Unravelling the Mechanism of Excited State Interligand Energy Transfer and the Engineering of Dual-Emission in $[Ir(C^N)_2(N^N)]^+$ Complexes

Paul A. Scattergood,**^{a,b} Anna M. Ranieri,^d Luke Charalambou,^a Adrian Comia,^a Daniel A.W. Ross,^a Craig R. Rice,^a Samantha J.O. Hardman,^e Jean-Louis Heully,^c Isabelle M. Dixon,^c Massimiliano Massi,^d Fabienne Alary**^c and Paul I.P. Elliott**^{a,b}

a Department of Chemistry, University of Huddersfield, Huddersfield, HD1 3DH, UK
b Centre for Functional Materials, University of Huddersfield, Huddersfield, HD1 3DH, UK
c Laboratoire de Chimie et Physique Quantiques, UMR 5626 CNRS/Université Toulouse 3 - Paul
Sabatier, Université de Toulouse, 118 route de Narbonne, Toulouse, 31062, France
d School of Molecular and Life Sciences – Curtin Institute for Functional Materials and Interfaces,
Curtin University, Building 500, Kent Street, Bentley, Western Australia, Australia
e Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street,
Manchester, M1 7DN, UK

* Corresponding authors: p.i.elliott@hud.ac.uk; fabienne.alary@irsamc.ups-tlse.fr; p.a.scattergood@hud.ac.uk

† Dedicated to Professor Robin Perutz FRS on the occasion of his 70th birthday

Abstract

Fundamental insights into the mechanism of triplet excited state interligand energy transfer dynamics and origin of dual emission for phosphorescent iridium(III) complexes are presented. The complexes $[Ir(C^N)_2(N^N)]^+$ (HC^N = 2-phenylpyridine (1a-c), 2-(2,4-difluorophenyl)pyridine (2a-c), 1-benzyl-4-phenyl-1,2,3-triazole (3a-c); N^N = 1-benzyl-4-(pyrid-2-yl)-1,2,3-triazole (pytz, a), 1-benzyl-4-(pyrimidin-2-yl)-1,2,3-triazole (pytz, c)) are phosphorescent in room temperature fluid solutions from triplet metal-to-ligand charge transfer

(³MLCT) states admixed with either ligand-centred (³LC) (1a, 2a & 2b) or ligand-to-ligand charge transfer (3LL'CT) character (1c, 2c and 3a-c). Particularly striking is the observation that the pyrimidine-based complex 1b exhibits dual emission from both ³MLCT/³LC and ³MLCT/³LL'CT states. At 77 K the ³MLCT/³LL'CT component is lost from photoluminescence spectra of 1b, with emission exclusively arising from its ³MLCT/³LC state, whilst for **2c** switching from ³MLCT/³LL'CT to ³MLCT/³LC-based emission is observed. Femtosecond transient absorption data reveal distinct spectral signatures characteristic of the population of ³MLCT/³LC states for 1a, 2a and 2b which persist throughout the 3 ns timeframe of the experiment. These ³MLCT/³LC state signatures are apparent in the transient absorption spectra for 1c and 2c immediately following photoexcitation but rapidly evolve to yield spectral profiles characteristic of their ³MLCT/³LL'CT states. Transient data for 1b reveals intermediate behaviour: the spectral features of the initially populated ³MLCT/³LC state also undergo rapid evolution, although to a lesser extent than observed for 1c and 2c, behaviour assigned to the equilibration of the ³MLCT/³LC and ³MLCT/³LL'CT states. Density functional theory (DFT) calculations enabled minima to be optimized for both ³MLCT/³LC and ³MLCT/³LL'CT states of 1a-c and 2a-c. Indeed, two distinct ³MLCT/³LC minima were optimized for 1a, 1b, 2a & 2b distinguished by upon which of the two C^N ligands the excited electron resides. The ³MLCT/³LC and ³MLCT/³LL'CT states for **1b** are very close in energy, in excellent agreement with experimental data demonstrating dual emission. Calculated vibrationally-resolved emission spectra (VRES) for the complexes are in excellent agreement with experimental data, with the overlay of spectral maxima arising from emission from the ³MLCT/³LC and ³MLCT/³LL'CT states of **1b** convincingly reproducing the observed experimental spectral features. Analysis of the optimised excited state geometries enable the key structural differences between the ³MLCT/³LC and ³MLCT/³LL'CT states of the complexes to be identified and quantified. The calculation of interconversion pathways between triplet excited states provides for the first time a through-space mechanism for a photoinduced interligand energy transfer process. Further, examination of structural changes between the possible emitting triplet excited states reveals the key bond vibrations that mediate energy transfer between these states. This work therefore provides for the first time detailed mechanistic insights into the

fundamental photophysical processes of this important class of complexes.

Introduction

Cyclometalated iridium(III) complexes based on the archetypal complexes [Ir(ppy)₃] and

 $[Ir(ppy)_2(bpy)]^+$ (ppyH = 2-phenylpyridine; bpy = 2,2'-bipyridyl) form one of the corner stones of

modern transition metal photochemistry. Typified by their efficient phosphorescence, 1-2 structural

modification of the ligands yields luminescence with perceived colour tunability throughout the

visible spectrum leading to extensive investigations for the application of these complexes in

phosphorescent organic light emitting diode (PhOLED)³ and light-emitting electrochemical cell

(LEC) devices, ⁴⁻⁶ as luminescent biological probes for confocal microscopy⁷⁻¹² and as luminescent

sensors. 13-14 The properties of their triplet excited states also lend themselves to applications in

photodynamic therapy¹⁵⁻¹⁷ and as sensitisers in photocatalysis. ¹⁸⁻²²

For heteroleptic complexes with the general structure $[Ir(C^N)_2(N^N)]^+$ phosphorescence can derive

from excited states localised on either the neutral ancillary N^N ligand or the anionic cyclometalated

C^N ligands.²³ The highest occupied molecular orbital (HOMO) for these cationic heteroleptic

complexes typically has contributions from an Ir d-orbital as well as from the π -system of the aryl

rings of the C^N ligands, whilst the lowest unoccupied molecular orbital (LUMO) has primarily π^* -

character localised on the ancillary N^N ligand. Thus, the observed emission from these complexes

generally derives from triplet metal-to-ligand charge transfer (³MLCT) states admixed with ligand-to-

ligand charge transfer (ancillary-based, ³LL'CT) or alternatively ligand-centred (³LC) state character

through population of higher lying vacant C^N-based orbitals. The nature of the emitting state can

typically be inferred from the band shape, with broad featureless emission bands observed for

³MLCT/³LL'CT state phosphorescence whilst ³MLCT/³LC states tend to result in structured emission

bands exhibiting vibronic progressions.²³⁻²⁷ Upon photoexcitation the complex [Ir(ppy)₂(bpy)]⁺

exhibits a broad featureless emission band that derives from a 3MLCT/3LL'CT state of

HOMO→LUMO character. For the fluorinated complex [Ir(dfppy)₂(bpy)]⁺ (dfppyH = 2-(2,4-

difluorophenyl)pyridine) the room temperature emission spectrum is similarly of ³MLCT/³LL'CT

character, however, the spectrum at 77 K becomes highly structured, indicative of a change from

³MLCT/³LL'CT to ³MLCT/³LC-derived luminescence upon cooling. Ultrafast transient absorption²⁸

and emission up-conversion²⁹ data for these and related complexes reveal an initially populated

³MLCT/³LC state followed by population transfer to the ³MLCT/³LL'CT state occurring on a

picosecond timescale after photoexcitation. Replacement of the bpy ancillary N^N ligand by pytz (4-

(pyrid-2-yl)-1,2,3-triazole) in the complexes $[Ir(ppy)_2(pytz)]^+$ and $[Ir(dfppy)_2(pytz)]^+$ results in

³MLCT/³LC-based emission in room temperature solutions³⁰ despite the LUMO in each case still

being localised on the N^N ligand, albeit being heavily destabilised with respect to those of their bpy-

containing analogues.³¹ Thus the nature of the N^N and C^N ligands and their influence on the

topology of the triplet excited state potential energy surface leads to fundamental differences in the

excited state dynamics and the resultant steady-state emission character. Despite the clear importance

of this class of compound and the mass of data collected in recent years, the exact structure/property

relationships that determine the ultimate emitting state or define the reaction coordinate for the

observed energy transfer between excited states remain unclear.

For this contribution we set out to formulate a series of complexes through which a comprehensive

spectroscopic and computational density functional theory investigation would enable fundamental

additional insights into the excited state dynamics of cyclometalated iridium(III) complexes to be

obtained. The series of complexes depicted in Figure 1 was designed around a three-pronged strategy

to yield effective and selective tuning of different excited states and the ground state as outlined

below:

(i) firstly, variation of the ancillary N^N ligand will enable selective tuning of the energy of the

³MLCT/³LL'CT state with an anticipated minimal impact on the C^N-based ³MLCT/³LC state. Whilst

the known complexes $[Ir(ppy)_2(pytz)]^+$ (1a) and $[Ir(dfppy)_2(pytz)]^+$ (2a) exhibit ${}^3MLCT/{}^3LC$ -based

emission³⁰ despite possessing a pytz π^* -based LUMO, ancillary ligands such as 2,2'-bipyrazine are

known to be more electron withdrawing and have a lower energy LUMO than bpy which will

promote ³LL'CT-based emission. We therefore designed analogous ancillary ligands to pytz (a)

containing progressively more electron withdrawing pyrimidine (pymtz, b) and pyrazine (pyztz, c)

rings in place of pyridine. We were confident that this would then achieve efficient tuning of the

LUMO of their resultant complexes, enabling a deliberate spanning of ³MLCT/³LC and

³MLCT/³LL'CT emission regimes. Three series of complexes were then envisaged based on these

three triazole-based ancillary ligands with additional variation in the C^N ligands. The minimal

structural variation for the largely isostructural complexes within each of the three sets thereby

removes potential interpretative complications in our photophysical results.

(ii) Fluorination of the aryl rings of the C^N ligands (as in the dfppy-based complexes 2a-c) stabilises

the HOMO leading to an apparent destabilisation of emissive excited states compared to analogous

ppy-based complexes (1a-c) and consequential blue-shifted luminescence. In addition, the two

potential emissive states of different character (3MLCT/3LC and 3MLCT/3LL'CT) are anticipated to

be perturbed to differing degrees, leading to an intended subtle tuning on relative excited state

energies between ppy- and dfppy-containing series.

(iii) The third set of complexes 3a-c incorporate phenyltriazole-based (ptz) C^N ligands with

replacement of the ppy pyridine ring in 1a-c by a 1,2,3-triazole moiety. Since the triazole-based

unoccupied orbitals will be significantly destabilised with respect to those for ppy-based pyridine

moieties, complexes 3a-c were designed in order to destabilise the ³MLCT/³LC states relative to the

³MLCT/³LL'CT state, enabling the ³MLCT/³LL'CT state to be studied in isolation, at least in fluid

solution.32-33

Figure 1. Structures of complexes 1a-c, 2a-c and 3a-c.

Kasha's rule states that emission from a luminophore will occur from the lowest lying excited state of a given spin multiplicity. However, through careful tuning of the relative energies of the ³MLCT/³LL'CT and ³MLCT/³LC states such that they are, or are approximately isoenergetic, dual emission character will be possible. Importantly, we show here that through this strategy room temperature dual emission from both ³MLCT-based states has indeed been realised. In an attempt to understand, and later to identify some criteria favouring dual emission and processes underpinning interligand energy transfer, we first examined the ground state molecular orbital diagrams, which brought some interesting insights especially in the LUMO-LUMO+2 region. Further information was provided by optimizing the lowest triplet excited states where close examination of their geometries revealed subtle differences. Depending on the ligand set, one, two or three distinct and potentially emissive excited state minima were identified for the complexes, and their vibrationally-resolved emission spectra were modelled, in perfect agreement with experimental emission energies and bandshapes. The minimum energy paths connecting the ³MLCT/³LC and ³MLCT/³LL'CT states were also computed for selected complexes. The absence of gradual orbital mixing and metal-mediated electronic communication along these paths leads us to discuss on the mechanism for triplet-triplet state interconversion in these systems. Key vibrations were subsequently searched for, and identified, that favour the transfer from the initially populated ³MLCT/³LC state to the ³MLCT/³LL'CT state. Altogether, the complete set of experimental and theoretical data allows us to propose a full

rationalization of room temperature and low temperature emission data, as well as some insights into

the factors that favour dual emission (subtle geometry changes and promoting vibrational modes).

Results & Discussion

Synthesis & characterisation. The new ligands pymtz and pyztz were prepared through copper(I)-

catalysed alkyne-azide cycloaddition of benzyl azide and the corresponding 2-ethynyl-substituted

azine (synthetic descriptions and charactersisation data as well as an X-ray crystal structure for pymtz

are provided in the Supporting Information). Complexes 1a-c, 2a-c and 3a-c were prepared via

existing protocols from the corresponding chloro-bridged Ir(III) dimers. Briefly, [{Ir(ppy)₂Cl}₂],

[{Ir(dfppy)₂Cl}₂] or [{Ir(ptz)₂Cl}₂] was combined with 2 equivalents of the appropriate triazole-

containing ligand in refluxing CHCl₃ / MeOH, after which treatment with aqueous NH₄PF₆ yielded

the target complexes as their yellow-coloured hexafluorophosphate salts.

Crystals of X-ray diffraction quality were obtained for 2b and 2c with the molecular structure of the

cations being shown in Figure 2. 2b crystallises in the P-1 space group, exhibiting N(1)-Ir(1)-C(1) and

N(2)-Ir(I)-C(12) chelate angles of 80.42° and 80.59° for the two cyclometalated ligands respectively,

resulting in a distorted octahedral coordination environment. The bite angle with the triazole-

pyrimidine ligand is smaller, with N(3)-Ir(1)-N(4) measured at 76.14°. The bond lengths between the

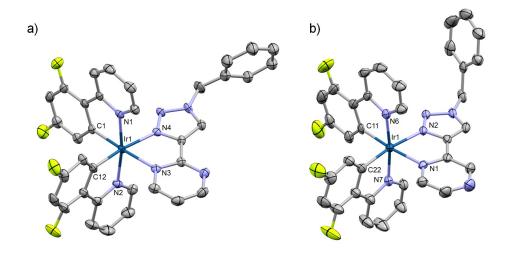
iridium centre and the cyclometalated carbon atoms are typical for complexes of this type (Ir(1)-C(1)

= 2.008 Å, Ir(1)-C(12) = 1.999 Å), being slightly shorter than those to the pyridyl nitrogen atom on

the same ligand (Ir(1)-N(1) = 2.046 Å, Ir(1)-N(2) = 2.043 Å). By comparison, the triazole-pyrimidine

ligand shows longer nitrogen-metal bond lengths, with Ir(1)-N(3) and Ir(1)-N(4) being 2.159 Å and

2.137 Å respectively. The torsion angle between the planes of the pyrimidine and triazole rings is


8.9°, illustrating that the two coordinated heterocycles remain almost co-planar as in the structure of

the free ligand, Figure S26). The complex 2c crystallises in the P21/c space group along with one

molecule of diisopropylether per iridium centre. The structure is largely comparable to that of 2b,

with the triazole-pyrazine ligand having a chelate angle N(1)-Ir(1)-N(2) of 76.41°. The bond length

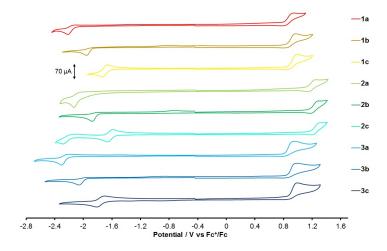

between the metal centre and the pyrazinyl nitrogen atom is identical to that observed in the pyrimidine analogue (Ir(1)-N(1) = 2.159 Å), whilst the bond length to the triazole moiety is marginally reduced in 2c (Ir(1)-N(2) = 2.125 Å).

Figure 2. Molecular structures of complexes **2b** (a) and **2c** (b). Thermal ellipsoids are shown at 50 % probability with hydrogen atoms, co-crystallised solvent molecules and hexafluorophosphate counterions removed for clarity. Bond lengths (Å) and angles (°) - **2b**: Ir(1)-N(1) = 2.046(3), Ir(1)-C(1) = 2.008(3), Ir(1)-N(2) = 2.043(3), Ir(1)-C(12) = 1.999(4), Ir(1)-N(3) = 2.159(3), Ir(1)-N(4) = 2.137(3), Ir(1)-Ir(

Electrochemical characterisation. Cyclic voltammograms recorded for all Ir(III) complexes 1a-3c are shown in Figure 3 with summarised electrochemical data presented in Table 1. Complexes 1a-1c exhibit one irreversible oxidation process in the region of +0.98 V which remains unperturbed with variation of the ancillary ligand. This electrochemical behaviour is similar to that observed for several other ppy-containing Ir(III) complexes and is attributed to removal of an electron from the highest occupied molecular orbital (HOMO) which is largely localised over the cyclometalated phenyl rings and the Ir centre. This assignment is further supported by the observed anodic shift in oxidation potential to approximately +1.25 V upon inclusion of electron-withdrawing fluorine substituents on

the phenyl rings in **2a-2c**, consistent with a decrease in electron density and subsequent stabilisation of the HOMO. The oxidation potential recorded for **3a-c**, featuring cyclometalated phenyl-triazole ligands, reverts to approximately + 0.98 V, being comparable to that measured for **1a-c** and indicating a largely iridium-cyclometalate-based process, seemingly unperturbed by the exchange of the N-donor fragment of the C^N ligand.

Figure 3. Cyclic voltammograms recorded for 1.6 mmoldm⁻³ MeCN solutions of **1a-3c** at r.t. at 100 mVs^{-1} . Solutions contained 0.2 moldm⁻³ NBu₄PF₆ as supporting electrolyte. Potentials are shown against the Fc⁺/Fc couple.

Table 1. Summarised electrochemical data for 1.6 mmoldm⁻³ MeCN solutions of **1a-3c** measured at r.t. at 100 mVs⁻¹. Potentials are shown in V vs. Fc⁺/Fc. For reversible couples E½ is quoted, with the anodic-cathodic peak separation shown in mV within brackets ($\Delta E_{a,c}$ for Fc⁺/Fc was typically 75 mV).

Complex	Oxidation / V	Reduction / V
1a	+0.96	-2.18
1b	+0.98	-1.95
1c	+0.99	-1.70 (80)
2a	+1.25	-2.10
2 b	+1.29	-1.88
2 c	+1.31	-1.62 (69), -2.20
3a	+0.96	-2.27
3b	+0.99	-2.07
3c	+0.99	-1.76 (118)

Complex 1a displays one quasi-reversible reduction process with a peak potential of -2.18 V assigned

to reduction of the pyridine moiety within the pyridyl-triazole ligand. The reduction process measured

for 1b is shifted by 230 mV to more positive potential and is found to be irreversible, consistent with

a pyrimidine-based reduction. By contrast reduction of the pyrazine moiety in 1c is represented by the

fully reversible redox couple observed for 1c at -1.70 V, further shifted to more positive potential

relative to that of 1b. Further reduction processes associated with the cyclometalating ligands were

not observed for these complexes within the available solvent window. Directly analogous reduction

behaviour is observed for the series 2a-c and 3a-c, although with marginally more anodic potentials

noted for 2a-2c, likely due to the more electron deficient metal centre (vide supra) withdrawing

electron density from the ancillary ligand. In summary, variation in the energy of the LUMO within

these complexes can be readily achieved through careful choice of the heterocycle within the triazole-

containing ancillary ligand, with the incorporation of a pyrazine fragment resulting in a significant

decrease in the HOMO-LUMO energy gap.

Photophysical properties: Absorption spectra. All complexes 1a-3c display UV-visible absorption

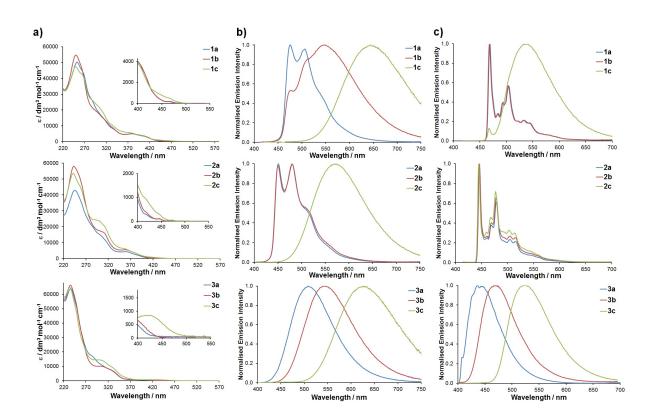
spectra in acetonitrile solutions typical for biscyclometalated iridium(III) complexes (Figure 4a).

Summarised photophysical data are provided in Table 2. Intense bands higher in energy than 300 nm

are assigned as deriving primarily from ligand-centred $\pi \rightarrow \pi^*$ transitions with those lower in energy

than 300 nm arising from excitations to singlet metal-to-ligand charge transfer (¹MLCT) states, with

the weak low energy tail to these absorption bands attributed to direct spin-forbidden transitions to


triplet metal-to-ligand charge transfer (³MLCT) states. The ppy-based complexes **1a-c** exhibit the

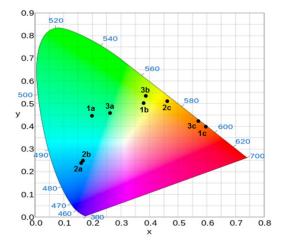
lowest energy absorption profiles, with those of the ptz-based complexes 3a-c showing the highest

energy absorption profiles. Within each series the absorption profiles of the pyrazine-based complexes

(c) are subtly red-shifted compared with those containing pyridyl- (a) and pyrimidinyl- (b) triazole-

based analogues.

Figure 4. a) UV-Visible electronic absorption spectra recorded for MeCN solutions of **1a-3c**; b) Emission spectra for **1a-3c** in aerated MeCN solution at r.t.; c) Low temperature (77 K) emission spectra recorded for **1a-3c** in a glass (4:1 EtOH/MeOH).


Table 2. Summarised photophysical data for 1a-3c

2 / 4			2 / 4	Aerated		Degassed		$k_r(10^5)/s^{-1}$	$k_{nr}(10^7)/s^{-1}$
	λ_{abs} / nm ^a		$\lambda_{\rm em}$ / nm a	τ / ns a	Φ / % a,c	τ / ns b	Φ / % b,c	air ^a (degassed ^b)	air ^a (degassed ^b)
1a	410, 381, 339, 313, 287, 266	R.T. 77 K ^d	475, 506, 540(sh) ^f 469, 504, 532 ^e	58	0.9	2107	34.1	1.55 (1.61)	1.70 (0.031)
1b	408, 380, 335, 300, 261	R.T. 77 K ^d	474, 514, 547 ^f 468, 503, 531 ^e	45	1.2	292	6.4	2.66 (2.19)	2.19 (0.32)
1c	463, 405, 376, 334, 302, 264	R.T. 77 K ^d	644 ^f 467, 535	62	1.4	175	4.2	2.25 (2.40)	1.59 (0.54)
2a	380, 362, 302	R.T. 77 K ^d	452, 480, 511(sh) ^g 446, 478, 502 ^e	143	1.2	1850	23.9	0.84 (1.29)	0.69 (0.041)
2b	380, 362, 311	R.T.	450, 479, 513(sh) ^g 447, 479, 504 ^e	70	0.6	112 (89%) 232 (11%)	1.0	0.85 (0.89)	1.42 (0.88)
2c	418, 381, 355, 312, 298	R.T.	570 g 445, 477, 502°	104 (52%) 129 (48%)	3.2	1317	38.8	2.48 (2.94)	0.75 (0.046)
3a	384, 329, 304, 283	R.T.	508 ^h	21	0.7	38	1.6	3.33 (4.21)	4.72 (2.59)

		77 K ^d	439						
3b	384, 329, 305	R.T. 77 K ^d	544 ^h 466	48	1.5	648	18.7	3.12 (2.88)	2.05 (0.12)
3c	430, 332, 304	R.T. 77 K ^d	626 h 520	83	1.9	341	7.7	2.29 (2.25)	1.18 (0.27)

^a Aerated MeCN; ^b Degassed MeCN; ^c Relative to $[Ru(bpy)_3][PF_6]_2 \Phi = 0.018$ in aerated MeCN³⁴; ^d 4:1 EtOH / MeOH glass; ^e Major vibrational progressions; ^f $\lambda_{ex} = 400$ nm; ^g $\lambda_{ex} = 390$ nm; ^h $\lambda_{ex} = 385$ nm; ^l Aerated MeCN (degassed measurements in parentheses).

Photophysical properties: Emission spectra. All complexes are emissive and spectra for each were recorded in room temperature MeCN solutions and at 77 K in ethanol/methanol glass matrices (Figure 4b-c and Table 2). The combination of the effect of the change in both cyclometalated and ancillary ligands in these complexes gives rise to significant tuning of emission colour as can be seen from the CIE 1931 chromaticity coordinates depicted in Figure 5, ranging from the sky blue for 2a to the red/orange for 1c.

Figure 5. Commission Internationale de l'Éclairage 1931 (CIE) coordinates derived from room-temperature solution state emission spectra of complexes **1a-3c** in acetonitrile.

The 77 K and room temperature emission spectra for the phenyltriazole-based complexes **3a-c** all show broad featureless emission bands, as expected and indicative of ³MLCT/³LL'CT-based emitting state character. The higher energy of the triazole-based unoccupied molecular orbitals associated with the ptz ligands in **3a-c** compared to the pyridine-based unoccupied orbitals associated with the ppy

ligands in 1a-c ensures that the ³MLCT/³LC states of the former are heavily destabilised. This will

favour population of the ³MLCT/³LL'CT states for **3a-c**, whose energies can be considered to be

somewhat independent of the N-donor moiety of the cyclometalated ligands providing convenient

comparisons to 1a-c. The emission spectra undergo a red-shift in the energetic ordering pytz < pymtz

< pyztz ($\mathbf{a} < \mathbf{b} < \mathbf{c}$), both at RT and 77 K, in agreement with the progressively stabilised LUMO

evident from electrochemical data. These bands show a significant rigidochromic blue-shift when

recorded for glass matrices at 77 K compared to their room-temperature spectra in acetonitrile.

Interestingly, the photoluminescence characteristics for 1c and 2c are different from those of 1a, 2a

and 2b and show different temperature dependence to each other; the room temperature spectra of the

former pair in acetonitrile feature broad and unstructured emission bands indicative of

³MLCT/³LL'CT character, whilst **1a**, **2a** and **2b** all exhibit bands with vibronic progressions

characteristic of ³MLCT/³LC emitting states. The emission bands for **2a** and **2b** are near

superimposable demonstrating emission from the same state which is independent of the ancillary

N^N ligand. The emission profiles of 2a/b and 2c relative to those of 1a and 1c respectively are blue-

shifted due the stabilisation of the HOMO in the dfppy series compared to those ppy-containing

complexes due to the electron-withdrawing fluorine substituents, again in agreement with

electrochemical and optical absorption data.

Complex 1b displays a unique and highly intriguing emission behaviour. The room temperature

emission spectrum recorded for an acetonitrile solution appears to show an emission profile exhibiting

both (i) vibronic progressions on the high energy side and (ii) a broad envelope on the low energy side

(Figure 4b). It is should be noted that (i) coincide with ³MLCT/³LC progressions in the spectrum for

1a, while (ii) coincides with the maximum for the emission band of 3b, indicating that this latter

component to the photoluminescence spectrum originates from emission from a ³MLCT/³LL'CT state.

Further, excitation spectra recorded at several wavelengths across the spectrum are near identical

(Figure S27), all of which closely match the electronic absorption profile, indicative of a unique

emitting species. We therefore ascribe the emission profile for 1b as arising from dual-emission from

both ³MLCT/³LL'CT and ³MLCT/³LC states. In agreement with the assignment of dual emission from

1b, the emission profile exhibits solvent dependent variation on the relative intensities of the 3 MLCT/ 3 LC and 3 MLCT/ 3 LL'CT-based features (Figure 6). The higher energy 3 MLCT/ 3 LC progressions are readily apparent in 2-methyltetrahydrofuran, acetonitrile and acetone solutions but are weaker yet still observable in dichloromethane and in 4:1 ethanol/methanol. The lower energy dominant 3 MLCT/ 3 LL'CT-based emission feature is observed to red-shift in this latter solvent system relative that observed in acetonitrile. This is tentatively assigned as arising from hydrogen bonding between the solvent and the non-coordinated N-atom of the pyrimidine ring.

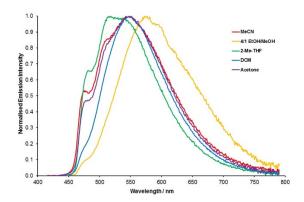


Figure 6. Normalised solvent dependent emission spectra for 1b at room temperature.

As is commonly observed for biscyclometalated arylpyridine-type complexes,³³ the low temperature emission spectra of **1a**, **2a** and **2b** exhibit much sharper vibronic progressions for the ³MLCT/³LC emitting state. Interestingly, whilst a broad featureless emission band indicative of ³MLCT/³LL'CT-derived luminescence is maintained as the dominant feature in the emission spectrum of **1c** at 77 K, the emission profile of **2c** is almost identical to those of **2a** and **2b** indicating switching in the nature of the emissive state to ³MLCT/³LC character at low temperature. For **1b** the low energy envelope assigned to ³MLCT/³LL'CT emission at room temperature is absent at 77 K with the emission profile being almost identical to the ³MLCT/³LC-based emission profile for **1a**, indicating a turning off of dual emission in the low temperature rigid matrix.

Close examination of the 77 K emission spectrum of 1c reveals a small peak on the high energy side of the emission profile (467 nm), which is almost coincident with the highest energy v_{0-0} progression

observed for 1a (469 nm), indicating an additional ³MLCT/³LC-based minor contribution to the

observed emission for this complex. Small sharp features can also be observed superimposed on the

emission band for 3a at 77 K whose position is invariant with excitation wavelength and are also

tentatively assigned to vibronic progressions of the ³MLCT/³LC state. It should be noted that similar

sharply resolved ³MLCT/³LC state progressions are observed in the 77 K emission spectrum of the

related complex $[Ir(ptz^{Ad})(ptz^{Me})(pytz^{Ad})]^+$ (where $ptz^{Ad}H$ & $ptz^{Me}H = 1$ -adamantyl- and 1-methyl-4-

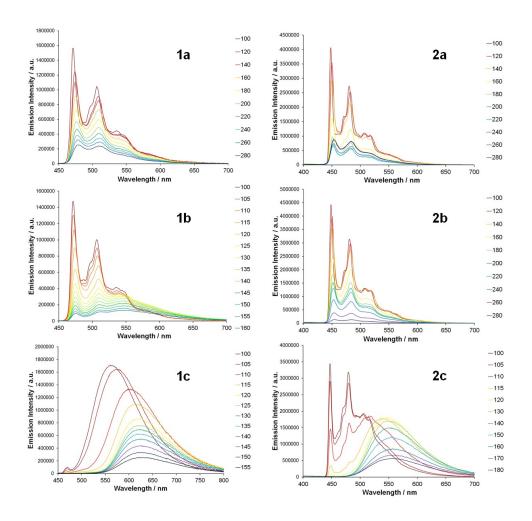
phenyl-1,2,3-triazole respectively and pytz^{Ad} = 1-adamantyl-4-(pyrid-2-yl)-1,2,3-triazole) and the

fluorinated analogue $[Ir(dfptz)_2(pytz)]^+$ (dfptz = 4-(2,4-difluorophenyl)-1,2,3-triazole)) rather than

broad ³MLCT/³LL'CT emission as previously reported by De Cola and co-workers. ³²⁻³³ Thus, at low

temperature 1c and 3a show dual-emission behaviour.

Several examples of dual emissive iridium(III) complexes are known, 35-43 e.g. molecular dyad


complexes appended with fluorophores in which the two chromophores are electronically insulated

from each other and thus act with photophysical independence. There are also some rare examples of

dual phosphorescent complexes in which emission stems from two triplet states, a ³MLCT-based state

and a purely ligand-centred (³LC) state, which are of approximately the same energy but are highly

distinguishable in terms of band shape and sensitivity to solvent polarity. 36-37, 40

Figure 7. Variable temperature emission spectra recorded for 1a-2c in 2-Me-THF (mp = 137 K). Plots show selected emission profiles at increasing temperature intervals starting from 100 K.

Since the emission spectra of complexes 1b, 1c and 2c include some significant changes and switching of the emitting state between rigid matrix and fluid medium, we recorded temperature-dependent emission spectra from 100 to 200 K for complexes 1a-2c (Figure 7). Variable temperature emission spectra obtained for 1a, 2a and 2b are observed to diminish in intensity upon warming from 100 K, with spectral broadening but retention of vibronic progressions in each case without any significant shift in the wavelength of observed maxima.

For **2c**, warming from 100 to 110 K results in a reduction in emission intensity of the ³MLCT/³LC-based progressions at higher energy and the growth of a broad feature between 570 to 700 nm assigned to luminescence from the ³MLCT/³LL'CT state. At 120 K the ³MLCT/³LL'CT-based band dominates the spectrum, with ³MLCT/³LC-derived features having almost disappeared. At 130 K and

above, the switching of emitting state is complete and only ancillary ligand-based ³MLCT/³LL'CT

state emission is observed.

Between 100 and 200 K the emission band of 1c is observed to reduce in intensity and the maximum

to red-shift by approximately 70 nm with a concomitant reduction in intensity of the weaker sharp

³MLCT/³LC-based emission at 467 nm. The red-shift in the dominant emission band upon reaching

110 K reveals a second weak emission feature at around 500 nm, which is tentatively assigned to the

 v_{0-1} progression from ${}^{3}MLCT/{}^{3}LC$ -based emission. Similarly to 2c these ${}^{3}MLCT/{}^{3}LC$ -based features

disappear by 130 K as the glass transitions to fluid.

Upon warming, the vibronic progressions in the variable temperature emission spectra for 1b diminish

in intensity and broaden between 100 and 120 K (Figure 7). Between 110 and 125 K emission is

observed to increase in intensity at wavelengths longer than 560 nm as ³MLCT/³LL'CT-based

emission becomes the dominant feature. However, unlike the variable temperature emission spectra of

2c, the ³MLCT/³LL'CT-based vibronic progressions are observed to persist for 1b throughout the

temperature regime studied and up to room temperature. These features are even retained in emission

spectra for solutions heated to 330 K, suggesting that, above the glass transition temperature, the

³MLCT/³LC and ³MLCT/³LL'CT states in **1b** are both populated and potentially in equilibrium,

resulting in the dual-emission behaviour that is preserved at and above room temperature.

Photoluminescence lifetime data was collected by time-correlated single photon counting (Table 2).

No clear trends can be discerned across the series as might have been expected from energy-gap law

considerations. This may stem from the interplay and involvement of emitting states of different

character. For the higher energy emitters it is also possible that triplet metal-centred state mediated

quenching may also play a role. 44 We therefore prefer not to offer deeper interpretations of this data (

however, it is interesting to note that the radiative decay rate constants, $k_{\rm r}$, for those complexes

exhibiting ³MLCT/³LL'CT-based emission are higher (2.25-3.33 x 10⁻⁵ s⁻¹ in aerated acetonitrile) than

the corresponding rate constants for the ³MLCT/³LC emitters (0.84-1.55 x 10⁻⁵ s⁻¹)). Interestingly

however, emission lifetime data collected at several wavelengths across the spectrum for the dual-

emissive complex 1b fit to a single exponential decay despite emission deriving from two states

(Table 2 and Figure S28). Addition of a second exponent leads to no significant improvement to the

fitting of the data. It may be that lifetimes for the ³MLCT/³LC and ³MLCT/³LL'CT states in **1b** are

very similar to one another such that they cannot be differentiated, 45 or that being in equilibrium on a

timescale far shorter than radiative lifetimes they therefore act as a single emitting state. Lifetime data

for 2b (in degassed acetonitrile) and 2c (in aerated acetonitrile) give rise to biexponential decay. For

2b it is possible that this arises due to two distinct ³MLCT/³LC states given the asymmetry of the

pymtz ligand, which will make the two dfppy ligands inequivalent. Biexponential decay for 2c is

unexpected but may derive from differing favourable conformations of the pyztz benzyl substituent.

Lifetime data recorded in 2-methyltetrahydrofuran during collection of temperature dependent

emission spectra are however monoexponential (Table S1, Supporting Information).

To summarize, the steady-state luminescence data has highlighted three different behaviours: (i)

single emitters that are insensitive to rigid matrix effects and temperature, in terms of the nature of the

emissive state (1a, 2a, 2b, 3a-3c); (ii) one single emitter that switches from one emissive state at 77 K

to another emissive state at room temperature (2c); (iii) a dual emitter over a broad temperature and

solvent range (1b), a case that has been scarcely described.

Transient-absorption studies. Given the highly intriguing nature of our steady state emission data

reported above, we felt compelled to carry out fs-ps transient absorption spectroscopic experiments on

complexes 1a to 2c in order to capture the time evolution of anticipated energy transfer processes for

1b, 1c and 2c, whose emissive excited state character changes between rigid glasses and fluid

solutions. Indeed, recently the groups of Elias⁴⁶ and Kang⁴⁷ and their respective co-workers have

utilised transient absorption spectroscopy to study the excited state energy transfer processes for

 $[Ir(C^N)_2(N^N)]^+$ -type complexes. The complex $[Ir(dfppy)_2(pic)]$ (pic = 2-picolinate) exhibits

structured ³MLCT/³LC-based emission bands at both room temperature and 77 K. On the other hand,

the complexes $[Ir(dfppy)_2(N^N)]^+$, where N^N is bpy and 1,10-phenanthroline, exhibit broad

featureless emission bands arising from ³MLCT/³LL'CT states in fluid solutions at room temperature.

They have observed structured emission bands arising from ³MLCT/³LC states at 77 K in frozen solution glass matrices. Transient absorption spectra for [Ir(dfppy)₂(pic)] reveal bands assigned to the photoexcited ³MLCT/³LC states which have effectively infinite lifetime on the timescale of the transient experiment. For the cationic complexes early transients formed immediately after photoexcitation are observed to undergo changes with decay lifetimes of between 2 and 4 ps assigned to an energy transfer process from initially populated ³MLCT/³LC states to the ³MLCT/³LL'CT states responsible for steady state emission in each case.

Transient absorption spectra and associated time profiles for **1a** to **1c** are displayed in Figure 8 with comparable data for the fluorinated complexes **2a** to **2c** given in the Supporting Information (Figure S29).

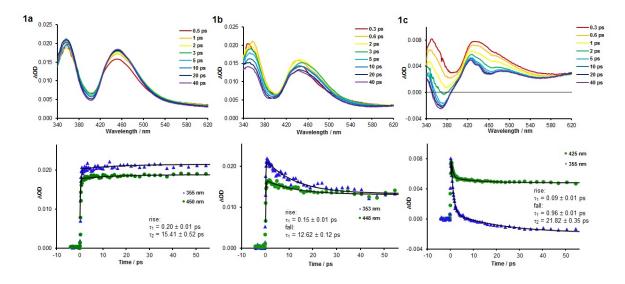


Figure 8. UV-visible transient absorption spectra for complexes 1a-c in acetonitrile solutions at room temperature (top, $\lambda_{ex} = 285$ nm) and associated time profiles with kinetic fits from global analysis (bottom).

Transient spectra for **1a** are characterised by two absorption maxima appearing at 355 and 460 nm, assigned to absorption from the ³MLCT/³LC state, separated by what appears to be a ground state bleach feature at 400 nm superimposed upon the positive transient absorption profile. These features

closely match those observed previously in nanosecond time-resolved data for similar complexes

reported by De Cola and co-workers.⁴⁸ Similar spectra are observed for **2a** and **2b** (Figure S29),

however the transient maxima are blue shifted relative to those of 1a such that the higher energy and

more intense band is shifted outside of the available spectroscopic window, and the bleach feature,

positioned between 340 and 380 nm, is less intense. Analysis of the transient spectra for 1a, 2a and 2b

reveals time profiles reminiscent of those for the ³MLCT/³LC emitter [Ir(dfppy)₂(pic)] with very little

change in spectral intensities and band shapes over the timescale studied (3 ns).⁴⁷ Global analysis

fitting reveals, however, that in addition to the rapid rise time (~0.2 ps) for these three complexes

there is a second subtle but discernible process with a longer rise time of between 5 and 15 ps (Table

S2). Given the asymmetry of the complexes due to the N^N ligands, this is tentatively assigned to

equilibration between different available ³MLCT/³LC states involving the two inequivalent C^N

ligands.

In line with the fundamentally different steady state emission behaviour of 1c and 2c relative to 1a, 2a

and 2b, the evolution of transient spectra for these pyrazine-based complexes also show stark

differences. Initial transients that appear in the first picosecond closely resemble those discussed

above, supporting the notion that 1c and 2c are initially excited to ³MLCT/³LC states. However, rapid

evolution fitted to a bi-exponential decay is observed with two time constants of 0.9-2.8 and 21.8-

24.6 ps. During this evolution the ³MLCT/³LC-based transient absorption features are observed to

blue-shift and reduce in intensity. As the lower energy absorption features at wavelengths beyond

420 nm diminish, more structured absorptions are observed with a sharp structured feature at around

425 nm for 1c along with a broad absorption band at 490 nm. The higher energy transient band at

350 nm is observed to decay to a greater extent whilst the bleach becomes more prominent such that it

becomes a genuinely negative feature after 5 to 10 ps. Spectral features in transient absorption spectra

after this time are therefore assigned to the ³MLCT/³LL'CT states of 1c and 2c. Thus it can be seen

from this data that clearly and conveniently distinguishable transient absorption profiles are

discernible for ³MLCT/³LC and ³MLCT/³LL'CT states. Due to the asymmetry of the complexes the

two time constants may reflect the decay to the ³MLCT/³LL'CT state from two distinct ³MLCT/³LC

states characterised by which of the C^N ligands the excited electron resides. On the other hand the

longer decay process may also be contributed to by vibrational cooling and energy redistribution in

the ³MLCT/³LL'CT state.

In line with its peculiar steady state spectroscopic behaviour, 1b is again unique amongst the

complexes studied. Initial transient spectra at 1 ps after excitation closely resemble those of the other

five complexes, confirming that a ³MLCT/³LC state is initially populated. The spectra are

subsequently observed to undergo rapid evolution with a time constant of 12.6 ps. This involves a

blue-shift and drop in intensity of the absorption feature at around 450 nm. A larger fall in intensity is

observed for the higher energy absorption feature at 350 nm whilst the bleach feature at around

400 nm undergoes a small blue shift and becomes less positive in magnitude. These spectral changes

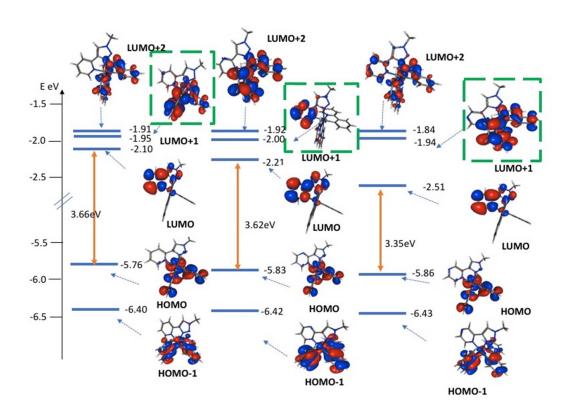
are less dramatic than those observed for 1c and 2c, and overall the transient spectra sit somewhere

between those for 1a and 1c. Whereas the transient data for 1c and 2c suggest complete depopulation

of the ³MLCT/³LC state to yield the ³MLCT/³LL'CT state, the data for **1b** is consistent with the

partial transfer of population to the ³MLCT/³LL'CT state and equilibration with the initially populated

³MLCT/³LC state, in agreement with the dual-emissive character suggested from steady state


emission spectra.

Transient absorption data are therefore in perfect agreement with our steady state spectroscopic data

and time-resolved studies on related systems reported elsewhere by others. At this stage, a detailed

theoretical study is vital in order to fully rationalise the photophysical peculiarities for the series of

complexes reported.

Figure 9. Molecular orbital energies and isosurface plots for HOMO-1 to LUMO+2 for complexes **1a** (left), **1b** (middle) and **1c** (right). The green square highlights LUMO+1, whose localisation varies.

Ground state molecular orbitals. In order to gain a deeper understanding of the photophysical properties of the complexes described we carried out density functional theory (DFT) calculations. The ground state geometries of all complexes were optimised substituting the benzyl substituent of the triazole ring with methyl. As the benzyl substituent is expected to have minimal impact on the photophysical properties its simplification then enables reduced computational cost. Figures 9 and S30 and S31 depict the calculated energies of the frontier molecular orbitals for all complexes with accompanying depictions of the corresponding isosurfaces for these orbitals. In each case the highest-occupied molecular orbital (HOMO) is composed of an Ir-based d-orbital in a π -antibonding combination with the π -system of the arene rings of the cyclometalated ligands. The energies of the HOMOs are calculated to undergo stabilisation in the order pytz > pymtz > pyztz ($\mathbf{a} > \mathbf{b} > \mathbf{c}$), presumably due to reduced electron density at the metal as the N^N ligand becomes more electron withdrawing, in broad agreement with electrochemical data. Also in agreement with this data the

HOMOs of the dfppy complexes 2a-c are significantly stabilised with respect to those of their ppy and

ptz analogues 1a-c and 3a-c respectively.

For all complexes the LUMO is calculated to have N^N π *-character with localisation over both the

6-membered azole and triazole rings but with a greater contribution from the former. For each series

the energies of the LUMO decrease in the order pytz > pymtz > pyztz ($\mathbf{a} > \mathbf{b} > \mathbf{c}$), in agreement with

electrochemical reduction potentials. In each series the LUMO is stabilised to a greater extent than the

HOMO. This leads to a largest HOMO-LUMO gap for the pytz complexes a (3.66 to 3.95 eV) and the

smallest for the pyztz complexes c (3.35 to 3.51 eV), in agreement with the former having the most

blue-shifted absorption and emission spectra whilst those of the latter are the most red-shifted. Across

the three series the localisation of the LUMO+1 orbital (highlighted by the green boxes in Figures 9,

S30 & S31) varies; for 3a-c LUMO+1 is localised on the ancillary N^N ligand as is LUMO+1 for the

pyrimidine complexes 1b and 2b. The LUMO+1 orbitals for 1a, 2a, 1c and 2c are, on the other hand,

 $C^N \pi^*$ in character, as are the LUMO+2 orbitals for all the ppy and dfppy complexes (which in some

cases are mixed with N^N π^* -character). For **3a-c** the lowest ptz-localised C^N virtual orbital is

LUMO+2, which appears to be significantly destabilised relative to the corresponding lowest ppy and

dfppy based C^N π^* orbitals of **1a-c** and **2a-c**. This is indicative of the reduced electron-accepting

ability of phenyltriazole vs phenylpyridine, which is exploited in this work to tune the gap between

³MLCT/³LC and ³MLCT/³LL'CT excited states.

The experimental photoluminescence studies have evidenced three types of emitter (³MLCT/³LC

only, ³MLCT/³LL'CT only, or dual emission from both). We will now try to find some theoretical

support for this behaviour, starting from the ground state molecular orbital diagrams. The LUMO for

all complexes is of N^N π^* character, yet not all emission spectra are broad and featureless, as one

would expect for ³MLCT/³LL'CT-based emission. Thus, the ordering of the emissive excited states

does not follow the ordering of the ground state unoccupied orbitals whose population with which

these states would be expected to be associated. Therefore it is necessary to extend our reasoning

beyond a simple consideration of the LUMO except, perhaps, in cases where it is well below all other

vacant orbitals. This would be the case for the phenyltriazole family 3, which exhibits an N^N-based

LUMO, well separated from the C^N-based vacant orbitals, a specificity that again fits with the

observed ancillary-based emission at all temperatures. 1a and 2a display closer-lying N^N and C^N

vacant orbitals, which means that one could expect the two types of excited state to be close in

energy. Solely C^N-based emission is observed, however, which highlights the great importance of

the LUMO+1 for these complexes. Both the localisation of the LUMO+1 and the energy gap between

the N^N and C^N vacant orbitals are crucial. Unlike 1a and 2a, 1b and 2b display an N^N-based

LUMO+1. Therefore one might expect the ancillary ligand-based excited states to be lower in energy

in the b series than in the a series, and if close enough in energy to the corresponding C^N ligand-

based ³MLCT/³LC state, complexes in the **b** series could be dual emitters. Whilst comparative

analysis of the ground state molecular orbitals provides useful insights, these data alone are

insufficient to fully rationalise the peculiar emission behaviour observed across the complexes

reported. It is therefore vital to additionally consider the optimised triplet excited states that give rise

to emission.

Lowest triplet states. To better understand the emission properties of the complexes, minima for the

lowest lying triplet states were optimised. The deliberate differentiation of the two C^N ligands by

using an asymmetric ancillary ligand can give rise to two distinct ³MLCT/³LC states. ⁴⁹ For **1a**, **1b**, **2a**

and **2b** two ³MLCT/³LC minima, ³MLCT/³LC_{left} and ³MLCT/³LC_{right}, were optimised on the lowest

energy triplet potential energy surface (T₁ PES) (the energies of the lowest triplet excited states for all

complexes quoted relative to their respective optimised ground state energies are depicted in Figure

10. Plots of the spin densities for these states are provided in the Supporting Information, Figure S32).

For the states labelled with the subscript 'left' the spin density is distributed over the metal centre and

the C^N ligand situated *trans* to the triazole ring of the ancillary ligand, whereas those labelled 'right'

involve the C^N ligand trans to the ancillary ligand 6-membered ring. Whilst there have been several

elegant computational studies of the ³PES of phosphorescent iridium(III) complexes, these have

focussed on ³MLCT state deactivation by triplet metal-centred (³MC) states⁵⁰⁻⁵⁷ or the *fac/mer*-

isomerisation resulting from ³MC state population from a ³MLCT state and subsequent geometry

evolution.⁵⁸ To the best of our knowledge this is the first time that multiple ³MLCT-based admixed states have been optimised for individual complexes.

For complexes **1c** and **2c** ³MLCT/³LC_{left} states could not be located on the T₁ PES, suggesting that this state is either not a minimum, is a very shallow one or is a higher lying triplet state. For complexes **3a-c** only a ³MLCT/³LL'CT state could be located on the T₁ PES. This type of excited state is found in all complexes. For each series **1**, **2** and **3**, the ³MLCT/³LL'CT state is observed to be highest in energy for the pytz complex **a** and lowest in energy for the pyztz complex **c**, in agreement with spectroscopic data. Note that the lowest excited triplet state does not always result from HOMO-LUMO excitation, thus a straightforward transposition of the electrochemical data to the excited states is not always correct.

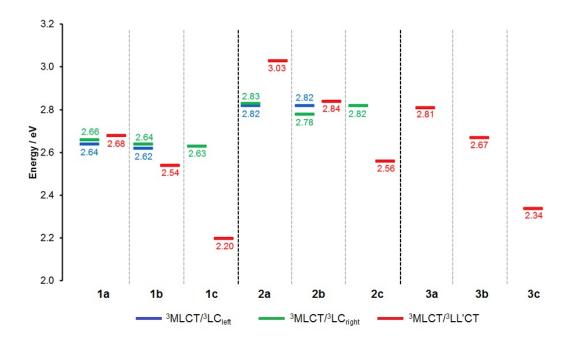


Figure 10. Calculated triplet state energies for complexes 1a-c, 2a-c and 3a-c in MeCN using SMD model. Energies are quoted relative to the optimised ground state for each complex, $E_{GS} = 0.0 \text{ eV}$.

For 1a, 2a and 2b, which exhibit structured emission bands indicative of a luminescent state of ³MLCT/³LC character, calculations confirm that these states are lower in energy than their respective ³MLCT/³LL'CT states. Thus, ³LC-admixed states would be expected to dominate the emission properties for these complexes, in agreement with a classical Kasha behaviour. Note that such

³MLCT/³LC states do not derive from a HOMO-LUMO excitation. The 'left' and 'right' ³LC-

admixed states for these complexes are calculated to be very close in energy to each other, thus their

individual emissions are probably indistinguishable, both in terms of energy and luminescence

lifetime. 59

For 1c and 2c the ³MLCT/³LL'CT state, which does arise from HOMO-LUMO excitation, is

calculated to be significantly lower in energy than the ³MLCT/³LC_{right} state by 0.43 and 0.26 eV

respectively, in agreement with the broad featureless emission bands exhibited in their room

temperature solution spectra. This is in line with the previously mentioned large gap between N^N-

based LUMO and C^N-based LUMO+1. This is in agreement with experimental data revealing that,

when initially populated upon photoexcitation the ³MLCT/³LC state will be rapidly depopulated to the

³MLCT/³LL'CT state, from which emission then occurs. The ³MLCT/³LC states of **2a-b** are stabilised

relative to the ³MLCT/³LL'CT states for this series in comparison to the relative energies of the same

states for 1a-c. This stems from the electron withdrawing fluorine atoms of the dfppy ligands which

leads to stabilisation of the vacant orbitals on these ligands and thus a greater perturbation of the

³MLCT/³LC states relative to the ³MLCT/³LL'CT states, thereby bestowing a larger energy gap

between these states for 1c compared to 2c. For 3a-c, for which ³MLCT/³LC minima could not be

located on the T1 PES (high-lying C^N-based vacant orbitals), the data is consistent with the

interpretation of the broad featureless emission bands observed both in fluid solution and in a frozen

medium at low temperature as arising from ³MLCT/³LL'CT states.

For 1b, which displayed the smallest gap between N^N and C^N vacant orbitals (Figure 9) and thus

could be expected to be a good candidate for dual emission, the ³MLCT/³LC_{left} and ³MLCT/³LL'CT

states are calculated to be separated by only 0.08 eV. This contrasts with the 0.35 eV energy

difference based on the wavelengths of the ³MLCT/³LC (474 nm, Table 1) and ³MLCT/³LL'CT

(547 nm) derived emission maxima. The actual difference in energy between emission bands for these

two states stems from the vibronic contributions involved in the electronic transition. Indeed for the

³LC case, the highest energy transition in the spectra corresponds to the 0-0 transition (474 nm), while

for the ³LL'CT case the emission maxima (547 nm) coincides with the 0-1 transition (vide infra),

leading in this latter case to a maximum emission wavelength red-shifted by 60 nm (0.3 eV), a value

that is reproduced on both computed and experimental spectra displayed in Figure 11. A deeper

analysis of the vibronic progressions observed in emission spectra is presented in the next section. As

the emission spectrum of 1b appears to have overlapping contributions from both structured

³MLCT/³LC- and unstructured ³MLCT/³LL'CT-based bands which maintain their relative intensities

upon heating to approximately 330 K, the calculated data therefore support the experimental

interpretation that these states are essentially isoenergetic and that 1b is a dual emitter over a broad

range of temperatures.

Vibrationally-resolved emission spectra (VRES). VRES calculated for all complexes at 300 and 77 K

reproduce the fine structure of the experimentally acquired spectra and help to confirm the assigned

emitting excited state character. Spectra for 3a-c at 300 K are in good agreement with experimentally

obtained spectra and are characterised by broad featureless bands that red-shift in the order 3a < 3b <

3c (VRES spectra for all complexes are provided in the Supporting Information, Figure S35). Spectra

calculated for the ³MLCT/³LC_{right} states of **2a** and **2b** are near coincident and display vibronic fine

structure in agreement with both experimental data and the assignment of the nature of the emitting

excited state, whilst the calculated spectrum for the ³MLCT/³LL'CT state of **2c** appears as an expected

broad featureless band. Spectra for emission from the ³MLCT/³LC state for 1a, 1b and 2a-c

calculated at 77 K reproduce the observed sharp major bands as well as the other fine structural

features seen in the experimentally determined emission profiles. For 1c the calculated

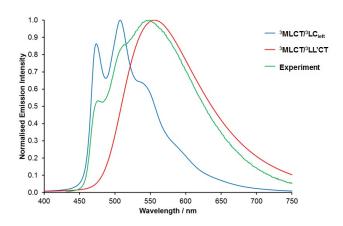
³MLCT/³LL'CT-based emission spectra at both 77 and 300 K match the broad featureless bands

observed experimentally. The calculated 300 K emission spectra for 1a and 1b deriving from their

³MLCT/³LC states match the experimentally observed vibronic structuring. To provide a better

understanding of the emission bandshape of this family of compounds, we sought to identify the

vibrations responsible for the origin of this multi-peak emission spectrum by following the protocol


described in the Supporting Information (Figures S36-S40). Our analysis shows that ³MLCT/³LC

emission spectra can be viewed as several superimposed progressions of different bandshapes.

Contributions are due to mixed excitation of several effective vibrational modes (C-C and C-N

stretching, C-H wagging and valence deformation such as CCH, CCC, CCN of phenylpyridine and ancillary ligand) and are spread over the three bidentate ligands. Concerning ${}^{3}MLCT/{}^{3}LL'CT$ emission, our analysis detailed in the Supporting Information (Figures S36-S40) allows us to identify the apparent emission maximum mainly as the $v_{0\rightarrow1}$ vibronic contribution corresponding to an effective mode involving in-plane C-H_{aromatic} wagging and C-C stretching localized solely on the ancillary ligand.

For **1b** the calculated emission spectrum for the ³MLCT/³LL'CT state (red trace on Figure 11) appears as a broader, less structured band red-shifted relative to the calculated ³MLCT/³LC emission band (blue trace on Figure 11). An overlay of these two bands matches well the experimentally observed emission profile (green trace on Figure 11) with extremely good agreement over the position of emission maxima. This thereby provides further corroboration of the assignment of dual emission from both ³MLCT/³LL'CT and ³MLCT/³LC states of near equal energy.

Figure 11. Comparison of calculated vibrationally-resolved emission spectra for **1b** at 300 K from the ${}^{3}\text{MLCT}/{}^{3}\text{LC}_{\text{left}}$ and ${}^{3}\text{MLCT}/{}^{3}\text{LL}'\text{CT}$ states (ethanol, SMD) with the experimentally observed emission spectrum in room temperature acetonitrile solution.

Matrix effects. As shown in Figure 10, the energy gaps between the different triplet states are particularly small for **1a** and **2b**. Despite this quasi-degeneracy, the energy and fine structure of the emission bands unambiguously indicate a pure C^N-based emission, instead of dual emission. This is

confirmed by theory, which also rules out emission from the ancillary-based triplet state. At this stage

one can propose either that the N^N-based triplet state is not populated, or that it has other modes of

deactivation. Low-temperature spectroscopic data should bring further insights into this discussion.

The large energy splitting between the two triplet states of complex 2c would, at first sight, orient the

system towards systematic N^N-based emission. However at 77 K in the frozen matrix, C^N-based

emission is observed instead. This initially puzzling result is moderated by the variable temperature

luminescence data (Figure 7), where emission from the ancillary ligand-based state appears as soon as

100-110 K. The first hypothesis that can be put forward invokes matrix effects on the relative energies

of the triplet states, and thus also on the barrier for their conversion. According to Meyer, ⁶⁰ with the

solvent being frozen to accommodate the complex in its ground state, excited states with similar

dipole moment to the ground state will be stabilised to a greater degree in the frozen matrix than

excited states with a significantly different dipole moment. For the ground and ³LC-admixed states the

dipole moment bisects the rings of the ancillary ligand for 1a and has similar magnitude (15.1-15.5 D)

in magnitude (4.73 D, Figure S41). Therefore one expects the ³MLCT/³LL'CT state to be significantly

but in the ³LL'CT state is nearly orthogonal in direction compared to the ground state and is smaller

destabilized with respect to the ³MLCT/³LC state in frozen matrices, possibly leading to state

reordering. As a result, no emission is observed from the N^N-based state for 2c at 77 K. As soon as

the matrix becomes more fluid, the N^N-based state starts to contribute to the experimental emission

spectrum from 110 K (dual emission), and pure N^N-based emission is observed at and above 120 K

(Figure 7). For 1c the larger energy spacing between the ³MLCT/³LL'CT and ³MLCT/³LC states

compared to 2c results in retention of ³MLCT/³LL'CT-based emission as the dominant feature at 77

K. However, the two states are evidently brought into much closer proximity in the glass matrix

revealed by the appearance of weaker vibronic progressions and dual-emission in low temperature

spectra (vide supra).

Triplet-triplet interconversion pathways. Despite the fact that rigidity effects are not included in our

calculations, purely thermodynamic considerations (energy gaps between triplet states) are not

sufficient to rationalize the totality of the photoluminescence data. We therefore also envisaged

kinetic considerations through the calculation of energy paths for triplet-triplet state interconversions,

in order to obtain the corresponding energy barriers. First we start by describing the structural changes

between the various triplet states.

Upon examination of the major changes to bond lengths between the optimised geometries of the

ground states, left and right ³MLCT/³LC states and the ³MLCT/³LL'CT state, a clear common picture

emerges for the ligand hosting the electron density in the excited state; this involves a shortening of

the intercyclic bond and lengthening of the β - γ bond in the most π -accepting ring, i.e. py in ppy and

dfppy, and the 6-membered ring in the ancillary ligand (see bonds highlighted in bold in Figure 12).

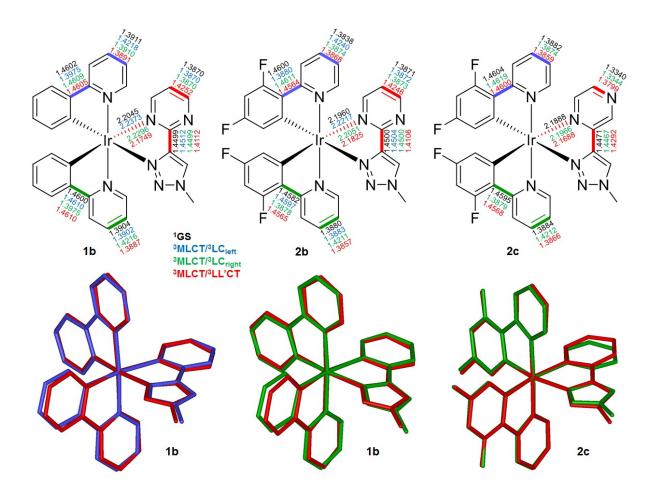
For the ³MLCT/³LC states the intercyclic C-C bond is observed to shorten by ~0.06 Å (compared to

the ground state) for the C^N ligand on which the state is localised (as observed in the localised

 3 MLCT state of [Ru(bpy)₃]²⁺). 61 This is accompanied by an elongation of the C-C bond at the β-γ

bond of the pyridine ring (also highlighted bold in Figure 12). The Ir-N bond to the 6-membered

heterocycle of the N^N ligand is observed to elongate compared to the ground state. In the


³MLCT/³LL'CT state these C^N bonds return to their approximate ground state values, whereas the

intercyclic C-C bond of the ancillary ligand (receiving the electron density) is observed to shorten

compared to those in the ground and ³MLCT/³LC states whilst the β-γ C-C/N bond of the 6-

membered ring elongates. This is accompanied by a shortening of the Ir-N bond to the

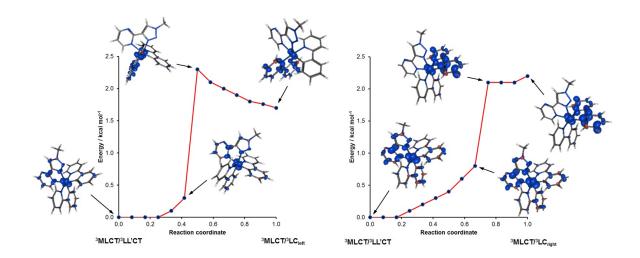

pyridine/pyrimidine/pyrazine ring compared to both the ground and ³LC-admixed states.

Figure 12. Top: Summary of lengths (Å) of key selected bonds (highlighted in bold) for the ¹GS (black numbers), ³MLCT/³LC_{left} (blue numbers), ³MLCT/³LC_{right} (green numbers) and ³MLCT/³LL'CT (red numbers) states of **1b**, **2b** and **2c**. Bottom: overlay of equilibrium geometries for ³MLCT/³LL'CT (red), ³MLCT/³LC_{left} (blue), ³MLCT/³LC_{right} (green) states of **1b** and **2c**.

Figure 12 (bottom) displays overlaid geometries for **1b** and **2c**. These reveal large structural differences between the ³LC- and ³LL'CT-admixed states for these complexes. For example, the plane of the pyrazine ring in **2c** is significantly inclined with respect to the N-Ir-N plane in the ³MLCT/³LL'CT state, resulting in a change in the position of the atoms for this ring compared to the ³MLCT/³LC_{right} state. At 77 K the rigid glass matrix impedes these atomic motions and leads to destabilisation of the ³LL'CT-admixed state. In combination with the likely larger effect due to the change in the dipole moment with respect to that of the ground state (*vide supra*), this traps **1b** and **2c** in the ³MLCT/³LC state giving rise to structured emission profiles comparable to those observed for

the corresponding complexes 1a, 2a and 2b. Above the glass transition temperature these intramolecular and solvent motions are enabled, leading to ³MLCT/³LL'CT state emission for 2c and to dual emission for 1b.

Figure 13. Spin density plots and T_1 PES minimum energy path between the ${}^3MLCT/{}^3LL$ 'CT state and ${}^3MLCT/{}^3LC_{left}$ (left panel) and ${}^3MLCT/{}^3LC_{right}$ (right panel) states for **1b** from a nudged elastic band optimisation calculation (MeCN using SMD model).

Nudged elastic band (NEB) calculations⁶²⁻⁶³ have recently emerged as a powerful tool for exploring the minimum energy path between excited state minima and thus characterising excited state PES topologies of photoactive metal complexes.⁶⁴⁻⁶⁵ We therefore carried out NEB minimum energy path (MEP) calculations between both the ³MLCT/³LC state minima and ³MLCT/³LL'CT state minimum of **1b** (Figures 13), between the ³MLCT/³LC_{left} and ³MLCT/³LC_{right} state minima for **1b** (Figure S42), and between the ³MLCT/³LC and ³MLCT/³LL'CT state minima for **2c** (Figure S43). Concerning the ³MLCT/³LC_{left} - ³MLCT/³LC_{right} interconversion, two nearly-degenerate states of the same electronic nature, in equilibrium with one another, behave like a single emissive state (as suggested by Tor for heteroleptic Ru(II) complexes).⁵⁹ NEB calculations between ³MLCT/³LC_{left} and ³MLCT/³LC_{right} in the case of **1b** (Figure S42) were particularly difficult to converge with oscillations between two electronic states. This could possibly be interpreted as an equilibrium between the two C^N-based states, as illustrated by the presence of both states along the whole MEP, and in agreement with transient absorption data .

As can be seen from the MEPs, the conversions between states of different electronic nature (different

orbital parentage) take place through a sharp transition with an abrupt change in energy accompanied

by a sudden switch in the spin density localisation, instead of a gradual mixing of the two states (no

transition state with mixed spin density could be captured). Thus the transitions observed here suggest

a crossing point between two weakly coupled excited states, and suggests that transition between

these states operates via "through space" rather than "through bond" coupling. This is reminiscent of

the interligand electron hopping characterized by ESR⁶⁶ and reproduced in dynamics studies⁶⁷

between localized ³MLCT states of [Ru(bpy)₃]²⁺. Returning to this work, even though no transition

state (TS) could be analytically captured, the tangent to the PES at the highest energy point is a good

estimate of the TS mode of the saddle point. For complexes 1a and 1b, visualization of these TS

modes (Figure S44) shows a seesaw motion of the C^N ligand not involved in the electron transfer, in

line with the proposed through-space mechanism for the ³MLCT/³LC_{left}-³MLCT/³LL'CT population

transfer.

The topology of the state crossing exemplified on Figure 13 is particularly unfavourable to conversion

by tunnelling effects, given the large difference in the slopes of the two surfaces. Therefore, the

conversion may only occur by vibrational coupling. In an attempt to identify key bond vibrations that

are involved in the conversion between ³MLCT/³LL'CT and ³MLCT/³LC_{left} states through appropriate

promoting modes, calculation of dimensionless displacement of nuclear coordinates (DDNC) was

carried out for 1b. This reveals a number of vibrations that lead to major productive geometrical

changes at 963 (Ir-C and Ir-N bonds towards C^N ligand), 989 (Ir-N bonds towards N^N ligand),

1302 (triazole ring and intercyclic bond of the C^N left ligand) and 1399 cm⁻¹ (intercyclic bond of the

N^N ligand).

We have examined the variation of the bond lengths shown in bold in Figure 12 along the MEP

between ³MLCT/³LC_{left} and ³MLCT/³LL'CT states for **1b** (Figure 13). This reveals that the lengths of

both the intercyclic C-C bond and the β - γ C-C bond of the pyridine ring of the ppy ligand trans to

pyrimidine are largely invariant throughout the MEP, as would be expected given that at no point does

it host the excited electron. However the corresponding bonds for the other ppy ligand trans to

triazole (on which the ³MLCT/³LC_{left} state excited electron resides) as well as the highlighted bonds

for the ancillary N^N ligand, undergo an abrupt change at the transition (Figure S45). On either side

of this abrupt transition these bond lengths are also largely invariant. On the other hand, examination

of the Ir-N bond to the pyrimidine ring reveals a continual contraction along the MEP from

³MLCT/³LC_{left} to ³MLCT/³LL'CT. An analysis of the structural changes along the MEP between the

³MLCT/³LC_{right} and ³MLCT/³LL'CT states reveals an almost identical picture with regards Ir-N and

N^N-based bond length changes except that the C^N bond length changes occur in the other ppy

ligand. The contraction of this Ir-N bond may therefore provide a strong candidate for a convenient

reaction coordinate along which ${}^{3}MLCT/{}^{3}LC \rightarrow {}^{3}MLCT/{}^{3}LL$ 'CT state switching may occur.

Origin of dual emission and the mechanism of excited state interconversion. The combined data

allow significant insight into the photophysical behaviour of the presented complexes and indeed the

broader class of heteroleptic iridium(III) complexes to which they belong. A set of schematic potential

energy surfaces are depicted in Figure 14 (except compounds 3a-c which only possess one emissive

state) to summarize our interpretation of the data. In an attempt to classify the compounds in terms of

their photophysical properties we subdivide the Ir-emitters studied in this work into three classes.

For complexes 1a, 2a and 2b (Class I emitters, Figure 14), excitation from the ground state followed

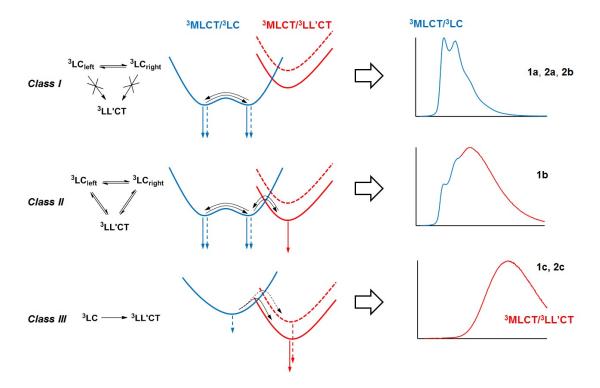
by rapid intersystem crossing results in selective population of the ³MLCT/³LC states with a rise time

of 0.2 ps as inferred from TA data. In this case, we have assigned the decay time of 5-15 ps to the

equilibration between the two ³MLCT/³LC states. 1a and 2a-2b are therefore phosphorescent from

two equilibrated C^N-based states, an equilibrium which does not favour emission from the ancillary

ligand-based state, both at room temperature and in frozen matrix where the N^N-based state is


destabilised further. Hence these complexes are actually quasi-dual emitters, but their two emissions

are not resolved.

For 1c and 2c (Class III emitters) only a single C^N-based ³MLCT/³LC state can be located, and is

higher in energy than their N^N-based state. Transient absorption data reveal that this initial

photoexcited ³MLCT/³LC state, rising in 0.1-0.2 ps, is rapidly depopulated in 1-2 ps and yields the vibrationally hot ³MLCT/³LL'CT state, subsequent vibrational relaxation of the latter requiring 20-25 ps. Only at cryogenic temperatures is an emission contribution from the ³MLCT/³LC state apparent, thus, these are quasi-dual emitters (very minor C^N-based contribution) until about 120 K. Rigid matrix effects enable the observation of the two emissions since it destabilises the N^N-based state much more than the C^N-based state.

Figure 14. Qualitative potential energy surface diagram describing the excited state evolution and emission behaviour of Class I (**1a**, **2a** & **2b**), Class II (**1b**) and Class III (**1c**, **2c**) emissive $[Ir(C^N)_2(N^N)]^+$ complexes. Downward arrows represent radiative deactivation pathways. Solid lines and arrows represent processes in fluid solutions, dashed lines and arrows represent process in cryogenic glass matrices at 77 K.

The most singular compound in this study is **1b** (Class II), which emerges as a particularly robust dual emitter over a broad range of temperatures and solvents. According to Watts and Crosby,⁶⁸⁻⁷⁰ dual emission may be observed when two emissive states, almost isoenergetic and weakly coupled, produce two independent emissions.⁵⁹ Here, the initially populated ³MLCT/³LC states of **1b**, which

appear in 0.15 ps, undergo rapid equilibration with, and partial population transfer to the

³MLCT/³LL'CT state established in 12 ps, as indicated by transient absorption spectroscopy. This

ensemble of states then gives rise to the observed dual emission character in steady state emission

spectra. This unique combination causes the two radiative deactivation modes to be competitive, and

remarkably they remain so up to 60 °C.

Conclusion

A thorough experimental and theoretical survey of the photoluminescence characteristics of a series of

heteroleptic biscyclometalated iridium(III) complexes has been reported. The results reveal

modulation of the energies of the ³MLCT/³LC and ³MLCT/³LL'CT states through variation of the

cyclometalated and ancillary ligands that enable selection of emission from one or other of these

states, and importantly, for dual-emission to be achieved as a result of radiative decay from both

states. Ultrafast transient absorption spectroscopy has enabled us to identify spectral features that are

highly characteristic of these two different key excited states, clearly allowing us to observe the

occurrence of interligand energy transfer from initially populated ³MLCT/³LC states to

³MLCT/³LL'CT states. These transient excited state spectral signatures further enable us to observe

the equilibration between ³MLCT/³LC and ³MLCT/³LL'CT excited states where steady-state dual

emission from both is evident.

In order to rationalise the observation of dual emission and energy transfer processes in the complexes

reported, one needs to take into account the existence, in some cases, of two distinct C^N ligand-

based ³MLCT/³LC states, and the effect at cryogenic temperatures of the rigid matrix on the relative

energy of the N^N ancillary ligand-based ³MLCT/³LL'CT state. Changes to spectroscopic behaviour

between frozen glass and fluid solution are governed by the change in dipole moment between ground

and excited states, leading here to a destabilisation of the ³MLCT/³LL'CT state by the cryogenic rigid

matrix.

Key structural changes between the ³MLCT/³LC and ³MLCT/³LL'CT states have been deciphered

through computational calculations, suggesting that vibration of a Ir-N bond between the metal and

N^N ancillary ligand principally mediates the ³MLCT/³LC-³MLCT/³LL'CT interconversion observed

in 1b, 1c and 2c and allow us to provide fundamental mechanistic insights into the interligand energy

transfer processes that these complexes undergo after photoexcitation. Further studies on well-

established literature benchmark complexes are currently underway to assess the translation of these

insights to a wider range of complexes. This work therefore provides illuminating insights into the

fundamental photophysical properties of this industrially important class of phosphorescent

complexes that represent a cornerstone of modern photophysics and photochemistry.

Acknowledgements

The authors thank the University of Huddersfield (P.A.S, L.C., A.C., D.A.W.R., C.R.R. & P.I.P.E.)

for supporting this work. The computational work performed in Toulouse used HPC resources from

CALMIP (Grant 2016-[p1112]) (I.M.D J.-L.H. & F.A.). We also thank the Australian Research

Council (grant LE130100052) and Curtin University for support (A.R. & M.M.). We thank Stephen

Boyer at London Metropolitan University for carrying out elemental microanalysis.

Experimental Section

General methods as well as synthetic descriptions for ligands and complexes are provided in the

Supporting Information along with computational details.

Conflicts of interest

The authors have no conflicts of interest to declare.

ORCID

37

Inorg. Chem. 2020, 59, 1785–1803

DOI: 10.1021/acs.inorgchem.9b03003

Paul Elliott 0000-0003-1570-3289

Paul Scattergood 0000-0001-9070-5933

Daniel Ross 0000-0002-5480-9978

Craig Rice 0000-0002-0630-4860

Samantha Hardman 0000-0002-8310-4758

Isabelle Dixon 0000-0001-5551-6715

Massimiliano Massi 0000-0001-6949-4019

Anna Ranieri 0000-0002-4612-2121

Fabienne Alary 0000-0003-4154-0815

Supplementary Information: Experimental descriptions, synthesis of ligands and complexes, ¹H and ¹³C NMR spectra and mass spectrometry data (Figures S1-S25), crystallographic data, transient absorption data for **2a-c**, computational details, spin densities, calculated absorption and emission spectra, analysis of vibrationally resolved emission spectra and xyz coordinates for optimised minima.

References

- Lai, P.-N.; Brysacz, C. H.; Alam, M. K.; Ayoub, N. A.; Gray, T. G.; Bao, J.; Teets, T. S., Highly Efficient Red-Emitting Bis-Cyclometalated Iridium Complexes. *Journal of the American Chemical Society* 2018, 140 (32), 10198-10207.
- 2. Na, H.; Teets, T. S., Highly Luminescent Cyclometalated Iridium Complexes Generated by Nucleophilic Addition to Coordinated Isocyanides. *Journal of the American Chemical Society* **2018**, *140* (20), 6353-6360.

- 3. Baldo, M. A.; Thompson, M. E.; Forrest, S. R., High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer. *Nature* **2000**, *403* (6771), 750-753.
- 4. Costa, R. D.; Ortí, E.; Bolink, H. J.; Graber, S.; Schaffner, S.; Neuburger, M.; Housecroft, C. E.; Constable, E. C., Archetype cationic iridium complexes and their use in solid-state light-emitting electrochemical cells. *Advanced Functional Materials* **2009**, *19* (21), 3456-3463.
- Costa, R. D.; Ortí, E.; Bolink, H. J.; Monti, F.; Accorsi, G.; Armaroli, N., Luminescent ionic transition-metal complexes for light-emitting electrochemical cells. *Angewandte Chemie -International Edition* 2012, 51 (33), 8178-8211.
- Ertl, C. D.; Momblona, C.; Pertegás, A.; Junquera-Hernández, J. M.; La-Placa, M.-G.;
 Prescimone, A.; Ortí, E.; Housecroft, C. E.; Constable, E. C.; Bolink, H. J., Highly Stable Red-Light-Emitting Electrochemical Cells. *Journal of the American Chemical Society* 2017, 139 (8), 3237-3248.
- King, S. M.; Claire, S.; Teixeira, R. I.; Dosumu, A. N.; Carrod, A. J.; Dehghani, H.; Hannon, M. J.; Ward, A. D.; Bicknell, R.; Botchway, S. W.; Hodges, N. J.; Pikramenou, Z., Iridium Nanoparticles for Multichannel Luminescence Lifetime Imaging, Mapping Localization in Live Cancer Cells. *Journal of the American Chemical Society* 2018, 140 (32), 10242-10249.
- 8. Lo, K. W.; Louie, M. W.; Zhang, K. Y., Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. *Coordination Chemistry Reviews* **2010**, *254* (21-22), 2603-2622.
- 9. Yip, A. M. H.; Lo, K. K. W., Luminescent rhenium(I), ruthenium(II), and iridium(III) polypyridine complexes containing a poly(ethylene glycol) pendant or bioorthogonal reaction group as biological probes and photocytotoxic agents. *Coordination Chemistry Reviews* **2018**, *361*, 138-163.
- Caporale, C.; Bader, C. A.; Sorvina, A.; MaGee, K. D. M.; Skelton, B. W.; Gillam, T. A.;
 Wright, P. J.; Raiteri, P.; Stagni, S.; Morrison, J. L.; Plush, S. E.; Brooks, D. A.; Massi, M.,
 Investigating Intracellular Localisation and Cytotoxicity Trends for Neutral and Cationic Iridium

- Tetrazolato Complexes in Live Cells. *Chemistry A European Journal* **2017,** *23* (62), 15666-15679.
- 11. Caporale, C.; Massi, M., Cyclometalated iridium(III) complexes for life science. *Coordination Chemistry Reviews* **2018**, *363*, 71-91.
- Sorvina, A.; Bader, C. A.; Darby, J. R. T.; Lock, M. C.; Soo, J. Y.; Johnson, I. R. D.; Caporale,
 C.; Voelcker, N. H.; Stagni, S.; Massi, M.; Morrison, J. L.; Plush, S. E.; Brooks, D. A.,
 Mitochondrial imaging in live or fixed tissues using a luminescent iridium complex. *Scientific Reports* 2018, 8 (1), 8191.
- 13. Tso, K. K. S.; Liu, H. W.; Lo, K. K. W., Phosphorogenic sensors for biothiols derived from cyclometalated iridium(III) polypyridine complexes containing a dinitrophenyl ether moiety.

 *Journal of Inorganic Biochemistry 2017, 177, 412-422.
- 14. Guo, W.; Ding, H.; Gu, C.; Liu, Y.; Jiang, X.; Su, B.; Shao, Y., Potential-Resolved Multicolor Electrochemiluminescence for Multiplex Immunoassay in a Single Sample. *Journal of the American Chemical Society* **2018**, *140* (46), 15904-15915.
- Nam, J. S.; Kang, M.-G.; Kang, J.; Park, S.-Y.; Lee, S. J. C.; Kim, H.-T.; Seo, J. K.; Kwon, O.-H.; Lim, M. H.; Rhee, H.-W.; Kwon, T.-H., Endoplasmic Reticulum-Localized Iridium(III)
 Complexes as Efficient Photodynamic Therapy Agents via Protein Modifications. *Journal of the American Chemical Society* 2016, 138 (34), 10968-10977.
- McKenzie, L. K.; Bryant, H. E.; Weinstein, J. A., Transition metal complexes as photosensitisers in one- and two-photon photodynamic therapy. *Coordination Chemistry Reviews* 2019, 379, 2-29.
- 17. Yi, S.; Lu, Z.; Zhang, J.; Wang, J.; Xie, Z.; Hou, L., Amphiphilic Gemini Iridium(III) Complex as a Mitochondria-Targeted Theranostic Agent for Tumor Imaging and Photodynamic Therapy.

 **ACS Applied Materials and Interfaces 2019, 11 (17), 15276-15289.
- 18. Skubi, K. L.; Kidd, J. B.; Jung, H.; Guzei, I. A.; Baik, M.-H.; Yoon, T. P., Enantioselective Excited-State Photoreactions Controlled by a Chiral Hydrogen-Bonding Iridium Sensitizer. *Journal of the American Chemical Society* 2017, 139 (47), 17186-17192.

- Curtin, P. N.; Tinker, L. L.; Burgess, C. M.; Cline, E. D.; Bernhard, S., Structure-activity correlations among iridium(III) photosensitizers in a robust water-reducing system. *Inorganic Chemistry* 2009, 48 (22), 10498-10506.
- Disalle, B. F.; Bernhard, S., Orchestrated photocatalytic water reduction using surface-adsorbing iridium photosensitizers. *Journal of the American Chemical Society* 2011, 133 (31), 11819-11821.
- 21. McDaniel, N. D.; Coughlin, F. J.; Tinker, L. L.; Bernhard, S., Cyclometalated iridium(III) aquo complexes: Efficient and tunable catalysts for the homogeneous oxidation of water. *Journal of the American Chemical Society* **2008**, *130* (1), 210-217.
- 22. Tinker, L. L.; Bernhard, S., Photon-driven catalytic proton reduction with a robust homoleptic iridium(III) 6-phenyl-2,2'-bipyridine complex ([Ir(C^N^N)₂]⁺). *Inorganic Chemistry* **2009**, 48 (22), 10507-10511.
- 23. Henwood, A. F.; Zysman-Colman, E., Lessons learned in tuning the optoelectronic properties of phosphorescent iridium(iii) complexes. *Chemical Communications* **2017**, *53* (5), 807-826.
- 24. Colombo, M. G.; Brunold, T. C.; Riedener, T.; Güdel, H. U.; Förtsch, M.; Bürgi, H. B., Facial Tris Cyclometalated Rh3+ and Ir3+ Complexes: Their Synthesis, Structure, and Optical Spectroscopic Properties. *Inorganic Chemistry* **1994**, *33* (3), 545-550.
- Ladouceur, S.; Zysman-Colman, E., A comprehensive survey of cationic Iridium(III) complexes bearing nontraditional ligand chelation motifs. *European Journal of Inorganic Chemistry* 2013, (17), 2985-3007.
- Lamansky, S.; Djurovich, P.; Murphy, D.; Abdel-Razzaq, F.; Lee, H. E.; Adachi, C.; Burrows, P. E.; Forrest, S. R.; Thompson, M. E., Highly phosphorescent bis-cyclometalated iridium complexes: Synthesis, photophysical characterization, and use in organic light emitting diodes.
 Journal of the American Chemical Society 2001, 123 (18), 4304-4312.
- Maestri, M.; Sandrini, D.; Balzani, V.; von Zelewsky, A.; Deuschel□Cornioley, C.; Jolliet, P.,
 Absorption Spectra and Luminescence Properties of Isomeric Platinum (II) and Palladium (II)

- Complexes containing 1,1′□ biphenyldiyl, 2□ phenylpyridine, and 2,2′□ bipyridine as ligands. *Helvetica Chimica Acta* **1988**, *71* (5), 1053-1059.
- 28. Tschierlei, S.; Neubauer, A.; Rockstroh, N.; Karnahl, M.; Schwarzbach, P.; Junge, H.; Beller, M.; Lochbrunner, S., Ultrafast excited state dynamics of iridium(iii) complexes and their changes upon immobilisation onto titanium dioxide layers. *Physical Chemistry Chemical Physics* 2016, 18 (16), 10682-10687.
- Pomarico, E.; Silatani, M.; Messina, F.; Braem, O.; Cannizzo, A.; Barranoff, E.; Klein, J. H.;
 Lambert, C.; Chergui, M., Dual luminescence, interligand decay, and nonradiative electronic relaxation of cyclometalated iridium complexes in solution. *Journal of Physical Chemistry C* 2016, 120 (30), 16459-16469.
- 30. Mydlak, M.; Bizzarri, C.; Hartmann, D.; Sarfert, W.; Schmid, G.; De Cola, L., Positively Charged Iridium(III) Triazole Derivatives as Blue Emitters for Light-Emitting Electrochemical Cells. *Advanced Functional Materials* **2010**, *20* (11), 1812-1820.
- 31. Welby, C. E.; Gilmartin, L.; Marriott, R. R.; Zahid, A.; Rice, C. R.; Gibson, E. A.; Elliott, P. I. P., Luminescent biscyclometalated arylpyridine iridium(iii) complexes with 4,4'-bi-1,2,3-triazolyl ancillary ligands. *Dalton Transactions* **2013**, *42* (37), 13527-13536.
- 32. Felici, M.; Contreras-Carballada, P.; Smits, J. M. M.; Nolte, R. J. M.; Williams, R. M.; De Cola, L.; Feiters, M. C., Cationic Heteroleptic Cyclometalated IridiumIII Complexes Containing Phenyl-Triazole and Triazole-Pyridine Clicked Ligands. *Molecules* **2010**, *15* (3), 2039-2059.
- 33. Fernández-Hernández, J. M.; Ladouceur, S.; Shen, Y.; Iordache, A.; Wang, X.; Donato, L.; Gallagher-Duval, S.; de Anda Villa, M.; Slinker, J. D.; De Cola, L.; Zysman-Colman, E., Blue light emitting electrochemical cells incorporating triazole-based luminophores. *Journal of Materials Chemistry C* 2013, *1* (44), 7440-7452.
- 34. Suzuki, K.; Kobayashi, A.; Kaneko, S.; Takehira, K.; Yoshihara, T.; Ishida, H.; Shiina, Y.; Oishi, S.; Tobita, S., Reevaluation of absolute luminescence quantum yields of standard solutions using a spectrometer with an integrating sphere and a back-thinned CCD detector. *Physical Chemistry Chemical Physics* **2009**, *11* (42), 9850-9860.

- 35. Gitlina, A. Y.; Ivonina, M. V.; Sizov, V. V.; Starova, G. L.; Pushkarev, A. P.; Volyniuk, D.; Tunik, S. P.; Koshevoy, I. O.; Grachova, E. V., A rare example of a compact heteroleptic cyclometalated iridium(iii) complex demonstrating well-separated dual emission. *Dalton Transactions* 2018, 47 (22), 7578-7586.
- 36. Kumar, S.; Hisamatsu, Y.; Tamaki, Y.; Ishitani, O.; Aoki, S., Design and Synthesis of Heteroleptic Cyclometalated Iridium(III) Complexes Containing Quinoline-Type Ligands that Exhibit Dual Phosphorescence. *Inorganic Chemistry* **2016**, *55* (8), 3829-3843.
- 37. Ladouceur, S.; Donato, L.; Romain, M.; Mudraboyina, B. P.; Johansen, M. B.; Wisner, J. A.; Zysman-Colman, E., A rare case of dual emission in a neutral heteroleptic iridium(iii) complex. *Dalton Transactions* **2013**, *42* (24), 8838-8847.
- 38. Lo, K. W.; Zhang, K. Y.; Leung, S. K.; Tang, M. C., Exploitation of the dual-emissive properties of cyclometalated iridium(III)-polypyridine complexes in the development of luminescent biological probes. *Angewandte Chemie International Edition* **2008**, *47* (12), 2213-2216.
- 39. Yeh, Y. S.; Cheng, Y. M.; Chou, P. T.; Lee, G. H.; Yang, C. H.; Chi, Y.; Shu, C. F.; Wang, C. H., A new family of homoleptic Ir(III) complexes: Tris-pyridyl azolate derivatives with dual phosphorescence. *ChemPhysChem* **2006**, *7* (11), 2294-2297.
- Zhang, K. Y.; Liu, H. W.; Tang, M. C.; Choi, A. W. T.; Zhu, N.; Wei, X. G.; Lau, K. C.; Lo, K. K. W., Dual-Emissive Cyclometalated Iridium(III) Polypyridine Complexes as Ratiometric Biological Probes and Organelle-Selective Bioimaging Reagents. *Inorganic Chemistry* 2015, 54 (13), 6582-6593.
- 41. You, Y.; Lee, S.; Kim, T.; Ohkubo, K.; Chae, W.-S.; Fukuzumi, S.; Jhon, G.-J.; Nam, W.; Lippard, S. J., Phosphorescent Sensor for Biological Mobile Zinc. *Journal of the American Chemical Society* **2011**, *133* (45), 18328-18342.
- 42. You, Y.; Han, Y.; Lee, Y.-M.; Park, S. Y.; Nam, W.; Lippard, S. J., Phosphorescent Sensor for Robust Quantification of Copper(II) Ion. *Journal of the American Chemical Society* **2011**, *133* (30), 11488-11491.

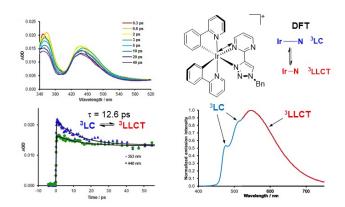
- 43. Zhang, K. Y.; Gao, P.; Sun, G.; Zhang, T.; Li, X.; Liu, S.; Zhao, Q.; Lo, K. K.-W.; Huang, W., Dual-Phosphorescent Iridium(III) Complexes Extending Oxygen Sensing from Hypoxia to Hyperoxia. *Journal of the American Chemical Society* **2018**, *140* (25), 7827-7834.
- 44. Sajoto, T.; Djurovich, P. I.; Tamayo, A. B.; Oxgaard, J.; Goddard, W. A.; Thompson, M. E., Temperature Dependence of Blue Phosphorescent Cyclometalated Ir(III) Complexes. *Journal of the American Chemical Society* **2009**, *131* (28), 9813-9822.
- 45. King, K. A.; Watts, R. J., Dual Emission from an Ortho-Metalated Ir(III) Complex. *Journal of the American Chemical Society* **1987**, *109* (5), 1589-1590.
- 46. Bevernaegie, R.; Marcélis, L.; Moreno-Betancourt, A.; Laramée-Milette, B.; Hanan, G. S.; Loiseau, F.; Sliwa, M.; Elias, B., Ultrafast charge transfer excited state dynamics in trifluoromethyl-substituted iridium(iii) complexes. *Physical Chemistry Chemical Physics* 2018, 20 (43), 27256-27260.
- 47. Cho, Y.-J.; Kim, S.-Y.; Son, H.-J.; Cho, D. W.; Kang, S. O., The effect of interligand energy transfer on the emission spectra of heteroleptic Ir complexes. *Physical Chemistry Chemical Physics* **2017**, *19* (13), 8778-8786.
- 48. Felici, M.; Contreras-Carballada, P.; Vida, Y.; Smits, J. M. M.; Nolte, R. J. M.; De Cola, L.; Williams, R. M.; Feiters, M. C., IrIII and RuII Complexes Containing Triazole-Pyridine Ligands: Luminescence Enhancement upon Substitution with β-Cyclodextrin. *Chemistry A European Journal* 2009, 15 (47), 13124-13134.
- 49. Wang, X.; Yang, H.; Wen, Y.; Wang, L.; Li, J.; Zhang, J., Comprehension of the Effect of a Hydroxyl Group in Ancillary Ligand on Phosphorescent Property for Heteroleptic Ir(III) Complexes: A Computational Study Using Quantitative Prediction. *Inorganic Chemistry* 2017, 56 (15), 8986-8995.
- Arroliga-Rocha, S.; Escudero, D., Facial and Meridional Isomers of Tris(bidentate) Ir(III)
 Complexes: Unravelling Their Different Excited State Reactivity. *Inorganic Chemistry* 2018, 57 (19), 12106-12112.

- 51. Escudero, D.; Heuser, E.; Meier, R. J.; Schäferling, M.; Thiel, W.; Holder, E., Unveiling photodeactivation pathways for a new iridium(III) cyclometalated complex. *Chemistry A European Journal* **2013**, *19* (46), 15639-15644.
- 52. Zhou, X.; Burn, P. L.; Powell, B. J., Bond Fission and Non-Radiative Decay in Iridium(III) Complexes. *Inorganic Chemistry* **2016**, *55* (11), 5266-5273.
- 53. Treboux, G.; Mizukami, J.; Yabe, M.; Nakamura, S., Blue phosphorescent iridium(III) complex.

 A reaction path on the triplet potential energy surface. *Chemistry Letters* **2007**, *36* (11), 1344-1345.
- 54. Zhou, X.; Powell, B. J., Nonradiative Decay and Stability of N-Heterocyclic Carbene Iridium(III) Complexes. *Inorganic Chemistry* **2018**, *57* (15), 8881-8889.
- 55. Baranoff, E.; Curchod, B. F. E., FIrpic: Archetypal blue phosphorescent emitter for electroluminescence. *Dalton Transactions* **2015**, *44* (18), 8318-8329.
- 56. Baranoff, E.; Curchod, B. F. E.; Monti, F.; Steimer, F.; Accorsi, G.; Tavernelli, I.; Rothlisberger, U.; Scopelliti, R.; Grätzel, M.; Nazeeruddin, M. K., Influence of halogen atoms on a homologous series of bis-cyclometalated iridium(III) complexes. *Inorganic Chemistry* **2012**, *51* (2), 799-811.
- 57. Wang, Y.; Sun, N.; Curchod, B. F. E.; Male, L.; Ma, D.; Fan, J.; Liu, Y.; Zhu, W.; Baranoff, E., Tuning the oxidation potential of 2-phenylpyridine-based iridium complexes to improve the performance of bluish and white OLEDs. *Journal of Materials Chemistry C* **2016**, *4* (17), 3738-3746.
- 58. Escudero, D., Mer-Ir(ppy)3 to Fac-Ir(ppy)3 Photoisomerization. *ChemPhotoChem* **2019**, *3* (9), 697-701.
- Glazer, E. C.; Magde, D.; Tor, Y., Ruthenium Complexes That Break the Rules: Structural Features Controlling Dual Emission. *Journal of the American Chemical Society* 2007, 129 (27), 8544-8551.
- 60. Chen, P.; Meyer, T. J., Electron Transfer in Frozen Media. *Inorganic Chemistry* **1996**, *35* (19), 5520-5524.

- 61. Alary, F.; Heully, J. L.; Bijeire, L.; Vicendo, P., Is the 3MLCT the only photoreactive state of polypyridyl complexes? *Inorganic Chemistry* **2007**, *46* (8), 3154-3165.
- 62. Henkelman, G.; Jóhannesson, G.; Jónsson, H., Methods for finding saddle points and minimum energy paths. *Progress in Theoretical Chemistry and Physics* **2000**, *5*, 269-300.
- 63. Jónsson, H.; Mills, G.; Jacobsen, K. W., Nudged elastic band method for finding minimum energy paths of transitions in *Classical and Quantum Dynamics in Condensed Phase Simulations* 1998, 385-404.
- 64. Soupart, A.; Alary, F.; Heully, J. L.; Elliott, P. I. P.; Dixon, I. M., Exploration of Uncharted 3PES Territory for [Ru(bpy)₃]²⁺: A New 3MC Minimum Prone to Ligand Loss Photochemistry. *Inorganic Chemistry* **2018**, *57* (6), 3192-3196.
- 65. Soupart, A.; Dixon, I. M.; Alary, F.; Heully, J. L., DFT rationalization of the room-temperature luminescence properties of Ru(bpy)₃²⁺ and Ru(tpy)2²⁺: ³MLCT–³MC minimum energy path from NEB calculations and emission spectra from VRES calculations. *Theoretical Chemistry Accounts* **2018**, *137* (3), 37.
- 66. Morris, D. E.; Hanck, K. W.; DeArmond, M. K., ESR studies of the redox orbitals in diimine complexes of iron(II) and ruthenium(II). *Journal of the American Chemical Society* **1983**, *105* (10), 3032-3038.
- 67. Moret, M.-E.; Tavernelli, I.; Chergui, M.; Rothlisberger, U., Electron Localization Dynamics in the Triplet Excited State of [Ru(bpy)3]2+ in Aqueous Solution. *Chemistry A European Journal* **2010,** *16* (20), 5889-5894.
- 68. Crosby, G. A.; Elfring, W. H., Excited states of mixed ligand chelates of ruthenium(II) and rhodium(III). *The Journal of Physical Chemistry* **1976**, *80* (20), 2206-2211.
- 69. Watts, R. J.; Griffith, B. G.; Harrington, J. S., The luminescence of heterobischelated complexes of iridium(III). II. Analysis of the thermally nonequilibrated levels in the luminescence of cisdichloro(1,10-phenanthroline)(4,7-dimethyl-1,10-phenanthroline)iridium(III) chloride. *Journal of the American Chemical Society* **1976**, *98* (3), 674-679.

 $Inorg.\ Chem.\ {\bf 2020}, 59, 1785{-}1803$


DOI: 10.1021/acs.inorgchem.9b03003

70. Watts, R. J.; Van Houten, J., The effect of energy gaps on multiple emissions in heterotrischelated rhodium(III) complexes. *Journal of the American Chemical Society* **1978**, *100* (6), 1718-1721.

ToC entry:

Unravelling the Mechanism of Excited State Interligand Energy Transfer and the Engineering of Dual-Emission in $[Ir(C^{N})_{2}(N^{N})]^{+}$ Complexes

Paul A. Scattergood, Anna M. Ranieri, Luke Charalambou, Adrian Comia, Daniel A.W. Ross, Craig R. Rice, Samantha J.O. Hardman, Jean-Louis Heully, Isabelle M. Dixon, Massimiliano Massi, Fabienne Alary and Paul I.P. Elliott

A combined experimental and theoretical investigation into the engineering of dual-emission from both ligand-centred and ligand-to-ligand charge transfer admixed ³MLCT states in iridium(III) complexes is reported. Our results crucially reveal the mechanism and reaction coordinate for energy transfer between these two states.