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Chapter 1

Incremental construction
of nested designs based on
two-level fractional factorial designs

Rodrigo Cabral-Farias, Luc Pronzato and Maria-João Rendas

Abstract The incremental construction of nested designs having good spread-
ing properties over the d-dimensional hypercube is considered, for values of
d such that the 2d vertices of the hypercube are too numerous to be all in-
spected. A greedy algorithm is used, with guaranteed efficiency bounds in
terms of packing and covering radii, using a 2d−m fractional-factorial design
as candidate set for the sequential selection of design points. The packing
and covering properties of fractional-factorial designs are investigated and a
review of the related literature is provided. An algorithm for the construction
of fractional-factorial designs with maximum packing radius is proposed. The
spreading properties of the obtained incremental designs, and of their lower
dimensional projections, are investigated. An example with d = 50 is used
to illustrate that their projection in a space of dimension close to d has a
much higher packing radius than projections of more classical designs based
on Latin hypercubes or low discrepancy sequences.

1.1 Introduction

We consider the incremental construction of designs with large packing radius
in the d-dimensional hypercube, using the coffee-house rule of [20] and [21,
Chap. 4]: each new point introduced maximises the distance to its nearest
neighbour in the current design. This simple algorithm is known to guarantee
an efficiency of 50% in terms of packing and covering radii, for each design size
along the construction. Intuitively, when d is large, the first points selected
are vertices of the hypercube, and we shall provide arguments that validate
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this intuition. However, when d is very large, it is impossible to inspect all
vertices and select one at every iteration. We show that restriction of the
search to fractional factorial designs having a large enough covering radius
does not entail any loss of performance up to some design size: an example
shows that designs of size up to 215+1 = 32 769, with 50% packing and cover-
ing efficiencies, can be constructed in this way when d = 50. The packing and
covering properties of these designs when projected on smaller dimension sub-
spaces are investigated. Transformation rules based on rescaling are proposed
to generate designs that populate the interior of the hypercube. Numerical
computations indicate that the designs obtained have slightly larger cover-
ing radii than more classical space-filling designs based on (non-incremental)
Latin hypercubes or (incremental) Sobol’ low discrepancy sequence, but have
significantly larger packing radii.

The paper is organised as follows. Section 1.2 sets notation and recalls
the definitions of packing and covering radii and the incremental construc-
tion of designs based on the coffee-house rule. The main properties of two-
level fractional factorial designs are recalled in Sections 1.3 and 1.4 to make
the paper self-contained. Their spreading properties are investigated in Sec-
tions 1.5 (packing radius) and 1.6 (covering radius). An algorithm is given in
Sect. 1.5 for the construction of fractional factorial designs with large covering
radii. Section 1.7 studies the restriction of the coffee-house rule to two-level
fractional factorial designs, and shows that the 50% packing and covering
efficiencies are preserved when the fractional factorial design has minimum
Hamming distance at least d/4. A rescaling rule is proposed to generate in-
cremental designs not concentrated on the vertices of the hypercube, and
properties of projections on smaller dimensional subspaces are investigated.
An example in dimension d = 50 illustrates the presentation. Section 1.8
briefly concludes.

1.2 Greedy coffee-house design

Let X denote a compact subset of Rd with nonempty interior; throughout
the paper we consider the case where X is the d-dimensional hypercube Cd =
[−1, 1]d. Denote by Xk = {x1, . . . ,xk} a k-point design when the ordering
of the xi is not important, and by Xk = [x1, . . . ,xk] the ordered sequence;
for 1 ≤ k1 ≤ k2; Xk1:k2 denotes the design formed by [xk1 ,xk1+1, . . . ,xk2 ],
with X1:k = Xk. The jth coordinate of a design point xi is denoted by

{xi}j , j = 1 . . . , d; ‖x‖ =
(∑d

i=1{x}2i
)1/2

denotes the `2 norm of the vector

x ∈ Rd, ‖x‖1 =
∑d
i=1 |{x}i| (respectively, ‖x‖∞ = maxi=1,...,d |{x}i|) is its

`1 (respectively, `∞) norm. For any x ∈ Rd and any k-point design Xk in
X we denote d(x,Xk) = mini=1,...,k ‖x − xi‖. For x and x′ two vectors of
same size, z = x ◦ x′ denotes their Hadamard product, with components
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{z}i = {x}i{x′}i. B(x, r) denotes the closed ball with centre x and radius r.
For A a finite set, |A | is the number of elements in A .

Space-filling design aims at constructing a set Xk of points in X , with
given cardinality k, that “fill” X in a suitable way; see, e.g., [25, 26]. Two
measures of performance are standard. The covering radius of Xk is defined
by

CR(Xk) = max
x∈X

d(x,Xk) . (1.1)

It corresponds to the smallest r such that the k closed balls of radius r centred
at the xi cover X . CR(Xk) is also called the dispersion of Xk [22, Chap. 6]
and corresponds to the minimax-distance criterion [12] used in space-filling
design; small values are preferred. Another widely used geometrical criterion
of spreadness is the packing radius

PR(Xk) =
1

2
min

xi,xj∈Xk,xi 6=xj

‖xi − xj‖ . (1.2)

PR(Xk) is also called separating radius, it corresponds to the largest r such
that the k open balls of radius r centred at the xi do not intersect; 2PR(·)
corresponds to the maximin-distance criterion [12] often used in computer
experiments; large values are preferred. We may also consider the combined
measure given by the mesh ratio

τ(Xk) =
CR(Xk)

PR(Xk)
,

with τ(Xk) ≥ 1 for any design Xk when X is convex, since the k balls
B(xi,PR(Xk)) cannot cover X .

When the objective is to construct a sequence Xk = [x1, . . . ,xk] such
that PR(Xk) is reasonably large, and/or CR(Xk) is reasonably small, for all
k ∈ {2, . . . , n}, the following greedy algorithm is called coffee-house design
([20], [21, Chap. 4]). See also [14] for an early suggestion.

Algorithm 1 (Coffee-house)

0) Select x1 ∈X , set S1 = {x1} and k = 1.
1) for k = 1, 2 . . . do

find x∗ ∈ Arg maxx∈X d(x,Sk), set Sk+1 = Sk ∪ {x∗}.

The point x∗ can be obtained by a Voronöı tessellation of X (when d is
small enough) or a MCMC method, see [25]. Note that the choice of x∗ is not
necessarily unique. The construction is much easier when a finite candidate
set Xn with n points is substituted for X at Step 1. In the paper we show that
when X = Cd, a well-chosen Xn yields a drastic simplification of calculations
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for very large d but does not entail any loss of performance for the greedy
algorithm. For a given order of magnitude of the anticipated number of design
points to be used, we informally define the notions of small, large and very
large dimension d as follows: small d are such that the construction of designs
with 2d points may be considered; large d correspond to situations where the
greedy construction above with a candidate set Xn containing all 2d vertices
of Cd is conceivable; very large d cover cases where exploration of all 2d

vertices of Cd is unfeasible. For instance, C50 has more than 1015 vertices, a
situation considered in Sect. 1.7.

Let CR∗n = minXn CR(Xn) denote the minimum covering radius for an
n-point design in X , n ≥ 1, and PR∗n = maxXn PR(Xn) denote the maxi-
mum packing radius, n ≥ 2. The following property is a consequence of [8].
Note that the efficiencies CR∗k /CR(Sk) and PR(Sk)/PR∗k belong to [0, 1] by
definition; large values are preferred for both.

Theorem 1 The sequence of designs Sk constructed with Algorithm 1 satis-
fies

CR∗k
CR(Sk)

≥ 1

2
(k ≥ 1) and

PR(Sk)

PR∗k
≥ 1

2
(k ≥ 2) . (1.3)

Moreover, τ(Sk) ≤ 2 for all k ≥ 2.

Proof. By construction, for all k ≥ 1, PR(Sk+1) = d(xk+1,Sk)/2 = CR(Sk)/2.
Therefore, for all k ≥ 2, τ(Sk) = CR(Sk)/PR(Sk) = 2PR(Sk+1)/PR(Sk) ≤
2. Also, from the pigeonhole principle, for any pair of k and (k+ 1)-point de-
signs Xk and X′k+1, one of the ball B(xi,CR(Xk)) with xi in Xk contains two
points x′i and x′j of X′k+1, which implies CR(Xk) ≥ PR(X′k+1). Therefore, for
the greedy construction we have in particular CR∗k ≥ PR(Sk+1) = CR(Sk)/2
and PR∗k+1 ≤ CR(Sk) = 2 PR(Sk+1). ut

In the rest of the paper we take X = Cd. Take x1 = 0d, the null vector
of dimension d, which corresponds to the centre of Cd. The design S1 =
[x1] has thus minimum covering radius, with CR(S1) =

√
d. When applying

Algorithm 1, for all k such that CR(Sk) =
√
d, the point x∗ chosen at Step 1

is then necessarily a vertex of Cd; that is, xk ∈ {−1, 1}d for k = 2, . . . , k∗(d),
where k∗(d) is the first k such that CR(Sk) <

√
d. (Note that it implies that

CR∗n ≥
√
d/2 for all n ≤ k∗(d)− 1.) This simple property has the important

consequence that the greedy construction of a design Sn via Algorithm 1
initialised at x1 = 0d can restrict its attention to the set of vertices of Cd,
provided that n ≤ k∗(d). For d ≤ 4, since any pair of distinct vertices of
the hypercube are at distance at least 2 ≥

√
d, Algorithm 1 sequentially

(and indifferently) selects the vertices of Cd until they are exhausted, and
k∗(d) = 2d + 1. For larger d, the behaviour depends on the order in which
vertices are selected in the first iterations; that is, on the particular choices
of x∗ made at Step 1. The largest values of k∗(d) obtained for d up to 8 are
indicated in Table 1.1. We shall see in Sect. 1.7.1 that k∗(d) is large enough
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for practical applications when d gets very large; see (1.12). Occasionally,
Algorithm 1 may still take x∗ among vertices of Cd when k ≥ k∗(d), that
is, when CR(Sk) <

√
d; this again depends on the first choices made for x∗.

Denote by kNV (d) the first k > 1 such that x∗ chosen at Step 1 is not a
vertex of Cd (with necessarily kNV (d) ≥ k∗(d)); the largest values of kNV (d)
that we have obtained are also indicated in Table 1.1.

The difficulty is that the inspection of all 2d vertices of Cd is unpractical
for very large d. The main objective of the paper is therefore to propose a
method for selecting a subset Xn of 2d vertices of Cd on which Algorithm 1
can be applied, ensuring that maxx∈Xn d(x,Sk) = CR(Sk) =

√
d for all

k ≤ n, with n large enough to allow the construction of designs of practical
size. The method relies on the notion of fractional factorial design, the basic
properties of which are recalled in the next two sections. Their spreading
properties in terms of packing and covering radii are then investigated in
Sections 1.5 and 1.6. We prefer not to call those designs “space-filling” since
they are supported on the vertices of Cd; they nevertheless satisfy the bounds
of Th. 1.

Table 1.1 First k such that CR(Sk) <
√
d and first k > 1 such that xk is not a vertex of Cd.

d 2 3 4 5 6 7 8

k∗(d) 5 9 17 17 33 65 129

kNV (d) 5 9 17 33 65 129 133

1.3 Two-level fractional factorial designs

This section only gives a brief summary of the topic; one may refer to [2, 3]
for a thorough and illuminating exposition.

1.3.1 Half fractions: m = 1

A 2d factorial (or full factorial) design is formed by the 2d vertices of Cd;
each design point xi is such that {xi}j ∈ {−1, 1}, i = 1, . . . , 2d, j = 1, . . . , d.
The notation used for a 2d factorial design is illustrated in Table 1.2(a) for
the case d = 3. The coordinates of design points correspond to factors and
are denoted by lowercase letters?.

A (regular) 2d−m fractional factorial design is obtained by setting d −m
coordinates (sometimes called basic factors) of the 2d−m design points at
values given by a 2d−m factorial design, the other m coordinates being defined

? The design in Table 1.2(a) is listed in what is called standard order.
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by generating equations, or generators, that explain how they are obtained
(calculated) from the basic factors. Without any loss of generality, we can
suppose that the basic factors correspond to the first d − m coordinates.

Table 1.2(b) shows the 24−1 fractional factorial design X
(a)
24−1 obtained from

the generating equation {x}4 = d = abc. By the product of two factors we
mean the entrywise (Hadamard) product of the corresponding columns in
the design viewed as a n × d matrix. Since all {x}i belong to {−1, 1} for
x in X2d−m , this implies in particular that the product of a factor by itself
gives a vector with all components equal to 1, which we denote by 1. The
equation d = abc is thus equivalent to 1 = abcd, called defining relation.
Changing the generating equation to d = ab gives another 24−1 fractional

factorial design X
(b)
24−1 , presented in Table 1.2(c). Both designs are called a half

fraction of the full factorial design with d = 4. Since d = ab in Table 1.2(c),

{x}4 = {x}1{x}2 for all x in X
(b)
24−1 , and this design does not allow us to

estimate separately the main effect of {x}4 and the interaction {x}1{x}2;
these effects are said confounded, or aliased. The equation d = ab also implies
a = bd and b = ad, showing that the effects of {x}1 and {x}2{x}4 are
confounded, as well as those of {x}2 and {x}1{x}4. We say that this design
has resolution R = III (notation with a Roman numeral is traditional): no
p factor effect is confounded with any other effect containing less than R− p
factors, p = 0, . . . , R. For the design in Table 1.2(b), we get a = bcd, b = acd,
c = abd and of course d = abc which is the generating equation. Here none
of the main and 2 factor interaction effects are confounded, and the design
has resolution R = IV . In general, designs of high resolution are preferable.
When m = 1, the highest possible resolution R = d is obtained for the half
fraction with defining relation {x}d =

∏d−1
i=1 {x}i (unique up to a sign change

and a permutation of variables).

(a) a 23 factorial design

X8 {x}1 = a {x}2=b {x}3=c

x1 -1 -1 -1
x2 1 -1 -1

x3 -1 1 -1
x4 -1 -1 1
x5 1 1 -1

x6 1 -1 1

x7 -1 1 1
x8 1 1 1

(b) a 24−1 fractional
factorial design

X8 a b c d = abc

x1 -1 -1 -1 -1
x2 1 -1 -1 1

x3 -1 1 -1 1
x4 -1 -1 1 1
x5 1 1 -1 -1

x6 1 -1 1 -1

x7 -1 1 1 -1
x8 1 1 1 1

(c) another 24−1 frac-
tional factorial design

X8 a b c d = ab

x1 -1 -1 -1 1
x2 1 -1 -1 -1

x3 -1 1 -1 -1
x4 -1 -1 1 1
x5 1 1 -1 1

x6 1 -1 1 -1

x7 -1 1 1 -1
x8 1 1 1 1

Table 1.2 (a): a 23 factorial design; (b) and (c): two 24−1 fractional factorial designs,
with {x}1 = a, {x}2 = b, {x}3 = c and {x}4 = d.
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1.3.2 Several generators

Defining relations

A 2d−m fractional factorial design with m > 1 requires more than one gener-
ating equation, and the construction of suitable designs with high resolution
has motivated intensive research since the pioneering papers [2, 3]. To ensure
that the resolution is larger than II, the generating equations are chosen
independent, which means that a generator cannot be obtained by multiply-
ing together two other generators. It implies that there are no repetitions
within the columns of the design table. If this were not the case, two main
effects would be confounded since we would have {x}i = {x}j for some
i, j ∈ {1, . . . , d} and all x in the design. The generators are called principal
when there are only positive signs in the defining relations. When multiplying
the m generating equations by the d independent factors and by themselves
in all possible ways, we obtain the complete set of defining relations. Princi-
pal defining relations are obtained from principal generators. The complete
set of principal defining relations defines a unique fraction, that is a unique
design up to 2m sign changes in the variables defined by the generators. The
set contains 2m defining relations (including the trivial one 1 = 1), each
one having the form 1 equals the product of a subset of factors, called word.
For example, the 26−2 design with independent factors a, b, c and d and gen-
erating equations e = abcd and f = acd has defining relations 1 = abcde,
1 = acdf and 1 = bef , the latter being obtained by multiplying the first two
since (abcde)× (acdf) = a2bc2d2ef = bef .

Resolution

The resolution of the design is given by the shortest word length within the
complete set of defining relations, here R = III (since 1 = bef). Another
choice of generating equations may yield a different set of defining relations
and a design with different resolution. For instance, choosing e = abc and
f = acd in a 26−2 design yields the complete set of defining relations 1 =
abce = acdf = bdef , and the resolution is now IV . To identify the resolution
of a design, the notation 2d−mR is used. For example, the design with six
variables and generating equations e = abcd and f = acd is denoted 26−2III .

Designs 2d−mIII (with n = 2d−m points in d variables) can be constructed for d
up to n−1 and n a power of 2 (designs with d = n−1 are called saturated, see
Sect. 1.3.3), designs 2d−mIV can be constructed for d up to n/2 and n a power of
2; generators for 27−4III , 215−11III , 231−26III , 27−3IV , 28−4IV , 216−11IV can be found in [2].
The nonregular designs of [23] have resolution III and allow the exploration
of n − 1 variables for n a multiple of 4. Generators for designs 28−2V and
211−4V are given in [3]. The Matlab function fracfactgen.m implements
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the algorithm of [6] for the construction of a 2d−m fractional factorial design
of prescribed resolution (when it exists).

A design with resolution R contains a full factorial design in any subset
of R − 1 variables. Omitting p variables from a 2d−mR design with resolution
R produces a design of resolution R in d − p variables but with n = 2d−m

points. All words containing characters associated with the dropped variables
must be removed from the set of defining relations. The resulting design may
duplicate some design points, and a more economical design with similar
word pattern in the defining relations may exist in general. Bounds on the
maximum resolution attainable for a 2d−m design are given in [7].

Word length pattern

The word length pattern A (Xn) of a 2d−m design with resolution R is defined
by the distribution of word lengths in the complete set of defining relations,

A (Xn) = [1, 0, . . . , 0, AR(Xn), AR+1(Xn), . . . , Ad(Xn)] ,

with Ak(Xn) denoting the number of words of length k (A0(Xn) = 1 since the

word 1 is always present and
∑d
k=0Ak(Xn) = 2m). Among two designs X

(a)
n

and X
(b)
n having the same (maximum) resolution R, the paper [7] recommends

to select the one with minimum aberration: let i∗ be the smallest i ≥ 1 such
that Ai(X

(a)
n ) 6= Ai(X

(b)
n ), then X

(a)
n is preferred to X

(b)
n if Ai∗(X

(a)
n ) <

Ai∗(X
(b)
n ), and X

(b)
n is preferred to X

(a)
n otherwise??. The construction of a

minimum aberration design can thus be viewed as the sequential minimisation
of the Ai(Xn) for i ≥ 1. A minimum aberration 2d−m design has necessarily
generators that contain all d variables [7]; lists of generators are tabulated in
[33].

1.3.3 Minimum size

Proposition 1 The size of a 2d−m design necessarily satisfies n = 2d−m ≥
d+ 1. The designs for which equality holds have resolution III.

Proof. Since the m generators must be independent and each one must in-
volve at least 2 of the d−m basic factors, we get

m ≤
d−m∑
k=2

(
d−m
k

)
= 2d−m − (d+ 1−m) ,

?? It may happen, though rarely, that two designs with different defining relations have

exactly the same word length pattern; the minimum aberration criterion then does not

provide any preference.
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that is, n = 2d−m ≥ d+1. Designs for which equality holds are those that use
all possible independent generators (without any loss of generality, we only
consider principal generators). They cannot have resolution R larger than
III since there are generators defined as product of two basic factors, and
thus defining relations involving words of length 3. We prove by contradiction
that they cannot have resolution II.

If the design has resolution II, it means that one of the defining relations
has been obtained by multiplying two relations 1 = w and 1 = z, with words
w and z that only differ by two letters, say a, b. There are two possibilities:
either w = ta and z = tb, or w = tab and z = t. In both case, the multipli-
cation w × z gives the defining relation 1 = ab, which cannot exist since the
generators are independent. ut

Proposition 1 gives a lower bound on the number of points for a given
dimension d; it also gives an upper bound on the number of generators that
can be used for a given d,

m ≤ m∗(d) = bd− log2(d+ 1)c . (1.4)

That is, for 2k ≤ d < 2k+1 we can construct 2d−m fractional factorial designs
with m ∈ {1, 2, . . . ,m∗(d) = d− k − 1}. Values of d, m and n for minimum-
size 2d−m designs with d + 1 = 2d−m, called saturated designs, for d up to
d = 255 are given in Table 1.3.

Table 1.3 Saturated designs.

d 3 7 15 31 63 127 255

m 1 4 11 26 57 120 247

n 4 8 16 32 64 128 256

1.4 Two-level factorial designs and error correcting
codes

1.4.1 Definitions and properties

The construction of a two-level factorial design Xn possesses strong simi-
larities with the construction of an error correcting code Cn with binary
alphabet {0, 1}: design points correspond to codewords in Cn and d is the
length of the code, with n = |Cn| (and n = 2d−m for a fractional factorial
design). Associating levels 1 and −1 to symbols 0 and 1, respectively, we
obtain that the product rule used in Sect. 1.3 corresponds now to addition
modulo 2, and the codes corresponding to fractional factorial designs, which
are obtained through generating equations, are linear.
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Since {xi}j ∈ {−1, 1} for each design point and any j ∈ {1, . . . , d}, the
the Hamming distance dH(xi,xj), which counts the number of components
that differ between two design points xi and xj , satisfies

dH(xi,xj) =
1

4
‖xi − xj‖2 =

1

2
‖xi − xj‖1 .

The minimum distance of Cn, ρH(Cn), is defined as the minimum Ham-
ming distance between two codewords in Cn and we shall write ρH(Xn) =
ρH(Cn) with Cn the code associated with Xn. More generally, ρH(Xn) =
minxi,xj∈Xn,xi 6=xj

dH(xi,xj) for any design Xn supported on the vertices of
Cd. Therefore,

ρH(Xn) = PR2(Xn) .

Similarly, the (Hamming) covering radius CRH(Xn) of a two-level frac-
tional factorial design Xn corresponds to the covering radius CRH(Cn) of
the associated code, and we define more generally

CRH(Xn) = max
x∈{−1,1}d

min
xi∈Xn

dH(x,xi) . (1.5)

Several results from coding have their counterpart in design theory. Sup-
pose that ρH(Xn) ≥ 2k + 1 for some k ∈ N. For each of the n design points
xi, there are

(
d
`

)
points in {−1, 1} that are at distance ` from xi. Since the

n Hamming balls centred at the xi with radii k do not intersect, we obtain
the sphere-packing bound, see, e.g., [32, Th. 20.1]: n

∑k
`=0

(
d
`

)
≤ 2d. For a

fractional factorial design Xn with n = 2d−m, it gives

2m ≥
k∑
`=0

(
d

`

)
. (1.6)

Note that CRH(Xn) ≥ bρH(Xn)/2c. When ρH(Xn) = 2k + 1 and equality
is reached in (1.6), all points in {−1, 1}d are at Hamming distance at most
k to exactly one design point in X2d−m , which corresponds to the notion of
perfect code.

Delete now the p− 1 last coordinates of each xi ∈ Xn, with p = ρH(Xn).
The n points that are obtained belong to {−1, 1}d−(p−1) and are all distinct.
Therefore, their number n is less than 2d−p+1, which gives the Singleton bound
([29], [32, Th. 20.2]): n ≤ 2d−p+1. For a fractional factorial design X2d−m , we
obtain

ρH(X2d−m) ≤ m+ 1 . (1.7)

Another result from coding theory gives an upper bound on the size n of a
design Xn supported on {−1, 1}d when ρH(Xn) is large: Plotkin bound ([16,
Th. 5.5.2], [24]) states that
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n ≤
⌊

ρH(Xn)

ρH(Xn)− d/2

⌋
(1.8)

when ρH(Xn) > d/2.
Besides the value of the packing radius PR(Xn), the distribution of the

distances ‖xi − xj‖, or dH(xi,xj), between pairs of design points is also of
interest. This is particularly true in the present context where there exist
many pairs of points at the same distance since all design points are vertices
of the hypercube. In [12] a design X∗n is called maximin-distance optimal
when it maximises PR(Xn) and minimises the number of pairs of points
at distance 2 PR(X∗n). That definition is extended as follows in [19]. For a
given design Xn, consider the list [d1, d2, . . . , dq] of intersite distances sorted
in decreasing order, with d1 = 2 PR(Xn) and 1 ≤ q ≤ n(n − 1)/2. De-
note by J (Xn) = [J1, . . . , Jq] the associated counting list defined by Jk =
|(i, j) : ‖xi − xj‖ = dk, xi,xj ∈ Xn}|, k = 1, . . . , q. In [19], a design is called
maximin-distance optimal if it maximises d1, and among all such designs
minimises J1, maximises d2, and among all such designs minimises J2 . . . and
so on. Following [35], we call (Hamming) distance distribution of a design
Xn supported on {−1, 1}d the list B(Xn) = [B0(Xn), B1(Xn), . . . , Bd(Xn)]
where

Bk(Xn) =
1

n
|(i, j) : dH(xi,xj) = k, xi,xj ∈ Xn}| , k = 0, . . . , d (1.9)

(so that
∑d
k=0Bk(Xn) = n and B0(Xn) = 1 when all points are distinct).

Let Xn be a 2d−m fractional factorial design; Xn is balanced, i.e., each
value +1 and −1 appears equally often for each factor, and for any xi ∈
Xn,

∑
xj∈Xn, j 6=i dH(xi,xj) =

∑
xj∈Xn, j 6=i

∑d
k=1 dH({xi}k, {xj}k) = nd/2.

Therefore,
∑d
k=1 k Bk(Xn) = nd/2, and interpreting Bk(Xn)/(n − 1) as a

weight on k, we get

ρH(Xn) = min{k ∈ {1, . . . , d} : Bk(xn) > 0} ≤ nd

2(n− 1)
. (1.10)

Let p denote the number of generators written as the product of an odd
number of basic factors (p ≥ 0). For any xi ∈ Xn, the design point xj
obtained by changing the signs of the d − m basic factors is at Hamming
distance dH(xi,xj) = d−m+ p from xi; that is,

Bd−m+p(Xn) ≥ 1 .

In particular, it implies that ρH(Xn) ≤ d−m+ p. Also, since each point has
at most one point at Hamming distance d, when p = m we have Bd(Xn) ≤ 1

and thus Bd(Xn) = 1; see for example the designs X
(a1)
16 , X

(a2)
16 , X

(a)
32 and

X
(b)
32 of Table 1.4.
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Due to the equivalence between Hamming and Euclidean distances for a
2d−m design, design selection based on maximin-distance optimality in the
sense of [19] sequentially minimises the Bk(Xn) for k ≥ 1; it is similar to
selection by the minimum aberration criterion of [7] applied to the distance
distribution instead of the word length pattern. In [15] minimum aberration
designs are called maximin word length.

As noticed in [35], MacWilliams’ theorem, see, e.g., [32, Th. 20.3], implies
that the distance distribution Bk(Xn) and the word length pattern A (Xn)
of a given 2d−m design Xn are related by

Aj(Xn) =
1

n

d∑
k=0

Bk(Xn)Pj(k; d, 2) , j = 0, . . . , d , (1.11)

Bj(Xn) = n 2−d
d∑
k=0

Ak(Xn)Pj(k; d, 2) , j = 0, . . . , d ,

where the Pj(x; d, s) are the Krawtchouk polynomials defined by

Pj(x; d, s) =

j∑
i=0

(−1)i(s− 1)j−i
Γ (x+ 1)

Γ (x+ 1− i)Γ (i+ 1)

× Γ (d+ 1− x)

Γ (d+ i+ 1− x− j)Γ (j + 1− i)
,

so that Pj(k; d, 2) =
∑j
i=0(−1)i

(
k
i

) (
d−k
j−i
)
.

Several extensions of the results above, in various directions, are present
in the literature. Let us mention a few. Fractional factorial designs with s
levels, with s any prime number, are considered in [35], together with designs
where different factors may have different numbers of levels, and the notion
of generalised minimum aberration is introduced; see also [4]. Space-filling
properties of fractional factorial designs with more than two levels are stud-
ied in [36], where it is shown that the generalised minimum aberration designs
of [35] have good performance in terms of maximin distance for the `1 norm
when allowing permutations of factor levels. Starting from an initial s-level
balanced design Xn, where each level appears exactly n/s times for each one
of the d factor, [34] shows how to construct a design X′n with d factors at qs
levels, for n divisible by qs (X′n is a Latin hypercube design when q = n/s).
When s > 2, the space-filling properties of X′n (measured by the maximin
distance for the `1 norm) can be improved by level permutation, using the ap-
proach in [36]. Following the approach of [18], properties of 2d−m designs for
prediction with a Gaussian process model defined on the vertices {−1, 1}d of
the hypercube [−1, 1]d are investigated in [15]; a practical conclusion is that
maximin word length (minimum aberration) designs often coincide with max-
imin distance designs, but not always. The paper [1] shows how to decompose
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a minimum aberration 2d−m design into layers containing two points each,
in such a way that the resulting design has suitable space-filling properties.
The construction of two-level factorial designs having small covering radius
(1.5) is considered in [11] (note, however, that CRH(Xn) is not necessarily
an adequate measure of the space-filling properties of Xn over the full hy-
percube [−1, 1]d); a few general properties are given, and the construction of
minimum-size covering designs having CRH(Xn) = 1 and minimum-size de-
signs with CRH(Xn) = 2 is detailed for d ≤ 7 (with rather intensive computer
search for d = 7). The centred L2-discrepancy CL2(Xn) of [9] is a popular
measure of uniformity of a design Xn. For a 2d−m fractional factorial design,
CL2(Xn) is a function of the Ai(Xn) in the word-length pattern A (Xn) [5];
see also [31] for related results. A relation between CL2(Xn) and the distance
distribution B(Xn) is established in [30] for more general balanced designs
(with n runs and d factors, each one taking s levels, and, for each factor, each
level appearing equally often).

1.4.2 Examples

The 24−1IV design X8 of Table 1.2(b), with generator d = abc, has word length
pattern A = [1 0 0 0 1]; its distance distribution is B = [1 0 6 0 1]; it reaches
the bound (1.7) since ρH(X8) = 2 = m+ 1. The design in Table 1.2(c) with
d = ab has resolution III, A = [1 0 0 1 0] and B = [1 1 3 3 0]; it is thus
worse than previous one both in terms of aberration and maximin distance.

Other examples with more factors are presented in Table 1.4. X
(a1)
16 (re-

spectively, X
(a2)
16 ) is better than X

(b1)
16 (respectively, X

(b2)
16 ) both in terms of

resolution and maximin distance. X
(a2)
16 reaches the bound (1.6), it corre-

sponds to a perfect code of length 7, distance 3 and covering radius 1; see,

e.g., [32, p. 215]. The three 27−2IV designs X
(a)
32 , X

(b)
32 and X

(c)
32 are those in Ta-

ble 1 of [7]; they all have resolution IV and the hierarchy (a) ≺ (b) ≺ (c) is
respected both in terms of aberration and maximin distance, where (a) ≺ (b)
means that (b) is preferable to (a) for the criterion considered. The word

length pattern of X
(a)
64 is (slightly) better than that of X

(b)
64 , but X

(b)
64 does

better than X
(a)
64 in terms of maximin distance. The two 211−5IV designs X

(c)
64

and X
(d)
64 are given in Table 3 of [15]; X

(c)
64 has minimum aberration but is

worse than X
(d)
64 in terms of maximin distance.
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Table 1.4 2d−m designs, generators, word length patterns, distance distributions and

covering radii.

design generators A B CRH

26−2
IV X

(a1)
16 abc, acd [1 0 0 0 3 0 0] [1 0 3 8 3 0 1] 1

26−2
III X

(b1)
16 abcd, acd [1 0 0 1 1 1 0] [1 0 4 6 3 2 0] 2

27−3
IV X

(a2)
16 bcd, abd, acd [1 0 0 0 7 0 0 0] [1 0 0 7 7 0 0 1] 1

27−3
III X

(b2)
16 bcd, abd, abcd [1 0 0 2 3 2 0 0] [1 0 1 6 5 2 1 0] 2

27−2
IV X

(a)
32 abc, bcd [1 0 0 0 3 0 0 0] [1 1 3 11 11 3 1 1] 1

X
(b)
32 abc, ade [1 0 0 0 2 0 1 0] [1 0 6 9 9 6 0 1] 1

X
(c)
32 abcd, abce [1 0 0 0 1 2 0 0] [1 0 5 12 7 4 3 0] 1

211−5
IV X

(a)
64 abcde, abcdf ,

abcef , abdef , cdef [1 0 0 0 6 12 8 0 1 4 0 0] [1 0 1 0 14 24 6 8 9 0 1 0] 2

X
(b)
64 abcd, abce, acdf ,

cdef , abcdef [1 0 0 0 7 9 6 6 2 1 0 0] [1 0 0 4 11 18 15 8 4 2 1 0] 2

X
(c)
64 cde, bde, abcdf ,

abce, adef [1 0 0 0 4 14 8 0 3 2 0 0] [1 0 0 2 14 22 8 6 9 2 0 0] 2

X
(d)
64 cdef , adef , abef ,

abcf , bcdf [1 0 0 0 5 10 10 5 0 0 0 1] [1 0 0 0 25 0 27 0 10 0 1 0] 3

1.5 Maximin-distance properties of two-level factorial
designs

1.5.1 Neighbouring pattern and distant-sites pattern

For any design Xn supported on the 2d vertices of Cd and any xi ∈ Xn, we call
neighbouring pattern of xi the counting list L (xi; Xn) = [1, I1(xi; Xn), . . . ,
Id(xi; Xn)] with Ik(xi; Xn) = |{j : dH(xi,xj) = k, xj ∈ Xn}|. Similarly, we
call distant-sites pattern the list L (xi; Xn) = [0, I1(xi; Xn), . . . , Id(xi; Xn)]
with Ik(xi; Xn) = |{j : dH(xi,xj) = k, xj 6∈ Xn}|. 2d−m fractional factorial
designs satisfy the following property.

Proposition 2 All design points xi of a 2d−m fractional factorial design
have the same neighbouring pattern and the same distant-sites pattern.

Proof. Take any x ∈ Xn; without any loss of generality we suppose that
basic factors correspond to the first d −m coordinates, and we denote by x
the corresponding part of x. The remaining m components are constructed
from the generators that define the design; we can write {x}d−m+k = gk(x),
with gk(x) equal to the product of some components of x, k = 1, . . . ,m. We
collect those m components in a vector g(x) and write x = (x,g(x)).

Suppose that there exist xj ∈ Xn such that dH(x,xj) = k. We first show
that for any x′ ∈ Xn there also exists a x′j ∈ Xn such that dH(x′,x′j) = k.
Using the same notation as above, we can write x′ = (x′,g(x′)), and, since
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x′ ∈ Xn, x′ = z ◦ x with z a (d−m)-dimensional vector with components in
{−1, 1}. Therefore,

x′ = (z ◦ x,g(z ◦ x)) = (z ◦ x,g(z) ◦ g(x)) = (z,g(z)) ◦ x.

The vector x′j = (z ◦ xj ,g(z ◦ xj)) = (z,g(z)) ◦ xj also belongs to Xn (since

the first d − m coordinates of design points in Xn form a 2d−m factorial
design), and satisfies dH(x′,x′j) = dH(x,xj).

To conclude the proof that all design points have the same neighbouring
pattern, we only need to show that if xi and xj are two distinct points in
Xn, say with dH(x,xi) = dH(x,xj) = k, then x′i = (z ◦ xi,g(z ◦ xi)) and
x′j = (z ◦ xj ,g(z ◦ xj)) are distinct points in Xn satisfying dH(x′,x′i) =

dH(x′,x′j) = k. The equality between distances has already been proved; the
points are distinct since x′i = (z,g(z)) ◦ xi 6= (z,g(z)) ◦ xj = x′j .

Denote I ′k(xi) =
∣∣{j : dH(xi,xj) = k, xj ∈ {−1, 1}d}

∣∣. Since Ik(xi; Xn) =
I ′k(xi) − Ik(xi; Xn) and I ′k(xi) = I ′k(xj) for any xi and xj in Xn, all design
points have also the same distant-sites pattern. ut

This property explains why division by n in the definition (1.9) of distance
distribution yields integer values for the Bk(Xn): we have Lk(xi; Xn) =
B(Xn) for any 2d−m fractional factorial design Xn and any xi ∈ Xn. A
straightforward consequence is we do not need to consider all pairs of points
in Xn to construct the distance distribution, but only the distances between
one point and the n − 1 others. In particular, this point can be taken as
1d, the d-dimensional vector with all components equal to 1 (provided that
the design is constructed with principal generators with non negative signs,
which we assume throughout the paper). As an illustration, below we consider
the distance distribution of fractional factorial designs with n = d + 1, see
Sect. 1.3.3, which is very peculiar.

Proposition 3 Saturated 2d−m fractional factorial designs (n = d + 1) are
maximin-distance optimal; their distance distribution satisfies B0(Xn) = 1,
B(d+1)/2(Xn) = n− 1 and Bi(Xn) = 0 for i > 0, i 6= (d+ 1)/2.

Proof. From Prop. 2, we only need to consider the distance between one
particular point, which we denote x = (x,g(x)), and other points x′ ∈ Xn,
x′ = (x′,g(x′)). We show that dH(x,x′) = 2d−m−1 = n/2 = (d+ 1)/2 when
dH(x,x′) = 1, 2, . . . ,m.

Suppose that dH(x,x′) = 1, let a be the basic factor that changes between
x and x′. The number of generators that contain a is

na =

d−m−1∑
k=1

(
d−m− 1

k

)
= 2d−m−1 − 1,

since there remains d − m − 1 factors available and each defining relation
contains at least two factors. It gives dH(g(x),g(x′)) = 2d−m−1−1, and thus
dH(x,x′) = 2d−m−1.
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Suppose now that dH(x,x′) = 2, with a and b the modified factors. The
number of generators containing a and not containing b is

nab =

d−m−2∑
k=1

(
d−m− 2

k

)
= 2d−m−2 − 1,

since now there only remains d−m−2 factors available. We also need to count
generators that contain b and not a, which gives dH(x,x′) = 2 + 2(2d−m−2−
1) = 2d−m−1.

The same calculation can be repeated when dH(x,x′) = p, with factors
a1, . . . , ap being modified, for any p ≤ d − m. Suppose first that p is odd.
There are 2d−m−p− 1 generators with a1 alone (without a2, . . . , ap), 2d−m−p

with a1a2a3 alone (without a4, . . . , ap), etc., and 2d−m−p with all the ai,
i = 1, . . . , p. It gives

dH(x,x′)=p+ p(2d−m−p − 1) +

(
p

3

)
2d−m−p +

(
p

5

)
2d−m−p + · · ·+ 2d−m−p

=

[(
p

1

)
+

(
p

3

)
+

(
p

5

)
+ · · ·+

(
p

p

)]
2d−m−p = 2p−1 2d−m−p = 2d−m−1.

Suppose now that p is even. Similar calculation gives

dH(x,x′) =

[(
p

1

)
+

(
p

3

)
+

(
p

5

)
+ · · ·+

(
p

p− 1

)]
2d−m−p

= 2p−1 2d−m−p = 2d−m−1.

Therefore, dH(x,x′) = 2d−m−1 = n/2 = (d + 1)/2 for any x′ ∈ Xn, x′ 6= x
(note that it gives equality in the upper bound (1.10)). Plotkin bound (1.8)
indicates that the size n of a design Xn supported on {−1, 1}d and such
that ρH(Xn) > d/2, with d odd, is at least d + 1, showing that saturated
2d−m designs are maximin-distance optimal among all designs supported on
{−1, 1}d. The n design points of a saturated design are vertices of a regular
simplex in Cd with (Euclidean) edge length

√
2(d+ 1) and form a maximin-

optimal design in Cd. ut

The application of Algorithm 1 to the candidate set Xn defined by a
2d−m design Xn with n = d + 1, initialised at any xi ∈ Xn, ensures that
ρH(Sk) = (d + 1)/2 = 2d−m−1 for all k = 2, . . . , n (in fact, the property
is true for any sequential selection of points within Xn). As the example
below illustrates, the performance achieved in terms of ρH may be superior
to those obtained when the candidate set is {−1, 1}d, the set of vertices of Cd
(i.e., the full factorial 2d design). Note that we have ρH(Sk) = CRH(Sk−1),
2 ≤ k ≤ |Xn|, when applying Algorithm 1 to a candidate set Xn ⊆ {−1, 1}d;
see the proof of Th. 1.
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Example 1. The left panel of Fig. 1.1 presents the evolution of ρH(Sk) for
d = 15 and n = 16 = 24 when the candidate set in Algorithm 1 is the full 2d

factorial design (red solid line) and a 2d−m fractional factorial design with
m = 11 (black dashed line). In the second case, ρH(Sk) = (d + 1)/2 for all
k = 2, . . . , 16, which for k ≥ 3 is larger than the value obtained in the first
case where all the 215 = 32 768 vertices are used as candidates.

The fact that restricting the set of candidate points to a subset of {−1, 1}d
may be beneficial is further illustrated on the right panel of Fig. 1.1. There,
the red solid line corresponds again to the candidate set given by the full 2d

factorial design, whereas a 2d−m design with m = 7 and ρH(Xn) = 4 is used
for the black dashed-line curve (n = 28 = 256).

Fig. 1.1 Evolution of ρH(Sk) when Algorithm 1 is applied to the candidate set Xn given
by the 2d full factorial design (red solid line) and when Xn = Xn is a 2d−m fractional

factorial design (black dashed line); d = 15, the algorithm is initialised at a xi ∈ Xn. Left:

m = 11, n = d+ 1 = 16, k = 2, . . . , 16. Right: m = 7, n = 256, k = 2, . . . , 250.

In the Appendix, we give conditions on the choice of generators that pro-
vide guarantees on the minimum Hamming distance k of a fractional factorial
design Xn, i.e., ρH(Xn) ≥ k, for k = 2, 3 and 4. However, the derivation of
such conditions gets cumbersome when k ≥ 5, and in the next section we
present an algorithm for the optimal selection of m generators among all
2d−m − (d−m)− 1 possible generators having length at least 2.
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1.5.2 Optimal selection of generators by simulated
annealing

SA algorithm for the maximisation of ρH

0) Construct the set G all 2d−m−(d−m)−1 generators (of length ≥ 2), choose
an initial set G of m distinct generators in G , construct the corresponding
design Xn and its distance distribution B(Xn); set X∗n = Xn and k = 1.

1) Select a random generator g within G and a random generator g′ within
G \ G. Construct G′ = G \ {g} ∪ {g′} and its associated design X′n and
distance distribution B(X′n).

2) Compute i∗ = min{i : Bi(X
′
n) 6= Bi(X

∗
n)} and δ∗ = Bi∗(X

′
n) − Bi∗(X∗n);

if δ∗ ≤ 0, set X∗n = X′n.
3) Compute i+ = min{i : Bi(X

′
n) 6= Bi(Xn)}, and

P = min
{

exp
[
−Bi+ (X′n)−Bi+ (Xn)

Tk

]
, 1
}

; accept the move Xn = X′n and

G = G′ with probability P .
4) if k = K, stop; otherwise k ← k + 1, return to 1.

A logarithmic decrease of the “temperature” Tk, such as Tk = 2d−m/ log(k)
ensures global asymptotic convergence to a maximin-distance optimal frac-
tional factorial design. In practice, we wish to stop the algorithm after a
number of iterations K which is not excessively large. Numerical experimen-
tation indicates that a faster decrease of Tk, yielding a behaviour close to
that of a simple descent method, is often suitable. For instance, we take
Tk = 2d−m/k4/5 in Example 2 (Sect. 1.7).

Remark 1 In the applications we have in mind, n = 2d−m is relatively small
even when d is large (it must nevertheless satisfy the bound n ≥ d + 1 of
Prop. 1), and the set G remains of reasonable size. A similar simulated an-
nealing algorithm can be used for the construction of minimum aberration
designs. However, the construction of the word length pattern for a 2d−m

design requires the calculation of 2m − 1 defining relations, which becomes
prohibitively computationally demanding when m is large (a consequence of
n being reasonably small). For instance, for d = 50 and m = 35 (the situ-
ation in Example 2 below), we have 2d−m − (d − m) − 1 = 37 752 whereas
2m − 1 > 3.43× 1010. Computation of the word length pattern from the dis-
tance distribution using (1.11) may then be advantageous.

1.6 Covering properties of two-level factorial designs

In this section, we investigate the covering properties of fractional factorial
designs measured by the Hamming covering radius CRH defined by (1.5).
One should notice that the best design in terms of maximin distance is not
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always the best one in terms of covering radius, compare for instance X
(a)
64

and X
(d)
64 in Table 1.4.

1.6.1 Bounds on CRH(Xn)

We already know that CRH(Xn) ≥ bρH(Xn)/2c for any design on {−1, 1}d;
see Sect. 1.4.1. CRH(Xn) also satisfies the following property.

Proposition 4 The Hamming covering radius CRH(Xn) of a 2d−m frac-
tional factorial design Xn satisfies

CRH(Xn[d−m+ 1 : d]) ≤ CRH(Xn) ≤ m,

with Xn[d−m + 1 : d] denoting the projection of Xn on the m dimensional
space defined by the non-basic factors (i.e., those constructed through gener-
ators).

Proof. We use the same notation as in Sect. 1.5.1 and, for xi ∈ Xn, we denote
xi = (xi,g(xi)); also, we split any x ∈ Rd into x = (x,x), with x ∈ Rd−m
and x ∈ Rm. For any x ∈ {−1, 1}d, there exists j = j(x) such that xj = x,
so that

min
xi∈Xn

dH(x,xi) ≤ dH(x,xj) = dH(x,xj) + dH(x,g(xj))

= dH(x,g(xj)) = dH(x,g(x)) .

We also have dH(x,xi) = dH(x,xi)+dH(x,g(xi)) ≥ dH(x,g(xi)). Therefore,

max
x∈{−1,1}d

min
xi∈Xn

dH(x,g(xi)) ≤ CRH(Xn) = max
x∈{−1,1}d

min
xi∈Xn

dH(x,xi)

≤ max
x∈{−1,1}d

dH(x,g(x)) .

Finally, maxx∈{−1,1}d minxi∈Xn dH(x,g(xi)) = CRH(Xn[d−m+ 1 : d]) and
maxx∈{−1,1}d dH(x,g(x)) = m conclude the proof. ut

1.6.2 Calculation of CRH(Xn)

The direct calculation of CRH(Xn) through maxx∈{−1,1}d minxi∈Xn dH(x,xi)
is unfeasible for large d. Exploiting Prop. 2, a possible alternative con-
sists in restricting the set of candidates to the

(
d
δ

)
points at a given Ham-

ming distance δ from an arbitrary point x1 in Xn, for an increasing se-
quence δi, initialised at δ1 = bρH(Xn)/2c. We thus compute C(Xn,x1, δ) =
maxx:dH(x,x1)=δ minxi∈Xn dH(x,xi) for δ = δ1, δ1 + 1 . . . and stop at the first
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δi when C(Xn,x1, δ) starts decreasing; the value δi−1 equals CRH(Xn). Al-
though it requires less computations than direct calculation, this approach is
still too costly for large d unless CRH(Xn) is very small (meaning that n is
very large) or very large (meaning that n is very small). In Example 2 con-
sidered below, with d = 50 and n = 32 768, we have CRH(Xn) = 13 and the
construction is unapplicable. Therefore, hereafter we present a simple local
ascent algorithm for searching a distant point from Xn, which we initialise
at a design point.

The construction relies on the search of a point in {−1, 1}d at maximum
Hamming distance from Xn. From Prop. 2, we only need to consider moves
from an arbitrary point of Xn. The order of inspection of the d factors in the
for loop of Step 1 may be randomised.

Algorithmic construction of a lower bound on CRH(Xn)

0) Set x = x1 ∈ Xn, ∆ = 0, continue = 1
1) while continue = 1

Try successively all points at Hamming distance 1 from x:
for i = 1, . . . , d

set {x′}j = {x}j for j 6= i and {x′}i = −{x}i, compute ∆′ =
minxi∈Xn

dH(x′,xi).
if ∆′ > ∆, set x = x′, ∆ = ∆′ and break the for loop.
otherwise, if i = d, set continue = 0 (all possible moves have
been unsuccessfully exhausted).

2) Return ∆, which forms a lower bound on CRH(Xn).

Remark 2 Convergence to a point at maximum distance from Xn is not
guaranteed. The algorithm can be modified to incorporate a simulated an-
nealing scheme that accepts moves such that ∆′ < ∆ with some probability:
at Step 1, in the for loop we then set x = x′, ∆ = ∆′ with probability
min{exp[(∆′−∆)/Tk], 1} for some decreasing temperature profile Tk, do not
break the loop and never set continue = 0; the algorithm is stopped when
the number of iterations reaches a predefined bound.



1 Incremental design construction based on two-level fractional factorial designs 21

1.7 Greedy constructions based on fractional factorial
designs

1.7.1 Base designs

We first consider a specialisation of the n first iterations of Algorithm 1 to
the case where X = Cd and the candidate set at Step 1 is a 2d−m fractional
factorial design Xn.

Algorithm 2

0) Construct a 2d−m fractional factorial design Xn; set S1 = {0} and k = 1.
1) for k = 1, . . . , n do

find x∗ = arg maxx∈Xn d(x,Sk), set Sk+1 = Sk ∪ {x∗}.

Note that the distances d(x,Sk), x ∈ Xn, can be computed recursively
as d(x,Sk) = min{d(x,Sk−1), ‖x − xk‖} and that the generation of Sk for
k ≤ n + 1 has complexity O(knd). Algorithm 2 also satisfies the following
property.

Proposition 5 If ρH(Xn) ≥ d/4, then, for k ≤ n + 1, the design Sk con-
structed by Algorithm 2 could also have been generated by Algorithm 1 ini-
tialised at S1 = {0} and it satisfies the bounds of Th. 1.

Proof. Since ρH(Xn) ≥ d/4, for any k ≤ n and any xi ∈ Xn \ S2:k we have
dH(xi,S2:k) ≥ d/4; that is, d(xi,S2:k) ≥

√
d. Therefore, d(xi,Sk) =

√
d =

maxx∈Cd
d(x,Sk). The restriction to the set Xn at Step 1 thus entails no loss

of performance and Th. 1 applies. ut

Proposition 3 shows that minimum-size 2d−m designs Xn with n = d+ 1
satisfy ρH(Xn) = (d + 1)/2. We shall not provide an explicit construction
ensuring the existence of fractional factorial designs satisfying ρH(Xn) ≥ d/4
for all values of d (see, however, Remark 3). Instead, for each d = 4, . . . , 35,
using the algorithm of Sect. 1.5.2 we have searched the smallest m = m̂(d)
(that is, the largest possible design size 2d−m̂(d)) for which we can find a
design Xn with minimum Hamming distance at least d/4. We denote by
ρ̂H(d) ≥ d/4 the distance we have obtained. The left panel of Fig. 1.2 shows
m̂(d) (red solid line), together with the upper bound m∗(d) given by (1.4)
(blue dotted line) and the lower bound m∗(d) = dd/4 − 1e implied by the
Singleton bound (1.7) (black dashed line); the right panel presents ρ̂H(d).
For instance, for d = 35, we can construct a design with n = 235−22 = 8 192
points and minimum Hamming distance 9. A construction with d = 50 and
m = 35 will be considered in Example 2. Note that the value k∗(d) of Sect. 1.2
satisfies
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Fig. 1.2 Left: m̂(d) (red solid line), m∗(d) = bd − log2(d + 1)c (blue dotted line),

m∗(d) = dd/4 − 1e (black dashed line). Right: ρ̂H(d) (red solid line), the black dashed
line corresponds to d/4.

k∗(d) ≥ 2d−m̂(d) . (1.12)

Remark 3 Let d∗ be a dimension satisfying d∗ + 1 = 2d∗−m; see Ta-
ble 1.3. The corresponding minimum-size 2d∗−m fractional factorial design
Xn satisfies ρH(Xn) = (d∗ + 1)/2. By removing any d∗ − d factors from
Xn, with d ≥ d2(d∗ − 1)/3e, we obtain a design X′n in [−1, 1]d such that
ρH(X′n) ≥ ρH(Xn) − (d∗ − d) ≥ d/4. However, these designs have too few
points to be of practical interest for computer experiments.

For all k ≤ n− 1 the choice of x∗ at Step 1 of Algorithm 2 is arbitrary; in
particular, if this choice is randomised, an unlucky selection may thus yield
ρH(S2:k) = ρH(Xn) for all k = 3, . . . , n+ 1. This weakness can be overcome
through a slight modification of Step 1, yielding the following algorithm.

Algorithm 3

0) Construct a 2d−m fractional factorial design Xn with ρH(Xn) ≥ d/4; set
S2 = {0,x2} and k = 2, with x2 an arbitrary point in Xn.

1) for k = 2, . . . , n do
find x∗ = arg maxx∈Xn

d(x,S2:k), set Sk+1 = Sk ∪ {x∗}.

Note that all xi in Xn satisfy d(xi,S1) =
√
d = arg maxx∈Xn

d(x,S1) and
have the same neighbouring pattern, see Sect. 1.2 and Prop. 2.

Example 2. For d = 50 and m = 35, the algorithm of Sect. 1.5.2 yields a
design Xn of n = 215 = 32 768 points, with resolution IV (A4(Xn) = 2),
ρH(Xn) = 13 > d/4 (B13(Xn) = 2) and the algorithm of Sect. 1.6.2 gives
CRH(Xn) ≥ 13. Algorithm 3 generates a sequence of nested designs Sk that
satisfy the efficiency bounds (1.3) for all k ≤ n+1 = 32 769. The construction
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is very fast since there are only n = 32 768 points in Xn = Xn to be consid-
ered at Step 1 of Algorithm 3 (to be compared with the 2d > 1.1258×1015 ver-
tices of Cd). Figure 1.3 presents the evolution of the packing radius PR(S2:k)
as a function of k for Algorithm 3 (red solid line), for k = 3, . . . , 500 (the value
500 is rather arbitrarily, chosen in agreement with the “10 d” rule of [17]).
When including x1 = 0, it satisfies PR(Sk) =

√
d/2 ' 3.5355 for k ≤ 32 769.

The curve in black dashed line (middle) is obtained when Algorithm 1 is
applied to the candidate set Xn given by the first 219 points of Sobol’ se-
quence; the blue dotted line (bottom) corresponds to designs given by the
first k points of this Sobol’ sequence.

Fig. 1.3 Evolution of
PR(S2:k) in Algorithm 3

with Xn given by a 250−35

design (red solid line, top),

of PR(Sk) in Algorithm 1

with Xn given by the first
n = 219 points of Sobol’ se-

quence (XS
i )i in Cd (black

dashed line, middle), and
of PR(XS

i ), i = 2, . . . , 500

(blue dotted line, bot-

tom). The horizontal line
indicates the value

√
d/2

(d = 50).

The complexity of Algorithm 3 is only linear in k and grows like O(knd).
If necessary, it can be further reduced for large n by first constructing nested
half-designs from Xn, following ideas similar to those in [1]. Theorem 2 in
their paper shows that only 2d−m−1 different half-designs need to be consid-
ered when starting from an arbitrary 2d−m fractional factorial design (note
that here those half-designs must be compared in terms of their ρH values,
whereas aberration is used in [1]).

1.7.2 Rescaled designs

A fractional factorial design Xn has all its points on the vertices of Cd, which
is advantageous in terms of packing radius in the full dimensional space.
However, performance in terms of prediction/interpolation of an unknown
function by a non-parametric model (in particular with kriging) is more re-
lated to CR(Xn) [12], and it may then be beneficial to have design points
inside Cd. In [1], the iterative decomposition of Xn into half-designs is used
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to construct multi-layer designs having two points on each layer. Here, since
the design points in Sk constructed with Algorithm 3 are ordered, for a fixed
K ≤ n we can directly apply a scaling procedure to SK to obtain a design
S̃K with points inside Cd.

First, following [1], and to avoid having pairs of points too close together,

we impose that S̃K has no point in an hypercube [−a, a]d, 0 < a < 1, except
the centre x1 = 0. We choose a by setting the ratio r of the volume of the
neglected empty hypercube to the volume of Cd; that is, a = ar = r1/d.

Next, we need to choose how we rescale the points xi of SK , for i =
2, . . . ,K + 1, in order to obtain a suitable distribution of distances to the
centre for the `∞ norm. We shall denote by x̃i = βi,r,K,γ xi the rescaled
design points, i = 1, . . . ,K + 1, with β1,r,K,γ = 0 and

βi,r,K,γ =

[
1− (i− 2)(1− aγr )

K − 1

]1/γ
, i = 2, . . . ,K + 1 . (1.13)

Here γ is a scalar in [1, d]: linear scaling with γ = 1 yields a design with points
more densely distributed close to the centre 0 than near the boundary of Cd;
when γ = d, the empirical distribution of the ‖x̃i‖∞ converges to the uniform
distribution on [0, 1], obtained for points x uniformly distributed in Cd, as
K tend to infinity. Values of γ between 1 and d provide behaviours between
these two extreme cases. When N points are needed, with K+1 < N ≤ n+1,
the rescaling pocedure can be applied periodically, using

βi,r,K,γ =

{
1− [(i− 2) modK](1− aγr )

K − 1

}1/γ

. (1.14)

Example 2 (continued). The left panel of Fig. 1.4 shows the empirical cu-
mulative distribution function (cdf) of the ‖x̃i‖∞ for the design obtained
with Algorithm 3 for γ = 1, r = 10−6 and K = 500 (red solid line). When
γ = d, the empirical cdf is visually confounded with the dashed-line diagonal,
which corresponds to points uniformly distributed in Cd. The black dashed
line (middle) on the right panel of Fig. 1.4 presents the evolution of PR(S̃2:k)
after linear rescaling of the designs Sk obtained by Algorithm 3; the top
curve (red solid line) is identical to that on Fig. 1.3 and correspond to S2:k.
Periodic rescaling of Sk with γ = 1, r = 10−6 and K = 50 in (1.14) yields
the two curves in blue solid line, for the cdf (left) and for the evolution of

PR(S̃2:k) (right). With an horizon N = 500 and K = 50, there are 10-uples
of points with the same `∞ norm, which explains the stair-case shape of the
cdf observed on the left panel. The faster decrease of the scaling factor yields
a faster decrease of the packing radius on the right panel.
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Fig. 1.4 Linear rescaling with γ = 1 and r = 10−6 in (1.13) when the xi are generated

with Algorithm 3 in Example 2. Left: empirical cdf of the ‖x̃i‖∞ for K = 500 (top solid
line in red) and K = 50 (blue stair-case solid line); when γ = d and K = 500 the cdf is

confounded with the dashed-line diagonal. Right: same as on Fig. 1.3 for the red solid line

(top), evolution of PR(S̃2:k) after linear rescaling of designs Sk given by Algorithm 3 for
K = 500 (black dashed line) and K = 50 (blue solid line, bottom).

1.7.3 Projection properties

Space-filling designs in the full d-dimensional space do not necessarily have
good properties when projected on an axis-aligned sub-space with dimension
d′ < d. In this section, we compare the projection properties of designs Sk
generated with Algorithm 3 with those of Sobol’ sequences and Latin hyper-
cube designs, for a fixed k.

Sobol’ sequence is a particular low discrepancy (t, s) sequence, see, e.g., [22,
Chap. 4], which permits the fast generation of designs XS

k having good space-
filling properties when k is a power of 2, also for large d. A Latin hypercube
(Lh) design XLh

k with k points in [−1, 1]d has the k levels 2i/(k− 1)− 1, i =
0, . . . , k−1, for each of the d factors, but this does not ensure good space-filling
properties in the full d-dimensional space. In [19], maximin-distance optimal
Lh designs are constructed by simulated annealing. A different space-filling
criterion is considered in [13], whose optimisation yields so-called maximum
projection designs. In the continuation of Example 2 (with d = 50) presented
below, we use the ESE algorithm of [10] to construct a maximin-distance
optimal Lh design.

For any d′ ∈ {1, . . . , d} and any r ∈ {1, . . . ,
(
d
d′

)
}, let Pd′,r denote one

of the
(
d
d′

)
distinct projections on an axis-aligned d′ dimensional sub-space.

For any k-point design Xk = {x1, . . . ,xk} we then denote by Pd′,r(Xk)
the corresponding design for the d′ factors associated with Pd′,r; that is,
Pd′,r(Xk) = {Pd′,r(x1), . . . , Pd′,r(xk)}, and consider the following criteria:
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CRd′(Xk) = max
r=1,...,( d

d′)
max

x∈[−1,1]d′
d(x, Pd′,r(Xk)) , (1.15)

PRd′(Xk) =
1

2
min

r=1,...,( d
d′)

min
xi,xj∈Xk,xi 6=xj

‖Pd′,r(xi)− Pd′,r(xj)‖ . (1.16)

When applied to designs generated by Algorithm 3, we obtain the following
properties for CRd′(Sk) and PRd′(Sk).

Proposition 6 Let Sk be a design generated by Algorithm 3, 2 ≤ k ≤ n. We
have

PRd′(Sk) = [min{max{d′ − d+ ρH(S2:k), 0}, d′/4}]1/2

for any d′ ∈ {1, . . . , d} , (1.17)√
d′

2 −
[d′ mod 2]

4 ≤ CRd′(Sk) ≤
√
d′ for any d′ ∈ {1, . . . , d}

and CRd′(Sk) =
√
d′ for d′ ≥ 4

3 [d− ρH(S2:k)] .
(1.18)

Proof. We first prove (1.17). For any d′ ≤ d0 = d − ρH(S2:k) there
exists at least one subset of d′ factors, i1, . . . , id′ say, and two points
xj 6= x` in S2:k such that dH({xj}i1,...,id′ , {x`}i1,...,id′ ) = 0. Therefore,
‖Pd′,r(xj) − Pd′,r(x`)‖ = 0 for some projection Pd′,r, and PRd′(S2:k) = 0 =
PRd′(Sk). Take now d′ = d0 + 1. On the one hand, there exist two points
xj 6= x` in S2:k that satisfy dH(Pd′,r(xj), Pd′,r(x`)) ≤ 1, which implies that
ρH(Pd′,r(S2:k)) ≤ 1. On the other hand, the existence of a projection Pd′,r
such that ρH(Pd′,r(S2:k)) = 0 would imply ρH(S2:k) ≤ d−d′ = ρH(S2:k)− 1.
Therefore, minr=1,...,( d

d′)
ρH(Pd′,r(S2:k)) = 1. Proceeding in the same way, by

induction we get minr=1,...,( d
d′)
ρH(Pd′,r(S2:k)) = d′−d0 for any d′ ∈ {d0, d0+

1, . . . , d}. We have thus obtained PRd′(S2:k) = [max{d′−d+ρH(S2:k), 0}]1/2.
Since Sk = S2:k ∪ {0}, we obtain PRd′(Sk) = min{PRd′(S2:k),

√
d′/2}, which

gives (1.17).
Now we prove (1.18). Sk contains the origin, and furthest points from the

origin are vertices of the projected hypercube, therefore CRd′(Sk) ≤
√
d′.

Since k ≤ n, there exists xi ∈ Xn \ S2:k such that dH(xi,S2:k) ≥ ρH(S2:k) ≥
d/4. Take any d′ such that (4/3) [d− ρH(S2:k)] ≤ d′ ≤ d. For any projection
Pd′,r, we have

dH [Pd′,r(xi), Pd′,r(S2:k)]− d′

4
≥ dH(xi,S2:k) + d′ − d− d′

4

≥ 3

4
d′ + ρH(S2:k)− d ≥ 0 .

Therefore, CR[Pd′,r(S2:k)] ≥
√
d′ and CR[Pd′,r(Sk)] = CRd′(Sk) =

√
d′.

Consider finally the favourable case where, for every projection Pd′,r,

Pd′,r(Sk) contains the 2d
′

full factorial design. For d′ even, with d′ = 2p,
the point x with p coordinates at 0 and the other p at 1 satisfies d(Pd′,r(x),
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Pd′,r(Sk)) =
√
d′/2 ≤ CRd′(Sk). When d′ is odd, with d′ = 2p + 1, consider

the point x with p coordinates at 0, p at 1, and the last one equal to 1/2; we
have d(Pd′,r(x), Pd′,r(Sk)) =

√
p+ 1/4 =

√
d′/2− 1/4 ≤ CRd′(Sk). ut

Remark 4 The lower bound on CRd′(Sk) in (1.18) is very optimistic in
general. However, when S2:k contains a 2d−m fractional factorial design with
resolution R ≥ d′ + 1, then each projected designs Pd′,r(S2:k) contains a full
factorial design, see Sect. 1.3.2, and the bound becomes accurate.

For any projection Pd′,r, there are 2d
′

distinct points Pd′,r(xi) at most
when xi varies in S2:k (which has k − 1 elements), so that PR[Pd′,r(Sk)] =

PR[Pd′,r(S2:k)] = 0 when 2d
′
< k − 1. One may note that this case is already

covered by (1.17). Indeed, Singleton bound, see Sect. 1.4.1, implies that the
k − 1 points of any Pd′′,r(S2:k) with d′′ = d− [ρH(S2:k)− 1] are all distinct;

therefore, k − 1 ≤ 2d−ρH(S2:k)+1, and 2d
′
< k − 1 implies d′ ≤ d− ρH(S2:k).

When d is large, we cannot compute the values of CRd′(Xk) and PRd′(Xk)
in (1.15) and (1.16) exactly, and we shall consider the following approxima-
tions that use q projections at most, instead of

(
d
d′

)
:

ĈRd′(Xk) = max
r=1,...,min{q,( d

d′)}
max

x∈Xd′,Q
d(x, Pd′,r(Xk)) ,

P̂Rd′(Xk) =
1

2
min

r=1,...,min{q,( d
d′)}

min
xi,xj∈Xk,xi 6=xj

‖Pd′,r(xi)− Pd′,r(xj)‖ ,

where Xd′,Q is a finite set of Q points in [−1, 1]d
′
. The q projections are

chosen randomly without repetition. ĈRd′(Xk) gives an optimistic (under)
estimation of CRd′(Xk) due to the substitution of a finite set Xd′,Q for Cd′
and to the use of q random projections only. When d′ ≥ (4/3) [d− ρH(S2:k)],
maxx∈Cd

d(Pd′,r(x), Pd′,r(Sk)) =
√
d′ for all projections Pd′,r; see the proof of

Prop. 6. Therefore, for such d′, values of ĈRd′(Sk) smaller than
√
d′ are only

due to the substitution of Xd′,Q for Cd. P̂Rd′(Xk) over-estimates PRd′(Xk)

due to the restriction to q projections, but P̂Rd′(Sk) = 0 when 2d
′ ≤ k − 2;

see Remark 4.

Equation (1.17) indicates that PRd′(Sk) = 0 for the designs obtained with
Algorithm 3 when d′ ≤ d0 = d−ρH(S2:k). Although the rescaling procedure of

Sect. 1.7.2 prevents the exact coincidence of projected design points, PRd′(S̃k)
remains very close to zero when d′ ≤ d0 for rescaled designs. As the example
below will illustrate, the performances in terms of PRd′ are thus much worse
than those of more classical designs based on Lh and Sobol’ sequences for
small d′. They are much better, however, for d′ close to d. The example also
illustrates that rescaling decreases PRd′ for those large d’, but has the benefit
of slightly improving (decreasing) CRd′ .
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Example 2 (continued). We take q = 100, so that min
{
q,
(
d
d′

)}
= q for d′ = 2

already, and Xd′,Q consisting of the first 214 points of a Sobol’ sequence

in [−1, 1]d
′
, complemented by a 2d

′
full-factorial design when d′ ≤ 10. We

consider designs of size k = 500. Equation (1.17) shows the importance of
having ρH(S2:k) as large as possible to obtain good projection properties in
terms of packing radius for dimensions d′ as small as possible. The 250−35

fractional factorial design Xn of Example 2 has ρH(Xn) = 13; S2:k generated
with Algorithm 3 satisfies ρH(S2:500) = 17, with PR(S2:500) =

√
17 ' 4.1231,

see Fig. 1.3. Therefore, PRd′(S500) = 0 for d′ ≤ 33 from Prop. 6, and, due to

the random choice of 100 projections only among
(
50
d′

)
, P̂Rd′(S500) is equal to

zero with positive probability when d′ ≤ 33. From Remark 4, P̂Rd′(S500) = 0

for d′ ≤ 8. P̂Rd′(S500) = PRd′(S500) =
√
d′/2 for d′ ≥ 44, in agrement with

(1.17). Figure 1.5 presents the lower and upper bounds (1.18) on CRd′(S500)

(black dotted lines) and the approximation ĈRd′(S500) based on q random
projections (stars), together with PRd′(S500) given by (1.17) (black dotted

line) and its approximation P̂Rd′(S500) (stars).

Linear rescaling of Sk by (1.13) with γ = 1 affects the values of P̂Rd′(S̃500),
see Fig. 1.6. Although we have now ‖Pd′,r(x̃j)−Pd′,r(x̃`)‖ 6= 0 for all projec-

tions Pd′,r and all x̃j 6= x̃` in S̃500, when d′ is small this value remains very

close to zero for some pairs of points and projections, therefore P̂Rd′(X̃500)
is still very small: the difference is hardly visible on the figure for small d′;

compare the red stars on the plots of P̂Rd′ in Figs. 1.5 and 1.6 for d′ . 16.

For larger d′, rescaling decreases P̂Rd′ , but has a small positive effect on

ĈRd′ which is slightly decreased for d′ . 30. The values of ĈRd′ for a de-
sign XS

500 given by the first 500 points of Sobol’ sequence (black circles), or
for a (non-incremental) Lh design XLh

500 optimised for the PR criterion (blue

diamonds), are marginally better than ĈRd′(S̃500), but S̃500 is significantly

better in terms of P̂Rd′ for large d′. The construction of XLh
500 uses the ESE

algorithm of [10] with the default tuning parameters suggested in that paper;
100 cycles are performed, requiring 500 000 evaluations of PR.

Rescaling with γ = d in (1.13) yields results intermediate between no
rescaling (Fig. 1.5) and linear rescaling (Fig. 1.6); see Fig. 1.7. Performances
with linear periodic rescaling using (1.14) with K = 50 (Fig. 1.8) are close

to those on Fig. 1.6, with some small improvement in terms of ĈRd′ . For

large enough d′ < d, performances in terms of P̂Rd′ are significantly better
than those obtained for a design SS500 generated by Algorithm 1 with the first
n = 219 points of Sobol’ sequence as candidate set (note that Algorithm 3

only uses 32 768 candidate points), whereas the performances of S̃500 and

SS500 in terms of ĈRd′ are fairly close. The value PRd(S
S
500) corresponds to

the last point on the black dashed line in Fig. 1.3; PRd(S̃500) is smaller than

PRd(S̃2:500) on Fig. 1.4-Right due to the addition of the central point 0.
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Fig. 1.5 Lower and upper bounds (1.18) on CRd′ (S500) and PRd′ (S500) given by (1.17)

(black dotted lines); ĈRd′ (S500) and P̂Rd′ (S500) (red stars); S500 is generated by Algo-

rithm 3.

Above, we have used a 2d−m fractional factorial design with m = 35 as
candidate set in Algorithm 3, which allows the construction of incremental
designs of size up to 32 769. If we are only interested in shorter sequences,
we may increase m and get a design with larger ρH value. For instance,
when taking m = 41 instead of m = 35, the design Xn obtained with the
algorithm of Sect. 1.5.2 has 512 points, resolution III and ρH(Xn) = 20
(CRH(Xn) ≥ 17). Algorithm 3 then yields a Sk such that ρH(S2:500) = 20
(and PRd′(S500) = 0 for d′ ≤ 30, instead of d′ ≤ 33 when m = 35, see (1.17)).

1.8 Summary and future work

In situations where the number d of factors is too large to inspect all
vertices of the hypercube Cd = [−1, 1]d to construct a design, we suggest
to use a fractional factorial design Xn to thin the search space. When
Xn has minimum Hamming distance at least d/4, the coffee-house rule
permits to construct a sequence of nested designs, with flexible size up
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Fig. 1.6 ĈRd′ (S̃500) and P̂Rd′ (S̃500) after linear rescaling of S500 using (1.13) (red stars;

r = 10−6, K = 500 and γ = 1); ĈRd′ and P̂Rd′ for XS
500 given by the first 500 points

of Sobol’ sequence (black circles) and a 500 point Lh design XLh
500 optimised for the PR

criterion with the ESE algorithm of [10] (blue diamonds).

to n + 1, each design along the sequence having at least 50% packing
(maximin) and covering (minimax) efficiency.

The packing and covering properties of designs projected in lower dimensional
subspaces have been investigated. The covering performances are slightly
worse than those obtained for more classical space-filling designs, but their
packing performance is significantly better when projecting on a subspace
with large enough dimension.

A natural drawback of the construction is that all design points (except
the first one, taken at the centre) are vertices of the hypercube. A rescal-
ing rule has been proposed to populate the interior of Cd, but, like for the
multi-layer designs of [1], all rescaled design points lie along the diagonals
of Cd. Other rules could be considered that deserve further investigations.
For instance, the compromise between placing points on vertices, which is
favourable for packing in the full dimensional space, and in the interior of
Cd, which is favourable to the performance of projected designs, may rely on
interlacing the sequence proposed in the paper with a low discrepancy se-
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Fig. 1.7 Same as Fig. 1.6, but with nonlinear rescaling ((1.13) with γ = d) of S500

generated by Algorithm 3 (red stars).

quence. Combination with other space-filling sequences could be considered
as well, see, e.g., [27, 28]. We leave such developments for further work.
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cremental Design of EXperiments) ANR-18-CE91-0007 of the French National Research
Agency (ANR).

Appendix

As shown in [7], a design for which a basic factor is not used in generators
cannot have maximum resolution; see Sect. 1.3. It also has poor performance
in terms of Hamming distance. Indeed, suppose without any loss of generality
that the first factor is not used, and consider xi = (1,x\1) ∈ Xn, where x\1
is the vector obtained omitting the first coordinate of x. The point x′ =
(−1,x\1) also belongs to Xn, and ρH(Xn) ≤ dH(xi,x

′) = 1, implying that
B1(Xn) ≥ 1. As shown below, the reverse property holds true.

Proposition 7 If each basic factor is used in the construction of generators
for Xn, then ρH(Xn) ≥ 2 and B1(Xn) = 0.
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Fig. 1.8 ĈRd′ (S̃500) and P̂Rd′ (S̃500) after linear periodic rescaling of S500 (red stars;
K = 50, r = 10−6, γ = 1); the black circles correspond to the design obtained with

Algorithm 1 using the first n = 219 points of Sobol’ sequence as candidate set (the same

design is used for the black dashed line in Fig. 1.3); the blue diamonds correspond to a
500 point Lh design XLh

500 optimised for the PR criterion with the ESE algorithm of [10].

Proof. We use the notation of Sect. 1.5.1. Consider any pair of points xi =
(xi,g(xi)) and xj = (xj ,g(xj)) of Xn. If dH(xi,xj) ≥ 2, then dH(xi,xj) ≥ 2.
Otherwise, xi and xj differ by one coordinate only, say the kth. Since the

kth basic factor is used within generators, dH(g(xi),g(xj)) ≥ 1, implying

dH(xi,xj) ≥ 2. ut

In the rest of the appendix we show how a similar reasoning can be used
to construct 2d−m designs with a larger minimum Hamming distance ρH .

Proposition 8 ρH(Xn) ≥ 3 if and only if in the construction of generators
(i) each basic factor is used at least twice

and
(ii) for each pair of basic factors, one of the factors appears at least once
separately.

Proof. Consider the point x = (1d−m,g(1d−m)) ∈ Xn. Suppose that (i)
is not satisfied, with the first basic factor appearing only once among
generators. Then x′1 = (−1,1d−m−1,g(−1,1d−m−1)) belongs to Xn and
dH(g(1d−m),g(−1,1d−m−1)) = 1, implying that dH(x,x′1) = 2. Also, when
the first two factors only appear as a pair, then x′2 = (−1,−1,1d−m−2,
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g(−1,−1,1d−m−2)) ∈ Xn and dH(g(1d−m),g(−1,−1,1d−m−2)) = 0, im-
plying that dH(x,x′2) = 2. This shows that (i) and (ii) are necessary to have
ρH(Xn) ≥ 3.

We show that the condition is sufficient. From Prop. 2, we only need
to consider the nearest neighbour to the point x = (1d−m,g(1d−m)),
which, up to a reordering of basic factors, is given by x′1 or x′2. Now,
(i) implies that dH(g(1d−m),g(−1,1d−m−1)) ≥ 2 and (ii) implies that
dH(g(1d−m),g(−1,−1,1d−m−2)) ≥ 1, showing that dH(x,x′1) ≥ 3 and
dH(x,x′2) ≥ 3. ut

Example 3. Consider the design given by the half fraction 2d−1 with the
product of all basic factors as generators: g1 =

∏d−1
j=1 xj (m = 1). The

condition of Prop. 7 is satisfied, but none of the conditions (i) and (ii) of
Prop. 8 is; therefore, ρH(Xn) = 2. Direct calculation gives A0(Xn) = 1 and
A2q(Xn) =

(
d−1
2q−1

)
+
(
d−1
2q

)
for 1 ≤ q < d/2, with Ad(Xn) = 1 when d is even,

all Ai with i odd being equal to zero.

Proposition 9 ρH(Xn) ≥ 4 if and only if in the construction of generators
(i) each basic factor is used at least three times

and
(ii-a) for each pair of basic factors, one of the factors appears at least
twice separately
or
(ii-b) for each pair of basic factors, each one of the factors in the pair
appears at least once separately

and
(iii-a) each triple of basic factors appears at least once
or
(iii-b) within each triple of basic factors, each factor appears at least once
without the other two.

The proof uses arguments similar to that used for Prop. 8.

Example 4. Consider the case d = 9 and m = 5, with basic factors a, b, c, d
and generators abc, abd, acd, bcd and abcd. Conditions (i), (ii-b) and (iii-a)
are satisfied and we get A (Xn) = [1 0 0 4 14 8 0 4 1 0] and B(Xn) =
[1 0 0 0 6 8 0 0 1 0].

When the generators are ab, abd, acd, bc and cd, then (iii-b) is satisfied
instead of (iii-a) and we get A (Xn) = [1 0 0 6 9 9 6 0 0 1] and B(Xn) =
[1 0 0 0 9 0 6 0 0 0]. Note that the first design is preferable both in terms of
aberration and maximin distance.

Example 5. Consider the case where d = 2m, m ≥ 4, and where each of the
m generators is the product of all basic factors but one; that is, with obvious
notation, gi =

∏m
j=1, j 6=i xj , for i = 1, . . . ,m. Conditions (i), (ii-b) and (iii-a)

of Prop. 9 are satisfied, and direct calculation shows that the word length
pattern of Xn (with n = 2d−m = 2m) satisfies
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A0(Xn) = 1 ,

Am(Xn) =

bm/2c∑
p=0

(
m

2p+ 1

)
and A4p(Xn) =

(
m

2p

)
for p = 1, . . . , bm/2c

if m mod 4 6= 0 ,

Am(Xn) =

(
m

m/2

)
+

bm/2c∑
p=0

(
m

2p+ 1

)
and A4p(Xn) =

(
m

2p

)
for p 6= m/4

if m mod 4 = 0 ,

all other Ai being equal to zero (and the design has resolution IV ). Direct
calculation also indicates that B(Xn) = A (Xn), with therefore ρH(xn) = 4.

One can check that the sphere packing bound (1.6) implies that a 2d−m

design with d = 2m cannot reach ρH(xn) ≥ 5 for m < 7. However, designs
with better maximin properties can be obtained for larger m. For instance,
when m = 8 (d = 16, n = 256), the construction above yields a design
Xn with B(Xn) = A (Xn) = [1 0 0 0 28 0 0 0 198 0 0 0 28 0 0 0 1] and
ρH(Xn) = 4, whereas the design with generators abcdefgh, defgh, bcfgh,
acegh, bdgh, cefh, adfh, and abeh (and basic factors 1, b, c, d, e, f, g, h) has
distance distribution B(Xn) = [1 0 0 0 0 24 44 40 45 40 28 24 10 0 0 0 0],
with ρH(xn) = 5 (again, A (Xn) = B(Xn), with Xn thus having resolution
V ). CRH(Xn) = 4 for both designs.
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