A DSP application is logically repre-
sented as a Directed Acyclic Graph (DAG) starting with
sources and ending with sinks. The DAG can assume various
forms based on the application pipeline.

b) Scalability: Streaming systems are designed to man-
age high loads of data. Most components of the topology
can be parallelized to spread the incoming load over multiple
instances.

c) Traffic Balancing: Data needs to be routed through
the different task instances. The various streaming platform
usually implement standard grouping methods, e.g. round-
robin or key-based.

d) Dependency: A task may need to combine data from
more than one incoming path, like in the case of Complex
Event Processing [16]. This requires to keep data stored until
the complementary tuple arrives.

e) Message Reliability: To ensure message processing,
some DSP platforms offer reliability mechanisms. Those may
impact the application performance [25].

f) Windowing: An important characteristic of a contin-
uous stream of data is its endlessness. For this reason, most
applications try to give partial results over time periods. This
continuous method of aggregation is implemented through a
windowing system.



g) Data variability: As stated before, the input data
stream can be described by type, size and distribution. How-
ever, during the stream processing, some tasks may alter
the data, e.g. through filtering, projections, etc. Hence, the
characteristics of the dataset may change on the fly.

h) Workload: The different tasks in the pipeline perform
different operations on data. Some are more computationally
intensive than others.

i) I/O Operations: A common task in data processing is
the interaction with an external database (read or write). These
operations will consume time and resources and thus add an
external factor influencing performance.

We have described the properties that directly impact the
deployment and performance of streaming applications. We
used these characteristics to design our generalized model, in
the next section, for the prototyping workflows.

V. HIGH-LEVEL DESCRIPTION

We defined a generic schema for a coarse-grained descrip-
tion of the global behavior of the application, called the
Workflow schema [6]. To that first schema, we juxtapose a
second one closer to a real application definition, named the
Pipeline schema. The latter allows the user to specify the
exact DAG they want to evaluate, with parameters for each
task. These two approaches make it possible to easily and
quickly define prototype applications, but also describe large
and complex mock applications.

Both models follow the YAML standard [26] for their
configuration files, which will serve as input to the generator
(Section VI). It thus consists of a series of key-value pairs
grouped into different blocks.

A. Workflow schema

The Workflow schema is the base general description of
the application characteristics. We derived it directly from
the fundamental characteristics described in Section IV [6].
This schema enables the user to quickly and easily define,
customize and generate simple application prototypes. This
allows to swiftly tune some application features (e.g. level
of parallelism, computing load, topology shape), to easily
experiment different design combinations.

B. Pipeline schema

Differently from the Workflow schema, the Pipeline schema
doesn’t describe the topology from a generic point of view.
It focuses on the description of each tasks and connections
to accurately define more specific characteristics. Similarly
to what a user would write to build a real application using
platform-specific APIs. The main advantage of this schema is
that it allows to tune the parameters at task level, giving more
freedom to shape the application.

The configuration file consists of a main section to describe
the pipeline of tasks. A task can either be a source or a
processing unit, depending on the properties used to configure
it. The data stream is described directly in the source task,
defining how that specific task will generate data, or if it is
connected to an external source (Section VI-D2).

The user can also specify different sources with a specific
behavior each. Meanwhile, the workflow is defined at a per-
task level. Each task is defined by its own properties, as
processing workload and parallelism. Each task will define the
parent tasks and how they are connected to the previous level
in the DAG. This allow to create more complex topologies
that do not strictly match one of the layouts provided in the
workflow schema.

Fig. 2 shows an example of a configuration file with
the associated topology for the Pipeline schema. A source
(word generator) will send data at a rate of 1000 tuples per
second to 2 counter tasks using a hash-based routing. To
simulate a real processing load (Section VII-C), we use here
a busy-wait loop of 4500 cycles (4.5 in the configuration file
as the unit is a thousand of cycles). Finally, the data is sent
to a sink, which will perform some light processing.

pipeline:
tasks:
- name: word_generator
parallelism: 1
data:
size: 8
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 1000

- name: counter
parallelism: 2
routing: hash
processing: 4.5
parents:
- word_generator

- name: sink
parallelism: 1
routing: balanced
processing: 0.5
parents:
- counter

word_
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Fig. 2: Per-task configuration with the Pipeline schema
(yamb.yml)

VI. NOT ONLY A MICRO-BENCHMARK

In this section we present the details of NAMB – Not
only A Micro-Benchmark. Given a high-level definition of the
workflow for the Workflow schema or the Pipeline schema,
NAMB automatically generates the corresponding application
for multiple platforms.

A. NAMB Design
Once the user has written her high-level YAML model,

NAMB is executed through a main command line script,
through which the user is able to specify for which platform
the application will be generated. The script will create and
deploy the generated application on the platform of choice.

NAMB core is composed by three main components
(Fig. 3). The Application Builder that takes the input con-
figuration and reads the defined parameters; the Topology
Generator that, based on the specified platform, will trans-
late those configurations into platform-specific code; and the
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Fig. 3: NAMB Architecture

Data Generation that will inject data into the pipeline, either
synthetic data or data from an external source.

In its current version, NAMB supports Storm, Flink and
Heron, while support of Spark Streaming is under devel-
opment. NAMB is designed to easily add new platforms
(Section VI-E2).

B. Application Builder

The Application Builder is the first component in NAMB’s
workflow. It parses the configuration file of the user and, based
on the chosen schema, converts it in easy-to-use objects for
the topology generator and the application generation.

The Workflow schema allows the user to provide only a
high-level description of the topology (no per task details).
Hence NAMB has to adapt some of the global values, such as
the workload or parallelism, to the tasks in the pipeline. As
an example, the processing workload and global parallelism
values need to be distributed over the tasks in the application
following the balancing technique specified in the config-
uration. If the user specifies balanced parallelism, NAMB
will split equally the instances over the tasks (including the
sources) while decreasing will create a decreasing series of
instance numbers that will be assigned sequentially to the
tasks.

Meanwhile, for the Pipeline schema, the Application
Builder uses the tasks blocks properties to define the actual
tasks in the topology.

C. Topology Generator

The Topology Generator is the principal component of
NAMB. It generates the application by translating the con-
figurations given in input into platform-specific code.

As we have seen, the Workflow schema gives a generic
description of the topology, leaving incompletely defined some
parameters such as the topology shape in relation with its
length, or when to do data filtering. Hence, the Topology
Generator needs to adopt some specific rules to standardize
every topology generation (Section VII-A).

One of the main objective and characteristic of NAMB is to
be cross-platform. In this way, given the same configuration
file, NAMB can generate the topology for different SPEs.
However, every SPE has a different architectural charac-
teristics, implementing in their own way mechanisms such
as schedulers or reliability. For that reason, the topology
generation has to take in account these architectural differences
(Section VII-B).

D. Data Generation
The Data Generation component is in charge of injecting

data in the application. It can let the sources use an internal
synthetic data generator or connect them to an external Kafka
topic.

1) Synthetic Data Generator: The internal method is used
to generate synthetic data. The user can decide the characteris-
tics of the dataset, as explained in [6], and the Data Generator
will generate tuples for the topology.

The sources will produce strings of a specified size from
a set of unique values, sequentially increasing the characters
starting from the right-hand side one, composing a series of
the form: [aaa, aab, ..., aaz, aba, abb, ...abz, ...] (in case of a
3-byte long data). Even though we acknowledge that in DSP
we may encounter different types of data, we currently only
generate strings. As we will see in Section VII-C, no actual
processing is performed directly over the tuples, so the actual
data type does not impact the application behavior. However,
the size of data impacts its transfer over the network between
the tasks and the distribution of tuple values (uniform or
biased) impacts the routing of tuples in the topology.

The Data Generator manages also the arrival flow properties.
It defines the rate at which the data will be produced, as well
as its arrival distribution. Data may arrive at a constant bit
rate, or present some variability.

2) Kakfa: It is possible to configure the data stream section
in the Workflow schema (Fig. 4), or the source tasks in
the Pipeline schema, as external sources to connect to a
Kafka cluster. In this manner, the data generation would not
be bounded to the set of options offered by the Synthetic
Generator. As an example, the Java implementation of the
Synthetic Generator does not allow to set an inter-tuple interval
under 1ms, except for the unlimited rate (bounded only by the
processing capabilities of the node). This limitation could be
easily overcome with a Kafka producer written in C. Moreover,
in case of a system benchmarking, it will be possible to
consider metrics, such as the event-time latency [27], that are
not available with the Synthetic Generator.

datastream:
external:

kafka:
server: localhost:9092
group: test
topic: topic

zookeeper:
server: localhost:2181

Fig. 4: Data Stream section of Workflow schema for the kafka
source

E. Multi-Platform Design
1) System-Specific Configuration: In addition to the ap-

plication configuration file, NAMB includes a configuration
file for each supported platform. It is used to define system-
specific properties that are external to the application, e.g.
number of workers in Storm. It also includes a debug parame-
ter that specifies an output log rate; this will print the sampled



tuple information (e.g. timestamp, ID or value), that could be
eventually used to excerpt statistics.

2) Platforms Support: NAMB design tries to be modular.
This allows to implement support for new platforms in an
easy way. The main driver to implement is the Topology
Generator for the platform. As all the configuration parsing
and data generation is performed by parallel components, if
anyone wants to add a new SPE to NAMB, they need to
translate the schema model of the logical DAG using the
platform-specific API. Even though the generator is the thicker
component to implement, it will be also necessary to add
support for minor companion components such as the system-
specific configuration and the deploying option in the running
script.

VII. IMPLEMENTATION

A. Topology Design Decisions

As previously mentioned, when translating the Workflow
schema to the actual platform-specific topology, we need to
define specific implementation rules. Parallelism and work-
load, as seen above, are just two examples. Here we present
two additional cases of schema translation, the first one for
the shape generation and the second one for the data filtering.

1) Topology Shape: In the Workflow schema, the user
defines the topology shape and the depth of the DAG. Given
this combination, the Topology Generator has to define the
logical composition of the DAG. If the shape is linear, the
translation is straightforward, we will have 1 source and n−1
tasks connected sequentially (for a DAG depth of n). If the
shape is diamond, instead of replicating the diamond through
all the topology, we apply it only at the beginning. This results
in having 1 source connected to 2 tasks at the same level, that
will then join to a single task. The topology then continues
as a linear chain. A similar rule has been applied to the star
topology. In this case, we will have 2 sources that will join to
a single task. The latter then splits to 2 tasks. From this point,
we decided to continue the topology with only one branch.
This means that one of the two branches is a sink and the
other continues as a linear chain.

2) Data Filtering: The Workflow schema allows to set a
filtering parameter, to reduce the data volume at runtime. To
keep the schema generic, it does not specify when to apply the
filtering. For this reason, we set a fixed position. To be able
to test the application with the two volume loads, filtering is
applied at the middle of the topology. As an example, if the
DAG depth is 8, the filtering will be applied at the third task
(i.e. level 4 of the DAG). In the case of a non-linear topology,
if the middle level corresponds to the double-task level (i.e.,
2 for diamond or 3 for star), filtering will be applied to both
of them.

B. Managing Platform Specifics

NAMB generates applications for multiple SPEs. When
generating the application from the Workflow schema or the
Pipeline schema, it is necessary to take into account the ma-
jor design and implementation differences between platforms

[23]. Each platform implements in a different manner the way
to define data routing among tasks, reliability mechanisms and
scheduling strategies. We present as example the data routing
and scheduling strategies differences in our implemented plat-
forms.

rebalance
or key

direct direct

task task-chain

(a) With rebalanced or key-based connection

direct direct direct

task-chain

(b) With direct connection

Fig. 5: Flink task sub-chaining with different connections

In most platforms, like Storm, every task is managed as
a single entity and placed independently from the others.
Moreover, the connection between tasks has to be specified.
Meanwhile, Flink introduces a task-chaining concept. With
default routing, Flink directly connects tasks with the same
parallelism level (Fig. 5). They form a direct chain of sub-
tasks that can communicate directly, bypassing the network
layer. These chains are treated as a single entity and scheduled
as such. In the current version of NAMB, whereas in Storm
and Heron the specified routing is applied between each task,
in Flink it is only applied at the first level, between the source
and the first-level tasks. This preserves the chains of sub-tasks
and produces a more realistic and optimized prototype.

While the majority of applications generators perform also
query optimization, it is not our main focus. Our objective is
to generate prototypes. For this reason, we take into account
platform specifics only to make design decisions for the gen-
eration. However, it would be easy for someone to implement
an optimized generator for a specific platform, taking into
account the previously described design rules and the internal
mechanisms of the platform.

C. Task Workload Simulation

To maintain the general nature of NAMB, the user does
not have to specify the exact code of a task. This avoids
specific query operations on data, resulting in context-specific
scenarios. Instead, NAMB simulates the load through a busy-
wait loop function (see Fig. 2). In this manner it is able
to simulate processing workload, easily configurable in the
schema. A parameter is used to set the number of loop cycles,
allowing NAMB to replicate the processing load of common
tasks used in stream processing.

To demonstrate the equivalence that can be obtained be-
tween busy-wait loops and a real load, we have performed
experiments on Apache Storm (version 1.2.1) on a 4-core
node. Based on a set of representative works in the DSP
domain [12], [17], [16], [28], [29] we derived 5 key DSP
tasks:



1) Identity: a task that just forwards the tuple as it is,
without any processing;

2) Transformation: a task that transforms the input data,
e.g. a parsing function that divides a JSON or XML
text into an array of fields;

3) Filter: a task that filters data based on its value or a
specific field, e.g. if/else rules;

4) Aggregation: a task that accumulates the input data over
time, e.g. arithmetic operations;

5) Sorting: a task that sorts in a specific order the input
data over time, e.g. ranking of word occurrences.

iden. filter aggr. rank. transf.
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Fig. 6: Per tuple CPU measurements for real/simulated tasks

Each of these tasks was executed and its CPU time measured
using Java’s ThreadMXBean[30] API (Fig. 6a). Then busy-
wait (i.e. simulated load) tasks were created and evaluated
in the same conditions. With a carefully chosen number of
cycles, we were able to reproduce a load similar to the original
task. For example, Fig. 6b shows that the aggregation (resp.
transformation) task can be approximated with a busy-wait of
700 (resp. 450,000) cycles.

VIII. EVALUATION

In this section, we present different scenarios where we use
NAMB to make quick and easy evaluations of SPEs using
prototype applications.

All the experiments were done on a 4-node Linux cluster
on the Grid’5000 testbed. Each node has two 4-core Intel
Xeon CPUs and 32GB of memory interconnected by a 1 Gbps
network. One machine is used as master and the other 3 as
worker nodes. The presented experiments have been done on
Flink and Storm.

We use throughput and processing latency as the two
evaluation metrics. The throughput is measured as the total
number of tuples produced by the sources per millisecond.
The processing latency is the average time spent by tuples
between the source and the sink. We set the output sample
to be 1 every 2000 tuples, to give us enough data to obtain
representative statistics, while still not overloading the system
with continuous logging.

A. Application Design

To demonstrate the benefits of the Workflow schema, we
show how starting from a common linear topology, we can
quickly evaluate the impact of small changes in the design

choices. We evaluate it on Flink with 2 different micro-
benchmarks, using the base configuration file shown in Fig. 7.
For each experiment, we focus on a single parameter change
(highlighted in gray in the figure). The considered topology is
made of single source and 3 tasks organized in a linear layout
with a balanced parallelism distribution. The topology is fed
with a uniform synthetic data stream of 100 unique values of
10 bytes each, without rate limit.

datastream:
synthetic:
data:
size: 10
values: 100
distribution: uniform

flow:
distribution: uniform
rate: 0

workflow:
depth: 4
scalability:

parallelism: 96
balancing: balanced

connection:
shape: linear
routing: none

workload:
processing: 10
balancing: balanced

Fig. 7: Base configuration file for Workflow schema experi-
ments. Highlighted values are changed during tests

1) Connection Routing: In this test, we analyze the impact
on the performance of the different routing systems of Flink.
We fix the parallelism level to 96, the upper-bound imposed
by Flink in our hardware environment [31].

We test three different grouping schemes by changing the
routing type parameter. The direct connection (none value in
the configuration) directly connects the source to the task. As
a consequence, Flink groups all the tasks in the same chain, as
explained above. The rebalance routing (balanced in NAMB)
equally distributes the tuples between all task instances. And
finally, grouping by key (hash), distributes the tuples based
on the hash value of the tuple. For these last two methods,
Flink creates two different tasks (Fig. 5a), therefore the tuples
will need to travel the network to be routed to the assigned
task (i.e, the network layer is not bypassed with the sub-chain
approach).

In Fig. 8b we can immediately see a significant impact on
latency when the tasks are directly connected and co-placed:
the latency is significantly lower than the other two methods,
only 0.03 ms of average completion time compared to the
701 ms and the 907 ms for balanced and hash respectively.
Both balancing and direct routing achieve the same throughput
(Fig. 8a) while the key-based (i.e. hashed) grouping offers
significantly lower performance.

2) Data Size: Another important factor to take into account
when developing an application is the size of data. In most
cases, the data will have to be transferred between machines,
impacting the overall performance of the application.
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Fig. 8: Performance with different connection routing between
source and task.

This test explores three different data sizes, 2, 10, and 100
Bytes, representing a number, a string and a JSON message
respectively. We will use a balanced routing strategy to ensure
to have network communication but without the overhead of
the hash functions.

Fig. 9a shows that the data size has a modest influence on
the throughput. However, the impact on the latency is high.
The larger the tuples, the lower the latency (Fig. 9b). Flink
uses internal buffers [32] which are flushed either after some
timeout expires or when they are full. Having large tuples
triggers the second condition faster, decreasing the overall
latency.
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Fig. 9: Performances with different data sizes, balanced routing

In this section, we have shown how NAMB can be used to
quickly generate a set of prototypes. By slightly modifying the
configuration file, a user can investigate the impact of multiple
different features of a DSP.

B. Platform Mechanisms

We use here the Workflow schema to quickly test specific
platform mechanisms. In this experiment, we analyze the back-
pressure mechanism of Storm, enabled by the acking frame-
work [25]. Back-pressure ensures a limit to the application
throughput, to avoid overloading the system in case of a too
high rate of incoming tuples. The acking framework is also
used to ensure message reliability. Its activation in Storm
requires adding specific code in every task. In NAMB, this can
be done by simply setting the reliability parameter to true
in the workload section.

Our purpose is to stress the system to trigger the back-
pressure mechanism. We use multiple Kafka producers and
a Kafka server to generate an high rate of tuples. The latter
(Fig. 10) is co-located in the master server.

The generated prototype is a source with two tasks in a
linear topology, with a processing of 0 for each task, so as to
let the application reach the maximum throughput.

datastream:
external:

kafka:
server: <master_server>:9092
group: test
topic: test

zookeeper:
server: <master_server>:2181

workflow:
depth: 3
scalability:

parallelism: 3
balancing: balanced

connection:
shape: linear
routing: balanced

workload:
processing: 0

reliability: true

Fig. 10: Configuration file for the back-pressure experiment.

The external Kafka producer is set to have two production
phases. Most of the time it is in a steady phase, with a fixed
data generation rate. However, at regular intervals, the rate
is increased during a so-called burst phase. We tested Storm
once with the reliability mechanism enabled and once with it
disabled.
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Fig. 11: Back-Pressure test in Storm, with enabled and dis-
abled reliability mechanism.

In Fig. 11a, with reliability enabled, the back-pressure
limits the throughput to 80 tuples/ms during burst phases,
which is lower than the Kafka production rate (over 100
tuples/ms). After completing the processing of all the Kafka
tuples, Storm throughput goes back to the steady phase. On the
contrary, we can see in Fig. 11b, how, without the reliability
mechanism enabled, the application almost immediately fails.
Even during the steady phase, it cannot process incoming
tuples fast enough, leading to out-of-memory errors.

C. Real Application Prototyping
Using the Pipeline schema, we can reproduce existing

applications and create prototypes with similar performance.



For this evaluation, we use the Yahoo! Streaming Benchmark
(see Fig. 1 and Section II-A). To validate our approach, we
compare the results on two different platforms: Storm and
Flink. As in [10], we have modified the Yahoo Streaming
Benchmark to remove the Kafka producer and use a local ad-
hoc data generator instead, so as to maximize the application
throughput.
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Fig. 12: Throughput and latency percentage difference ratio
between NAMB and Yahoo Bench results

Fig. 12 shows the relative difference between NAMB and
the Yahoo Streaming application for both platforms. We can
see that NAMB is able to obtain almost the same performance
as the original application. The Yahoo Benchmark in Storm
(Fig. 12a) reaches a throughput of 102 tuples/ms, whereas
NAMB achieves 107 tuples/ms, less than 5% difference.
Meanwhile, the average latency is around 48 ms with the
YahooBench and 50 ms with NAMB (slightly more than a
3% difference). The difference with Flink is similar in terms of
throughput with only a 1.5% difference, 129 tuples/ms for the
YahooBench vs 127 tuples/ms with NAMB). The difference in
latency is 4%,15 ms with the YahooBench and 14.5 ms with
NAMB.

From these results, we can observe that Flink gives slightly
better performance. This is because of its task grouping policy,
which reduces network communications. Storm, on the other
hand, uses 6 Java Virtual Machines.

In Fig. 13 we see, as an example, the configuration used for
Storm. For these two experiments, we did not use the same
configuration file. Indeed, the computational load of Storm and
Flink is different for the same application (Section VII-B). We
adapted the processing loads in Flink to be 60% of the ones
used in Storm. This was, however, the only difference. The
rest of the configuration parameters being strictly identical.

D. Bottleneck Discovery

Once found the correct configuration for the Yahoo! Bench-
mark, we can exploit NAMB’s flexibility to investigate the be-
havior of an application under various conditions. We consider
a scenario where developers are interested in finding potential
bottlenecks in their application. Without lose of generality, we
chose Flink as SPE.

We used the base configuration shown in Fig. 13 (exper-
iment base). We used two others configurations as possible

pipeline:
tasks:
- name: ads
parallelism: 1
data:

size: 180
values: 1000
distribution: uniform

flow:
distribution: uniform
rate: 0

- name: event_deserializer
parallelism: 1
routing: balanced
processing: 6.9
parents:

- ads

- name: event_filter
parallelism: 1
processing: 0.7
filtering: 0.333
parents:

- event_deserializer

- name: event_projection
parallelism: 1
processing: 2.2
resizeddata: 52
parents:

- event_filter

- name: redis_join
parallelism: 1
processing: 3.0
parents:

- event_projection

- name: campaign_processor
parallelism: 2
routing: hash
processing: 2.1
parents:

- redis_join

Fig. 13: Pipeline schema configuration file used for Storm.
Highlighted values differ in the Flink configuration.

optimizations: one where we halved the processing load of the
event deserializer (experiment A); and another where we made
the same optimization to the campaign processor (experiment
B). The goal is to evaluate the impact of some potential code
optimization on these two components.
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Fig. 14: Bottleneck discovery experiment in the three different
configurations

The results of the evaluation in Fig. 14a shows that, in terms
of throughput, the event deserializer is one of the possible



bottlenecks in the application. Meanwhile, reducing the load
of the campaign processor does not have an impact on through-
put. On the other hand, considering the latency (Fig. 14b), we
see that in both cases we have an improvement of the tuples
processing time. Yet, halving the event deserializer produces
a more substantial improvement.

IX. CONCLUSION

In this paper, we have presented NAMB, Not only A Micro-
Benchmark, a generic application prototype generator. Based
on the analysis of the main characteristics of DSP applica-
tions, we have devised two high-level description models for
streaming topologies. They allow for the precise, high-level,
definition of an application workflow. The first one, the Work-
flow schema, can be used to quickly write prototypes for a set
of canonical topologies. The second one, the Pipeline schema,
can accurately reproduce complex applications. NAMB uses
these models to produce a working streaming application
prototype for a target platform.

To remain platform- and application-independent, we simu-
late the tasks processing workload, through an equivalent busy-
wait function. A Data Generation component, with support
for synthetic and external data, is used to inject tuples to the
application.

Through numerous experiments, we have shown how
NAMB can be used to quickly define and run prototyped
applications over multiple platforms. We used Flink to show
the impact of small design choices, such as data routing and
size. Through Storm we showed how one can quickly study
the behavior of internal platform mechanisms, along with
tasks performance optimization evaluation. We finally used
both systems to show how NAMB could replicate more com-
plex and realistic applications, through the Yahoo Streaming
Benchmark, achieving the same performance as the original
one.

The current version of NAMB, along with the configuration
files used in this paper, is available on GitHub. It supports
Storm, Flink and Heron. The implementation of Spark Stream-
ing is currently undergoing, along with an extension to the
Synthetic Generator to support more complex distribution
functions.
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