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In the present study, we investigate experimentally the motion of a macrogcopi@rownian and
noncolloida) solid sphere falling under gravity into a viscous liquid toward a solid wall. We observe
the transition from a nonbouncing to a bouncing regime when increasing the Stokes number St
which characterizes the particle inertia. In the bouncing regime, the recording of the particle
trajectories allows us to determine the coefficient of “elastic” restitug@bove the transition. We
observe thae first increases with St as predicted by Davis, Serayssol, and Hirg86 and seems

to reach a plateau at high St. €99 American Institute of Physid$§1070-663199)01509-3

In many multiphase flow situatior®.g., sedimentation, target? If the thicknessb of the plate is not large compared
fluidization, filtration), a key role is played by collisions be- to R,edecreases wheR/b or U increases,as some energy
tween a particle and a solid surface such as the wall of thés dissipated in flexible modes of the target. For latge
container or the surface of a filter. Such collisions imply bothplastic deformations occur aneéd decreases whenJ
solid mechanics and fluid dynamics. increase$.

When an elastic particle collides a solid wall in a At the opposite extreme, when a perfectly rigid sphere
vacuum or under conditions of negligible fluid resistance, itsmoves into a viscous fluid, its kinetic energy is dissipated by
incoming kinetic energy is converted into elastic strain en-viscous forces as it approaches the wall. In the case of creep-
ergy as it deforms in the vicinity of contact and is then re-ing motion(zero Reynolds numbgof a rigid sphere toward
stored as the particle rebounds. The theory describing tha rigid plane wall, Brennérhas calculated the viscous force
motion and deformation during such a collision is known asof resistancd- acting on the sphere moving at the velodity
Hertz contact theorythe forceF acting during the contact is into a fluid of viscosityu at a distancd between its bottom
F=(4/3)RY25%% 9, whereR is the sphere radiusi the sur- apex and the wallF=67xRU\, whereA=\(h/R) is a
face deformation at the axis of symmetry art=(1 correction to Stokes’ law given by an infinite series. Note
—vg)/ESJr(l—v\ﬁ,)/EW is a coefficient depending on the thatA—1 whenh/R—~ and that\ —R/h when h/R—0.
Poisson’s ratiovg, v,, and on the Young’s elastic moduli The rate of close approach is asymptotically slow and the
Es, E,, of the sphere and the wall, respectively. The maxi-sphere does not rebound. Note that if the sphere is perfectly
mum  sphere  deformation is given by Sy rigid, no rebound will ocurr even if small or arbitrary inertia
=((5/4)0pU?)?"R, whereU is the impact velocity. The is introduced, as the kinetic energy cannot be stored by elas-
elastic bouncing of a solid sphere on a wall can be charagic deformatior® The lubrication regime has been tested ex-
terized by the coefficient of elastic restitutierwhich is the  perimentally and the results are in good agreement with
ratio u, /U of the velocities, respectively, just after and be- Brenner’s theory.
fore the rebound. Under conditions of negligible fluid resis-  In between these two limiting cases, depending on the
tance, this coefficient can be determined easily by measuringart of the particle kinetic energy that will be dissipated by
the height of fall and the height of rebound. For an elasticfluid forces and internal solid friction, the elastic deformation
bouncing on a thick plates is of the order of 0.99, only one may be significant and rebound may occur for an elastic
percent of energy being absorbed by elastic waves in thephere. The first analysis that attempts to address this diffi-
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FIG. 1. Normalized distance sphere-whlR as a function of the normal-  FIG. 3. Experimental trajectories of steel sphere falling in silicone oil to-
ized timetU/R. Experimental trajectories of glass bead falling in glycerol ward a glass wall for Re16 and St29 (O), and for Re=30 and St55
toward a glass wall for Re5.10°* (O), line of slope—1(——-), and lubri- (<) in water with Re=2080 and St 3600(0), and line of slope-1 before
cation theory(—) of Brenner(Ref. 5. rebound(---).

cult problem is the one of Davis, Serayssol, and Hifi¢h.  term of sticking probabilities, as they are interested in the
this analysis, a thin lubrication layer prevents the solid conefficiency of aerosol filtratioh®

tact, but the elastic sphere deforms as a result of the high |n the present study, we investigate experimentally the
pressure in the lubrication layer, and may rebouheé fluid  motion of a macroscopi¢non-Brownian and noncolloidgal
layer then reduces to a typical thickness of 3R). The  solid sphere falling under gravity into a viscous liquid to-
relevant parameter for the bouncing transition is the Stokegard a solid wall, from viscous dissipation to elastohydrody-
number St, which characterizes the particle inertia relative thamic bouncing. In this last regime, we measure the coeffi-
viscous forces. The critical Stokes numbey 8t the transi-  cient of “restitutione” as a function of St.

tion was found to be roughly between 1 and 10, depending e used glass beads or steel spheres, of r&liasiging

on the elasticity parameters of the sphere and the @&l  from 0.05 mm to 2.5 mm, in water, glycerol or silicone oil
decreases when the solids are less jigithese authors have contained in a rectangular vessel (10x&0 cmx 30 cm).
calculated also the ratio, /U, which can be thought of as a The mass density of the solid spheresis 2.5<10° and
restitution coefficieng, but it measures here the energy dis-7.8x 10° kg/m? for glass and steel, respectively, the Young’s
sipated in the solid and in the fluid. This ratio first increasesmodulus of elasticityE is 60x 10° Pa and 214 10° Pa, re-
with St above Stand seems to saturate around the value 0.&pectively, and the Poisson’s ratiois 0.24 and 0.30. The
for higher St. To our knowledge, only one experimentalmass density of the fluidg; is 10°, 1.25<10°, and 0.97
study deals with the influence of the surrounding fluid on thex 10° kg/m® for water, glycerol, and silicone oil, respec-
bouncing transition of a macroscopic sphere on a Wil.  tively, whereas the dynamic viscosity is 0.001, 0.63, and
this study, solid spheres were dropped one at a time frony.1 Pas(at T=20°C). The lateral walls of the vessel are
varying heights onto a smooth or rough plate covered with glass plates allowing visualization. The bottom wall toward
thin layer of a Newtonian oil, and the spheres are observed t@hich the sphere moves is of glass too and of thickress
rebound or not. This allowed the authors to check the previ=1 cm. The sphere trajectory is recorded by a high speed
ous theoretical predictiofgor St,, but they have not mea- video camerdKodak EKTAPRO with up to 6000 image$/s
sured the coefficient of restitutioa Otherwise, numerous and analyzed by video means. The sphere position is known
authors have studied the bouncing regime of small latexyithin an error of 4% relative to the sphere radius. With the
spheres in vacuum or in low density fluid like gas but only in
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FIG. 4. Coefficient of restitutior (ratio of the maximum rebound velocity
FIG. 2. Experimental trajectories of steel sphere falling in glycerol toward au, to the incident velocityU) as a function of the Stokes number St. Ex-
glass wall for Re=0.2 ((J), 0.33(0), 1.1(A), and 2.5(<) or in silicone oil perimental measurements for the first rebound of steel sphere falling in
for Re=4 and St7 (V), and for Re=7 and St12 (+), together with the  liquid toward a glass wallO) and calculations of Davist al. (Ref. 9 (—)
line of slope—1 (——-). for e=10"%(£,~10°%).
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different spheres and fluids, the obtained valuedJore  The coefficient of restitutiore=u,/U cannot be extracted
between 1 mm/s and 1 m/s. Due to the large size of théere by measuring the height of rebound relative to the
spheres R>100um), surface forces can be neglected dur-height of fall as there is a nonnegligible fluid dissipation; the
ing the rebound. height of rebound is independent of the height of fall as soon

A proper scaling of the equations governing the particleas the sphere has reached its limiting fall velocity before the
dynamics yields essentially four dimensionless parametenebound. Note that our measurement precision for the sphere
which provide measures of the relative magnitudes of theosition (4% relative toR) does not allow us to discriminate
different physical effects far from the wall and during the between the occurrence of solid contact or the existence of a
impact.(i) The particle Reynolds number, Re; RU/u, ratio  thin lubrication layer during the rebound.

of fluid inertia to viscous forcegji) the Stokes number, St We find that the critical Stokes number.Sor the
=(2/9)psRU/ n, ratio of particle inertia to viscous forces. bouncing transition is about 20. For<S%t,, no rebound
(Note that the ratio St/Re corresponds to the ratidps); occurs(e=0) whereas for StSt,, e=0 and there is one or

(iii) the Froude number, FrpU?/(ps— p)gR, ratio of the  more rebounds. We observe thaincreases first with St for
particle inertia to the apparent gravitational forGe) is the ~ St>St., and then seems to saturate the vadue0.65 for
relative deformation¢, which provides a measure of the ten- large St(Fig. 4). Our value of Stis a little above the range
dency of the sphere to deform during the impact. For a Hertpredicted by Davist al.? but the increase of we observe
contact it write$ &= 8, /R=((5/4)0pU?)?°. When ex- just above the transition is however very similar to their
pressing the tendency of the sphere to deform due to viscousalculations. Note that their calculations have been made for
forces(by the same kind of parametgy), the termp,U? has  fixed values of their deformation parametere
to be replaced by the termU/R in ¢; .8 =(40uUR*?)/(7h3?), whereU, is the imposed velocity
Using different spheres and fluids, Re and St have beeat the small distancé, (h, is typically 10 2R, and this
varied experimentally in a large range, roughly betweerconsideration leads to the relatiof, =10 2(57/16€)%®
104 and 10, whereast; (& or £,) remains always smaller ~10 2¢%9).8 In our experiments, the variation of St cannot
than 10°3. be made at fixed, but the experimental value &f, does not
The experimental sphere trajectories, i.e., the distéince vary much close to the transition and §s~10 #, which
between the bottom apex of the sphere and the wall as eorresponds te~10~°. The strong dependence ®fipon St
function of timet, are presented in Figs. 1-3 in a normalizedclose to the transition clearly shows the importance of the
form; h is normalized byR andt by the ratioR/U, whereU viscous forces of the fluid medium. The saturatioredhat
is the limiting fall particle velocity far from the bottom wall. we observe at high St would indicate that the viscous forces
In this normalized representation, the trajectory far from thecan be considered as negligible. But our saturation valge of
wall thus corresponds to a line of slopel. at high St is far less than the valee=0.9 that is measured
In the case of very low R&Re<0.01), we have checked for an equivalent but dry sphere at the same impact velocity
that the experimental trajectory is well fitted by the lubrica-(U~ 1 m/s) 2 This means that there still would be an hy-
tion theory(Fig. 1). The sphere feels the wall far from it and drodynamic effect, but in this case of inertial origin, which
the trajectory deviates strongly from the one it would becould be tested by measuring the high St value @r dif-
without the bottom wall. ferent densities.
For larger Re numbers, fluid inertia needs to be consid-
ered and thus the balance between diffusion and convection.
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