
HAL Id: hal-02482758
https://hal.science/hal-02482758

Submitted on 25 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Energy-efficient IoT service composition for concurrent
timed applications

Mengyu Sun, Zhangbing Zhou, Junping Wang, Chu Du, Walid Gaaloul

To cite this version:
Mengyu Sun, Zhangbing Zhou, Junping Wang, Chu Du, Walid Gaaloul. Energy-efficient IoT service
composition for concurrent timed applications. Future Generation Computer Systems, 2019, 100,
pp.1017-1030. �10.1016/j.future.2019.05.070�. �hal-02482758�

https://hal.science/hal-02482758
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Energy-Efficient IoT Service Composition for Concurrent Timed Applications

Mengyu Suna, Zhangbing Zhoua,d,∗, Junping Wangb, Chu Duc, Walid Gaalould

aSchool of Information Engineering, China University of Geosciences (Beijing), China
bLaboratory of Precision Sensing and Control Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China

cThe 54th Research Institute of China Electronics Technology Group Corporation, Shijiazhuang, China
dComputer Science Department, TELECOM SudParis, Evry, France

Abstract

The I nternet of Things (IoT) paradigm has established an efficient platform to enable the collaboration and cooperation
of self-configurable and energy-aware IoT nodes for supporting complex applications. Heterogeneous IoT nodes provide
various kinds of functionalities, which can be encapsulated and represented as IoT services. These services can be
composed to provide value-added services, while spatial-temporal constraints of IoT services should be satisfied, and
energy consumption of IoT nodes should be balanced to prolong the network lifetime. Given a set of concurrent service
requests, a challenge is to recommend efficient service compositions.

To address this challenge, this paper proposes to identify and share common functional components, and thus, to
integrate and optimize concurrent requests, where a component corresponds to a snippet of IoT service compositions.
Shared components in different requests should not violate their temporal dependencies and thus improving resource
utilization. Consequently, composing IoT services with respect to concurrent requests can be reduced to a constrained
multi-objective optimization problem, which can be solved by heuristic algorithms. Experimental evaluation has been
performed with respect to the state-of-art’s algorithms, and the results demonstrate the efficiency and performance of
this technique, especially when IoT nodes are relatively large in number and their functionalities are highly overlapped
with each other.
Keywords: IoT Service Composition; Temporal Constraints; Concurrent Requests; Energy Efficiency.

1. Introduction

The I nternet of Things (IoT) has extensively devel-
oped and widely-adopted in domain applications, and pro-
motes the interconnection of distributed devices with sens-
ing capabilities. These connected devices, also known as
IoT nodes, achieve their collaboration and cooperation
through integrating the functionalities of contiguous IoT
nodes. Along with this trend, large-scale IoT sensing net-
works have been emerging, and they have become the in-
frastructure to support applications in various domains [1,
2]. Similar as sensor nodes in W ireless Sensor N etworks
(WSN), IoT nodes are mostly battery-powered, and their
energy may hardly be replenished in most environments,
although energy harvesting techniques [3, 4] have been de-
veloped and could alleviate the energy consumption some-
how in certain situations. In this setting, energy efficiency
is an essential ingredient to be considered, especially when
concurrent applications is relatively large in number.

With increasing complexity of requirements of domain
applications, an application, also known as a service re-

∗

Email address: zhangbing.zhou@gmail.com (Zhangbing Zhou)
URL: sunmengyu.cugb@gmail.com (Mengyu Sun),

wangjunping@bupt.edu.cn (Junping Wang), duchu2017@126.com
(Chu Du), walid.gaaloul@mines-telecom.fr (Walid Gaaloul)

quest, should be achieved through assembling the func-
tionalities provided by multiple IoT nodes, which may ex-
ceed the capability of any single IoT node. To promote
this procedure leveraging Service-Oriented Architecture
(SOA) [5], the functionalities provided by IoT nodes are
encapsulated and represented in terms of respective IoT
services, where an IoT node may co-host one or multiple
IoT services [6]. Consequently, the task of assembling the
functionalities of IoT nodes is reduced to the composition
of corresponding IoT services. Besides functional require-
ments, temporal constraints of functional components are
usually specified upon and mandated to be satisfied in real-
world applications. Hence the temporal consistency should
be examined when composing timed IoT services. It is
worth emphasizing that an IoT sensing network should
support concurrent applications, Intuitively, these appli-
cations can be processed independently. However, consid-
ering the fact that there may exist common components
in concurrent applications, which may be processed once
to satisfy some sub-requirements in multiple applications.
Therefore, the strategy that common components used in
a shared manner among concurrent service requests should
be appropriate to promote the decreasing of energy con-
sumption of IoT nodes and the network traffic. For in-
stance, concurrent processing technology with temporal
constraints is applied in distributed real-time monitoring

Preprint submitted to Future Generation Computer Systems May 18, 2019

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0167739X19302274
Manuscript_a4a61bebb5f4bb51558455c1dd4dc98e

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0167739X19302274
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0167739X19302274

systems and information audit systems by an integration
and assignment of tasks to optimize system structure and
improve resource utilization.

In this setting, composing timed IoT services which
share common components to support concurrent requests
is a promising research challenge. As a specific example of
IoT sensing networks, WSN can be shared by sensor mid-
dlewares or architectures to ensure the network which can
support multi-application simultaneously [7, 8], wherein
sensor nodes and network resources are shared to provide
value-added services for responding to concurrent applica-
tions. Data sharing techniques have been developed and
applied to support the processing of multiple applications
through integrating sampling temporal intervals by rea-
sonably planning tasks [9]. Generally, these techniques
mostly target at the concurrent-execution of multiple ap-
plications. From the temporal aspect, task allocation with
overlapping temporal intervals is performed in order to
promote the sharing of common sub-requirements in con-
current applications. However, temporal constraints for
seperate functional components should be explored exten-
sively to guarantee temporal consistency for optimizing
IoT service compositions.

Figure 1: The framework of IoT sensing networks includes a Cen-
tral Control Layer and an IoT Nodes Layer, where the IoT Nodes
Layer is a three-tier subframe including the tiers of IoT Nodes, IoT
Services, and Service Classes.

To remedy this issue, this paper proposes a framework
for IoT sensing networks as illustrated by Figure 1, and
develops a Concurrent Requests I ntegration Optimization
(CRIO) mechanism to specify temporal dependencies be-
tween connected components and thus to promote the op-
timization model for concurrent requests. The contribu-
tions of this paper are summarized as follows:
• IoT nodes accompanying with multiple kinds of func-

tionalities are virtualized in terms of service providers,
where these functionalities are encapsulated and rep-
resented as respective IoT services.

• A service request is achieved by implementing func-
tionalities sequentially, and temporal dependencies
are examined to ensure their consistency.

• The CRIO mechanism is proposed to optimize shared
functionalities among concurrent requests.

Extensive experiments are conducted for evaluating the
feasibility and performance of our CRIO mechanism, and
exploring the influence of various experimental parameters
upon this technique. The result shows that our technique
performs better than the rivals in the energy efficiency,
especially when IoT nodes are relatively large in number,
and they are largely overlapped in their functionalities.

The rest of this paper is organized as follows. Sec-
tion 2 introduces correlation definitions and energy model.
Section 3 introduces the CRIO mechanism for concurrent
service requests. Section 4 presents IoT service compo-
sition for optimal solution which mainly concerns about
spatial constraints, temporal relevancy and energy con-
straints. Experimental results are presented at Section 5
and Section 6 reviews and compares our approach with
relevant works. Section 7 concludes our work.

2. Preliminaries

This section presents relevant concepts and the energy
model for supporting the composition of concurrent appli-
cation requests in the following sections.

2.1. Concept Definition
Definition 1 (IoT Node). An IoT Node ndIoT is a tu-
ple (id, SvI, spt, eng), where:
• id is the unique identifier of this IoT node ndIoT .
• SvI is a set of IoT services co-hosted by ndIoT .
• spt is the spatial constraint specified upon ndIoT .
• eng is the remaining energy of ndIoT .

As shown in Figure 1-(b1), an IoT node ndIoT may co-
host multiple IoT services. Due to the scarceness of com-
putational and energy resources, most IoT nodes could
hardly activate multiple IoT services concurrently. Note
that IoT nodes are assumed to have no temporal con-
straints in this paper, since IoT nodes, which are de-
ployed for supporting domain applications like environ-
mental monitoring and event detection, may be in the sta-
tus of active during their lifetime. Without loss of gener-
ality and for simplicity, we assume that an IoT node can
support the operation of only one IoT service at a certain
time duration. spt is defined by the physical attribution
in terms of a circular region specified by a centre and a
communication radius.

Definition 2 (IoT Service). An IoT Service svI hosted
by an IoT node ndIoT is a tuple (id, nm, dsc, ndIoT),
where:
• id is the unique identifier of svI.
• nm is the name of svI.
• dsc is the short-text description of svI.
• ndi

IoT represents the set of IoT nodes which host svI.

2

Note that IoT services and IoT nodes may have a
many-to-many relationship. To be specific, a certain kind
of IoT services may be hosted by one or multiple IoT
nodes, and a certain IoT node can host one or multiple
kinds of IoT services. For instance, an IoT service svI
with an id as 325 as shown in Table 3 is represented as
follows:
• svI.nm: “Relative humidity monitor sensing service”
• svI.dsc: “Measures the relative ambient humidity in

percent (%). Common use is for monitoring dew-
point, absolute, and relative humidity.”

• svI.ndi
IoT : nd1

IoT

As shown by Figure 1-(b2), multiple IoT services hosted
by various IoT nodes may be similar in their functionality.
The concept of service class is adopted to represent these
IoT services sharing a certain functionality [6].

Definition 3 (Service Class). A service class clS is a
tuple (id, nm, dsc, SvIclS), where id, nm and dsc are the
identifier, name, and text description of clS, and SvIclS

is a set of IoT services belonging to clS and hosted by
different IoT nodes.

As shown in Figure 1-(b3), a service class takes the
functional aspect of IoT services into concern, while their
spatial constraints and energy consumption are not the fo-
cuses. Consequently, a service request is defined as follows:

Definition 4 (Service Request). A service request rq
is a tuple (id, CLS, LNKT pCt, SpCt), where:
• id is the unique identifier of this service request rq.
• CLS is a set of preferring service classes according

to the requirement.
• LNKT pCt is a set of temporal links between adjacent

service classes.
• SpCt is the spatial constraints specified upon rq.

Generally, a service request should prescribe the pre-
ferring composition of service classes, and this composi-
tion can be discovered and generated through traditional
Web service composition techniques [10, 11]. These ser-
vice classes are linked according to their functional de-
pendency relations [12]. Temporal constraints denoted as
the tuple (T, C) are specified in terms of the rules in
S imple Temporal N etworks (STN) [13], where (i) T is a
set of time point variables, which correspond to the com-
pletion time of service classes, and (ii) C is a finite set
of binary constraints specified upon these time point vari-
ables. The completion time of service classes as temporal
objects are constrained by temporal statements such as
points and intervals. We adopt the interval algebra [14]
to define qualitative statements for relative temporal con-
straints of adjacent service classes, which is denoted as
[T1, T2] to represent the alternative time interval of this
service class with respect to the pervious one. To avoid
the issue of cyclic temporal dependencies between service

classes, a service request is assumed not containing cyclic
structures. For a given service request, a reasonable so-
lution is a complete set of IoT services assignments that
satisfies all constraints.

2.2. Energy Model
The first order radio model proposed at [15] is adopted

to calculate the energy consumption in WSN s. Since IoT
nodes can be regarded as a certain kind of sensor nodes in
WSN , we calibrate the first order radio model to support
the IoT sensing network, which enhances the model for
adapting to the architecture. The energy consumption for
transmitting and receiving a k bit data packet within the
distance d are denoted as ET x(k, d) and ERx(k) respec-
tively, and the formulae are presented as follows:

ETx(k, d) = Eelec × k + εamp × k × dp (1)

ERx(k) = Eelec × k (2)

where Eelec is the energy consumption constant of the
transmission and receiver electronics, εamp is the energy
consumption constant of the transmission amplifier, and
the parameter p refers to the attenuation index of trans-
mission, which is influenced by surrounding environments.
Generally, if IoT nodes are barrier-free when forwarding
data packets, p is set to 2. Otherwise, p is set to a value
between 3 to 5. Therefore, the energy consumed when
transmitting a packet of k bits data packet from an IoT
node ndi

IoT to one of its neighbours ndj
IoT (denoted as

Eij(k)), where the formula is presented as follows:

Eij(k) = ETx(k, d) + ERx(k) (3)

Note that Backbone N odes (denoted BN) in IoT sens-
ing networks are assumed to have unlimited energy, since
energy harvesting techniques can be adopted to replenish
their energy. The cost of transmitting a data packet from
an IoT node to a neighboring IoT node or to a BN is
different. Besides, the cost of receiving a data packet by
BN is not taken into consideration. Therefore, Eij(k) is
calculated as follows:

Eij(k) =
{
Eelec × k + εamp × k × dp if j is BN
2× Eelec × k + εamp × k × dp otherwise

(4)

Assume that the energy consumed to transmit a data
packet from ndi

IoT to ndj
IoT is the same as that needed to

transmit from ndj
IoT to ndi

IoT . Parameters in the energy
model we used are shown in Table 1.

3. Concurrent Service Requests Integration

Given a set of concurrent service requests, there exists
a set of common components in terms of functionality per-
spective. Except for that, the spatial and temporal factors
are conditions that cannot be ignored for the integration in
the concurrent fashion. In this setting, components with

3

Table 1: Parameters in the energy model
Parameters Name Description

ETx(k, d) The energy consumed to transmit a k bit data packet within a distance d.
ERx(k) The energy consumed to receive a k bit data packet.
Eij(k) Energy consumption for transmitting a k bit data packet from an IoT node ndiIoT to a neighboring IoT node ndjIoT .

Einv(ndiIoT .svIm) Energy consumption for activating an instantiation of an IoT service svIm in an IoT node ndiIoT .
Eelec Energy consumption constant of electronics.
εamp Energy consumption constant of the transmit amplifier.
k The number of bits in one data packet.
d The transmission distance of two nodes.
p The attenuation index of transmissions.
r The communication radius of IoT nodes.

common functionalities can be shared which have compati-
ble spatial regions and temporal intervals. The satisfaction
of relevant service requests can be guaranteed by arrang-
ing reasonable schedule that do not violate any constraints.
Sample concurrent service requests are shown as Figure 2,
and they have the same initial time point but not necessar-
ily the same ending time. In the specification level, each
component is represented as a service class and temporal
dependencies between these components are specified by
directed timed edges that denote the temporal constraints
between the completion of the pervious component and the
latter one. Additional temporal constraints on each edge
are represented as a relative temporal interval which are
transformed into absolute temporal constraints based on
links between service classes. Consequently, service com-
positions may be optimized through considering them in
an integrated fashion, in order to reduce the energy con-
sumption collectively. To solve this problem, our CRIO
mechanism is presented by Algorithm 1 to recommend IoT
services for concurrent service requests.

Figure 2: A sample of serval concurrent service requests, which have
specific functional components and concrete temporal constraints,
where several kinds of functional components are distinguished by
different colors.

RQcon in Algorithm 1 represents a set of concurrent
service requests, CLSmed and RQmed are the intermedi-
ate sets that store the common service classes and service

Algorithm 1 CRIO: Concurrent Requests Integration
Optimization Mechanism
Require:

- RQcon : concurrent service requests with same initial time
Ensure:

- CLScon : a set of service classes shared by different requests
- RQcls : a set of service requests with shared service classes

1: CLSmed ← ∅; RQmed ← ∅; CLScon ← ∅; RQcls ← ∅
2: for all rqu, rqv ∈ RQcon where u, v ∈ [1, |RQcon|] do
3: if ∃ clSp where clSp ∈ rqu.CLS and clSp ∈ rqv .CLS then
4: CLSmed ← CLSmed ∪ {clSp}
5: end if
6: end for
7: for all clSp ∈ CLSmed where p ∈ [1, |CLSmed|] do
8: if clSp ∈ rqu.CLS where i ∈ [1, |rqu.CLS| then
9: RQmed ← RQmed ∪ {rqu}

10: end if
11: if ∃ rqu and rqv ∈ RQmed where u, v ∈ [1, |RQmed|] then
12: Intv(rqu.CLS(clSp)) ← ConvertAbsoluteInterval(rqu,

clSp)
13: Intv(rqv .CLS(clSp)) ← ConvertAbsoluteInterval(rqv ,

clSp)
14: if Intv(rqu.CLS(clSp))∩ Intv(rqv .CLS(clSp)) , ∅ then
15: CLScon ← CLScon ∪ {clSp}
16: RQcls ← RQcls ∪ {rqu, rqv}
17: end if
18: end if
19: end for

requests to which they belong, respectively. CLScon rep-
resents service classes which can be shared by different
service requests RQcls. For an arbitrary service request
contained in RQcon, if there exists a service class clSp

which is a common component of any two different ser-
vice requests rqu and rqv, clSp is inserted into CLSmed as
a candidate service class (line 4).

All shared service classes candidates are found which
can be used to retrieve the corresponding set of service
requests RQmed (line 9). For each clSp in CLSmed, the
absolute temporal intervals for rqu and rqv are calculated
through Algorithm 2 (lines 12-13). If the available tempo-
ral interval of a common service class clSp in different rqu

and rqv has a coincident duration, clSp is verified which
can be shared by rqu and rqv to optimize energy consump-
tion (line 14). clSp is inserted into CLScon (line 15), be-
sides corresponding rqu and rqv are inserted into RQcls

(line 16), which are used in Section 4. For instance, as
shown in Figure 2, all colored service classes are stored

4

into CLSmed and these corresponding service requests to
which they belong are deposited into RQmed. Take clS4
as an example, clS4 appears in over one service requests,
which can be inserted as an element to the candidate set
CLSmed and those service requests to which it belongs are
stored in RQmed. The validity of elements in candidate
sets are verified by temporal constraints. The absolute in-
tervals for rq1 and rq2 are [0, 7] and [0, 6] respectively. As
for clS4 in rqn, the absolute temporal interval of clS4 is
affected by its previous service class clS7, which can be ex-
plicated through Algorithm 2. There is a common overlap
time duration between these three service requests for a
certain clS4, so clS4 is one of concurrent service classes in
CLScon and rq1, rq2 and rqn are the corresponding service
requests confirmed in RQcls.

Algorithm 2 ConvertAbsoluteInterval
Require:

- RQmed : service requests corresponding to common service
classes generated by Algorithm 1
- CLSmed : common service classes generated by Algorithm 1

Ensure:
- Intv(rqu.CLS(clSp)) : the absolute temporal interval for a
certain clSp in a certain rqu

1: ˜clS0 ← get the virtual initial vertex
2: t0 ← get the initial time point
3: for rqu ∈ RQmed where u ∈ [1, |RQmed|] do
4: while ∃ clSp ∈ CLSmed where p ∈ [1, |CLSmed|] do
5: LNKtmp{{ ˜clS0, . . . , clSp}, . . . , {{ ˜clS0, . . . , clSp}} ← ex-

tract all links connecting ˜clS0 to clSp
6: for lnki ∈ LNKtmp where i = |LNKtmp| do
7: Intvi ← get absolute temporal intervals related to the

initial time point t0 of ˜clS0
8: INTVtmp ← INTVtmp ∪ {Intvi}
9: end for

10: INTVtmp{Intv1, . . . , Intv|LNKtmp|} ← get all absolute
temporal intervals

11: for all Intvi ∈ INTVtmp where i = |INTVtmp| do
12: Intv(rqu.CLS(clSp)) ← Intv1 ∩ · · · ∩ Intvi
13: end for
14: end while
15: end for

Algorithm 2 is presented to convert temporal intervals
related to adjacent structure into absolute temporal inter-
vals. A virtual initial vertex ˜clS0 is generated to connect
these service classes without preorder vertexes (line 1), and
the initial time point t0 is obtained (line 2). We extract
all links LNKtmp from ˜clS0 to each clSp in CLSmed for
different service requests (line 5). At least one connection
path is found in each rqu for each clSp. Absolute temporal
intervals are acquired according to relative intervals on cor-
responding connection paths (line 7). Therefore, INTVtmp

is the set containing possible absolute temporal intervals
relative to t0 calculated according to the specification of
service requests, and its corresponding relative temporal
intervals based on adjacent service classes (line 10). An ab-
solute temporal interval Intv(rqu.CLS(clSp)) for a certain
clSp in rqu is acquired through adopting the intersection
of each Intvi in INTVtmp (line 13). As shown in Figure 2
and taking clS6 in rqn for an example, where two links in-

cluded in INTVtmp consist of { ˜clS0, clS7, clS4, clS6} and
{ ˜clS0, clS14, clS1, clS6}. According to the link of {clS0,
clS7, clS4, clS6}, the absolute temporal interval is [6, 14]
based on mathematical operation of lower bound and up-
per bound of preorder vertexes. Thereafter, the absolute
temporal interval for { ˜clS0, clS14, clS1, clS6} is set to [3,
9]. Hence, the definitized absolute temporal interval of
Intv(rqn.CLS(clS4)) is set to [6, 9] which is the intersec-
tion of two intervals as mentioned above.

4. IoT Service Composition

This section presents IoT service composition tech-
nique for concurrent service requests and recommends op-
timal solutions, where spatial constraints, temporal rele-
vancy and energy efficiency are taken into consideration.

4.1. Constraints of IoT Service Composition
4.1.1. Spatial Constraints

IoT nodes should be prescribed spatial constraints since
they can only work well within a certain range of areas.
Generally, the spatial constraint of an IoT node ndIoT and
a certain service request rq are specified according to their
geographical positions and communication radius, which
can be represented as follows:

spt(ndIoT) = (pndIoT
, rndIoT

) (5)

spt(rq) = (prq , rrq) (6)

where pndIoT
and prq are the geographical coordinates

in terms of their latitude and longitude, rndIoT
(or rrq)

describes the communication distance of an IoT node (or
the radius of rq interesting in). It means that the spatial
constraint corresponds to a circular region where the cen-
ter and radius of the circle are pndIoT

(or prq) and rndIoT

(or rrq) respectively. Therefore, we propose to calculate
the spatial relevancy between rq and ndIoT as follows:

spt(rq, ndIoT) = (spt(rq) ∩ spt(ndiIoT))÷ spt(rq) (7)

where spt(rq, ndIoT) represents the proportion of spa-
tial coincidence with respect to rq and ndIoT . The larger
the value of spt(rq, ndIoT), the larger the overlap for rq
and ndIoT is. We do not consider IoT nodes that are
beyond the scope of the service request.

From the perspective of multiple fashion, IoT service
compositions for concurrent requests are represented by
comp(allrq), and the spatial constraint of involved IoT
nodes with respect to service requests is calculated as fol-
lows:

spt(comp(allrq)) =
1
j

v∑
u=1

j∑
i=1

spt(rqu, ndiIoT) (8)

Note that the variable v represents the number of con-
current service requests and j denotes the number of IoT
nodes instantiated in all service compositions comp(allrq).

5

4.1.2. Temporal relevancy of Common Components with
Respect to Various Service Requests

There exists common components in concurrent ser-
vice requests, which may be processed once to satisfy these
requirements. These components, as individual elements,
connect with others in terms of the sequential logical struc-
ture of requirements. And the temporal intervals as con-
straints are additional conditions for satisfying connec-
tions. Temporal intervals are relative based on the con-
tiguity constraints of two adjacent service classes. How-
ever, relative intervals are not fully aware of the temporal
relation of the common components in different service re-
quests. Therefore, it is necessary to convert relative tem-
poral intervals into an uniform standard in each service
requests. Based on the initial time point, each relative in-
terval is transformed into an absolute constraint shown as
Alogrithm 2, which is adopted to calculating the temporal
coincidence of intervals for common service classes in dif-
ferent service requests. Therefore, for each clSp in CLScon

and its corresponding rqu and rqv in RQcls, the temporal
relevancy is computed as follows:

tpr(clSp) =
Intv(rqu.CLS(clSp)) ∩ Intv(rqv .CLS(clSp))
Intv(rqu.CLS(clSp)) ∪ Intv(rqv .CLS(clSp))

(9)

The temporal relevancy is calculated through the upper
bounds and lower bounds of these intervals. Intuitively,
the larger the value of tpr(clSp) is, the larger the over-
lap interval of two service requests for this certain service
class is. Therefore, common service classes in concurrent
service requests have certain possibilities instantiated as
the same IoT service and executed only once based on
tpr(clSp), for reducing its energy consumption by acti-
vating a minimum number of IoT nodes. For concurrent
service requests, the temporal relevancy of service compo-
sitions tpr(comp(allrq)) is affected by the proportion of
relative coincidence and calculated by the number of IoT
nodes instantiated in comp(allrq).

4.1.3. Energy Consumption of IoT service composition
Due to the limited amount of energy in IoT nodes,

the energy consumption of IoT service compositions for
IoT nodes should be minimized for prolonging the life-
time of the whole network. Given service compositions
comp(allrq) for concurrent requests, the energy consump-
tion for comp(allrq) can be calculated including the fol-
lowing ingredients:
• Energy consumption for instantiating IoT services

in an IoT node ndi
IoT is computed as follows:

Einv(svIm) = ti × Einv(svIm) (10)

Einv(ndiIoT) =
n∑

m=1

Einv(svIm) (11)

where ti is the invocation times for a certain IoT ser-
vice svIm, and Einv refers to the energy consumed

for activating svIm. Therefore, the energy consump-
tion for an IoT node is calculated includes all the
IoT services hosted on it.

• Energy consumption for communication between IoT
nodes is calculated as follows:

Ecomm(ndiIoT) =
h∑
k=1

ETx(k, d) +
l∑

k=1

ERx(k) (12)

where i and j are the times of transmitting and re-
ceiving data packets for ndi

IoT . It is worth men-
tioning that when ndIoT do not require to transmit
any packet to other IoT nodes, ET x(k, d) is set to
0, and the same situation holds for ERx(k). The
details about energy consumption for the communi-
cation are presented in Section 2.2.

• Energy consumption of an IoT node is calculated as
follows:

Ecst(ndiIoT) = Einv(ndiIoT) + Ecomm(ndiIoT) (13)

Note that the energy consumption of an IoT nodes
includes instantiation and communication as presented
in Formula 11 and 12.

Therefore, the energy consumption of service composi-
tions comp(allrq) for concurrent service requests is com-
puted by all IoT nodes as follows:

E(comp(allrq)) =
j∑
i=1

Ecst(ndiIoT) (14)

4.1.4. Residual Energy Constraint of IoT nodes
IoT nodes should be balanced by considering the load

balancing and avoiding the excessive composition of any
IoT node [16]. Given concurrent service requests which
are divided into several kinds of service classes, each of
them has an alternative list of IoT services. According
to different IoT nodes they belong to, those who with
relatively large amounts of remaining energy can be an
instantiation. Formally, the IoT node ndIoT should have
enough residual energy (denoted Ersd) than required to
be consumed (denoted Ecst) for implementing a certain
functionality:

Ecst(ndiIoT) ≤ Ersd(ndiIoT) (15)

To avoid the over-consumption of any IoT node, a load-
balancing factor is proposed to prevent IoT nodes with
relatively low residual energy from instantiating more IoT
services, if there are other candidate nodes. Formally,

lbf(ndiIoT) = (Ersd(ndiIoT)− Ecst(ndiIoT))÷ Ersd(ndiIoT) (16)

lbf(comp(allrq)) =
1
j

j∑
i=1

lbf(ndiIoT) (17)

Note that the lbf(ndi
IoT) can avoid excessive energy

consumption effectively for any of IoT nodes, and thus,

6

achieve the energy load balancing in the whole network.
This strategy avoids the polarization of IoT nodes. When
the value of lbf(comp(allrq)) is relatively large, which in-
dicates that the majority of IoT nodes, as the instantiation
of service classes contained in comp(allrq) have relatively
larger amount of remaining energy.

4.2. Service Composition Optimization of Concurrent Ser-
vice Requests

For multiple concurrent service requests with temporal
constraints, a component expressed as a service class clS
can be instantiated by a set of candidate IoT service lists.
In this setting, selecting an appropriate IoT service com-
position for each service request by composing correspond-
ing IoT nodes, and thus, saving the energy of the whole
network is the challenge to be addressed. The problem
is reduced to a constrained multi-objective optimization
problem, which is presented as follows:
• Input Parameters

1. RQcon = {rq1, . . . , rqu, . . . }: the set of concur-
rent service requests with temporal constraints.

2. CLScon = {clS1, . . . , clSp, . . . }: the set of ser-
vice classes can be shared by different service
requests.

3. spt(ndi
IoT): the spatial constraint of ndi

IoT .
4. spt(rqu): the spatial constraint of rqu.
5. tpr(clS): the temporal interval relevancy of a

certain service class clS in multiple concurrent
service requests.

6. ti: the invocation times for a certain svIm.
7. Einv(svIm): the energy consumption of activat-

ing a single IoT service svIm.
8. Ersd(ndi

IoT): the residual energy of a certain
IoT node ndi

IoT .
9. ET x(k, d): the energy consumption of transmit-

ting a k bit data packet within a distance d.
10. ERx(k): the energy consumed for receiving a k

bit data packet.
• Output Parameters

1. comp(allrq): the optimal IoT service composi-
tions for concurrent service requests which can
fulfill all the temporal constraints.

2. E(comp(allrq)): the sum of energy consump-
tion of concurrent service requests.

• Constraints
Ersd(ndiIoT) ≥ Ecst(ndiIoT) (18)

• Multi-objective Functions
1. Minimize

Zmin = E(comp(allrq)) (19)

2. Maximize:
Zmax = α · spt(comp(allrq)) + β · tpr(comp(allrq))

+γ · lbf(comp(allrq))
(20)

where the value of α, β and γ are positive constants,
and α + β + γ = 1. Intuitively, their specific val-
ues depend on the importance of spt(comp(allrq)),
tpr(comp(allrq)) and lbf(comp(allrq)).

Hence, the objective function is calculated as follows:
Fobj(comp(allrq)) = wmax · Zmax − wmin · Zmin =
wmax · (α · spt(comp(allrq)) + β · tpr(comp(allrq))

+γ · lbf(comp(allrq)))− wmin · E(comp(allrq))
(21)

where wmax and wmin are objective factors of Zmin

and Zmax, and wmax + wmin = 1. The value of ob-
jective function is the judgment form of service compo-
sition. Under the circumstances, service composition is
an approximately optimal solution with relatively large
Fobj(comp(allrq)).

4.3. Optimization Algorithms for Concurrent Service Com-
position

Two heuristic algorithms, Particle Swarm Optimization
(PSO) and Grey W olf Optimizer (GWO) are adopted in
this paper, where PSO shows more effective than other al-
gorithms like genetic algorithm in achieving optimal WSN
service compositions in our previous work [6]. GWO is
a relatively novel intelligent algorithm with fast conver-
gence. Generally, GWO has fewer adjustable parameters,
which can alleviate the impact of subjective parameter
settings. These two algorithms are implemented to solve
this constrained multi-objective optimization problem pro-
posed aforementioned.

4.3.1. Particle Swarm Optimization (PSO)
PSO is an evolutionary algorithm which inspired by the

regularity of the movement of birds initially. Generally,
PSO utilizes the information shared by the individuals in
the population to make the whole population movement in
the solution space produce the evolution process from dis-
order to order so as to obtain the optimal solution. In our
context, the set of concurrent service requests refers to a
particle, and the service compositions of them comp(allrq)
correspond to a certain position of particles. At each iter-
ation, the position and velocity of particles are updated by
its most appropriate global position value of all the parti-
cles (denoted as gbest) and the most appropriate individual
position value that each particle has acquired (denoted as
pbest). Each particle pi updates its velocity and position
according to the following formulae:

vid(t+ 1) = wvid(t) + c1r1(pbestid(t)− xid(t))
+c2r2(gbestid(t)− xid(t))

(22)

xid(t+ 1) = xid(t) + vid(t) (23)

7

where d is the number of service classes in comp(allrq),
w refers to an inertia weight factor which represents the
effect of the current velocity value on the next iteration. c1
and c2 represent acceleration coefficients which are posi-
tive constant variables, r1 and r2 are random variables.
The position of particles change when an IoT service are
substituted by another in comp(allrq).

4.3.2. Grey Wolf Optimizer (GWO)
GWO is a kind of swarm intelligence optimization method

which imitates the social hierarchy and hunting mechanism
of wolves in nature [17] Generally, the wolf populations are
divided into four levels following their social status from
high-ranking to low-ranking denoted as α wolf, β wolf, δ
wolf and w wolves, respectively. α, β and δ wolves are
responsible for guiding the entire swarm to catch the prey.
In this setting, wolves refer to concurrent service requests,
and comp(allrq) represents the position which is changed
accordingly when services in the service composition are
replaced. α, β and δ wolves refer to the optimal solution,
suboptimal solution and the third optimal solution, of a
population of wolves, where the rest are w wolves. The
gray wolf population updates their position according to
formulae as follows:

Dα,β,δ =| 2r2 ·Xα,β,δ(t)−X(t) | (24)

Xα,β,δ = Xα,β,δ(t)− (2a · r1 − a) ·Dα,β,δ (25)

X(t+ 1) =
∑

Xα,β,δ ÷ 3 (26)

where r1 and r2 are two random vectors, a is a linear
decreasing variable which is used to facilitate the update
of the location for wolves with the number of iterations.
The rest of wolves update their position according to the
movement of α, β and δ wolves.

5. Implementation and Evaluation

A prototype has been implemented using Java pro-
gram to evaluate experimental results, and experiments
have been conducted on a desktop with an Intel i7-6700
CPU at 3.4GHz, 8-GB of memory and a 64-bit Windows
7 system. The experiment settings and evaluation results
are presented as follows.

5.1. Experiment Settings
The parameter settings for our experiments are pre-

sented at Table 2 detailedly. A network with 400 IoT
services is deployed, and these IoT services are assigned
to IoT nodes randomly. The number of IoT nodes rang-
ing from 30 to 70 is generated and distributed in a rect-
angle geographical region of 500m × 500m, where these
IoT nodes are deployed unevenly with the skewness de-
gree 0.4. Generally, the skewness degree (denoted sd)

represents the unevenness of distribution of IoT nodes in
the network, and it is calculated by the formula: sd =
(dn−sn)÷(dn+sn), where dn and sn refer to the number
of IoT nodes in dense and sparse sub-region, respectively
[18]. These IoT nodes are assumed to have the same initial
residual energy. We adopt 14 sensor types supported by
the Android platform as service classes as mentioned in our
previous work [6], and assign 400 IoT services to respective
service classes. Intuitively, an IoT service cannot belong
to two service classes, but a service class contains multiple
IoT services. In our experiments, an IoT node is assigned
multiple IoT services randomly with various functional-
ities and there is no correspondence between IoT nodes
and service classes. An experimental example shown as
Figure 2, we determine the upper and lower bounds of
temporal interval between two adjacent service classes by
generating pairs of random numbers. Note that the upper
bound of temporal intervals must be larger than the lower
bound, because we only think about the positive duration
of functionalities.

Table 2: Parameters Settings in Experiments.
Parameters Name Value
Network region 500 m × 500 m
Number of IoT Services 400
Number of IoT Nodes 30 ∼ 70
Skewness degree (sd) 0.4
Attenuation index of transmission (n) 2
Number of service classes 14
Total number of iterations 100
Invocation times for a sensor node(ti) 1
Energy consumption constant for
electronics (Eelec)

50nJ/bit

Energy consumption constant for
the transmit amplifier (εamp) 100pJ/(bit×m2)

Besides, the parameters for PSO are set as follows: (i)
the acceleration coefficient for velocity c1 = 2, (ii) the in-
ertia weight factor w = 0.5 which shows the impact of
previous values of velocity for the current values, and (iii)
the acceleration coefficient for the position c2 = 2. The
parameters for GWO are set as follows: (i) r1 and r2 are
two random vectors between 0 and 1, (ii) a decreases from
2 to 0 linearly with the increasing number of iterations.
The number of iterations for PSO and GWO is set to 100.
And the parameters for the objective function as specified
at Formula 21 are set as follows: wmax = 0.5, wmin =
0.5, α = 0.2, β = 0.3, δ = 0.5. These parameters can be
set to other values of appropriate according to the require-
ment of certain applications. Consequently, the emphasis
of minimum and maximize objection functions are con-
sidered equivalent, and the load-balancing factor is more
important in the maximize function.

The following aspects have been considered for evalu-
ating the performance and parameters of our mechanism:
• The performance of algorithms. Two intelligent op-

timization algorithms are adopted to solve this con-
strained multi-objective optimization problem, and

8

they are evaluated by comparing the values of objec-
tive function, the minimum residual energy and the
variance of residual energy in the whole network.

• The number of IoT nodes in the network. Intuitively,
the number of IoT nodes deployed affects the experi-
mental results to some extent. The fewer the number
of IoT nodes is deployed in the network, the more
IoT services are configured on each node. And thus
the energy consumption of communication is econo-
mized in the network. In our experiments, the num-
ber of IoT nodes distributed in the network region
is set to a value ranging from 30 to 70.

• The number of functional-overlap in concurrent ser-
vice requests. In our experiments, the functional-
coincidence is set by adjusting the number of the
shared functionalities that satisfy temporal constraints
in multiple service requests. The number of overlap-
ping service classes pairs ranging from 4 to 7 gradu-
ally to verify the impact of experiments.

5.2. Experimental Evaluation
5.2.1. Experimental Result and Impact of Key Parameters

According to the experimental sample mentioned in
Section 5.1, 400 IoT services are generated randomly, and
their names and descriptions are composed by semantic
keywords of these given service classes. The temporal con-
straints of concurrent service requests are represented as
Figure 2. Firstly, PSO and GWO are adopted to compose
services according to the given temporal service request
graphs. Results of IoT services compositions and corre-
sponding IoT nodes by PSO and GWO are shown in Table
3 and 4. According to Formula 21, the values of objective
function corresponding to service compositions generated
by PSO and GWO are 0.372021 and 0.371511, respectively,
where the larger the value is, the better the composition
is. The results show that appropriately optimal service
compositions for concurrent service requests by adopting
two heuristic algorithms PSO and GWO are mostly simi-
lar. The difference between their results is mainly due to
the randomness of these experiments. And two algorithms
are adopted to show the impact of different algorithms to
our CRIO mechanism.

The variation tendency about the value of the objec-
tive function is shown in Figure 3. Evolution has been
executed 50 contiguous times for reducing the impact of
randomness. The figure shows that the values of objective
function of both algorithms are around 0.37, they have
slight variation and the results for PSO are more stable
comparing with GWO. Figure 4 shows the ratio of min-
imum residual energy of all IoT nodes for 50 contiguous
time slots. The curve for PSO is slightly smoother than
GWO which decreases quickly as shown in the figure. The
initial energy of all IoT nodes is set to the same amount
in our experiments, and the ending of the entire network
lifecycle is identified when the first IoT node exhausts its
energy. As can be seen from the figure, PSO is more ef-

Table 3: The results of IoT service compositions by PSO

rq1

clSid svIid ndidIoT
3 325 42
4 246 5
2 293 17
1 219 15
9 164 29
10 161 10

rq2

6 346 2
4 246 5
1 296 29
9 255 48
14 135 24
2 124 25
8 160 7

rq3

7 191 16
14 263 14
1 296 29
4 309 24
6 253 6
10 214 26

Table 4: The results of IoT service compositions by GWO

rq1

clSid svIid ndidIoT
3 319 43
4 172 40
2 138 21
1 73 3
9 362 33
10 297 16

rq2

6 396 11
4 206 33
1 313 29
9 164 29
14 244 32
2 216 2
8 324 22

rq3

7 181 2
14 250 7
1 375 17
4 100 12
6 60 16
10 387 6

fective in preserving the minimum residual energy by se-
lecting appropriate IoT services for instantiating service
requests. Figure 5 shows the variance of the residual en-
ergy of IoT nodes for 50 contiguous times when PSO and
GWO are adopted. Generally, the variance refers to the
balance of energy consumption in the whole network, and
the more uneven of the energy consumption of IoT nodes,
the larger the value of variance is. The figure shows that
PSO outperforms GWO in balancing the energy consump-
tion in the network, thus extending the lifecycle of entire
network.

Figure 6 shows the comparison of energy consumption
when the number of IoT nodes ranges from 30 to 70.
The other parameters are the same setting for this exper-
iment. This figure shows that the energy consumption as-
cends gradually with the increasing number of IoT nodes.
Note that when two adjacent services are configured on
the same IoT node, the energy consumption of transmit-

9

5 10 15 20 25 30 35 40 45 50

Times

0.34

0.35

0.36

0.37

0.38

0.39

0.4

0.41

T
he

 V
al

ue
 o

f O
bj

ec
tiv

e
F

un
ct

io
n

CRIO-PSO

CRIO-GWO

Figure 3: The value of objective function for PSO and GWO when
the algorithms are executed in 50 contiguous times.

5 10 15 20 25 30 35 40 45 50

Times

0.88

0.9

0.92

0.94

0.96

0.98

1

M
in

im
um

 R
es

id
ua

l E
ne

rg
y

R
at

io

CRIO-PSO

CRIO-GWO

Figure 4: The ratio of minimum residual energy of all IoT nodes for
PSO and GWO when the algorithms are executed in 50 contiguous
times.

5 10 15 20 25 30 35 40 45 50

Times

0

0.5

1

1.5

2

2.5

3

3.5

4

V
ar

ia
nc

e
of

 R
es

id
ua

l E
ne

rg
y

10-3

CRIO-PSO

CRIO-GWO

Figure 5: The variance of minimum residual energy of all IoT nodes
in the whole network for PSO and GWO when the algorithms are
executed in 50 contiguous times.

ting and receiving data packets is saved in the network,
and which reduces the energy consumption of the whole
network whether PSO or GWO is adopted.

30 40 50 60 70

The Number of IoT Nodes

0

100

200

300

400

500

600

700

E
ne

rg
y

C
on

su
m

pa
tio

n
(n

J)

CRIO-PSO CRIO-GWO

Figure 6: The energy consumption for IoT nodes ranging from 30 to
70 adopted to PSO and GWO respectively.

The impact of the number of functional-overlap ser-
vice classes in concurrent service requests on energy con-
sumption for PSO and GWO is shown in Figure 7 and
Figure 8 respectively. Experiments have been executed 10
times, which show that the energy consumption is decreas-
ing along with the increasing number of functional-overlap
in concurrent service requests. Generally, the number of
functional-overlap of service classes has a significant im-
pact on energy consumption regardless of which algorithm
is adopted, especially when the functional-overlap degree
is relatively large. The overlapping of functionalities in-
creases the possibility of service sharing to reduce energy
consumption according to temporal interval coincidence.

1 2 3 4 5 6 7 8 9 10

Times

0

100

200

300

400

500

600

700

800

900

1000

E
ne

rg
y

C
on

su
m

pa
tio

n
(n

J)

4 pairs of functional-overlap
5 pairs of functional-overlap
6 pairs of functional-overlap
7 pairs of functional-overlap
8 pairs of functional-overlap

Figure 7: The energy consumption of different number of functional-
overlap in concurrent service requests when PSO is executed in 10
times.

5.2.2. Comparison With CR for Service Composition
This section presents the comparison for our mecha-

nism CRIO and the strategy that implementing and in-
stantiating these service classes in concurrent service re-
quests in an independent fashion is denoted as CR. To
reduce of the influence of different algorithms on exper-

10

1 2 3 4 5 6 7 8 9 10

Times

0

100

200

300

400

500

600

700

800

900

1000

E
ne

rg
y

C
on

su
m

pa
tio

n
(n

J)

4 pairs of functional-overlap
5 pairs of functional-overlap
6 pairs of functional-overlap
7 pairs of functional-overlap
8 pairs of functional-overlap

Figure 8: The energy consumption of different number of functional-
overlap in concurrent service requests when GWO is executed in 10
times.

imental results, PSO and GWO were used to compare
the performance of CRIO and CR, respectively. Figure
9 shows that the CRIO optimization mechanism adopting
these two algorithms can reduce more energy consumption
than CR. The minimum residual energy ratio for CRIO
and CR is presented as Figure 10. This figure shows that
the minimum residual energy of IoT nodes for CRIO is
more than CR, which means that CRIO has better re-
sults in preserving energy and our mechanism is effective.
Due to integration and sharing in common service classes,
the energy consumption of CRIO for concurrent service
requests is reduced comparing to the CR which executes
each functionality independently. Therefore, for CRIO,
the minimum residual energy ratio of the whole network
is larger no matter what algorithm is adopted.

5 10 15 20 25 30 35 40 45 50

Times

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

CRIO-PSO
CR-PSO
CRIO-GWO
CR-GWO

Figure 9: The energy consumption for CRIO and CR adopted to
PSO and GWO when the algorithms are executed in 50 contiguous
times.

5.2.3. Comparison With SSA [19] for Service Selection
This section presents the comparison of our mecha-

nism CRIO and the Service Selection Approach (denoted

5 10 15 20 25 30 35 40 45 50

Times

0.8

0.85

0.9

0.95

1

M
in

im
um

 R
es

id
ua

l E
ne

rg
y

R
at

io

CRIO-PSO
CR-PSO
CRIO-GWO
CR-GWO

Figure 10: The ratio of minimum residual energy of IoT nodes in
the whole network for CRIO and CR with PSO and GWO when the
algorithms are executed in 50 contiguous times.

SSA) proposed in [19]. As discussed in [19], SSA consid-
ers the best-fitted QoS and makes efficient usage of ser-
vices among multiple requests. The approach concerns
both functional and non-functional requirements, where
selecting temporal availability, residual energy and trans-
mission distance as the QoS attributes to adapt to our
experimental scenario. For minimized and maximized ob-
jective attributes, they are processed so that they can be
compared by the same principle. Each QoS attribute value
is regarded as a vector, and the sum of vectors of all at-
tributes for an IoT service is used as a standard to mea-
sure it. Load-balancing among these IoT nodes should
be fully considered to avoid being used excessively of any
one, where an IoT service with optimal QoS attributes is
selected in the candidate set.

5 10 15 20 25 30 35 40 45 50

Times

400

500

600

700

800

900

1000

1100

1200

1300

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

CRIO-PSO

CRIO-GWO

SSA

Figure 11: The energy consumption for CRIO adopted to PSO and
GWO and SSA when the algorithms are executed in 50 contiguous
times.

Figure 11 shows the energy consumption of our mech-
anism compared with SSA for executing 50 contiguous
times. Note that CRIO-PSO (or CRIO-GWO) means that
these two algorithms are adopted and optimized by the

11

5 10 15 20 25 30 35 40 45 50

Times

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

M
in

im
um

 R
es

id
ua

l E
ne

rg
y

R
at

io

CRIO-PSO

CRIO-GWO

SSA

Figure 12: The ratio of minimum residual energy of all IoT nodes
for CRIO adopted to PSO and GWO and SSA when the algorithms
are executed in 50 contiguous times.

CRIO mechanism, and SSA is the approach designed by
[19] according to our experimental scenario. The energy
consumption of the CRIO mechanism is between 450nJ
and 850nJ, which the overall average energy consumption
is about 650nJ excepting some maximum or minimum val-
ues that occur in a few cases. And the energy consumption
adopting SSA is relatively stable which is about 1200nJ.
Figure 11 shows that energy consumption is much higher
for SSA compared with CRIO-PSO and CRIO-GWO. As
presented by Algorithm 1, this mechanism considers ser-
vice sharing in concurrent service requests and proposes
common component integration under conditions that sat-
isfy temporal constraints. As a result, some of the energy
consumed to activate services is saved, which influences the
minimum residual energy in the whole network. Compared
with the CRIO mechanism, the minimum residual energy
of SSA decreases rapidly shown as Figure 12, which means
that CRIO is superior in reducing energy consumption and
maintaining load balancing throughout the network.

5.2.4. Comparison with MOEAQI [20] for Service Selec-
tion

This section presents the comparison for our mecha-
nism CRIO and the improved multi-objective evolutionary
algorithm MOEAQI proposed in [20], where MOEAQI se-
lects optimal solutions considering both QoS criteria and
inter-service correlations. In order to adapt to our ex-
perimental settings, we consider service selection at build
time in [20]. Temporal availability, residual energy and
transmission distance are chosen as the criterion to mea-
sure QoS. Different from business processes in [20], inter-
service correlations are calculated based on the nodes host-
ing these IoT services, where energy consumption by trans-
mitting and receiving of adjacent services is considered.
The whole processes of MOEAQI is designed including
service pruning, nondominated sorting and offspring gen-
eration. Both QoS constraints and inter-service correla-
tions are considered to compute the satisfaction degree

when a service composition is achieved. Classical crossover
and mutation operators are adopted to generate offsprings
based on evaluation strategy of service compositions. Pareto
optimal service compositions are acquired when the max-
imum iteration is reached.

Figure 13 illustrates the energy consumption of CRIO
compared with MOEAQI when both algorithms are ex-
ecuted in 50 contiguous times. CRIO-PSO (or CRIO-
GWO) means that the CRIO mechanism adopted to PSO
(or GWO), and MOEAQI is designed by [20], where some
adaptive changes have been made based on our experimen-
tal environment settings. This figure shows that energy
consumption of MOEAQI is roughly between 900nJ and
1200nJ, which is much higher than CRIO-PSO (or CRIO-
GWO). Because the mechanism of MOEAQI does not al-
low for resource sharing, and does not consider the con-
currency of IoT nodes, the optimization of concurrent ser-
vices is not well addressed. The ratio of minimum residual
energy of IoT nodes is shown by Figure 14, where the pro-
portion of remaining energy decreases quickly due to the
excessive consumption of energy in most situations. How-
ever, compared with traditional service selection methods,
MOEAQI considers the relevance between consecutive ser-
vices, which reduces a certain amount of energy consump-
tion for sensory data transmission.

5 10 15 20 25 30 35 40 45 50

Times

400

500

600

700

800

900

1000

1100

1200

E
ne

rg
y

C
on

su
m

pt
io

n
(n

J)

CRIO-PSO

CRIO-GWO

MOEAQI

Figure 13: The energy consumption for CRIO adopted to PSO and
GWO, and MOEAQI, when both algorithms are executed in 50 con-
tiguous times.

To summarize, it can be concluded that our CRIO
mechanism can be of significance for integrating concur-
rent users’ requirements with temporal constraints and
thus forming relatively optimized service compositions by
comparing with the state-of-art approaches including SSA
and MOEAQI . Two swarm intelligent algorithms, PSO
and GWO show little difference in experimental results of
the objective function and PSO performs slightly better
than GWO in minimum and variance of residual energy.
Meanwhile, the energy consumption relates to the number
of functional-overlap in concurrent service requests and the
number of IoT nodes throughout the network.

12

5 10 15 20 25 30 35 40 45 50

Times

0.85

0.88

0.91

0.94

0.97

1

M
in

im
um

 R
es

id
ua

l E
ne

rg
y

R
at

io

CRIO-PSO

CRIO-GWO

MOEAQI

Figure 14: The ratio of minimum residual energy of all IoT nodes
for CRIO adopted to PSO and GWO and MOEAQI when the algo-
rithms are executed in 50 contiguous times.

6. Related Work and Comparison

In this section, we classify related techniques and ap-
proaches into the following three aspects: (i) energy-efficient
service composition, (ii) multi-application sharing, and (iii)
temporal constraints for service composition.

6.1. Energy-Efficient Service Composition
With the development of service defined everything

[21, 22], SOA is adopted to achieve higher levels of in-
teroperability, and related techniques are denoted as a
component-based model which interrelates various func-
tional services. Due to the evolution of Cloud computing,
Edge computing and IoT , some techniques explore service
compositions based on diverse infrastructure platforms. A
single intelligent node can hardly fulfil relatively complex
requirements. Consequently, the cooperation and collab-
oration between nodes is essential [23, 24, 25, 26]. These
nodes can be connected and composed through traditional
service composition techniques. A composite service or-
chestrates a set of atomic services to solve a relatively
complex goal successfully in a way that adds value to the
delivered composite services [27]. It is worth noting that
different from traditional service composition techniques,
the physical characteristics of nodes should be considered
for ensuring the win-win result.

Besides, some techniques adopt software agents as po-
tential candidates for achieving the collaboration of ser-
vices. Generally, software agents deployed in Cloud archi-
tecture are implemented to fulfill requirements of applica-
tions. Energy-efficiency is a promising research challenge
in service composition of infrastructure. In [28], authors
developed a novel multi-cloud IoT service composition al-
gorithm which is adopted to reduce a large amount of
data exchange and various other operations. They cre-
ated an energy-aware composition plan through discov-
ering and integrating the least possible number of IoT
services in order to fulfill certain requirements. A novel

multi-agent approach to perform Web service composi-
tion is proposed in [29], which fulfills compositions based
on user’s requirements of either energy efficiency or cost-
effectiveness through adopting to the efficient retrieval of
distributed services and propagation of information within
the agent network for reducing the amount of brute-force
search. To select the most energy efficient service compo-
sitions from cloud-based data centers, a novel bin-packing
service broker is proposed in [30] using integer linear pro-
gramming named Cloud-SEnergy. This technique matches
the user’s needs and discovers the least possible number of
cloud services’ providers in the multi-cloud environment
to accomplish the objective of energy efficiency.

Energy-aware service composition has been paid ex-
tensive attention in WSN in recent years. Authors in [6]
presented a three-tier service-oriented framework, where
sensor nodes are encapsulated as WSN services, and they
are classified as service classes in terms of their similar-
ity of functionalities. These service classes are selected to
construct chains for fulfilling the requirements. In the pro-
cess of instantiation, spatial and temporal constraints and
energy efficiency are taken into consideration to select a
service composition which has greater relevance and less
energy consumption. As a special architecture of WSN,
physical properties of IoT nodes, especially the energy
consumption, is the focus of current methodological stud-
ies. In [31], authors proposed a situation-aware dynamic
IoT services coordination approach, which effectively inte-
grates the advantages of service-oriented architecture and
event driven architecture. Energy consumption is the main
challenge in composing the minimum service nodes to pre-
serve the energy and decrease the cost. In our approach,
service compositions are optimized through integrating com-
mon functional components, where taking functionality
properties as the first class citizen. Besides, spatial con-
straints, temporal relevancy and energy consumption are
non-functional factors which affect the result of service rec-
ommendation and composition.

6.2. Multi-Application Sharing
As the explosive growth of the network scale, both

network traffic and bandwidth are presented by unprece-
dented tendency. Complex networks are adopted to fulfill
more and more requirements, and the concurrency is one
of the research topics of network service that supporting
multiple applications in various domain. Generally, sup-
porting concurrent applications is an approach for maxi-
mizing the resource utilization and reducing response time
[32]. Serval approaches have been developed for managing
the processing of multiple applications. Data sharing tech-
nique amongst multiple applications efficiently reduces en-
ergy consumption and communication cost by decreasing
the number of data sampling. In [33], authors proposed
a data sharing approach to schedule sampling intervals in
WSN s. This approach adopts jointly optimizing task allo-
cation and sampling interval scheduling to maximize data

13

sharing. Authors in [9] study data sharing for data collec-
tion and how to reduce the overall length of data sampling
intervals among multiple applications. This problem is for-
mulated as a non-linear nonconvex optimization problem,
where a greedy approximation algorithm is adopted to im-
prove resource utilization.

With the increasing number of requirements, sequen-
tial processing cannot satisfy efficiency demand for multi-
ple time-sensitive applications. There are obvious advan-
tages where an infrastructure can be shared across multiple
applications. The sharing of equipments and sensing ar-
chitectures in the network plays an important role in the
optimization of multi-application. A data aggregation ar-
chitecture which optimizes the power consumption of sev-
eral applications deployed on the sensor nodes is proposed
in [34]. The architecture includes two layers, the low layer
is formed by the physical sensor nodes and the high layer
is constituted by agents which adopts a cooperative strat-
egy based on a single application. In [8], a platform that
transforms the sensor network into an open access infras-
tructure that supports multiple collaborative applications
is proposed, which decouples between the infrastructures
and applications. In this platform, each application works
in an isolated environment which consisted by a hardware
abstraction layer. The innovative development can open
new opportunities for efficient resource utilisation. Gener-
ally, these approaches are mainly designed for the multi-
application sharing technology, whereas the time attribute
of applications is not taken into account. Among the inter-
val data sampling techniques mentioned earlier, there is a
time interval involving data procurement, which have some
similarities with our paper to an extent. However, those
methods we mentioned do not involve temporal dependen-
cies, which is an emphasis of our approach to implement
service sharing in multiple application combinations.

6.3. Temporal Constraints for Service Composition
Temporal property is an essential ingredient to guaran-

tee the timeliness of functionalities for each service to fulfill
certain requirements. As a critical non-functional indica-
tor, temporal attribute has not been studied extensively
by most current researches in service composition. Actu-
ally, each atomic service in the composition should have
its own temporal restriction. In some scenarios, require-
ments are limited to a certain of global temporal intervals,
which can be satisfied only if all the service providers in
the composition apply themselves to satisfy their own local
temporal constraints. Usually, these services are ensured
effectiveness, which are the antecedent conditions on the
occurrence of the following [35]. Therefore, it is important
to take the temporal constraints into consideration for IoT
service composition.

Due to the sequence and temporal factors, some papers
focus on the dynamic controllability in service composi-
tion. In [12], a novel proactive dynamic service selection
approach is proposed to solve uncertainty during service

execution. Several sudden situations may occur at run-
time because of the dynamic of system. To do so, a set
of thresholds is identified to characterize the trigger dy-
namic selection mechanism and some alternative services
are set for each task, which are updated during execu-
tion based on the result of the already executed services
to meet the temporal constraints of users. In order to
guarantee the service processes successfully, it is impor-
tant to optimize the service dynamically for guaranteeing
certain temporal constraints. A two-stage approach based
on dynamic optimisation of service processes is proposed in
[36] based on temporal constraints. Firstly, calculating the
temporal constraints by considering both the uncertainty
of queue time and operation time of services in processes.
And the temporal adjustment model is adopted to adjust
optimal solution. Once potential temporal violations are
discovered, temporal adjustment is executed to fulfill the
requirement of temporal consistency.

Petri nets are widely used to model and analyze service
composition technology. Petri net describes the functional
transition between activities through sequence and logical
structure. Authors in [37] proposed a Petri net-based alge-
bra to model control flows. They declared that the defined
algebra is a good way to represent dynamic and transient
relationships among services. Authors structured service
composition based on workflow Petri nets and discussed
the compatibility and environments in that technique. In
[38], authors presented a Petri net-based method to con-
sider message mismatches, state-space explosion and exe-
cution paths in a modular way. Petri net is used to for-
malize services, which can express the temporal relation
between services clearly. As another canonical model, the
temporal problems addressed in the thesis are stated and
analyzed based on simple temporal networks [13]. The
qualitative network model of interval algebra is adopted
to describe temporal constraints among the tasks to which
an agent has committed itself. Generally, these approaches
are mainly focus on absolute temporal relations in service
composition, whereas relative temporal dependency has
not been explored extensively. To remedy this issue, this
paper takes temporal dependency and service sharing into
concern for supporting concurrent applications, and hence,
addressing the energy efficiency throughout the network.

7. Conclusion

This paper proposes an energy-efficient mechanism to
optimize IoT service compositions for supporting concur-
rent requests. Specifically, an IoT node is encapsulated
with multiple IoT services which correspond to various
functionalities hosted by this IoT node. IoT services are
classified into service classes based on the similarity of their
functionalities. The requests are achieved by the composi-
tion of service classes with temporal dependencies. Com-
positions of concurrent requests are optimized through in-
tegrating common components. This IoT service compo-
sition is reduced to the constrained multi-objective opti-

14

mization problem, where spatial-temporal relevancy, en-
ergy efficiency of IoT nodes are considered. Experimental
results show that this technique can improve the shareabil-
ity of IoT services among concurrent requests, and reduce
the energy consumption of the network. Note that IoT
services and service classes may be different in their gran-
ularity. Considering the impact of granularity to IoT ser-
vice composition is one of our future research challenges.

Acknowledgments

This work was supported by the National Natural Sci-
ence Foundation of China (Grant no. 61772479 and 61662021).

References

[1] S. Xiong, Q. Ni, X. Wang, Y. Su, A connectivity enhancement
scheme based on link transformation in iot sensing networks,
IEEE Internet of Things Journal 4 (6) (2017) 2297–2308.

[2] C. Zhu, J. J. P. C. Rodrigues, V. C. M. Leung, L. Shu, L. T.
Yang, Trust-based communication for the industrial internet of
things, IEEE Communications Magazine 56 (2) (2018) 16–22.

[3] K. S. Adu-Manu, N. Adam, C. Tapparello, H. Ayatollahi,
W. Heinzelman, Energy-harvesting wireless sensor networks
(eh-wsns): A review, ACM Transactions on Sensor Networks
14 (2) (2018). doi:10.1145/3183338.

[4] C. Wang, J. Li, Y. Yang, F. Ye, Combining solar energy harvest-
ing with wireless charging for hybrid wireless sensor networks,
IEEE Transactions on Mobile Computing 17 (3) (2018) 560–576.

[5] X. Xue, S. Wang, Z. Lejun, Z. Feng, Evaluating of dynamic ser-
vice matching strategy for social manufacturing in cloud envi-
ronment, Future Generation Computer Systems 91 (2019) 311–
326.

[6] Z. Zhou, D. Zhao, L. Liu, P. C. K. Hung, Energy-aware composi-
tion for wireless sensor networks as a service, Future Generation
Computer Systems 80 (2018) 299–310.

[7] J. Maerien, S. Michiels, D. Hughes, Christophe, Seclooci: A
comprehensive security middleware architecture for shared wire-
less sensor networks, Ad Hoc Networks 25 (A) (2015) 141–169.

[8] I. Leontiadis, C. Efstratiou, C. Mascolo, J. Crowcroft, Senshare:
Transforming sensor networks into multi-application sensing in-
frastructures, Wireless Sensor Networks 7158 (2012) 65–81.

[9] H. Gao, X. Fang, J. Li, Y. Li, Data collection in multi-
application sharing wireless sensor networks, IEEE Transactions
on Parallel and Distributed Systems 26 (2) (2015) 403–412.

[10] Z. Zhou, Z. Cheng, K. Ning, W. Li, L. Zhang, A sub-chain rank-
ing and recommendation mechanism for facilitating geospatial
web service composition, International Journal of Web Service
Research 11 (3) (2014) 52–75.

[11] T. Laleh, J. Paquet, S. Mokhov, Y. Yan, Constraint verification
failure recovery in web service composition, Future Generation
Computer Systems 89 (2018) 387–401.

[12] G. Ikbel, J. I. Al, G. Nawal, Dynamic selection for service com-
position based on temporal and qos constraints, in: IEEE Inter-
national Conference on Services Computing, 2016, pp. 267–274.

[13] R. Dechter, I. Meiri, J. Pearl, Temporal constraint networks,
Artificial Intelligence (1991) 61–95.

[14] J. F.Allen, Maintaining knowledge about temporal intervals,
Communications of the ACM 26 (1983) 832–843.

[15] W. R. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-
efficient communication protocol for wireless microsensor net-
works, in: 33rd Annual Hawaii International Conference on Sys-
tem Sciences, 2000, pp. 1–10.

[16] Y. Yun, X. Ye, Maximizing the lifetime of wireless sensor net-
works with mobile sink in delay-tolerant applications, IEEE Ed-
ucational Activities Department 9 (9) (2010) 1308–1318.

[17] H. Faris, I. Aljarah, M. A. Al-Betar, S. Mirjalili, Grey wolf
optimizer: a review of recent variants and applications, Neural
Computing and Applications 30 (2) (2018) 413–435.

[18] Z. Zhou, D. Z. L. Shu, H.-C. Chao, Efficient multi-attribute
query processing in heterogeneous wireless sensor networks,
Journal of Internet Technology 15 (5) (2014) 699–712.

[19] J. C. Lima, R. C. A. Rocha, F. M. Costa, An approach for
qos-aware selection of shared services for multiple service chore-
ographies, in: Service-Oriented System Engineering, 2016, pp.
221–230.

[20] H. Liang, Y. Du, T. Jiang, F. Li, A comprehensive multi-
objective approach of service selection for service processes with
twofold restrictions, Future Generation Computer Systems 92
(2019) 119–140.

[21] M. Ali, A. Benjamin, M. Adda, K. C. Heng, Optimisation meth-
ods for fast restoration of software-defined networks, IEEE Ac-
cess 5 (2017) 16111–16123.

[22] Y. Duan, W. Li, X. Fu, Y. Luo, L. Yang, A methodology for
reliability of wsn based on software defined network in adap-
tive industrial environment, IEEE/CAA Journal of Automatica
Sinica 5 (1) (2018) 74–82.

[23] I. R. Chen, J. Guo, F. Bao, Trust management for soa-based iot
and its application to service composition, IEEE Transactions
on Services Computing 9 (3) (2017) 482–495.

[24] K. I. Young, K. H. Gyu, M. A. Jimenez, K. J. Hyun,
Soiot:toward a user-centric iot-based service framework, ACM
Transactions on Internet Technology 16 (2) (2016) 1–21.

[25] K. Eric, N. Amiya, Capability reconciliation for a csp approach
to virtual device composition, IEEE/ACM Transactions on Net-
working PP (99) (2012) 1–1.

[26] M. Asim, A. Yautsiukhin, A. D. Brucker, T. Baker, Q. Shi,
B. Lempereur, Security policy monitoring of BPMN-based ser-
vice compositions, Journal of Software: Evolution and Process
(2018). doi:10.1002/smr.1944.

[27] P. Asghari, A. M. Rahmani, H. H. S. Javadi, Service composi-
tion approaches in iot: A systematic review, Journal of Network
and Computer Applications 120 (2018) 61–77.

[28] T. Baker, M. Asim, H. Tawfik, B. Aldawsari, R. Buyya, An
energy-aware service composition algorithm for multiple cloud-
based iot applications, Journal of Network and Computer Ap-
plications 89 (2017) 96–108.

[29] P. Kendrick, T. Baker, Z. Maamar, A. Hussain, R. Buyya, An
Efficient Multi-Cloud Service Composition Using A Distributed
Multiagent-based Memory-driven Approach, IEEE Transac-
tions on Sustainable Computing (2018). doi:10.1109/TSUSC.
2018.2881416.

[30] T. Baker, B. Aldawsari, M. Asim, H. Tawfik, A Bin-Packing
Based Multi-Cloud Service Broker for Energy Efficient Com-
position and Execution of Data-intensive Applications, Sus-
tainable Computing: Informatics and Systems, (2018). doi:
10.1016/j.suscom.2018.05.011.

[31] B. Cheng, M. Wang, S. Zhao, Z. Zhai, D. Zhu, J. Chen,
Situation-aware dynamic service coordination in an iot environ-
ment, IEEE/ACM Transactions on Networking 25 (4) (2017)
2082–2095.

[32] J. Li, S. Cheng, H. Gao, Z. Cai, Approximate physical world re-
construction algorithms in sensor networks, IEEE Transactions
on Parallel and Distributed Systems 25 (12) (2014) 3099–3110.

[33] Y. Zhao, D. Guo, J. Xu, P. Lv, T. Chen, J. Yin, Cats: Cooper-
ative allocation of tasks and scheduling of sampling intervals for
maximizing data sharing in wsns, ACM Transactions on Sensor
Networks 12 (4) (2016). doi:10.1145/2955102.

[34] A. Sardouk, R. Rahim-Amoud, L. Merghem-Boulahia, D. Ga?ti,
Data aggregation scheme for a multi-application wsn, Wired-
Wireless Multimedia Networks and Services Management 5842
(2009) 183–188.

[35] X. Gao, S. P. Singh, Mining contracts for business events and
temporal constraints in service engagements, IEEE Transac-
tions on Services Computing 7 (3) (2014) 427–439.

[36] H. Liang, Y. Du, Two-stage dynamic optimisation of service
processes with temporal constraints, International Journal of

15

High Performance Computing and Networking 9 (1-2) (2016)
116–126.

[37] R. Hamadi, B. Benatallah, A petri net-based model for web ser-
vice composition, in: Australasian Database Conference, 2003,
pp. 191–200.

[38] Y. Du, W. Tan, M. Zhou, Timed compatibility analysis of
web service composition: A modular approach based on petri
nets, IEEE Transactions on Automation Science and Engineer-
ing 11 (2) (2014) 594–606.

16

