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Incremental construction of nested designs based on two-level fractional factorial designs

The incremental construction of nested designs having good spreading properties over the d-dimensional hypercube is considered, for values of d such that the 2 d vertices of the hypercube are too numerous to be all inspected. A greedy algorithm is used, with guaranteed efficiency bounds in terms of packing and covering radii, using a 2 d-m fractional-factorial design as candidate set for the sequential selection of design points. The packing and covering properties of fractional-factorial designs are investigated and a review of the related literature is provided. An algorithm for the construction of fractional-factorial designs with maximum packing radius is proposed. The spreading properties of the obtained incremental designs, and of their lower dimensional projections, are investigated. An example with d = 50 is used to illustrate that their projection in a space of dimension close to d has a much higher packing radius than projections of more classical designs based on Latin hypercubes or low discrepancy sequences.

Introduction

We consider the incremental construction of designs with large packing radius in the d-dimensional hypercube, using the coffee-house rule of [START_REF] Müller | Coffee-house designs[END_REF] and [START_REF] Müller | Collecting Spatial Data[END_REF]Chap. 4]: each new point introduced maximises the distance to its nearest neighbour in the current design. This simple algorithm is known to guarantee an efficiency of 50% in terms of packing and covering radii, for each design size along the construction. Intuitively, when d is large, the first points selected are vertices of the hypercube, and we shall provide arguments that validate this intuition. However, when d is very large, it is impossible to inspect all vertices and select one at every iteration. We show that restriction of the search to fractional factorial designs having a large enough covering radius does not entail any loss of performance up to some design size: an example shows that designs of size up to 2 15 +1 = 32 769, with 50% packing and covering efficiencies, can be constructed in this way when d = 50. The packing and covering properties of these designs when projected on smaller dimension subspaces are investigated. Transformation rules based on rescaling are proposed to generate designs that populate the interior of the hypercube. Numerical computations indicate that the designs obtained have slightly larger covering radii than more classical space-filling designs based on (non-incremental) Latin hypercubes or (incremental) Sobol' low discrepancy sequence, but have significantly larger packing radii.

The paper is organised as follows. Section 1.2 sets notation and recalls the definitions of packing and covering radii and the incremental construction of designs based on the coffee-house rule. The main properties of twolevel fractional factorial designs are recalled in Sections 1.3 and 1.4 to make the paper self-contained. Their spreading properties are investigated in Sections 1.5 (packing radius) and 1.6 (covering radius). An algorithm is given in Sect. 1.5 for the construction of fractional factorial designs with large covering radii. Section 1.7 studies the restriction of the coffee-house rule to two-level fractional factorial designs, and shows that the 50% packing and covering efficiencies are preserved when the fractional factorial design has minimum Hamming distance at least d/4. A rescaling rule is proposed to generate incremental designs not concentrated on the vertices of the hypercube, and properties of projections on smaller dimensional subspaces are investigated. An example in dimension d = 50 illustrates the presentation. Section 1.8 briefly concludes.

Greedy coffee-house design

Let X denote a compact subset of R d with nonempty interior; throughout the paper we consider the case where X is the d-dimensional hypercube C d = [-1, 1] d . Denote by X k = {x 1 , . . . , x k } a k-point design when the ordering of the x i is not important, and by X k = [x 1 , . . . , x k ] the ordered sequence; for 1 ≤ k 1 ≤ k 2 ; X k1:k2 denotes the design formed by [x k1 , x k1+1 , . . . , x k2 ], with X 1:k = X k . The jth coordinate of a design point x i is denoted by

{x i } j , j = 1 . . . , d; x = d i=1 {x} 2 i 1/2
denotes the 2 norm of the vector

x ∈ R d , x 1 = d i=1 |{x} i | (respectively, x ∞ = max i=1,...,d |{x} i |)
is its 1 (respectively, ∞ ) norm. For any x ∈ R d and any k-point design X k in X we denote d(x, X k ) = min i=1,...,k xx i . For x and x two vectors of same size, z = x • x denotes their Hadamard product, with components {z} i = {x} i {x } i . B(x, r) denotes the closed ball with centre x and radius r. For A a finite set, |A | is the number of elements in A .

Space-filling design aims at constructing a set X k of points in X , with given cardinality k, that "fill" X in a suitable way; see, e.g., [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF][START_REF] Pronzato | Design of computer experiments: space filling and beyond[END_REF]. Two measures of performance are standard. The covering radius of X k is defined by

CR(X k ) = max x∈X d(x, X k ) .
(1.1)

It corresponds to the smallest r such that the k closed balls of radius r centred at the x i cover X . CR(X k ) is also called the dispersion of X k [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]Chap. 6] and corresponds to the minimax-distance criterion [START_REF] Johnson | Minimax and maximin distance designs[END_REF] used in space-filling design; small values are preferred. Another widely used geometrical criterion of spreadness is the packing radius

PR(X k ) = 1 2 min xi,xj ∈X k , xi =xj x i -x j . (1.2)
PR(X k ) is also called separating radius, it corresponds to the largest r such that the k open balls of radius r centred at the x i do not intersect; 2 PR(•) corresponds to the maximin-distance criterion [START_REF] Johnson | Minimax and maximin distance designs[END_REF] often used in computer experiments; large values are preferred. We may also consider the combined measure given by the mesh ratio

τ (X k ) = CR(X k ) PR(X k ) ,
with τ (X k ) ≥ 1 for any design X k when X is convex, since the k balls B(x i , PR(X k )) cannot cover X . When the objective is to construct a sequence X k = [x 1 , . . . , x k ] such that PR(X k ) is reasonably large, and/or CR(X k ) is reasonably small, for all k ∈ {2, . . . , n}, the following greedy algorithm is called coffee-house design ( [START_REF] Müller | Coffee-house designs[END_REF], [START_REF] Müller | Collecting Spatial Data[END_REF]Chap. 4]). See also [START_REF] Kennard | Computer aided design of experiments[END_REF] for an early suggestion.

Algorithm 1 (Coffee-house)

0) Select x 1 ∈ X , set S 1 = {x 1 } and k = 1. 1) for k = 1, 2 . . . do find x * ∈ Arg max x∈X d(x, S k ), set S k+1 = S k ∪ {x * }.
The point x * can be obtained by a Voronoï tessellation of X (when d is small enough) or a MCMC method, see [START_REF] Pronzato | Minimax and maximin space-filling designs: some properties and methods for construction[END_REF]. Note that the choice of x * is not necessarily unique. The construction is much easier when a finite candidate set X n with n points is substituted for X at Step 1. In the paper we show that when X = C d , a well-chosen X n yields a drastic simplification of calculations for very large d but does not entail any loss of performance for the greedy algorithm. For a given order of magnitude of the anticipated number of design points to be used, we informally define the notions of small, large and very large dimension d as follows: small d are such that the construction of designs with 2 d points may be considered; large d correspond to situations where the greedy construction above with a candidate set X n containing all 2 d vertices of C d is conceivable; very large d cover cases where exploration of all 2 d vertices of C d is unfeasible. For instance, C 50 has more than 10 15 vertices, a situation considered in Sect. 1.7.

Let CR * n = min Xn CR(X n ) denote the minimum covering radius for an n-point design in X , n ≥ 1, and PR * n = max Xn PR(X n ) denote the maximum packing radius, n ≥ 2. The following property is a consequence of [START_REF] Gonzalez | Clustering to minimize the maximum intercluster distance[END_REF]. 

CR(S k ) ≥ 1 2 (k ≥ 1) and PR(S k ) PR * k ≥ 1 2 (k ≥ 2) . (1.3) Moreover, τ (S k ) ≤ 2 for all k ≥ 2. Proof. By construction, for all k ≥ 1, PR(S k+1 ) = d(x k+1 , S k )/2 = CR(S k )/2. Therefore, for all k ≥ 2, τ (S k ) = CR(S k )/ PR(S k ) = 2 PR(S k+1 )/ PR(S k ) ≤ 2.
Also, from the pigeonhole principle, for any pair of k and (k + 1)-point designs X k and X k+1 , one of the ball B(x i , CR(X k )) with x i in X k contains two points x i and x j of X k+1 , which implies CR(X k ) ≥ PR(X k+1 ). Therefore, for the greedy construction we have in particular CR * k ≥ PR(S k+1 ) = CR(S k )/2 and PR * k+1 ≤ CR(S k ) = 2 PR(S k+1 ).

In the rest of the paper we take X = C d . Take x 1 = 0 d , the null vector of dimension d, which corresponds to the centre of C d . The design 

S 1 = [x 1 ] has thus minimum covering radius, with CR(S 1 ) = √ d. When applying Algorithm 1, for all k such that CR(S k ) = √ d, the point x * chosen at Step 1 is then necessarily a vertex of C d ; that is, x k ∈ {-1, 1} d for k = 2, . . . , k * (d), where k * (d) is the first k such that CR(S k ) < √ d. (Note that it implies that CR * n ≥ √ d/2 for all n ≤ k * (d) - 1 
N V (d) the first k > 1 such that x * chosen at Step 1 is not a vertex of C d (with necessarily k N V (d) ≥ k * (d)); the largest values of k N V (d)
that we have obtained are also indicated in Table 1.1.

The difficulty is that the inspection of all 2 d vertices of C d is unpractical for very large d. The main objective of the paper is therefore to propose a method for selecting a subset X n of 2 d vertices of C d on which Algorithm 1 can be applied, ensuring that max x∈Xn d(x, S k ) = CR(S k ) = √ d for all k ≤ n, with n large enough to allow the construction of designs of practical size. The method relies on the notion of fractional factorial design, the basic properties of which are recalled in the next two sections. Their spreading properties in terms of packing and covering radii are then investigated in Sections 1.5 and 1.6. We prefer not to call those designs "space-filling" since they are supported on the vertices of C d ; they nevertheless satisfy the bounds of Th. 1. 

Two-level fractional factorial designs

This section only gives a brief summary of the topic; one may refer to [START_REF] Box | The 2 k-p fractional factorial designs. part I[END_REF][START_REF] Box | The 2 k-p fractional factorial designs. part II[END_REF] for a thorough and illuminating exposition.

Half fractions: m = 1

A 2 d factorial (or full factorial ) design is formed by the 2 d vertices of

C d ; each design point x i is such that {x i } j ∈ {-1, 1}, i = 1, . . . , 2 d , j = 1, . . . , d.
The notation used for a 2 d factorial design is illustrated in Table 1. by generating equations, or generators, that explain how they are obtained (calculated) from the basic factors. Without any loss of generality, we can suppose that the basic factors correspond to the first d -m coordinates. Table 1.2(b) shows the 2 4-1 fractional factorial design X 

{x} 4 = {x} 1 {x} 2 for all x in X (b) 2 4-1
, and this design does not allow us to estimate separately the main effect of {x} 4 and the interaction {x} 1 {x} 2 ; these effects are said confounded, or aliased. The equation d = ab also implies a = bd and b = ad, showing that the effects of {x} 1 and {x} 2 {x} 4 are confounded, as well as those of {x} 2 and {x} 1 {x} 4 . We say that this design has resolution R = III (notation with a Roman numeral is traditional): no p factor effect is confounded with any other effect containing less than R -p factors, p = 0, . . . , R. For the design in Table 1. (a) a 2 3 factorial design 

X 8 {x} 1 = a {x} 2 =b {x} 3 =c x 1 -1 -1 -1 x 2 1 -1 -1 x 3 -1 1 -1 x 4 -1 -1 1 x 5 1 1 -1 x 6 1 -1 1 x 7 -1 1 1 x 8 1 1 1 (b) a 2 4-1 fractional factorial design X 8 a b c d = abc x 1 -1 -1 -1 -1 x 2 1 -1 -1 1 x 3 -1 1 -1 1 x 4 -1 -1 1 1 x 5 1 1 -1 -1 x 6 1 -1 1 -1 x 7 -1 1 1 -1 x 8 1 1 1 1 (c) another 2 4-1 frac- tional factorial design X 8 a b c d = ab x 1 -1 -1 -1 1 x 2 1 -1 -1 -1 x 3 -1 1 -1 -1 x 4 -1 -1 1 1 x 5 1 1 -1 1 x 6 1 -1 1 -1 x 7 -1 1 1 -1 x 8 1 1 1 1 Table 1.

Several generators

Defining relations A 2 d-m fractional factorial design with m > 1 requires more than one generating equation, and the construction of suitable designs with high resolution has motivated intensive research since the pioneering papers [START_REF] Box | The 2 k-p fractional factorial designs. part I[END_REF][START_REF] Box | The 2 k-p fractional factorial designs. part II[END_REF]. To ensure that the resolution is larger than II, the generating equations are chosen independent, which means that a generator cannot be obtained by multiplying together two other generators. It implies that there are no repetitions within the columns of the design table. If this were not the case, two main effects would be confounded since we would have {x} i = {x} j for some i, j ∈ {1, . . . , d} and all x in the design. The generators are called principal when there are only positive signs in the defining relations. When multiplying the m generating equations by the d independent factors and by themselves in all possible ways, we obtain the complete set of defining relations. Principal defining relations are obtained from principal generators. The complete set of principal defining relations defines a unique fraction, that is a unique design up to 2 m sign changes in the variables defined by the generators. The set contains 2 m defining relations (including the trivial one 1 = 1), each one having the form 1 equals the product of a subset of factors, called word. For example, the 2 6-2 design with independent factors a, b, c and d and generating equations e = abcd and f = acd has defining relations 1 = abcde, 1 = acdf and 1 = bef , the latter being obtained by multiplying the first two since (abcde)

× (acdf ) = a 2 bc 2 d 2 ef = bef .

Resolution

The resolution of the design is given by the shortest word length within the complete set of defining relations, here R = III (since 1 = bef ). Another choice of generating equations may yield a different set of defining relations and a design with different resolution. For instance, choosing e = abc and f = acd in a 2 6-2 design yields the complete set of defining relations 1 = abce = acdf = bdef , and the resolution is now IV . To identify the resolution of a design, the notation 2 d-m R is used. For example, the design with six variables and generating equations e = abcd and f = acd is denoted 2 IV can be found in [START_REF] Box | The 2 k-p fractional factorial designs. part I[END_REF]. The nonregular designs of [START_REF] Plackett | The design of optimum multifactorial experiments[END_REF] have resolution III and allow the exploration of n -1 variables for n a multiple of 4. Generators for designs 2 8-2 V and 2 11-4 V are given in [START_REF] Box | The 2 k-p fractional factorial designs. part II[END_REF]. The Matlab function fracfactgen.m implements the algorithm of [START_REF] Franklin | Selection of defining contrasts and confounded effects in two-level experiments[END_REF] for the construction of a 2 d-m fractional factorial design of prescribed resolution (when it exists).

A design with resolution R contains a full factorial design in any subset of R -1 variables. Omitting p variables from a 2 d-m R design with resolution R produces a design of resolution R in d -p variables but with n = 2 d-m points. All words containing characters associated with the dropped variables must be removed from the set of defining relations. The resulting design may duplicate some design points, and a more economical design with similar word pattern in the defining relations may exist in general. Bounds on the maximum resolution attainable for a 2 d-m design are given in [START_REF] Fries | Minimum aberration 2 k-p designs[END_REF].

Word length pattern

The word length pattern A (X n ) of a 2 d-m design with resolution R is defined by the distribution of word lengths in the complete set of defining relations,

A (X n ) = [1, 0, . . . , 0, A R (X n ), A R+1 (X n ), . . . , A d (X n )] ,
with A k (X n ) denoting the number of words of length k (A 0 (X n ) = 1 since the word 1 is always present and

d k=0 A k (X n ) = 2 m ). Among two designs X (a) n and X (b)
n having the same (maximum) resolution R, the paper [START_REF] Fries | Minimum aberration 2 k-p designs[END_REF] recommends to select the one with minimum aberration:

let i * be the smallest i ≥ 1 such that A i (X (a) n ) = A i (X (b) n ), then X (a) n is preferred to X (b) n if A i * (X (a) n ) < A i * (X (b) n ), and X (b) n is preferred to X (a)
n otherwise . The construction of a minimum aberration design can thus be viewed as the sequential minimisation of the A i (X n ) for i ≥ 1. A minimum aberration 2 d-m design has necessarily generators that contain all d variables [START_REF] Fries | Minimum aberration 2 k-p designs[END_REF]; lists of generators are tabulated in [START_REF] Wu | Experiments: Planning Analysis, and Optimization[END_REF]. Proof. Since the m generators must be independent and each one must involve at least 2 of the d -m basic factors, we get

Minimum size

m ≤ d-m k=2 d -m k = 2 d-m -(d + 1 -m) ,
It may happen, though rarely, that two designs with different defining relations have exactly the same word length pattern; the minimum aberration criterion then does not provide any preference.

that is, n = 2 d-m ≥ d + 1. Designs for which equality holds are those that use all possible independent generators (without any loss of generality, we only consider principal generators). They cannot have resolution R larger than III since there are generators defined as product of two basic factors, and thus defining relations involving words of length 3. We prove by contradiction that they cannot have resolution II.

If the design has resolution II, it means that one of the defining relations has been obtained by multiplying two relations 1 = w and 1 = z, with words w and z that only differ by two letters, say a, b. There are two possibilities: either w = ta and z = tb, or w = tab and z = t. In both case, the multiplication w × z gives the defining relation 1 = ab, which cannot exist since the generators are independent.

Proposition 1 gives a lower bound on the number of points for a given dimension d; it also gives an upper bound on the number of generators that can be used for a given d, 1.4 Two-level factorial designs and error correcting codes

m ≤ m * (d) = d -log 2 (d + 1) . (1.4) That is, for 2 k ≤ d < 2 k+1 we can construct 2 d-m fractional factorial designs with m ∈ {1, 2, . . . , m * (d) = d -k -1}.

Definitions and properties

The construction of a two-level factorial design X n possesses strong similarities with the construction of an error correcting code C n with binary alphabet {0, 1}: design points correspond to codewords in C n and d is the length of the code, with n = |C n | (and n = 2 d-m for a fractional factorial design). Associating levels 1 and -1 to symbols 0 and 1, respectively, we obtain that the product rule used in Sect. 1.3 corresponds now to addition modulo 2, and the codes corresponding to fractional factorial designs, which are obtained through generating equations, are linear.

Since {x i } j ∈ {-1, 1} for each design point and any j ∈ {1, . . . , d}, the the Hamming distance d H (x i , x j ), which counts the number of components that differ between two design points x i and x j , satisfies

d H (x i , x j ) = 1 4 x i -x j 2 = 1 2 x i -x j 1 .
The minimum distance of C n , ρ H (C n ), is defined as the minimum Hamming distance between two codewords in C n and we shall write

ρ H (X n ) = ρ H (C n ) with C n the code associated with X n . More generally, ρ H (X n ) = min xi,xj ∈Xn, xi =xj d H (x i , x j ) for any design X n supported on the vertices of C d . Therefore, ρ H (X n ) = PR 2 (X n ) .
Similarly, the (Hamming) covering radius CR H (X n ) of a two-level fractional factorial design X n corresponds to the covering radius CR H (C n ) of the associated code, and we define more generally

CR H (X n ) = max x∈{-1,1} d min xi∈Xn d H (x, x i ) .
(1.5)

Several results from coding have their counterpart in design theory. Suppose that ρ H (X n ) ≥ 2k + 1 for some k ∈ N. For each of the n design points x i , there are d points in {-1, 1} that are at distance from x i . Since the n Hamming balls centred at the x i with radii k do not intersect, we obtain the sphere-packing bound, see, e.g., [START_REF] Van Lint | A Course in Combinatorics[END_REF]Th. 20.1]:

n k =0 d ≤ 2 d . For a fractional factorial design X n with n = 2 d-m , it gives 2 m ≥ k =0 d . (1.6) Note that CR H (X n ) ≥ ρ H (X n )/2 . When ρ H (X n ) = 2k + 1 and equality is reached in (1.6
), all points in {-1, 1} d are at Hamming distance at most k to exactly one design point in X 2 d-m , which corresponds to the notion of perfect code. Delete now the p -1 last coordinates of each x i ∈ X n , with p = ρ H (X n ). The n points that are obtained belong to {-1, 1} d-(p-1) and are all distinct. Therefore, their number n is less than 2 d-p+1 , which gives the Singleton bound

([29], [32, Th. 20.2]): n ≤ 2 d-p+1 . For a fractional factorial design X 2 d-m , we obtain ρ H (X 2 d-m ) ≤ m + 1 .
(1.7)

Another result from coding theory gives an upper bound on the size n of a design X n supported on {-1, 1} d when ρ H (X n ) is large: Plotkin bound ([16, Th. 5.5.2], [START_REF] Plotkin | Binary codes with specified minimum distance[END_REF]) states that

n ≤ ρ H (X n ) ρ H (X n ) -d/2 (1.8) when ρ H (X n ) > d/2.
Besides the value of the packing radius PR(X n ), the distribution of the distances x i -x j , or d H (x i , x j ), between pairs of design points is also of interest. This is particularly true in the present context where there exist many pairs of points at the same distance since all design points are vertices of the hypercube. In [START_REF] Johnson | Minimax and maximin distance designs[END_REF] a design X * n is called maximin-distance optimal when it maximises PR(X n ) and minimises the number of pairs of points at distance 2 PR(X * n ). That definition is extended as follows in [START_REF] Morris | Exploratory designs for computational experiments[END_REF]. For a given design X n , consider the list [d 1 , d 2 , . . . , d q ] of intersite distances sorted in decreasing order, with [START_REF] Morris | Exploratory designs for computational experiments[END_REF], a design is called maximin-distance optimal if it maximises d 1 , and among all such designs minimises J 1 , maximises d 2 , and among all such designs minimises J 2 . . . and so on. Following [START_REF] Xu | Generalized minimum aberration for asymmetrical fractional factorial designs[END_REF], we call (Hamming) distance distribution of a design

d 1 = 2 PR(X n ) and 1 ≤ q ≤ n(n -1)/2. De- note by J (X n ) = [J 1 , . . . , J q ] the associated counting list defined by J k = |(i, j) : x i -x j = d k , x i , x j ∈ X n }|, k = 1, . . . , q. In
X n supported on {-1, 1} d the list B(X n ) = [B 0 (X n ), B 1 (X n ), . . . , B d (X n )] where B k (X n ) = 1 n |(i, j) : d H (x i , x j ) = k, x i , x j ∈ X n }| , k = 0, . . . , d (1.9) 
(so that

d k=0 B k (X n ) = n and B 0 (X n ) =
1 when all points are distinct). Let X n be a 2 d-m fractional factorial design; X n is balanced, i.e., each value +1 and -1 appears equally often for each factor, and for any

x i ∈ X n , xj ∈Xn, j =i d H (x i , x j ) = xj ∈Xn, j =i d k=1 d H ({x i } k , {x j } k ) = nd/2. Therefore, d k=1 k B k (X n ) = nd/2, and interpreting B k (X n )/(n -1) as a weight on k, we get ρ H (X n ) = min{k ∈ {1, . . . , d} : B k (x n ) > 0} ≤ nd 2(n -1)
.

(1.10)

Let p denote the number of generators written as the product of an odd number of basic factors (p ≥ 0). For any x i ∈ X n , the design point x j obtained by changing the signs of the d -m basic factors is at Hamming

distance d H (x i , x j ) = d -m + p from x i ; that is, B d-m+p (X n ) ≥ 1 .
In particular, it implies that ρ Due to the equivalence between Hamming and Euclidean distances for a 2 d-m design, design selection based on maximin-distance optimality in the sense of [START_REF] Morris | Exploratory designs for computational experiments[END_REF] sequentially minimises the B k (X n ) for k ≥ 1; it is similar to selection by the minimum aberration criterion of [START_REF] Fries | Minimum aberration 2 k-p designs[END_REF] applied to the distance distribution instead of the word length pattern. In [START_REF] Kerr | Bayesian optimal fractional factorials[END_REF] minimum aberration designs are called maximin word length.

H (X n ) ≤ d -m + p. Also,
As noticed in [START_REF] Xu | Generalized minimum aberration for asymmetrical fractional factorial designs[END_REF], MacWilliams' theorem, see, e.g., [START_REF] Van Lint | A Course in Combinatorics[END_REF]Th. 20.3], implies that the distance distribution B k (X n ) and the word length pattern A (X n ) of a given 2 d-m design X n are related by

A j (X n ) = 1 n d k=0 B k (X n )P j (k; d, 2) , j = 0, . . . , d , (1.11) 
B j (X n ) = n 2 -d d k=0 A k (X n )P j (k; d, 2) , j = 0, . . . , d ,
where the P j (x; d, s) are the Krawtchouk polynomials defined by

P j (x; d, s) = j i=0 (-1) i (s -1) j-i Γ (x + 1) Γ (x + 1 -i)Γ (i + 1) × Γ (d + 1 -x) Γ (d + i + 1 -x -j)Γ (j + 1 -i) , so that P j (k; d, 2) = j i=0 (-1) i k i d-k j-i .
Several extensions of the results above, in various directions, are present in the literature. Let us mention a few. Fractional factorial designs with s levels, with s any prime number, are considered in [START_REF] Xu | Generalized minimum aberration for asymmetrical fractional factorial designs[END_REF], together with designs where different factors may have different numbers of levels, and the notion of generalised minimum aberration is introduced; see also [START_REF] Cheng | A general theory of minimum aberration and its applications[END_REF]. Space-filling properties of fractional factorial designs with more than two levels are studied in [START_REF] Zhou | Space-filling fractional factorial designs[END_REF], where it is shown that the generalised minimum aberration designs of [START_REF] Xu | Generalized minimum aberration for asymmetrical fractional factorial designs[END_REF] have good performance in terms of maximin distance for the 1 norm when allowing permutations of factor levels. Starting from an initial s-level balanced design X n , where each level appears exactly n/s times for each one of the d factor, [START_REF] Xiao | Construction of maximin distance designs via level permutation and expansion[END_REF] shows how to construct a design X n with d factors at qs levels, for n divisible by qs (X n is a Latin hypercube design when q = n/s). When s > 2, the space-filling properties of X n (measured by the maximin distance for the 1 norm) can be improved by level permutation, using the approach in [START_REF] Zhou | Space-filling fractional factorial designs[END_REF]. Following the approach of [START_REF] Mitchell | Two-level fractional factorials and Bayesian prediction[END_REF], properties of 2 d-m designs for prediction with a Gaussian process model defined on the vertices {-1, 1} d of the hypercube [-1, 1] d are investigated in [START_REF] Kerr | Bayesian optimal fractional factorials[END_REF]; a practical conclusion is that maximin word length (minimum aberration) designs often coincide with maximin distance designs, but not always. The paper [START_REF] Ba | Multi-layer designs for computer experiments[END_REF] shows how to decompose a minimum aberration 2 d-m design into layers containing two points each, in such a way that the resulting design has suitable space-filling properties. The construction of two-level factorial designs having small covering radius (1.5) is considered in [START_REF] John | Minimax distance designs in two-level factorial experiments[END_REF] (note, however, that CR H (X n ) is not necessarily an adequate measure of the space-filling properties of X n over the full hypercube [-1, 1] d ); a few general properties are given, and the construction of minimum-size covering designs having CR H (X n ) = 1 and minimum-size designs with CR H (X n ) = 2 is detailed for d ≤ 7 (with rather intensive computer search for d = 7). The centred L 2 -discrepancy CL 2 (X n ) of [START_REF] Hickernell | A generalized discrepancy and quadrature error bound[END_REF] is a popular measure of uniformity of a design X n . For a 2 d-m fractional factorial design, CL 2 (X n ) is a function of the A i (X n ) in the word-length pattern A (X n ) [START_REF] Fang | Uniform design: theory and application[END_REF]; see also [START_REF] Tang | Uniform fractional factorial designs[END_REF] for related results. A relation between CL 2 (X n ) and the distance distribution B(X n ) is established in [START_REF] Sun | Uniform projection designs[END_REF] for more general balanced designs (with n runs and d factors, each one taking s levels, and, for each factor, each level appearing equally often).

Examples

The 2 4-1 IV design X 8 of Table 1.2(b), with generator d = abc, has word length (respectively, X (a2) [START_REF] Lin | Coding Theory. A First Course[END_REF] ) is better than X (b1) [START_REF] Lin | Coding Theory. A First Course[END_REF] (respectively, X (b2) [START_REF] Lin | Coding Theory. A First Course[END_REF] ) both in terms of resolution and maximin distance. X (a2) [START_REF] Lin | Coding Theory. A First Course[END_REF] reaches the bound (1.6), it corresponds to a perfect code of length 7, distance 3 and covering radius 1; see, e.g., [32, p. 215]. The three 2 7-2 IV designs X abc, acd 

pattern A = [1 0 0 0 1]; its distance distribution is B = [1 0 6 0 1]; it reaches the bound (1.7) since ρ H (X 8 ) = 2 = m + 1. The design in Table 1.2(c) with d = ab has resolution III, A = [1 0 0 1 0] and B = [1 1 3 3 0]; it
[1 0 0 0 3 0 0] [1 0 3 8 3 0 1] 1 2 6-2 III X ( 
(x i ; X n ) = [1, I 1 (x i ; X n ), . . . , I d (x i ; X n )] with I k (x i ; X n ) = |{j : d H (x i , x j ) = k, x j ∈ X n }|. Similarly, we call distant-sites pattern the list L (x i ; X n ) = [0, I 1 (x i ; X n ), . . . , I d (x i ; X n )] with I k (x i ; X n ) = |{j : d H (x i , x j ) = k, x j ∈ X n }|. 2 d-m
fractional factorial designs satisfy the following property.

Proposition 2 All design points x i of a 2 d-m fractional factorial design have the same neighbouring pattern and the same distant-sites pattern.

Proof. Take any x ∈ X n ; without any loss of generality we suppose that basic factors correspond to the first d -m coordinates, and we denote by x the corresponding part of x. The remaining m components are constructed from the generators that define the design; we can write {x} d-m+k = g k (x), with g k (x) equal to the product of some components of x, k = 1, . . . , m. We collect those m components in a vector g(x) and write x = (x, g(x)). Suppose that there exist x j ∈ X n such that d H (x, x j ) = k. We first show that for any x ∈ X n there also exists a x j ∈ X n such that d H (x , x j ) = k. Using the same notation as above, we can write x = (x , g(x )), and, since

x ∈ X n , x = z • x with z a (d -m)-dimensional vector with components in {-1, 1}. Therefore, x = (z • x, g(z • x)) = (z • x, g(z) • g(x)) = (z, g(z)) • x.
The vector x j = (z • x j , g(z • x j )) = (z, g(z)) • x j also belongs to X n (since the first d -m coordinates of design points in X n form a 2 d-m factorial design), and satisfies d H (x , x j ) = d H (x, x j ).

To conclude the proof that all design points have the same neighbouring pattern, we only need to show that if x i and x j are two distinct points in X n , say with d H (x,

x i ) = d H (x, x j ) = k, then x i = (z • x i , g(z • x i )) and x j = (z • x j , g(z • x j )) are distinct points in X n satisfying d H (x , x i ) = d H (x , x j ) = k.
The equality between distances has already been proved; the points are distinct since

x i = (z, g(z)) • x i = (z, g(z)) • x j = x j . Denote I k (x i ) = {j : d H (x i , x j ) = k, x j ∈ {-1, 1} d } . Since I k (x i ; X n ) = I k (x i ) -I k (x i ; X n ) and I k (x i ) = I k (x j )
for any x i and x j in X n , all design points have also the same distant-sites pattern.

This property explains why division by n in the definition (1.9) of distance distribution yields integer values for the B k (X n ): we have L k (x i ; X n ) = B(X n ) for any 2 d-m fractional factorial design X n and any x i ∈ X n . A straightforward consequence is we do not need to consider all pairs of points in X n to construct the distance distribution, but only the distances between one point and the n -1 others. In particular, this point can be taken as 1 d , the d-dimensional vector with all components equal to 1 (provided that the design is constructed with principal generators with non negative signs, which we assume throughout the paper). As an illustration, below we consider the distance distribution of fractional factorial designs with n = d + 1, see Sect. 1.3.3, which is very peculiar.

Proposition 3 Saturated 2 d-m fractional factorial designs (n = d + 1) are maximin-distance optimal; their distance distribution satisfies B 0 (

X n ) = 1, B (d+1)/2 (X n ) = n -1 and B i (X n ) = 0 for i > 0, i = (d + 1)/2.
Proof. From Prop. 2, we only need to consider the distance between one particular point, which we denote x = (x, g(x)), and other points x ∈ X n , x = (x , g(x )). We show that d

H (x, x ) = 2 d-m-1 = n/2 = (d + 1)/2 when d H (x, x ) = 1, 2, . . . , m.
Suppose that d H (x, x ) = 1, let a be the basic factor that changes between x and x . The number of generators that contain a is Suppose now that d H (x, x ) = 2, with a and b the modified factors. The number of generators containing a and not containing b is

n a = d-m-1 k=1 d -m -1 k = 2 d-m-1 -1,
n ab = d-m-2 k=1 d -m -2 k = 2 d-m-2 -1,
since now there only remains d-m-2 factors available. We also need to count generators that contain b and not a, which gives

d H (x, x ) = 2 + 2(2 d-m-2 - 1) = 2 d-m-1 .
The same calculation can be repeated when d H (x, x ) = p, with factors a 1 , . . . , a p being modified, for any p ≤ d -m. Suppose first that p is odd. There are 2 d-m-p -1 generators with a 1 alone (without a 2 , . . . , a p ), 2 d-m-p with a 1 a 2 a 3 alone (without a 4 , . . . , a p ), etc., and 2 d-m-p with all the a i , i = 1, . . . , p. It gives

d H (x, x ) = p + p(2 d-m-p -1) + p 3 2 d-m-p + p 5 2 d-m-p + • • • + 2 d-m-p = p 1 + p 3 + p 5 + • • • + p p 2 d-m-p = 2 p-1 2 d-m-p = 2 d-m-1 .
Suppose now that p is even. Similar calculation gives The application of Algorithm 1 to the candidate set X n defined by a 2 d-m design X n with n = d + 1, initialised at any x i ∈ X n , ensures that ρ H (S k ) = (d + 1)/2 = 2 d-m-1 for all k = 2, . . . , n (in fact, the property is true for any sequential selection of points within X n ). As the example below illustrates, the performance achieved in terms of ρ H may be superior to those obtained when the candidate set is {-1, 1} d , the set of vertices of C d (i.e., the full factorial 2 d design). Note that we have ρ In the Appendix, we give conditions on the choice of generators that provide guarantees on the minimum Hamming distance k of a fractional factorial design X n , i.e., ρ H (X n ) ≥ k, for k = 2, 3 and 4. However, the derivation of such conditions gets cumbersome when k ≥ 5, and in the next section we present an algorithm for the optimal selection of m generators among all 2 d-m -(d -m) -1 possible generators having length at least 2.

d H (x, x ) = p 1 + p 3 + p 5 + • • • + p p -1 2 d-m-p = 2 p-1 2 d-m-p = 2 d-m-1 . Therefore, d H (x, x ) = 2 d-m-1 = n/2 = (
H (S k ) = CR H (S k-1 ), 2 ≤ k ≤ |X n |,

Optimal selection of generators by simulated annealing

SA algorithm for the maximisation of ρ H 0) Construct the set G all 2 d-m -(d-m)-1 generators (of length ≥ 2), choose an initial set G of m distinct generators in G , construct the corresponding design X n and its distance distribution B(X n ); set X * n = X n and k = 1. 1) Select a random generator g within G and a random generator g within G \ G. Construct G = G \ {g} ∪ {g } and its associated design

X n and distance distribution B(X n ). 2) Compute i * = min{i : B i (X n ) = B i (X * n )} and δ * = B i * (X n ) -B i * (X * n ); if δ * ≤ 0, set X * n = X n . 3) Compute i + = min{i : B i (X n ) = B i (X n )}, and
P = min exp - B i + (X n )-B i + (Xn) T k , 1 ; accept the move X n = X n and G = G with probability P . 4) if k = K, stop; otherwise k ← k + 1, return to 1.
A logarithmic decrease of the "temperature" T k , such as T k = 2 d-m / log(k) ensures global asymptotic convergence to a maximin-distance optimal fractional factorial design. In practice, we wish to stop the algorithm after a number of iterations K which is not excessively large. Numerical experimentation indicates that a faster decrease of T k , yielding a behaviour close to that of a simple descent method, is often suitable. For instance, we take

T k = 2 d-m /k 4/5 in Example 2 (Sect. 1.7).
Remark 1 In the applications we have in mind, n = 2 d-m is relatively small even when d is large (it must nevertheless satisfy the bound n ≥ d + 1 of Prop. 1), and the set G remains of reasonable size. A similar simulated annealing algorithm can be used for the construction of minimum aberration designs. However, the construction of the word length pattern for a 2 d-m design requires the calculation of 2 m -1 defining relations, which becomes prohibitively computationally demanding when m is large (a consequence of n being reasonably small). For instance, for d = 50 and m = 35 (the situation in Example 2 below), we have 2 d-m -(d -m) -1 = 37 752 whereas 2 m -1 > 3.43 × 10 10 . Computation of the word length pattern from the distance distribution using (1.11) may then be advantageous.

Covering properties of two-level factorial designs

In this section, we investigate the covering properties of fractional factorial designs measured by the Hamming covering radius CR H defined by (1.5). One should notice that the best design in terms of maximin distance is not always the best one in terms of covering radius, compare for instance X (a) 64 and X (d) 64 in Table 1.4.

Bounds on CR H (X n )

We already know that CR H (X n ) ≥ ρ H (X n )/2 for any design on {-1, 1} d ; see Sect. 1.4.1. CR H (X n ) also satisfies the following property.

Proposition 4 The Hamming covering radius CR

H (X n ) of a 2 d-m frac- tional factorial design X n satisfies CR H (X n [d -m + 1 : d]) ≤ CR H (X n ) ≤ m , with X n [d -m + 1 : d]
denoting the projection of X n on the m dimensional space defined by the non-basic factors (i.e., those constructed through generators).

Proof. We use the same notation as in Sect. 1.5.1 and, for x i ∈ X n , we denote x i = (x i , g(x i )); also, we split any x ∈ R d into x = (x, x), with x ∈ R d-m and x ∈ R m . For any x ∈ {-1, 1} d , there exists j = j(x) such that x j = x, so that

min xi∈Xn d H (x, x i ) ≤ d H (x, x j ) = d H (x, x j ) + d H (x, g(x j )) = d H (x, g(x j )) = d H (x, g(x)) . We also have d H (x, x i ) = d H (x, x i )+d H (x, g(x i )) ≥ d H (x, g(x i )). Therefore, max x∈{-1,1} d min xi∈Xn d H (x, g(x i )) ≤ CR H (X n ) = max x∈{-1,1} d min xi∈Xn d H (x, x i ) ≤ max x∈{-1,1} d d H (x, g(x)) . Finally, max x∈{-1,1} d min xi∈Xn d H (x, g(x i )) = CR H (X n [d -m + 1 : d]) and max x∈{-1,1} d d H (x, g(x)) = m conclude the proof. 1.6.2 Calculation of CR H (X n ) The direct calculation of CR H (X n ) through max x∈{-1,1} d min xi∈Xn d H (x, x i )
is unfeasible for large d. Exploiting Prop. 2, a possible alternative consists in restricting the set of candidates to the d δ points at a given Hamming distance δ from an arbitrary point x 1 in X n , for an increasing sequence δ i , initialised at

δ 1 = ρ H (X n )/2 . We thus compute C(X n , x 1 , δ) = max x:d H (x,x1)=δ min xi∈Xn d H (x, x i ) for δ = δ 1 , δ 1 + 1 . .
. and stop at the first δ i when C(X n , x 1 , δ) starts decreasing; the value δ i-1 equals CR H (X n ). Although it requires less computations than direct calculation, this approach is still too costly for large d unless CR H (X n ) is very small (meaning that n is very large) or very large (meaning that n is very small). In Example 2 considered below, with d = 50 and n = 32 768, we have CR H (X n ) = 13 and the construction is unapplicable. Therefore, hereafter we present a simple local ascent algorithm for searching a distant point from X n , which we initialise at a design point.

The construction relies on the search of a point in {-1, 1} d at maximum Hamming distance from X n . From Prop. 2, we only need to consider moves from an arbitrary point of X n . The order of inspection of the d factors in the for loop of Step 1 may be randomised.

Algorithmic construction of a lower bound on CR

H (X n ) 0) Set x = x 1 ∈ X n , ∆ = 0, continue = 1 1) while continue = 1
Try successively all points at Hamming distance 1 from x:

for i = 1, . . . , d set {x } j = {x} j for j = i and {x } i = -{x} i , compute ∆ = min xi∈Xn d H (x , x i ).
if ∆ > ∆, set x = x , ∆ = ∆ and break the for loop. otherwise, if i = d, set continue = 0 (all possible moves have been unsuccessfully exhausted).

2) Return ∆, which forms a lower bound on CR H (X n ).

Remark 2 Convergence to a point at maximum distance from X n is not guaranteed. The algorithm can be modified to incorporate a simulated annealing scheme that accepts moves such that ∆ < ∆ with some probability: at Step 1, in the for loop we then set x = x , ∆ = ∆ with probability min{exp[(∆ -∆)/T k ], 1} for some decreasing temperature profile T k , do not break the loop and never set continue = 0; the algorithm is stopped when the number of iterations reaches a predefined bound. Note that the distances d(x, S k ), x ∈ X n , can be computed recursively as d(x, S k ) = min{d(x, S k-1 ), xx k } and that the generation of S k for k ≤ n + 1 has complexity O(knd). Algorithm 2 also satisfies the following property. (1.12)

Proposition 5 If ρ H (X n ) ≥ d/4,
Remark 3 Let d * be a dimension satisfying d * + 1 = 2 d * -m ; see Ta- ble 1.3. The corresponding minimum-size 2 d * -m fractional factorial design X n satisfies ρ H (X n ) = (d * + 1)/2. By removing any d * -d factors from X n , with d ≥ 2(d * -1)/3 , we obtain a design X n in [-1, 1] d such that ρ H (X n ) ≥ ρ H (X n ) -(d * -d) ≥ d/4.
However, these designs have too few points to be of practical interest for computer experiments.

For all k ≤ n -1 the choice of x * at Step 1 of Algorithm 2 is arbitrary; in particular, if this choice is randomised, an unlucky selection may thus yield ρ H (S 2:k ) = ρ H (X n ) for all k = 3, . . . , n + 1. This weakness can be overcome through a slight modification of Step 1, yielding the following algorithm. 

Algorithm 3 0) Construct a 2 d-m fractional factorial design X n with ρ H (X n ) ≥ d/4; set S 2 = {0, x 2 } and k = 2, with x 2 an arbitrary point in X n . 1) for k = 2, . . . , n do find x * = arg max x∈Xn d(x, S 2:k ), set S k+1 = S k ∪ {x * }. Note that all x i in X n satisfy d(x i , S 1 ) = √ d = arg max x∈Xn d(x, S 
(A 4 (X n ) = 2), ρ H (X n ) = 13 > d/4 (B 13 (X n ) = 2
) and the algorithm of Sect. 1.6.2 gives CR H (X n ) ≥ 13. Algorithm 3 generates a sequence of nested designs S k that satisfy the efficiency bounds (1.3) for all k ≤ n+1 = 32 769. The construction is very fast since there are only n = 32 768 points in X n = X n to be considered at Step 1 of Algorithm 3 (to be compared with the 2 d > 1.1258×10 15 vertices of C d ). Figure 1.3 presents the evolution of the packing radius PR(S 2:k ) as a function of k for Algorithm 3 (red solid line), for k = 3, . . . , 500 (the value 500 is rather arbitrarily, chosen in agreement with the "10 d" rule of [START_REF] Loeppky | Choosing the sample size of a computer experiment: a practical guide[END_REF]). When including x 1 = 0, it satisfies PR(S k ) = √ d/2 3.5355 for k ≤ 32 769. The curve in black dashed line (middle) is obtained when Algorithm 1 is applied to the candidate set X n given by the first 2 19 points of Sobol' sequence; the blue dotted line (bottom) corresponds to designs given by the first k points of this Sobol' sequence. 

The complexity of Algorithm 3 is only linear in k and grows like O(knd).

If necessary, it can be further reduced for large n by first constructing nested half-designs from X n , following ideas similar to those in [START_REF] Ba | Multi-layer designs for computer experiments[END_REF]. Theorem 2 in their paper shows that only 2 d-m -1 different half-designs need to be considered when starting from an arbitrary 2 d-m fractional factorial design (note that here those half-designs must be compared in terms of their ρ H values, whereas aberration is used in [START_REF] Ba | Multi-layer designs for computer experiments[END_REF]).

Rescaled designs

A fractional factorial design X n has all its points on the vertices of C d , which is advantageous in terms of packing radius in the full dimensional space. However, performance in terms of prediction/interpolation of an unknown function by a non-parametric model (in particular with kriging) is more related to CR(X n ) [START_REF] Johnson | Minimax and maximin distance designs[END_REF], and it may then be beneficial to have design points inside C d . In [START_REF] Ba | Multi-layer designs for computer experiments[END_REF], the iterative decomposition of X n into half-designs is used to construct multi-layer designs having two points on each layer. Here, since the design points in S k constructed with Algorithm 3 are ordered, for a fixed K ≤ n we can directly apply a scaling procedure to S K to obtain a design S K with points inside C d .

First, following [START_REF] Ba | Multi-layer designs for computer experiments[END_REF], and to avoid having pairs of points too close together, we impose that S K has no point in an hypercube [-a, a] d , 0 < a < 1, except the centre x 1 = 0. We choose a by setting the ratio r of the volume of the neglected empty hypercube to the volume of C d ; that is, a = a r = r 1/d .

Next, we need to choose how we rescale the points x i of S K , for i = 2, . . . , K + 1, in order to obtain a suitable distribution of distances to the centre for the ∞ norm. We shall denote by x i = β i,r,K,γ x i the rescaled design points, i = 1, . . . , K + 1, with β 1,r,K,γ = 0 and

β i,r,K,γ = 1 - (i -2)(1 -a γ r ) K -1 1/γ , i = 2, . . . , K + 1 . (1.13)
Here γ is a scalar in [1, d]: linear scaling with γ = 1 yields a design with points more densely distributed close to the centre 0 than near the boundary of C d ; when γ = d, the empirical distribution of the x i ∞ converges to the uniform distribution on [0, 1], obtained for points x uniformly distributed in C d , as K tend to infinity. Values of γ between 1 and d provide behaviours between these two extreme cases. When N points are needed, with K +1 < N ≤ n+1, the rescaling pocedure can be applied periodically, using 

β i,r,K,γ = 1 - [(i -2) mod K](1 -a γ r ) K -1 1/γ . (1.14) 

Projection properties

Space-filling designs in the full d-dimensional space do not necessarily have good properties when projected on an axis-aligned sub-space with dimension d < d. In this section, we compare the projection properties of designs S k generated with Algorithm 3 with those of Sobol' sequences and Latin hypercube designs, for a fixed k. Sobol' sequence is a particular low discrepancy (t, s) sequence, see, e.g., [START_REF] Niederreiter | Random Number Generation and Quasi-Monte Carlo Methods[END_REF]Chap. 4], which permits the fast generation of designs X S k having good spacefilling properties when k is a power of 2, also for large d. A Latin hypercube (Lh) design X Lh k with k points in [-1, 1] d has the k levels 2i/(k -1) -1, i = 0, . . . , k-1, for each of the d factors, but this does not ensure good space-filling properties in the full d-dimensional space. In [START_REF] Morris | Exploratory designs for computational experiments[END_REF], maximin-distance optimal Lh designs are constructed by simulated annealing. A different space-filling criterion is considered in [START_REF] Joseph | Maximum projection designs for computer experiments[END_REF], whose optimisation yields so-called maximum projection designs. In the continuation of Example 2 (with d = 50) presented below, we use the ESE algorithm of [START_REF] Jin | An efficient algorithm for constructing optimal design of compter experiments[END_REF] to construct a maximin-distance optimal Lh design.

For any d ∈ {1, . . . , d} and any r ∈ {1, . . . , d d }, let P d ,r denote one of the d d distinct projections on an axis-aligned d dimensional sub-space. For any k-point design X k = {x 1 , . . . , x k } we then denote by P d ,r (X k ) the corresponding design for the d factors associated with P d ,r ; that is, P d ,r (X k ) = {P d ,r (x 1 ), . . . , P d ,r (x k )}, and consider the following criteria: For any projection P d ,r , there are 2 d distinct points P d ,r (x i ) at most when x i varies in S 2:k (which has k -1 elements), so that PR[P d ,r (S k )] = PR[P d ,r (S 2:k )] = 0 when 2 d < k -1. One may note that this case is already covered by (1.17). Indeed, Singleton bound, see Sect. 1.4.1, implies that the k -1 points of any

CR d (X k ) = max r=1,...,( d d ) max x∈[-1,1] d d(x, P d ,r (X k )) , (1.15 
)] - d 4 ≥ d H (x i , S 2:k ) + d -d - d 4 
≥ 3 4 d + ρ H (S 2:k ) -d ≥ 0 .
P d ,r (S 2:k ) with d = d -[ρ H (S 2:k ) -1] are all distinct; therefore, k -1 ≤ 2 d-ρ H (S 2:k )+1 , and 2 d < k -1 implies d ≤ d -ρ H (S 2:k ).
When d is large, we cannot compute the values of CR d (X k ) and PR d (X k ) in (1.15) and (1.16) exactly, and we shall consider the following approximations that use q projections at most, instead of d d : Example 2 (continued). We take q = 100, so that min q, d d = q for d = 2 already, and X d ,Q consisting of the first 2 14 points of a Sobol' sequence in [-1, 1] d , complemented by a 2 d full-factorial design when d ≤ 10. We consider designs of size k = 500. Equation (1.17) shows the importance of having ρ H (S 2:k ) as large as possible to obtain good projection properties in terms of packing radius for dimensions d as small as possible. Linear rescaling of S k by (1.13) with γ = 1 affects the values of PR d ( S 500 ), see Fig. 1.6. Although we have now P d ,r ( x j ) -P d ,r ( x ) = 0 for all projections P d ,r and all x j = x in S 500 , when d is small this value remains very close to zero for some pairs of points and projections, therefore PR d ( X 500 ) is still very small: the difference is hardly visible on the figure for small d ; compare the red stars on the plots of PR d in Figs. 1.5 and 1.6 for d 16. For larger d , rescaling decreases PR d , but has a small positive effect on CR d which is slightly decreased for d 30. The values of CR d for a design X S 500 given by the first 500 points of Sobol' sequence (black circles), or for a (non-incremental) Lh design X Lh 500 optimised for the PR criterion (blue diamonds), are marginally better than CR d ( S 500 ), but S 500 is significantly better in terms of PR d for large d . The construction of X Lh 500 uses the ESE algorithm of [START_REF] Jin | An efficient algorithm for constructing optimal design of compter experiments[END_REF] with the default tuning parameters suggested in that paper; 100 cycles are performed, requiring 500 000 evaluations of PR.

CR d (X k ) = max r=1,...,min{q,( d d )} max x∈X d ,Q d(x, P d ,r (X k )) , PR d (X k ) = 1 2 min r=1,...,min{q,( d d )} min xi,xj ∈X k , xi =xj P d ,r (x i ) -P d ,r (x j ) , where X d ,Q is a finite set of Q points in [-1, 1]
Rescaling with γ = d in (1.13) yields results intermediate between no rescaling (Fig. 1 

Summary and future work

In situations where the number d of factors is too large to inspect all vertices of the hypercube C d = [-1, 1] d to construct a design, we suggest to use a fractional factorial design X n to thin the search space. When X n has minimum Hamming distance at least d/4, the coffee-house rule permits to construct a sequence of nested designs, with flexible size up to n + 1, each design along the sequence having at least 50% packing (maximin) and covering (minimax) efficiency.

The packing and covering properties of designs projected in lower dimensional subspaces have been investigated. The covering performances are slightly worse than those obtained for more classical space-filling designs, but their packing performance is significantly better when projecting on a subspace with large enough dimension.

A natural drawback of the construction is that all design points (except the first one, taken at the centre) are vertices of the hypercube. A rescaling rule has been proposed to populate the interior of C d , but, like for the multi-layer designs of [START_REF] Ba | Multi-layer designs for computer experiments[END_REF], all rescaled design points lie along the diagonals of C d . Other rules could be considered that deserve further investigations. For instance, the compromise between placing points on vertices, which is favourable for packing in the full dimensional space, and in the interior of C d , which is favourable to the performance of projected designs, may rely on interlacing the sequence proposed in the paper with a low discrepancy se- quence. Combination with other space-filling sequences could be considered as well, see, e.g., [START_REF] Pronzato | Bayesian quadrature and energy minimization for space-filling design[END_REF][START_REF] Pronzato | Measures minimizing regularized dispersion[END_REF]. We leave such developments for further work. Proof. We use the notation of Sect. 1.5.1. Consider any pair of points x i = (x i , g(x i )) and x j = (x j , g(x j )) of X n . If d H (x i , x j ) ≥ 2, then d H (x i , x j ) ≥ 2.

Otherwise, x i and x j differ by one coordinate only, say the kth. Since the kth basic factor is used within generators, d H (g(x i ), g(x j )) ≥ 1, implying d H (x i , x j ) ≥ 2.

In the rest of the appendix we show how a similar reasoning can be used to construct 2 d-m designs with a larger minimum Hamming distance ρ H . )) = 0, implying that d H (x, x 2 ) = 2. This shows that (i) and (ii) are necessary to have ρ H (X n ) ≥ 3. We show that the condition is sufficient. From Prop. 2, we only need to consider the nearest neighbour to the point x = (1 d-m , g(1 d-m )), which, up to a reordering of basic factors, is given by x 1 or x 2 . Now, (i) implies that d H (g(1 d-m ), g(-1, 1 d-m-1 )) ≥ 2 and (ii) implies that d H (g(1 d-m ), g(-1, -1, 1 d-m-2 )) ≥ 1, showing that d H (x, x 1 ) ≥ 3 and d H (x, x 2 ) ≥ 3.

Example 3. Consider the design given by the half fraction 2 d-1 with the product of all basic factors as generators: g 1 = d-1 j=1 x j (m = 1). The condition of Prop. 7 is satisfied, but none of the conditions (i) and (ii) of Prop. 8 is; therefore, ρ H (X n ) = 2. Direct calculation gives A 0 (X n ) = 1 and A 2q (X n ) = d-1

2q-1 + d-1 2q for 1 ≤ q < d/2, with A d (X n ) = 1 when d is even, all A i with i odd being equal to zero. When the generators are ab, abd, acd, bc and cd, then (iii-b) is satisfied instead of (iii-a) and we get A (X n ) = [1 0 0 6 9 9 6 0 0 1] and B(X n ) = [1 0 0 0 9 0 6 0 0 0]. Note that the first design is preferable both in terms of aberration and maximin distance.

Example 5. Consider the case where d = 2m, m ≥ 4, and where each of the m generators is the product of all basic factors but one; that is, with obvious notation, g i = m j=1, j =i x j , for i = 1, . . . , m. Conditions (i), (ii-b) and (iii-a) of Prop. 9 are satisfied, and direct calculation shows that the word length pattern of X n (with n = 2 d-m = 2 m ) satisfies

  .) This simple property has the important consequence that the greedy construction of a design S n via Algorithm 1 initialised at x 1 = 0 d can restrict its attention to the set of vertices of C d , provided that n ≤ k * (d). For d ≤ 4, since any pair of distinct vertices of the hypercube are at distance at least 2 ≥ √ d, Algorithm 1 sequentially (and indifferently) selects the vertices of C d until they are exhausted, and k * (d) = 2 d + 1. For larger d, the behaviour depends on the order in which vertices are selected in the first iterations; that is, on the particular choices of x * made at Step 1. The largest values of k * (d) obtained for d up to 8 are indicated in

  2(a) for the case d = 3. The coordinates of design points correspond to factors and are denoted by lowercase letters . A (regular) 2 d-m fractional factorial design is obtained by setting d -m coordinates (sometimes called basic factors) of the 2 d-m design points at values given by a 2 d-m factorial design, the other m coordinates being defined

1

 1 obtained from the generating equation {x} 4 = d = abc. By the product of two factors we mean the entrywise (Hadamard) product of the corresponding columns in the design viewed as a n × d matrix. Since all {x} i belong to {-1, 1} for x in X 2 d-m , this implies in particular that the product of a factor by itself gives a vector with all components equal to 1, which we denote by 1. The equation d = abc is thus equivalent to 1 = abcd, called defining relation. Changing the generating equation to d = ab gives another 2 4-1 fractional factorial design X (b)

  2(b), we get a = bcd, b = acd, c = abd and of course d = abc which is the generating equation. Here none of the main and 2 factor interaction effects are confounded, and the design has resolution R = IV . In general, designs of high resolution are preferable. When m = 1, the highest possible resolution R = d is obtained for the half fraction with defining relation {x} d = d-1 i=1 {x} i (unique up to a sign change and a permutation of variables).

2

 2 (a): a 2 3 factorial design; (b) and (c): two 2 4-1 fractional factorial designs, with {x} 1 = a, {x} 2 = b, {x} 3 = c and {x} 4 = d.

Proposition 1

 1 The size of a 2 d-m design necessarily satisfies n = 2 d-m ≥ d + 1. The designs for which equality holds have resolution III.

  in Table 1 of[START_REF] Fries | Minimum aberration 2 k-p designs[END_REF]; they all have resolution IV and the hierarchy (a) ≺ (b) ≺ (c) is respected both in terms of aberration and maximin distance, where (a) ≺ (b) means that (b) is preferable to (a) for the criterion considered. The word length pattern of X (a) 64 is (slightly) better than that of X in Table3of [15]; X (c) 64 has minimum aberration but is worse than X (d) 64 in terms of maximin distance.

3 1. 5

 35 cdef , adef , abef , abcf , bcdf [1 0 0 0 5 10 10 5 0 0 0 1] [1 0 0 0 25 0 27 0 10 0 1 0] Maximin-distance properties of two-level factorial designs1.5.1 Neighbouring pattern and distant-sites patternFor any design X n supported on the 2 d vertices of C d and any x i ∈ X n , we call neighbouring pattern of x i the counting list L

  since there remains d -m -1 factors available and each defining relation contains at least two factors. It gives d H (g(x), g(x )) = 2 d-m-1 -1, and thus d H (x, x ) = 2 d-m-1 .

Example 1 .

 1 when applying Algorithm 1 to a candidate set X n ⊆ {-1, 1} d ; see the proof of Th. 1. The left panel of Fig. 1.1 presents the evolution of ρ H (S k ) for d = 15 and n = 16 = 2 4 when the candidate set in Algorithm 1 is the full 2 d factorial design (red solid line) and a 2 d-m fractional factorial design with m = 11 (black dashed line). In the second case, ρ H (S k ) = (d + 1)/2 for all k = 2, . . . , 16, which for k ≥ 3 is larger than the value obtained in the first case where all the 2 15 = 32 768 vertices are used as candidates. The fact that restricting the set of candidate points to a subset of {-1, 1} d may be beneficial is further illustrated on the right panel of Fig. 1.1. There, the red solid line corresponds again to the candidate set given by the full 2 d factorial design, whereas a 2 d-m design with m = 7 and ρ H (X n ) = 4 is used for the black dashed-line curve (n = 2 8 = 256).

Fig. 1 . 1

 11 Fig. 1.1 Evolution of ρ H (S k ) when Algorithm 1 is applied to the candidate set Xn given by the 2 d full factorial design (red solid line) and when Xn = Xn is a 2 d-m fractional factorial design (black dashed line); d = 15, the algorithm is initialised at a x i ∈ Xn. Left: m = 11, n = d + 1 = 16, k = 2, . . . , 16. Right: m = 7, n = 256, k = 2, . . . , 250.

1. 7 2 0)

 72 Greedy constructions based on fractional factorial designs 1.7.1 Base designs We first consider a specialisation of the n first iterations of Algorithm 1 to the case where X = C d and the candidate set at Step 1 is a 2 d-m fractional factorial design X n . Algorithm Construct a 2 d-m fractional factorial design X n ; set S 1 = {0} and k = 1. 1) for k = 1, . . . , n do find x * = arg max x∈Xn d(x, S k ), set S k+1 = S k ∪ {x * }.

  then, for k ≤ n + 1, the design S k constructed by Algorithm 2 could also have been generated by Algorithm 1 initialised at S 1 = {0} and it satisfies the bounds of Th. 1.Proof. Since ρ H (X n ) ≥ d/4, for any k ≤ n and anyx i ∈ X n \ S 2:k we have d H (x i , S 2:k ) ≥ d/4; that is, d(x i , S 2:k ) ≥ √ d. Therefore, d(x i , S k ) = √ d = max x∈C d d(x, S k). The restriction to the set X n at Step 1 thus entails no loss of performance and Th. 1 applies. Proposition 3 shows that minimum-size 2 d-m designs X n with n = d + 1 satisfy ρ H (X n ) = (d + 1)/2. We shall not provide an explicit construction ensuring the existence of fractional factorial designs satisfying ρ H (X n ) ≥ d/4 for all values of d (see, however, Remark 3). Instead, for each d = 4, . . . , 35, using the algorithm of Sect. 1.5.2 we have searched the smallest m = m(d) (that is, the largest possible design size 2 d-m(d) ) for which we can find a design X n with minimum Hamming distance at least d/4. We denote by ρ H (d) ≥ d/4 the distance we have obtained. The left panel of Fig. 1.2 shows m(d) (red solid line), together with the upper bound m * (d) given by (1.4) (blue dotted line) and the lower bound m * (d) = d/4 -1 implied by the Singleton bound (1.7) (black dashed line); the right panel presents ρ H (d). For instance, for d = 35, we can construct a design with n = 2 35-22 = 8 192 points and minimum Hamming distance 9. A construction with d = 50 and m = 35 will be considered in Example 2. Note that the value k * (d) of Sect. 1.2 satisfies

Fig. 1 . 2

 12 Fig. 1.2 Left: m(d) (red solid line), m * (d) = d -log 2 (d + 1) (blue dotted line), m * (d) = d/4 -1 (black dashed line). Right: ρ H (d) (red solid line), the black dashed line corresponds to d/4.

1 Example 2 .

 12 ) and have the same neighbouring pattern, see Sect. 1.2 and Prop. 2. For d = 50 and m = 35, the algorithm of Sect. 1.5.2 yields a design X n of n = 2 15 = 32 768 points, with resolution IV

Fig. 1 . 3

 13 Fig. 1.3 Evolution of PR(S 2:k ) in Algorithm 3 with Xn given by a 2 50-35 design (red solid line, top), of PR(S k ) in Algorithm 1 with Xn given by the first n = 2 19 points of Sobol' sequence (X S i ) i in C d (black dashed line, middle), and of PR(X S i ), i = 2, . . . , 500 (blue dotted line, bottom). The horizontal line indicates the value √ d/2 (d = 50).

Example 2 (

 2 continued). The left panel of Fig. 1.4 shows the empirical cumulative distribution function (cdf) of the x i ∞ for the design obtained with Algorithm 3 for γ = 1, r = 10 -6 and K = 500 (red solid line). When γ = d, the empirical cdf is visually confounded with the dashed-line diagonal, which corresponds to points uniformly distributed in C d . The black dashed line (middle) on the right panel of Fig. 1.4 presents the evolution of PR( S 2:k ) after linear rescaling of the designs S k obtained by Algorithm 3; the top curve (red solid line) is identical to that on Fig. 1.3 and correspond to S 2:k . Periodic rescaling of S k with γ = 1, r = 10 -6 and K = 50 in (1.14) yields the two curves in blue solid line, for the cdf (left) and for the evolution of PR( S 2:k ) (right). With an horizon N = 500 and K = 50, there are 10-uples of points with the same ∞ norm, which explains the stair-case shape of the cdf observed on the left panel. The faster decrease of the scaling factor yields a faster decrease of the packing radius on the right panel.

Fig. 1 . 4

 14 Fig. 1.4 Linear rescaling with γ = 1 and r = 10 -6 in (1.13) when the x i are generated with Algorithm 3 in Example 2. Left: empirical cdf of the x i ∞ for K = 500 (top solid line in red) and K = 50 (blue stair-case solid line); when γ = d and K = 500 the cdf is confounded with the dashed-line diagonal. Right: same as on Fig. 1.3 for the red solid line (top), evolution of PR( S 2:k ) after linear rescaling of designs S k given by Algorithm 3 for K = 500 (black dashed line) and K = 50 (blue solid line, bottom).

Remark 4

 4 Therefore, CR[P d ,r (S 2:k )] ≥ √ d and CR[P d ,r (S k )] = CR d (S k ) = √ d . Consider finally the favourable case where, for every projection P d ,r , P d ,r (S k ) contains the 2 d full factorial design. For d even, with d = 2p, the point x with p coordinates at 0 and the other p at 1 satisfies d(P d ,r (x), P d ,r (S k )) = d /2 ≤ CR d (S k ). When d is odd, with d = 2p + 1, consider the point x with p coordinates at 0, p at 1, and the last one equal to 1/2; we have d(P d ,r (x), P d ,r (S k )) = p + 1/4 = d /2 -1/4 ≤ CR d (S k ). The lower bound on CR d (S k ) in (1.18) is very optimistic in general. However, when S 2:k contains a 2 d-m fractional factorial design with resolution R ≥ d + 1, then each projected designs P d ,r (S 2:k ) contains a full factorial design, see Sect. 1.3.2, and the bound becomes accurate.

  d . The q projections are chosen randomly without repetition. CR d (X k ) gives an optimistic (under) estimation of CR d (X k ) due to the substitution of a finite set X d ,Q for C d and to the use of q random projections only. When d ≥ (4/3) [d -ρ H (S 2:k )], max x∈C d d(P d ,r (x), P d ,r (S k )) = √ d for all projections P d ,r ; see the proof of Prop. 6. Therefore, for such d , values of CR d (S k ) smaller than √ d are only due to the substitution of X d ,Q for C d . PR d (X k ) over-estimates PR d (X k ) due to the restriction to q projections, but PR d (S k ) = 0 when 2 d ≤ k -2; see Remark 4. Equation (1.17) indicates that PR d (S k ) = 0 for the designs obtained with Algorithm 3 when d ≤ d 0 = d-ρ H (S 2:k ). Although the rescaling procedure of Sect. 1.7.2 prevents the exact coincidence of projected design points, PR d ( S k ) remains very close to zero when d ≤ d 0 for rescaled designs. As the example below will illustrate, the performances in terms of PR d are thus much worse than those of more classical designs based on Lh and Sobol' sequences for small d . They are much better, however, for d close to d. The example also illustrates that rescaling decreases PR d for those large d', but has the benefit of slightly improving (decreasing) CR d .

  .5) and linear rescaling (Fig. 1.6); see Fig. 1.7. Performances with linear periodic rescaling using (1.14) with K = 50 (Fig. 1.8) are close to those on Fig. 1.6, with some small improvement in terms of CR d . For large enough d < d, performances in terms of PR d are significantly better than those obtained for a design S S 500 generated by Algorithm 1 with the first n = 2 19 points of Sobol' sequence as candidate set (note that Algorithm 3 only uses 32 768 candidate points), whereas the performances of S 500 and S S 500 in terms of CR d are fairly close. The value PR d (S S 500 ) corresponds to the last point on the black dashed line in Fig. 1.3; PR d ( S 500 ) is smaller than PR d ( S 2:500 ) on Fig. 1.4-Right due to the addition of the central point 0.

Fig. 1 . 5

 15 Fig. 1.5 Lower and upper bounds (1.18) on CR d (S 500 ) and PR d (S 500 ) given by (1.17) (black dotted lines); CR d (S 500 ) and PR d (S 500 ) (red stars); S 500 is generated by Algorithm 3.

Fig. 1 . 6

 16 Fig. 1.6 CR d ( S 500 ) and PR d ( S 500 ) after linear rescaling of S 500 using (1.13) (red stars; r = 10 -6 , K = 500 and γ = 1); CR d and PR d for X S 500 given by the first 500 points of Sobol' sequence (black circles) and a 500 point Lh design X Lh 500 optimised for the PR criterion with the ESE algorithm of [10] (blue diamonds).

Fig. 1 . 7

 17 Fig. 1.7 Same as Fig. 1.6, but with nonlinear rescaling ((1.13) with γ = d) of S 500 generated by Algorithm 3 (red stars).

Fig. 1 . 8

 18 Fig. 1.8 CR d ( S 500 ) and PR d ( S 500 ) after linear periodic rescaling of S 500 (red stars; K = 50, r = 10 -6 , γ = 1); the black circles correspond to the design obtained with Algorithm 1 using the first n = 2 19 points of Sobol' sequence as candidate set (the same design is used for the black dashed line in Fig. 1.3); the blue diamonds correspond to a 500 point Lh design X Lh 500 optimised for the PR criterion with the ESE algorithm of [10].

Proposition 8 ρ

 8 H (X n ) ≥ 3 if and only if in the construction of generators (i) each basic factor is used at least twice and (ii) for each pair of basic factors, one of the factors appears at least once separately.Proof.Consider the point x = (1 d-m , g(1 d-m )) ∈ X n . Suppose that (i)is not satisfied, with the first basic factor appearing only once among generators. Thenx 1 = (-1, 1 d-m-1 , g(-1, 1 d-m-1 )) belongs to X n and d H (g(1 d-m ), g(-1, 1 d-m-1 )) = 1, implying that d H (x, x 1 ) = 2.Also, when the first two factors only appear as a pair, thenx 2 = (-1, -1, 1 d-m-2 , g(-1, -1, 1 d-m-2)) ∈ X n and d H (g(1 d-m ), g(-1, -1, 1 d-m-2

Proposition 9 ρ 8 . 4 .

 984 H (X n ) ≥ 4 if and only if in the construction of generators (i) each basic factor is used at least three times and (ii-a) for each pair of basic factors, one of the factors appears at least twice separately or (ii-b) for each pair of basic factors, each one of the factors in the pair appears at least once separately and (iii-a) each triple of basic factors appears at least once or (iii-b) within each triple of basic factors, each factor appears at least once without the other two. The proof uses arguments similar to that used for Prop. Example Consider the case d = 9 and m = 5, with basic factors a, b, c, d and generators abc, abd, acd, bcd and abcd. Conditions (i), (ii-b) and (iii-a) are satisfied and we get A (X n ) = [1 0 0 4 14 8 0 4 1 0] and B(X n ) = [1 0 0 0 6 8 0 0 1 0].

  Note that the efficiencies CR * k / CR(S k ) and PR(S k )/ PR * k belong to [0, 1] by definition; large values are preferred for both.

	Theorem 1 The sequence of designs S k constructed with Algorithm 1 satis-
	fies	CR * k

Table 1 .

 1 1. We shall see in Sect. 1.7.1 that k * (d) is large enough for practical applications when d gets very large; see (1.12). Occasionally, Algorithm 1 may still take x * among vertices of C d when k ≥ k * (d), that is, when CR(S k ) < √ d; this again depends on the first choices made for x * . Denote by k

Table 1 . 1

 11 First k such that CR(S

k ) < √ d and first k > 1 such that x k is not a vertex of C d .

d 2 3 4 5 6 7 8 k * (d) 5 9 17 17 33 65 129 k N V (d) 5 9 17 33 65 129 133

  The design in Table1.2(a) is listed in what is called standard order.

  2 4-1 , presented in Table 1.2(c). Both designs are called a half fraction of the full factorial design with d = 4. Since d = ab in Table 1.2(c),

  is thus worse than previous one both in terms of aberration and maximin distance.Other examples with more factors are presented in Table1.4. X

	(a1)
	16

Table 1 .

 1 4 2 d-m designs, generators, word length patterns, distance distributions and covering radii.

	design	generators	A	B	CR H
	2 6-2 IV	(a1) X 16			

  (x i ) -P d ,r (x j ) .(1.16) When applied to designs generated by Algorithm 3, we obtain the following properties for CR d (S k ) and PR d (S k ). Let S k be a design generated by Algorithm 3, 2 ≤ k ≤ n. We havePR d (S k ) = [min{max{d -d + ρ H (S 2:k ), 0}, d /4}]Proof. We first prove (1.17). For any d ≤ d 0 = d -ρ H (S 2:k ) there exists at least one subset of d factors, i 1 , . . . , i d say, and two pointsx j = x in S 2:k such that d H ({x j } i1,...,i d , {x } i1,...,i d ) = 0. Therefore, P d ,r (x j ) -P d ,r (x ) = 0 for some projection P d ,r , and PR d (S 2:k ) = 0 = PR d (S k ). Take now d = d 0 + 1. On the one hand, there exist two points x j = x in S 2:k that satisfy d H (P d ,r (x j ), P d ,r (x )) ≤ 1, which implies that ρ H (P d ,r (S 2:k )) ≤ 1. On the other hand, the existence of a projection P d ,r such that ρ H (P d ,r (S 2:k )) = 0 would imply ρ H (S 2:k ) ≤ d -d = ρ H (S 2:k ) -1. Therefore, min r=1,...,( d d ) ρ H (P d ,r (S 2:k )) = 1. Proceeding in the same way, by induction we get min r=1,...,( d d ) ρ H (P d ,r (S 2:k )) = d -d 0 for any d ∈ {d 0 , d 0 + 1, . . . , d}. We have thus obtained PR d (S 2:k ) = [max{d -d + ρ H (S 2:k ), 0}] 1/2 . Since S k = S 2:k ∪ {0}, we obtain PR d (S k ) = min{PR d (S 2:k ), S k contains the origin, and furthest points from the origin are vertices of the projected hypercube, therefore CR d (S k ) ≤ √ d . Since k ≤ n, there exists x i ∈ X n \ S 2:k such that d H (x i , S 2:k ) ≥ ρ H (S 2:k ) ≥ d/4. Take any d such that (4/3) [d -ρ H (S 2:k )] ≤ d ≤ d. For any projection P d ,r , we have d H [P d ,r (x i ), P d ,r (S 2:k

				)
	PR d (X k ) = P d ,r Proposition 6 1/2 1 2 min r=1,...,( d d ) min xi,xj ∈X k , xi =xj	
	for any d ∈ {1, . . . , d} ,		(1.17)
	d 2 -[d mod 2] 4 and CR d (S k ) = ≤ CR d (S k ) ≤	√ √ d for d ≥ 4 d for any d ∈ {1, . . . , d} 3 [d -ρ H (S 2:k )] .	(1.18)
		√	d /2}, which
	gives (1.17).		
	Now we prove (1.18).		

  The 2 50-35 fractional factorial design X n of Example 2 has ρ H (X n ) = 13; S 2:k generated with Algorithm 3 satisfies ρ H (S 2:500 ) = 17, with PR(S 2:500 ) = √ 17 4.1231, see Fig. 1.3. Therefore, PR d (S 500 ) = 0 for d ≤ 33 from Prop. 6, and, due to the random choice of 100 projections only among 50 d , PR d (S 500 ) is equal to zero with positive probability when d ≤ 33. From Remark 4, PR d (S 500 ) = 0 for d ≤ 8. PR d (S 500 ) = PR d (S 500 ) = √ d /2 for d ≥ 44, in agrement with (1.17). Figure 1.5 presents the lower and upper bounds (1.18) on CR d (S 500 ) (black dotted lines) and the approximation CR d (S 500 ) based on q random projections (stars), together with PR d (S 500 ) given by (1.17) (black dotted line) and its approximation PR d (S 500 ) (stars).

Incremental design construction based on two-level fractional factorial designs
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Appendix

As shown in [START_REF] Fries | Minimum aberration 2 k-p designs[END_REF], a design for which a basic factor is not used in generators cannot have maximum resolution; see Sect. 1.3. It also has poor performance in terms of Hamming distance. Indeed, suppose without any loss of generality that the first factor is not used, and consider x i = (1, x \1 ) ∈ X n , where x \1 is the vector obtained omitting the first coordinate of x. The point x = (-1, x \1 ) also belongs to X n , and

As shown below, the reverse property holds true.

all other A i being equal to zero (and the design has resolution IV ). Direct calculation also indicates that

One can check that the sphere packing bound (1.6) implies that a 2 d-m design with d = 2m cannot reach ρ H (x n ) ≥ 5 for m < 7. However, designs with better maximin properties can be obtained for larger m. For instance, when m = 8 (d = 16, n = 256), the construction above yields a design X n with B(X n ) = A (X n ) = [1 0 0 0 28 0 0 0 198 0 0 0 28 0 0 0 1] and ρ H (X n ) = 4, whereas the design with generators abcdef gh, def gh, bcf gh, acegh, bdgh, cef h, adf h, and abeh (and basic factors 1,b,c,d,e,f,g,h) has distance distribution B(X n ) = [1 0 0 0 0 24 44 40 45 40 28 24 10 0 0 0 0], with ρ H (x n ) = 5 (again, A (X n ) = B(X n ), with X n thus having resolution V ). CR H (X n ) = 4 for both designs.