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Abstract 4 

The present opinion paper suggests that springtails, which can live above- and/or belowground 5 

according to species requirements, have two strategies at their disposal to face environmental hazards, 6 

called ‘move’ or ‘change’. Species with poor dispersal capacity, often parthenogenetic, and living 7 

mainly in a confined environment, have to adapt themselves by increasing their phenotypic plasticity 8 

or letting the environment selecting or adding favourable mutations. Conversely, species with a high 9 

dispersal capacity, often sexual and living in a more open environment, may emigrate and immigrate 10 

without the need to become better adapted to changing environmental conditions. Advantages and 11 

disadvantages of these two tactics are reviewed and their prospective responses to global changes are 12 

compared on the light of existing knowledge on this microarthropod group. 13 
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Introduction 16 

It may seem at first sight surprising that some living forms crossed geological ages without any 17 

pronounced changes in their appearance while others diverged to a great extent (Gould and Eldredge 18 

1993). Examples of the former are ‘living fossils’, as the coelacanth (Amemiya et al. 2013) and the 19 

wollemi pine (McLoughlin and Vajda 2005). Both of them are still living in stable and concealed 20 

marine and terrestrial environments, respectively, which offered them some unexpected protection 21 

until they became endangered in their original niches by the ineluctable growing impact of human 22 

activities in the Anthropocene (Dirzo et al. 2014). Let us highlight the case of springtails 23 

(Collembola), known from the Early Devonian, ca. 400 Ma ago (Scourfield 1940, Greenslade and 24 

Whalley 1986), and present in terrestrial environments as diverse, modern species assemblages as 25 

soon as the Early Cretaceous, ca. 110 Ma ago (Sánchez-García and Engel 2017, Sánchez-García et al. 26 

2018). Palaeozoic families have seemingly crossed the Cretaceous-Paleogene (K-Pg) mass extinction, 27 

which devastated the global environment and destroyed three quarters of plant and animal species on 28 
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Earth ca. 66 Ma ago. Christiansen and Pike (2002) evoked a taxonomic turnover at genera level while 29 

other authors support the idea that most present-day genera crossed the crisis (Richards 1968, Hädicke 30 

et al. 2013). These tiny arthropods are worldwide spread and live in various environments as soil 31 

(from litter to deep soil), vegetation (from lichen and moss carpets to tree crowns), ponds, salt 32 

marshes, deserts, glaciers (Hopkin 1997). However, the species composition of their communities 33 

differ at large-scale among continents and islands because of geographic isolation (Shaw et al. 2013), 34 

and at small-scale among micro-habitats because of adaptive specialization (Salmon and Ponge 2012). 35 

In heterogeneous landscapes under the influence of human activities a deficit of recolonization 36 

(ecological debt) is known to affect species moving more slowly, pointing to the importance of 37 

dispersal for the survival of collembolan species in a changing environment (Ponge et al. 2006). This 38 

urges us to question the strategies by which Collembola survived past ecological crises: will they 39 

allow them surviving (or not) the ongoing sixth mass extinction (Barnosky et al. 2011)? In an 40 

appealing paper Berg et al. (2010) stressed the importance of a good knowledge of biotic interactions 41 

and functional traits linked to adaptation and dispersal if we want to predict the fate of species in a 42 

global change perspective. In a recent paper Thompson and Fronhofer (2019) showed that adaptation 43 

and dispersal conflict in the ability of species to survive environmental threats, pointing to the 44 

existence of two opposite strategies or tactics which species have to select in order to avoid 45 

disappearance. Here we prefer to turn the famous adage ‘adapt or disperse’ to ‘move or change’ 46 

because the latter has a wider acceptance. Movement of individuals for escaping bad conditions and 47 

reaching safe sites may occur at small scale without any necessary involvement in metacommunity 48 

dynamics, the background of dispersal (Mouquet and Loreau 2003). Accordingly, change has a wider 49 

acceptance than adaptation, because some basic textbooks still restrict the meaning of adaptation to the 50 

selection of favourable genotypes (Williams 2019), while individuals may change in the course of 51 

their life as a direct response to the environment (Colinet and Hoffmann 2012). 52 

Why and how to move? 53 

The active motility of collembolan species is highly variable, depending on whether animals are 54 

adapted to subterranean or aerial life and whether they possess organs making them able to walk or 55 

jump (Vanhee et al. 2017). By active movement they are able to select habitats within a circle of up to 56 

200m, above which dispersal limitation is commonly observed at community level (Ponge and Salmon 57 

2013). Exceptions are directional mass movements of surface-living Collembola, which have been 58 

observed in a little number of hypogastrurid and isotomid species (Hågvar 2000). Above the spatial 59 

threshold below which animals are able to wander by their own means in a heterogeneous 60 

environment, dispersal becomes a stochastic process mediated by long-distance carriers, e.g. birds, 61 

insects, wind, water (Hawes et al. 2008, Robin et al. 2019). 62 
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Springtails have to move for a variety of reasons, e.g. foraging (Chauvat et al. 2014), mating 63 

(Hedlund et al. 1990), selection of favourable places for moulting and oviposition (Verhoef and 64 

Nagelkerke 1977, Benoit et al. 2009), avoidance of predation (Salmon 2004), toxicity (Michelozzi et 65 

al. 1997, Sjögren 1997), desiccation (Hayward et al. 2004), and more generally in search for more 66 

favourable conditions (Salmon et al. 2002). Active movement can occur from millimetre to decimetre 67 

scale, using chemical communication  to detect food (Bengtsson et al. 1988, Salmon and Ponge 2001), 68 

sexual partners (Waldorf 1974, Zizzari et al. 2017) or environmental threats such as those potentially 69 

associated with dead conspecifics (Nilsson and Bengtsson 2004). Movement to places already 70 

occupied by conspecifics, which are conditioned by aggregation pheromones (Salmon et al. 2019), 71 

help to find safe sites for growth, reproduction and protection from natural enemies and environmental 72 

hazards (Wertheim et al. 2005), tendency for aggregation increasing with the age of animals (Barra 73 

and Christiansen 1975). 74 

Small-scale movement may occur horizontally, for instance between adjacent patches of 75 

litter/vegetation (Auclerc et al. 2009), or vertically, between or within soil and litter horizons (Hassall 76 

et al. 1986, Sgardelis et al. 1993, Krab et al. 2010) or between vegetation and soil (Bowden et al. 77 

1976). Vertical movement is favoured in soils having a network of earthworm galleries (Marinissen 78 

and Bok 1988, Salmon 2004). Small-scale movement can be directional, using olfactory cues (Auclerc 79 

et al. 2010) or non-directional, ceasing only when preferred habitat or food are randomly encountered 80 

(Nilsson and Bengtsson 2004). At larger scale, movement may occur among several favourable 81 

habitats distributed within a given landscape, colonization rate decreasing with distance (Hertzberg 82 

1997, Ojala and Huhta 2001) and increasing with ancientness and quality of favoured habitats 83 

(Heiniger et al. 2014). The capacity of movement increases with size, larger species (Sjögren 1997) 84 

and adult stages (Johnson and Wellington 1983) moving to larger distances than smaller species and 85 

juvenile stages, respectively. The existence of a functional jumping apparatus and long legs associated 86 

with epigeic life (Salmon et al. 2014) still increases distances travelled (Chauvat et al. 2014). 87 

Movement occurs individually (Bengtsson et al. 2004), increasing at high population density 88 

(Bengtsson et al. 1994), or as mass movement at the surface of litter (Lyford 1975) or snow patches 89 

(Hågvar 1995). At last, large-scale passive travel by air (Hawes et al. 2007) and water (Schuppenhauer 90 

et al. 2019) has been recorded, and was shown or suspected to occur in the colonization of islands 91 

(Moore 2002), glacier moraines (Flø and Hågvar 2013), open cast mining areas (Dunger et al. 2002), 92 

mining refuse tips (Moore and Luxton 1986), tree canopies (Van der Wurff et al. 2003), or roofs 93 

(Joimel et al. 2018). 94 

Why and how to change? 95 
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In Collembola, adaptive changes were mostly deduced from comparisons among existent populations, 96 

but recent developments in molecular biology allow or might allow to discern the mechanisms 97 

involved in evolutionary change. Most fruitful studies concerned the adaptation of Collembola to 98 

heavy metal toxicity. Duplication of the gene encoding metallothionein (MT, a sulphur-rich protein 99 

complexing metals) is known for a long time to confer tolerance to heavy metals in natural populations 100 

of Drosophila melanogaster (Maroni et al. 1987). This mechanism does not seem to occur in metal-101 

adapted populations of Collembola. In the species studied so far, Orchesella cincta, higher tolerance to 102 

cadmium was suggested to result from differential transcriptional regulation and selection of more 103 

efficient alleles at a single locus under metal stress (Janssens et al. 2009). However, a number of genes 104 

have been shown to have expanded as gene clusters, i.e. groups of genes coding for the same protein, 105 

some of them directly associated with metal stress tolerance, in the genome of O. cincta (Faddeeva-106 

Vakhrusheva et al. 2016). Horizontal gene transfer (HGT), either from bacteria or fungal origin, has 107 

been also shown to have occurred repeatedly in the evolution of the genome of O. cincta, suggesting 108 

that HGT could have also played a role in its adaptation to metal stress (Faddeeva-Vakhrusheva et al. 109 

2016). More research is needed, on a wider array of species, before reaching conclusions about the 110 

evolution of tolerance within Collembola. Epigenetic changes, such as those mediated by DNA 111 

methylation, have been shown to contribute to tolerance of environmental hazards in vertebrates and 112 

plants (Merritt and Bewick 2017), but have not been tested as yet in invertebrates. 113 

It has been observed that sexual populations of the otherwise asexual (parthenogenetic) 114 

Mesaphorura macrochaeta commonly occur in stressed environments (Niklasson et al. 2000, Gillet 115 

and Ponge 2003). Sexual reproduction allows the selection of better-adapted combinations of alleles 116 

(Hickey and Golding 2018), but the mechanism of this reproductive shift is still unknown. Wolbachia-117 

induced parthenogenesis is known to be the rule in M. macrochaeta (Czarnetzki and Tebbe 2003) but 118 

the sexual population from a metal-polluted site studied by Gillet and Ponge (2003) was shown to be 119 

cured of Wolbachia (Jacintha Ellers, personal communication), suggesting either (i) a detrimental 120 

effect of heavy metals on symbiotic bacteria or (ii) the selection of metal-tolerant bisexual strains 121 

within populations of M. macrochaeta. The adaptive (or maladaptive) value of Wolbachia infection 122 

remains to be demonstrated in Collembola, while studies on Drosophila showed that Wolbachia 123 

protect their host against pathogens (Martinez et al. 2014). Laboratory experiments by Chahartaghi et 124 

al. (2009) demonstrated that parthenogenetic collembolan species were faster colonizers than sexual 125 

species, supporting the classical hypothesis of parthenogenetic general purpose genotypes (Weider 126 

1993) as having a wider geographical distribution (Lynch 1984). Alternative explanations have been 127 

given for the appearance of high phenotypic plasticity within species lineages, such as among others 128 

the accumulation of clonal diversity within asexual populations (Pound et al. 2004) or the inheritance 129 
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of epigenetic modifications (e.g. DNA-methylation) under variable environmental conditions 130 

(Massicotte and Angers 2012). 131 

Non-adaptive changes also exist (Czekanski-Moir and Rundell 2019). They may result from 132 

allopatric speciation, i.e. genetic drift following the establishment of a few founder individuals in an 133 

environment identical from the area of origin but remote from it (Templeton 1980) or after the 134 

appearance of a geographic barrier to gene flow, e.g. by fragmentation, within the original area 135 

(Cracraft 1982). Geographic speciation has been shown to occur among cave Collembola (Katz et al. 136 

2018) and both dispersal- and vicariance-driven processes have been demonstrated by phylogenetic 137 

analysis in Antarctic springtails (McGaughran et al. 2010). However, non-geographic barriers (e.g. 138 

reproductive isolation) also exist, reducing gene flow within populations, and thus favouring the 139 

appearance of new species by sympatric or parapatric speciation (Bird et al. 2012). For instance 140 

mutations may result in sexual isolation (Kaneshiro 1980) or habitat specialization (Kawecki 1997). 141 

Sexual selection in Collembola can be traced from the choice exerted by females for spermatophores 142 

produced by some males against others (Gols et al. 2004), with a preference for those of closely 143 

related conspecifics (Hedlund et al. 1990). Chemical communication plays a prominent role in 144 

collembolan mating, indirect sperm transfer and associated behaviour (Porco et al. 2004, Zizzari et al. 145 

2017). The appearance of avoidance behaviour or even just the lack of chemical recognition among 146 

conspecifics may also allow animals from the same original population to segregate in space or time 147 

(Haim and Rozenfeld 1993, Guo et al. 2012). In Collembola, the checkerboard distribution of sibling 148 

species with similar ecological requirements, like the widely distributed Holarctic sexual isotomids 149 

Folsomia quadrioculata and Folsomia manolachei (Ponge and Salmon 2013), could be explained by 150 

non-adaptive speciation mediated by behavioural divergence (Pillay and Rymer 2012). 151 

Move and change: vicariant or additive strategies? 152 

In stable environments (Levins 1962), periodic changes (e.g. seasons) or slow changes occurring along 153 

decades (e.g. vegetation dynamics) allow animals to adapt their cycle (Takeda 1987). In the presence 154 

of small-scale heterogeneity animals can move from one habitat to another (Loranger et al. 2001) 155 

without the need to adapt themselves to novel conditions, and the same when recolonizing at short 156 

distance after a disturbance (Alvarez et al. 2000, Auclerc et al. 2009). When the environment changes 157 

suddenly and that above habitat requirements (e.g. following abrupt land use change), any given 158 

population, to ensure its survival, has to strike a balance between long-distance dispersal to more 159 

favourable habitats, or rapid adaptation (Pease et al. 1989). But what are the respective advantages and 160 

disadvantages of dispersal and adaptation? The answer relies on interactions between species traits and 161 

environmental features (Berg et al. 2010). Long-distance dispersal may occur by inter-patch 162 

movement within a landscape, following a ‘stepping-stone’ model (Kimura and Weiss 1964), with a 163 
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strong discrepancy in successful establishment between species according to their tolerance to hostile 164 

matrices (Coulson et al. 2002). A high rate of mortality is expected in specialists, when forced to 165 

abandon their favoured habitat, while generalists are not endangered, at least in the short term 166 

(Heiniger et al. 2015). It has been shown on a wide array of plant and animal taxonomic groups that 167 

specialists may become generalists in a relatively short amount of time (Colles et al. 2009). Horizontal 168 

transfer of favourable genes (Faddeeva-Vakhrusheva et al. 2016), infection by Wolbachia 169 

(Timmermans et al. 2004), or epigenetic processes (Zizzari and Ellers 2014, Szabó et al. 2019) may 170 

contribute to such rapid adaptive changes in otherwise endangered species, but these events are rare 171 

and there is a high risk of species disappearance in the meantime, at least locally, stemming in 172 

ecological debt (Heiniger et al. 2014). 173 

Let us take two examples showing that strongly divergent ecological groups of Collembola 174 

have adopted different combinations of ‘move’ and ‘change’ as efficient strategies face to 175 

environmental change. 176 

Among epigeic species, Orchesella cincta is known to live in forest litter (Van Straalen et al. 177 

1987), but this species is also able to live in moss, lichen and algal covers on tree trunks (Prinzing 178 

2001, Shaw 2015) and in canopy-suspended soils (Shaw 2013). Genetic studies have shown that 179 

distances of several kilometres do not limit gene flow (Frati et al. 1992, Van der Wurff et al. 2003, 180 

2005), genetic isolation occurring only at continental scale (Timmermans et al. 2005). Given that all 181 

populations exhibit a high allelic diversity (Timmermans et al. 2007, Janssens et al. 2007, 2008), it 182 

ensures that gene flow between remote populations is enough to ensure genetic mixing. This species 183 

most probably combines active movement within woody patches and transport by wind between 184 

patches, even remote ones when climbing on tree trunks and canopies (Prinzing and Wirtz 1997, Shaw 185 

2015). The high allele variety (favoured by intense exchanges within sexual metapopulations) allows it 186 

to rapidly adapt to environmental hazards by allele recombination or selection of most efficient ones 187 

(Janssens et al. 2007, 2008, Bahrndorff et al. 2010). Thus the strategy adopted by O. cincta face to 188 

environmental hazards combines a high genetic diversity (based on genetic admixture and sexual 189 

reproduction) with active movement and long-distance passive dispersal among distant populations. 190 

Among endogeic species, Folsomia candida is known to avoid light (Fox et al. 2007, Gallardo 191 

Ruiz et al. 2017), living in a subterranean space where movement is limited to the search for microbial 192 

food (Klironomos et al. 1999, Auclerc et al. 2010). Being parthenogenetic from Wolbachia infection 193 

(Vandekerckhove et al. 1999, Pike and Kingcombe 2009), there is no need to move for searching 194 

conspecifics, and reproduction occurs at a high rate in the absence of overcrowding (Green 1964), 195 

making the species able to colonize rapidly a novel environment (Dunger et al. 2002), starting from 196 

even a single female, like most laboratory strains were started (Fountain and Hopkin 2005). The 197 
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existence of general-purpose genotypes has not been demonstrated in F. candida, but studies done as 198 

yet suggest that this species has adopted a strategy of high plasticity with extensive gene expression 199 

regulation (De Boer et al. 2011). F. candida is able to cope with nutrient scarcity (Hafer et al. 2011), 200 

drought and cold (Bayley et al. 2001), elevated carbon dioxide concentration (Jones et al. 1998) and 201 

pollution (Crommentuijn et al. 1995), with transgenerational transmission of acquired tolerance (Hafer 202 

et al. 2011). Mutations are probably not rare, given the high rate of successive reproductive waves 203 

from one individual (Fountain and Hopkin 2005). Despite the overall tolerance of the species, 204 

substantial variation exists among clones (Crommentuijn et al. 1995) and between individuals of the 205 

same clone (Crouau and Cazes 2003). Phylogenetic investigations showed that numerous strains exist, 206 

with two major clades derived from a unique ancestor (Tully et al. 2006), with small but clearly 207 

recognizable morphological differences among strains (Tully and Potapov 2015), each strain having 208 

its own reaction norms (Barateiro Diogo et al. 2007) and life-history traits (Mallard et al. 2015). A 209 

high rate of horizontal transfer, among the highest found in metazoan genomes, has been reported in 210 

the genome of F. candida (Faddeeva-Vakhrusheva et al. 2017). 211 

Many other endogeic springtails share similar properties with F. candida, although they have 212 

not been studied in such detail. In particular, ‘species’ of the mostly parthenogenetic genus 213 

Mesaphorura exhibit strong morphological resemblances, justifying they were previously grouped in 214 

the unique species Tullbergia krausbaueri (Gisin 1960), later erected to genus level as Mesaphorura 215 

(Rusek 1971). The chaetotaxy, stable along several generations issued from a single specimen (Ponge, 216 

personal observations), allowed the recognition of a huge and still increasing number of ‘species’ 217 

which may differ only by the presence or absence of a single pair of minute hairs on the integument. It 218 

has been shown that at least some of these ‘species’ differ in their ecological preferences (Dunger 219 

1991, Ponge 1993) and their molecular patterns (Zimdars and Dunger 2000), despite the fact that 220 

several Mesaphorura ‘species’ commonly live together in the same soil volume (Ponge, personal 221 

observations). This suggests that they do not differ in their taxonomic status from the various strains of 222 

F. candida. Similar to F. candida, Mesaphorura species have a high reproductive rate, hence their use 223 

as laboratory test animals (Boitaud et al. 2006, Sechi et al. 2014), but unfortunately their tolerance to 224 

stress factors has not been studied yet, making further comparisons impossible. We only know that 225 

sexual populations of the most common species, M. macrochaeta, are present in stressed 226 

environments. This could mean that sexual reproduction occurs as an alternative to parthenogenesis 227 

only in extreme environments. The strategy adopted by F. candida (and most probably other 228 

Wolbachia-infected parthenogenetic springtails) is thus based on a high genetic diversity, with the 229 

rapid occurrence of mutations (linked to high reproductive rates), combined with a high phenotypic 230 

plasticity, general-purpose genotypes remaining to be discovered, but being highly probable. Large-231 

scale movement does not take place in this strategy. 232 
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These two cases are extreme cases, exemplifying opposite strategies adopted by belowground 233 

versus aboveground species (Van Dooremalen et al. 2013). It is highly probable that many species, in 234 

particular species living in litter, the so-called ‘hemiedaphic’ ecological group (Nickerl et al. 2013), 235 

combine movement and change (whether genetic or phenotypic, whether based on mutation or 236 

recombination) to ensure their survival (Fig. 1). The two above cited model species, F. candida and O. 237 

cincta, displaying opposite strategies of move and change, have been positioned at lower and upper 238 

sides of Siepel’s scaling of life cycles in microarthropods (Siepel 1994), respectively. However, most 239 

collembolan species, and in particular those living in litter, are midway along this scale of increasing 240 

juvenile stage duration and decreasing clutch size which follows the classical r-K selection gradient 241 

(Pianka 1970). Awaiting further research on collembolan life-history traits it can be hypothesized that 242 

trade-offs exist between the cost of move (Bonte et al. 2012) and the cost of change (Kawecki 1994). 243 

We may now ask whether the hypothesis of two alternative strategies, here called ‘move’ and 244 

‘change’ can be falsified. In other terms, are ‘move’ species able to adapt to changing conditions 245 

without resorting to movement. And, conversely, are ‘change’ species able to move to better habitats? 246 

Examples can be found in the above cited species. The overexpression of genes coding for 247 

metallothionein in populations of Orchesella cincta from metal-contaminated areas (Roelofs et al. 248 

2009), most probably of epigenetic origin (Janssens et al. 2009, Boyko and Kovalchuk 2011), indicate 249 

the capacity of a ‘move’ species to rapidly adapt to environmental stress. Dunger et al. (2002) showed 250 

that Mesaphorura spp. and Folsomia candida were early colonizers of open-cast mine areas, together 251 

with wind-transported epigeic springtails. This suggests that ‘change’ species can travel long distances 252 

with other means of dispersal than wind. Bird geophagy (Downs et al. 2019) and the well-known 253 

adhesion of earth to bird legs and beaks (Darwin 1859) can be suggested as potential mechanisms for 254 

this still poorly studied phenomenon of long-distance travel of edaphic species. Awaiting more 255 

research on this topic these two examples show that ‘move’ and ‘change’ strategies can be additive 256 

rather than mutually exclusive. 257 

‘Move’ or ‘change’ as a response to global change: which perspectives? 258 

Collembolan species with functional traits giving them a higher dispersal capacity (e.g. large body 259 

size, long furcula and legs, fully developed visual organs), here called ‘move’ species, are resistant to 260 

small-scale temporary disturbances, being able to recolonize easily after e.g. fire (Malmström 2012) or 261 

in the course of cultural cycles (Alvarez et al. 2000). However, in the case of cyclic, predictable 262 

disturbances occurring in natural and agricultural habitats, other strategies, such as changes in vertical 263 

distribution (Hassall et al. 1986) or survival as dormant eggs (Leinaas and Bleken 1983, Tamm 1986), 264 

are also observed. But what happens and will happen in the case of long-standing changes, such as 265 

present-day climate warming? In a 16-yr warming field experiment where subarctic Collembola were 266 
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able to migrate in and out of open top chambers, species having traits associated with the ‘move’ 267 

strategy did not follow the overall decrease in abundance and species richness associated with higher 268 

temperature and lower moisture (Makkonen et al. 2011). However, straightforward advantages of 269 

‘move’ species, observed in subarctic collembolan communities in the frame of climate warming, were 270 

not supported by other studies on communities from milder climates. For instance Yin et al. (2019) 271 

showed that climate change had a negligible impact on collembolan communities compared to land 272 

use change, although there was a strong interaction between land use and sensitivity to climate. By 273 

sampling Collembola over several years widely differing in climate conditions, Pollierer and Scheu 274 

(2017) showed that ‘change’ (parthenogenetic) species were sensitive to climate variation while 275 

‘move’ (sexual) species were not. While more studies based on functional traits are awaited, ‘move’ 276 

species can be thought at first sight better able to cope with rapidly changing environments than 277 

‘change’ species, given their ability to move to distant, favourable habitats (Ponge et al. 2006). 278 

However we may ask whether there are limits to this adaptive behaviour in the frame of present-day 279 

climate warming. In other terms, can dispersal limitation affect ‘move’ species if warming occurs at a 280 

too high rate? Given that a 100m altitudinal gradient translates in a 100km latitudinal gradient in terms 281 

of temperature variation (Jump et al. 2009), then a thousand times more time will be required along 282 

latitudinal versus altitudinal gradients to track shifts in suitable climate (Schloss et al. 2012). This 283 

rough calculation points to extinction risks for ‘move’ species if they rely only on this strategy for 284 

their survival, to the exception of mountains which may play the role of less distant refuges if locally 285 

present (Wright et al. 2009). 286 

It can be hypothesized that in face of present-day climate change, inherently associated with 287 

high land use turnover (Ojima et al. 1994), ‘change’ species with low dispersal rate will be threatened 288 

compared to “move’ species, at least locally and temporarily if they have a wide distribution area 289 

(Ponge and Salmon 2013) or at worldwide scale and definitively if they are endemic and specialized 290 

on rarefying habitats (Garrick et al. 2004). However, among ‘change’ species, those having a high 291 

phenotypic plasticity are prone to escape this genetic bottleneck. Species such as Mesaphorura 292 

macrochaeta have even been shown to thrive in disturbed environments where other species fail to 293 

survive (Gillet and Ponge 2003). 294 

As a conclusion, we showed that collembolan species have at their disposal two opposite 295 

strategies to face environmental hazards, among them the ongoing sixth mass extinction. Whether 296 

trade-offs exist between these strategies is still a matter of conjecture, given the scarcity of studies on 297 

the evolution of functional traits associated with collembolan tolerance (Van Dooremalen et al. 2013, 298 

Prinzing et al. 2014, Tully and Potapov 2015). We hope that the present opinion paper will stimulate 299 

future studies on the evolutionary ecology of Collembola, on the model of those already engaged by 300 

Berg et al. (2010) and Thompson and Fronhofer (2019). 301 
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Fig. 1. Sketch diagram showing main collembolan attributes linked to two opposite strategies face to 738 

environmental hazards 739 


