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 for computing maximum delay bounds using Network Calculus, called the Buffer-Aware Worst-case Timing Analysis (BATA). The latter allows the computation of delay bounds for a large panel of wormhole NoCs, e.g., handling priority-sharing, Virtual Channel Sharing and buffer backpressure.

In this paper, we provide further insights into the tightness and computation issues of the worst-case delay bounds yielded by BATA. Our assessment shows that the gap between the computed delay bounds and the worst-case simulation results is reasonably small (70% tighness on average). Furthermore, BATA provides good delay bounds for medium-scale configurations within less than one hour. Finally, we evaluate the yielded improvements with BATA for a realistic use-case against a recent state-of-the-art approach. This evaluation shows the applicability of BATA under more general assumptions and the impact of such a feature on the tightness and computation time.

CONTEXT AND RELATED WORK

Networks-on-chip (NoCs) have become the standard interconnect for manycore architectures because of their high throughput and low latency capabilities. Most NoCs use wormhole routing [START_REF] Mohapatra | Wormhole routing techniques for directly connected multicomputer systems[END_REF][START_REF] Ni | A survey of wormhole routing techniques in direct networks[END_REF] to transmit packets over the network: the packet is split in constant length words called flits. Each flit is then forwarded from router to router, without having to wait for the remaining flits. This routing technique drastically reduces the storage buffer within routers, nevertheless it complicates the congestion patterns due to buffer backpressure. The latter is a flow control mechanism, which ensures a lossless transmission and avoids buffer overflow. Hence, when congestion occurs, a packet waiting for an input port to be freed can occupy several buffers of routers along its path; thus blocking in its turn other packets. This fact causes sophisticated blocking patterns between flows making the worst-case analysis of end-to-end delays a challenging issue.

Various timing approaches of NoCs have been proposed in the literature. The most relevant ones can broadly be categorized under several main classes: Scheduling Theory-based ( [START_REF] Liu | Tighter time analysis for real-time traffic in on-chip networks with shared priorities[END_REF][START_REF] Nikolić | Are virtual channels the bottleneck of priority-aware wormhole-switched nocbased many-cores?[END_REF][START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF][START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF][START_REF] Shi | Real-time communication analysis with a priority share policy in on-chip networks[END_REF][START_REF] Xiong | Extending real-time analysis for wormhole nocs[END_REF]), Compositional Performance Analysis (CPA)-based ( [START_REF] Rambo | Worst-case communication time analysis of networks-on-chip with shared virtual channels[END_REF][START_REF] Tobuschat | Real-time communication analysis for networks-on-chip with backpressure[END_REF]), Recursive Calculus (RC)-based ( [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF][START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF]) and Network Calculus-based ( [START_REF] Jafari | Least upper delay bound for vbr flows in networks-on-chip with virtual channels[END_REF][START_REF] Mifdaoui | Buffer-aware worst case timing analysis of wormhole network on chip[END_REF][START_REF] Qian | Analysis of worst-case delay bounds for best-effort communication in wormhole networks on chip[END_REF]). However, these existing approaches suffer from some limitations, which are mainly due to:

• considering specific assumptions, such as: (i) distinct priorities and unique virtual channel assignment for each traffic flow in a router [START_REF] Shi | Real-time communication analysis for on-chip networks with wormhole switching[END_REF] [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF][START_REF] Xiong | Extending real-time analysis for wormhole nocs[END_REF]; (ii) a priority-share policy, but with a number of Virtual Channels (VC) at least equal to the number of traffic priority levels like in [START_REF] Shi | Real-time communication analysis with a priority share policy in on-chip networks[END_REF] [8][14] [START_REF] Tobuschat | Real-time communication analysis for networks-on-chip with backpressure[END_REF] or the maximum number of contentions along the NoC [START_REF] Nikolić | Are virtual channels the bottleneck of priority-aware wormhole-switched nocbased many-cores?[END_REF]; (iii) no support for Virtual Channels [START_REF] Abdallah | Wormhole networks properties and their use for optimizing worst case delay analysis of many-cores[END_REF][START_REF] Ferrandiz | A method of computation for worst-case delay analysis on spacewire networks[END_REF]; • ignoring the buffer backpressure phenomena, such as in [START_REF] Rambo | Worst-case communication time analysis of networks-on-chip with shared virtual channels[END_REF] [6] [START_REF] Mifdaoui | Buffer-aware worst case timing analysis of wormhole network on chip[END_REF]; • ignoring the flows serialization phenomena1 along the flow path by conducting an iterative response time computation, i.e. commonly used in Scheduling Theory and CPA, which generally leads to pessimistic delay bounds; An overview of these approaches has been presented in our previous work [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF]. We have shown that there is no existing timing analysis approach covering all the technical characteristics of wormhole NoC routers while supporting the buffer size and flows serialization phenomena.

Hence, to cope with these identified limitations, we have proposed in [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF] a timing analysis using Network Calculus [START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF] and referred as Buffer-Aware Worst-case Timing Analysis (BATA) from this point on. The main idea of BATA consists in enhancing the delay bounds accuracy in wormhole NoCs through considering: (i) the flows serialization phenomena along the path of a flow of interest ( foi), through considering the impact of interfering flows only at the first convergence point; (ii) refined interference patterns for the foi accounting for the limited buffer size, through quantifying the way a packet can spread on a NoC with small buffers.

Moreover, BATA is applicable for a large panel of wormhole NoCs: (i) routers implement a fixed priority arbitration of VCs; (ii) a VC can be assigned to an arbitrary number of traffic classes with different priority levels (VC sharing); (iii) each traffic class may contain an arbitrary number of flows (priority sharing).

There are currently some issues related to BATA, which are assessed in this paper:

• The first issue is the tightness: we have shown in [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF] that BATA yields tighter bounds with respect to per-hop analysis used in CPA and Scheduling Theory for some use-cases, but it is still unknown in the general case how close the derived bounds are to the (unknown) exact worst-case delay. Thus, we are going to investigate this point through first conducting a sensitivity analysis of BATA when varying different configuration parameters, i.e., buffer size, flows packet length and flow rate. This sensitivity analysis enables the identification of the configuration parameters having the highest impact on the delay bounds. Afterwards, since there is no existing method for computing the exact worst-case delay in wormhole NoCs, we estimate the tightness of the delay bounds in comparison to simulation results, when varying the identified configuration parameters; • The second issue is the computation effort of BATA since it does not provide a closed-form solution for delay bounds but a recursive computation algorithm; thus we provide further insights into the impact of the number of flows on the computation time; • The third one is the efficiency of BATA for a realistic case study; thus we assess the tightness and computation time of our approach for a use-case of an autonomous driving vehicle application [START_REF] Burns | Schedulability analysis for real time on-chip communication with wormhole switching[END_REF] and we evaluate the yielded improvements against the most recent approach based on Scheduling theory [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF].

Contributions: In this paper, we provide further insights into the tightness and computation issues of the worst-case delay bounds yielded by BATA. Our assessment shows that the derived delay bounds are more sensitive to flow rate and buffer size, but increasing the buffer size does not yield further improvements after a certain point. This finding confirms that increasing buffer size is of limited efficiency for NoC performance. Moreover, BATA leads to tight delay bounds where the gap between the computed ones and the worstcase simulation results is reasonably small in general (70% of tightness on average). BATA provides also good delay bounds for medium-scale configurations within less than one hour. Finally, we highlight noticeable improvements with BATA for a realistic use-case, compared to the state-of-the-art approach [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. This evaluation shows particularly the applicability of BATA under more general assumptions, e.g. VC-sharing.

The rest of the paper is organized as follows. Section 2 introduces the system model and the main notations that are used throughout the paper. In Section 3, we describe BATA methodology and detail its main steps on a toy example. In Section 4, we conduct a sensitivity analysis of BATA and thereupon assess the tightness of the yielded delay bounds, with reference to worst-case simulation results. Section 5 describes the computation time of BATA for various configuration sizes and addresses the scalability issue of BATA. In Section 6, we assess the tightness and computation time of BATA for a realistic case study of an autonomous driving vehicle application [START_REF] Burns | Schedulability analysis for real time on-chip communication with wormhole switching[END_REF], in comparison to the state-of-theart approach [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. Finally, we report conclusions and give a glimpse of our future work in Section 7.

SYSTEM MODEL

Our model can apply to an arbitrary NoC topology as long as the flows are routed in a deterministic, deadlock-free way (see [START_REF] Ni | A survey of wormhole routing techniques in direct networks[END_REF]), and in such a way that flows that interfere on their path do not interfere again after they diverge. Nonetheless, we consider herein the widely used 2D-mesh topology with inputbuffered routers and XY-routing (e.g. [START_REF] Wentzlaff | On-chip interconnection architecture of the tile processor[END_REF]), known for their simplicity and high scalability. The common input-buffered 2D-mesh routers have 5 pairs of input-output, namely North (N), South (S), West (W), East (E) and Local (L), as shown on Figure 1 (top right). Each output of a router is connected to one input of another router. Moreover, as illustrated in Figure 1 (top left), the considered routers support Virtual Channels (VCs), i.e. separated channels with dedicated buffer space in the router that are multiplexed on the same interrouter links, and implement a Fixed Priority (FP) arbitration of VCs with flit-level preemption. Each VC may support many traffic classes, i.e., VCs sharing, and many traffic flows may be mapped on the same priority-level, i.e., priority sharing. Finally, we consider a blind (arbitrary) service policy to serve flows belonging to the same VC within the router. This assumption allows us to cover the worst-case behaviors of different service policies, such as FIFO and Round Robin (RR) policies.

Hence, we model such a wormhole NoC router as a set of independent hierarchical multiplexers, where each one represents an output port as shown in Figure 1 (bottom). The first arbitration level is based on a blind service policy to serve all the flows mapped on the same VC level and coming from different geographical inputs. The second level implements a preemptive FP policy to serve the flows mapped on different VCs levels and going out from the same output port. It is worth noticing that the independence of the different output ports is guaranteed in our model, due to the integration of the flows serialization phenomena. The latter induces ignoring the interference between the flows entering a router through the same input and exiting through different outputs, since these flows have necessarily arrived through the same output of the previous router, where we have already taken into account their interference. Consequently, each output port is modeled independently from the other output ports.

We use Network Calculus [START_REF] Boudec | Network Calculus: A Theory of Deterministic Queuing Systems for the Internet[END_REF] to model routers and traffic through service and arrival curves, respectively. Therefore, each router-output pair 𝑟, referred to as a node, is modeled as a rate-latency service curve:

𝛽 𝑟 (𝑡) = 𝑅 𝑟 (𝑡 -𝑇 𝑟 ) + ,
where 𝑅 𝑟 represents the processing capacity of the router in flits per cycle and 𝑇 𝑟 corresponds to the processing delay (the delay a flit experiences when it is processed).

Each flow 𝑓 is modeled with a leaky-bucket arrival curve:

𝛼 𝑓 (𝑡) = 𝜎 𝑓 + 𝜌 𝑓 𝑡 ,
where 𝜎 𝑓 and 𝜌 𝑓 are the maximum burst and rate of the flow 𝑓 , respectively. These parameters depend on the maximal packet length 𝐿 𝑓 (payload and header in flits), the period or minimal inter-arrival time 𝑃 𝑓 (in cycles), and the release jitter 𝐽 𝑓 (in cycles) in the following way :

𝜌 𝑓 = 𝐿 𝑓 𝑃 𝑓 𝜎 𝑓 = 𝐿 𝑓 + 𝐽 𝑓 • 𝜌 𝑓
For each flow 𝑓 , its path P 𝑓 is the list of nodes crossed by 𝑓 from source to destination. Moreover, for any 𝑘 in appropriate range, P 𝑓 [𝑘] denotes the 𝑘 𝑡ℎ node of flow 𝑓 path. Therefore, for any 𝑟 ∈ P 𝑓 , the input arrival curve of flow 𝑓 at node 𝑟 is denoted:

𝛼 𝑟 𝑓 (𝑡) = 𝜎 𝑟 𝑓 + 𝜌 𝑟 𝑓 • 𝑡

BUFFER-AWARE TIMING ANALYSIS

In this section, we describe briefly the main idea of BATA and illustrate it through an example. More details can be found in [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF].

To compute end-to-end delay bounds for a foi 𝑓 along its path P 𝑓 , based on BATA, we follow three main steps.

1) Buffer-aware analysis of the indirect blocking set: To account for the impact of flows that do not physically share any resource with the foi 𝑓 , but can delay it because they impact at least one flow directly blocking 𝑓 , we introduce the Indirect Blocking set of 𝑓 , abbreviated IB set and denoted IB 𝑓 . It consists of a set of pairs {𝑘, S 𝑘 } where 𝑘 is the flow involved in indirect blocking and S 𝑘 is the subpath of 𝑘 where a packet of 𝑘 can cause blocking that can backpropagate to 𝑓 . This step takes into account the impact of the limited buffer size on the way a packet can spread on the NoC; thus on IB 𝑓 .

To better understand the impact of the buffer size on IB 𝑓 , we consider the illustrative example in Figure 2 assuming that: (i) each buffer can store only one flit; (ii) all flows have 3-flit-long packets; (iii) all flows are mapped to the same VC; (iv) the foi is flow 1; (v) all flows have an initial arrival curve 𝛼(𝑡) = 𝜎 + 𝜌𝑡 and all routers have a service curve 𝛽(𝑡) = 𝑅(𝑡 -𝑇 ) + . Consider a packet A of flow 3 that has just been injected into the NoC and granted the use of the North output port of R6. Simultaneously, a packet B of flow 2 is requesting the same output, but as A is already using it, so B has to wait. B is stored in input buffers of R6, R5 and R4. Finally, a packet C of flow 1 has reached R3 and now requests output port East of R3. However, the West input buffer of R4 is occupied by the tail flit of B. Hence, C has to wait. In that case, A indirectly blocks C, which means flow 3 can indirectly block flow 1 even though they do not share resources; Thus, IB1 = {{3, [𝑅7, 𝑅8, 𝑅9]}}.

2) End-to-end service curve computation to get a bound on the end-to-end delay for a foi 𝑓 , we need to compute its end-to-end service curve along its path P 𝑓 taking direct blocking and indirect blocking delays into account. This step integrates the flows serialization effects using the Pay Multiplex Only Once (PMOO) principle [START_REF] Schmitt | Improving performance bounds in feed-forward networks by paying multiplexing only once[END_REF]. This service curve is denoted :

𝛽 𝑓 (𝑡) = 𝑅 𝑓 (𝑡 -𝑇 𝑓 ) + ,
where 𝑅 𝑓 represents the bottleneck rate along the flow path, accounting for directly interfering flows of same and higher priority than 𝑓 , and latency 𝑇 𝑓 consists of several parts :

𝑅 𝑓 = min 𝑟∈P 𝑓 𝑅 𝑟 𝑓 𝑇 𝑓 = 𝑇𝐷𝐵 + 𝑇𝐼𝐵 + 𝑇 P 𝑓
where:

• 𝑇 P 𝑓 is the "base latency", that any flit of 𝑓 experiences along its path due only to the technological latencies of the crossed routers; • 𝑇𝐷𝐵 is the maximum direct latency, due to interference by flows sharing resources with the flow of interest (foi). We denote the set of such interfering flows 𝐷𝐵 𝑓 ; • 𝑇𝐼𝐵 is the maximum indirect blocking latency, due to flows that can indirectly block 𝑓 through the buffer backpressure phenomenon, IB 𝑓 .

To compute such a service curve, we proceed according to Algorithm 1 :

• We compute 𝑅 𝑓 . It is the minimum of the residual rates granted to 𝑓 along its path. The residual rate granted to 𝑓 at node 𝑟 is the left system capacity after taking into account the consumed one by flows of same and higher priority than 𝑓 at node 𝑟. • We compute 𝑇 P 𝑓 (line 2), then 𝑇𝐷𝐵 (lines 4 to 10); • We run our indirect blocking analysis and extract the IB set (line 11); • We compute 𝑇𝐼𝐵 (lines 12 to 18).

The detailed analytical expression of 𝑇 𝑓 is in [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF]. Hence, we just point out here this computation for the same example in Fig. 2.

The only flow directly contending with foi 1 on its path is flow 2 at router R3 (East output); thus 𝐷𝐵1 = {2} and the rate of 𝛽1 is 𝑅 -𝜌. The arrival curve of flow 2 at this node is its initial arrival curve; thus:

𝑇 P 1 = 4𝑇 𝑇𝐷𝐵 = 𝜎 + 𝜌(𝑇 + 𝐿 𝑅 ) 𝑅 -𝜌 Algorithm 1
Computing the end-to-end service curve for a flow 𝑓 : endToEndServiceCurve(𝑓, P 𝑓 ) 

𝛽 𝑘 ← endToEndServiceCurve(𝑘, [P 𝑘 [0], • • • , 𝑟0]) 7:
𝛼 0 𝑘 ← initial arrival curve of 𝑘 8:

𝛼 𝑟 0 𝑘 ← computeArrivalCurve(𝛼 0 𝑘 , 𝛽 𝑘 ) 9:
𝑇𝐷𝐵 ← directBlocking(𝛼 𝑟 0 𝑘 ) Knowing that 𝐼𝐵1 = {{3, [𝑅7, 𝑅8, 𝑅9]}} and the burst of this flow at the input of R7; thus:

𝛽 𝑘 ← endToEndServiceCurve(𝑘, [P 𝑘 [0], • • • , 𝑆[0]]) 16: 𝛼 𝑆[0] 𝑘 ← computeArrivalCurve(𝛼 0 𝑘 , 𝛽 𝑘 ) // Now
𝑇𝐼𝐵 = 3𝑇 + 𝜎 𝑅7
3 𝑅 It's worth noticing that computing 𝜎 𝑅7 3 needs recursive calls to the function endToEndServiceCurve. We will discuss the impact of such calls on the computation time in Section 5.

3) End-to-end delay bound computation once the end-to-end service curve for the foi 𝑓 , 𝛽 𝑓 , is known, an upper bound on the end-to-end delay of 𝑓 , 𝐷 P 𝑓 𝑓 can be computed as the maximum horizontal distance between 𝛽 𝑓 and the initial arrival curve of 𝑓 :

𝐷 P 𝑓 𝑓 = 𝜎 𝑓 𝑅 𝑓 + 𝑇 P 𝑓 + 𝑇𝐷𝐵 + 𝑇𝐼𝐵 (1) 
We can now compute the end-to-end delay bound of foi 1 of the example in Fig. 2 𝐷

P 1 1 = 𝜎 𝑅 -𝜌 + 4𝑇 + 𝜎 + 𝜌(𝑇 + 𝐿 𝑅 ) 𝑅 -𝜌 + 3𝑇 + 𝜎 𝑅7 3 𝑅

TIGHTNESS ANALYSIS

In this section, we assess the tightness of the delay bounds yielded by BATA. First, we conduct a sensitivity analysis of BATA to identify the configuration parameters that have the highest impact on the delay bounds. Then, we evaluate the tightness of the delay bounds using simulation, for different values of the identified parameters.

For the sensitivity analysis, we will analyze the end-to-end delay bounds when varying the following parameters: To achieve this aim, we consider the configuration described on Table 1 and Figure 3. This configuration remains quite simple but exhibits sophisticated indirect blocking patterns. We assume periodic flows with no jitter having the same period and packet length. We also assume each router can handle one flit per cycle and it takes one cycle for one flit to be forwarded from the input of a router to the input of the next router, i.e., for any node 𝑟, 𝑇 𝑟 = 1 cycle and 𝑅 𝑟 = 1 flit/cycle. Finally, to maximize indirect blocking, we consider that all the flows are mapped on the same VC. Our flow of interest is flow 1, because it is one of the flows that is most likely to undergo indirect blocking.

Figure 4 illustrates the end-to-end delay bounds of the foi when varying buffer size. For the top graph, we keep each flow rate constant at 4% of the total bandwidth; whereas for the bottom graph, we keep each flow payload at 16 flits.

We notice on both graphs that end-to-end delay bounds decrease with buffer size, with occasional stalling from one value to another. This is something we could expect because at a given packet length, the greater the buffer, the less a packet can spread in the network. Consequently, the IB set tends to be smaller, or to contain smaller subpaths. We notice that past a certain buffer size, the end-to-end delay bounds stay constant with larger buffers. This results from the fact that the IB set remains the same once buffers are big enough to hold an entire packet. Therefore, adding buffer space after a certain point does not improve end-to-end delay bounds. Hence, over-dimensioning the buffers within routers is not efficient to enhance NoC performance.

Next, we focus on the packet length impact on the end-toend delay bound, as illustrated in Figure 5. The top graph presents results when the buffer size is constant (4 flits) and The first observation we can make from both graphs is that the delay bounds evolve in an almost linear manner with the packet length. For instance, on the top graph, with 8 flits of buffer size and payload equal to 16, 64, 96 and 128 flits, the ratio of payload and end-to-end delay bound is 17.2, 19.9, 19.8, 19.7.

On the top graph, we observe further interesting aspects:

• At a given payload, the buffer size has a limited impact on the end-to-end delay bounds. For instance, for payload 64 flits, the delay bounds increase with less than 25% when the buffer size increases with 480%; • For payloads that are significantly larger than buffer size, the delay bound remains constant regardless of the buffer size, e.g., it is the case for payload 128 flits.

Finally, we study the impact of the flow rate on the end-toend delay bounds, as illustrated on Figure 6. The buffer size is fixed to 4 flits on the top graph and the payload to 16 flits on the bottom one. We can see on both graphs that the delay bounds increase with the rate. From the top graph, one can notice that at a constant rate, increasing the payload usually causes the end-to-end delay bound increase. On the other hand, from bottom graph, we confirm the conclusion drawn from Figure 4: increasing buffer size does not improve delay bounds after a certain value. Moreover, delay bounds seem more sensitive to the rate variation for small buffer sizes. For instance, for buffer size equal to 1 flit, delay bounds are 321 cycles and 1178 cycles (×3.7) for rates equal to 1% and 40% (×40), respectively. Whereas, for buffer size equal to 32 flits, the delay bounds are multiplied by only 1.6 when considering the same rate values.

The conducted sensitivity analysis reveals two main interesting conclusions:

• The configuration parameters having the highest impact on the derived delay bounds are the buffer size and the flow rate; Thus, both parameters will be considered for the tightness analysis; • Increasing the buffer size within routers after a certain point does not improve the NoC performance; Thus, over-dimensioning the buffers is not considered as an efficient solution to decrease the delay bounds.

To assess the tightness of the delay bounds yielded by BATA, we consider herein a simulation using Noxim simulator engine [START_REF] Catania | Cycle-accurate network on chip simulation with noxim[END_REF]. Knowing no method to compute the exact worstcase for wormhole NoCs, we derive an achievable worst-case delay through simulation, that we compare to the analytical end-to-end delay bounds.

In order to approach the worst-case scenario, we run each flow configuration many times while varying the flows offsets and we consider the maximum worst-case delay over all the simulated configurations. Afterwards, we compute the "tightness ratio" for each flow, that is the ratio of the achievable worst-case delay and the worst-case delay bound. A tightness ratio of 100% means the worst-case delay bound is the exact worst-case delay. However, it is worth noticing that a tightness ratio below 100% does not necessarily mean that the worst-case delay bound is inaccurate, but it can simply reveals that the worst-case scenario has not been reached by the simulation. Therefore, the determined tightness ratio is a lower bound on the exact tightness ratio.

To perform simulations, we have configured Noxim simulator engine [START_REF] Catania | Cycle-accurate network on chip simulation with noxim[END_REF] to control the traffic pattern using the provided traffic pattern file option. For each flow, we have specified:

• the source and destination cores;

• 𝑝𝑖𝑟, packet injection rate, i.e. the rate at which packets are sent when the flow is active; • 𝑝𝑜𝑟, probability of retransmission, i.e. the probability one packet will be retransmitted (in our context, this parameter is always 0); • 𝑡on, the time the flow wakes up, i.e. starts transmitting packets with the packet injection rate; • 𝑡 off , the time the flow goes to sleep, i.e. stops transmitting; • 𝑃 , the period of the flow. Moreover, since we want to simulate a deterministic flow behavior to approach the worst-case scenario, we use the following parameters for each flow:

• Maximal packet injection rate : 1.0;

• Minimal probability of retransmission : 0.0; To create different contention scenarios and try approaching the worst-case of end-to-end delays, we chose randomly the offset of each flow and perform simulations with uniformly distributed values of offsets for each flow. We generate 40000 different traffic configurations with random offsets for each set of parameters and simulate each of them for an amount of time allowing at least 5 packets to be transmitted.

We simulate the configuration of Figure 3, when varying buffer sizes in 4, 8 and 16 flits, and flow rates in 8% and 32% of the total available bandwidth. We extract the worstcase end-to-end delay found by the simulator and compute the tightness ratio for each flow. The obtained results are gathered in Table 2. As we can see, tightness ratio is always above 20%, while average tightness ratio is above roughly 50%. We also notice the average tightness ratio improves when the buffer size increases. For 8% rate, the average tightness ratio varies between 70.1% and 80.8%. For 32% rate, the average tightness ratio varies between 49.7% and 79.8%.

According to our sensitivity analysis, the indirect blocking patterns covered by our model tend to become simpler when the buffer size increases, making the IB latency smaller. Moreover, we can expect a correlation between the tightness ratio and the IB set size:

• first, for each {flow index, subpath} pair in the IB set, the analysis may introduce a slight pessimism in the IB latency computation; • second, the more complex the potential blocking scenarios are, the harder it is to reach or approach the worst-case delay by simulations: it requires a precise synchronization between flows to achieve those scenarios, and the greater the IB set, the less such a synchronization statistically happens over random offsets. Therefore, we can infer that the greater the buffer size, the easier it is to approach the worst-case delay by simulating the configuration. This is confirmed by the general trend of the average tightness ratio. It is also backed up by the following fact: in our analysis, flows 1 and 2 have the largest IB sets and are the most likely to undergo indirect blocking. We notice that at 8% rate (resp. 32% rate), their delay bounds tightness rises from 44% to 79% (resp. 44% to 87%) and 41% to 79% (resp. 24% to 97%) when the buffer size increases from 4 flits to 16 flits.

COMPUTATION ANALYSIS

We now assess how well BATA scales on larger configurations through evaluating the computation time. To achieve this aim, we consider a larger NoC than the one considered for tightness analysis, while varying the number of flows. We particularly consider a 8 × 8 NoC with 4, 8, 16, 32, 48, 64, 80, 96 and 128 flows and generate 20 configurations for each fixed number of flows 𝑁 . To do so, we randomly pick 2𝑁 (𝑥-coordinate, 𝑦-coordinate)-couples, where each coordinate is uniformly chosen in the specified range (here, from 0 to 7). We use 𝑁 of these couples for source cores and the other 𝑁 for destination cores. All other parameters (flow rate, packet length, buffer size, router latencies) are kept constant.

For each considered configuration, we focus on the following metrics:

• ∆𝑡, the total analysis runtime (computation time); • ∆𝑡𝐼𝐵, the duration of the IB set analysis; • ∆𝑡𝑒2𝑒, the duration of all end-to-end service curves computations.

The derived results are illustrated in Figure 7: the top graph for ∆𝑡, the middle one for ∆𝑡𝐼𝐵 and the bottom one for ∆𝑡𝑒2𝑒. For each flow number, we have plotted the average runtime for all the configurations with this number of flows, as well as the computed metric for each configuration (one dot per configuration). Only configurations with runtime up to 10 4 s have been considered, but the IB analysis, much faster, was performed for all configurations.

The top graph shows that the runtime grows rapidly with the number of flows (we are using a logarithmic scale on the Y-axis). Moreover, we notice that the runtimes may vary a lot for the same number of flows. For instance, for 32 flows, they range between 67ms and 110s. For 48 flows, they go from 1.5s to more than 1h10min.

To further assess what impacts the scalability of BATA, we plot the contributions to the total runtime of the IB set analysis and the end-to-end service curve computation. We notice that the IB set analysis alone (middle graph) runs in less than 8 seconds for all tested configurations. This shows that BATA approach complexity is mostly due to the end-toend service curve computation as shown in the bottom graph. This fact is mainly due to the recursive call to end-to-end service curve function in Algorithm 1.

Computing the end-to-end service curve actually needs the computation of other service curves in two cases:

(1) when computing 𝑇𝐷𝐵, we need to know the burst of the contending flow at the convergence point with the foi. Thus, we compute the service curve for the contending flow from its source to the convergence point with the foi (Algorithm 1, line 6); (2) when computing 𝑇𝐼𝐵, we need to know the arrival curve of each flow in the IB set at the beginning of its subpath. Thus, we compute the service curve of this To highlight this aspect, we measured the number of calls to the function computing a service curve during the analysis. The results displayed on Figure 8 and clearly show the expected trend. We can also notice that when all flows are mapped on different VCs (no VC-sharing), no indirect blocking is possible, i.e. IB 𝑓 = ∅ for any flow 𝑓 . Hence, there is no computation to be done for 𝑇𝐼𝐵, which drastically reduces the complexity of the approach in this case. In Algorithm 1, this means that lines 12 to 18 are not executed.

The derived results show that BATA gives good delay bounds for medium-scale configurations in less than one hour. However, the complexity of BATA increases with the number of flows due to the recursive calls to end-to-end service curve function. This fact is inherent to the large panel of NoCs, i.e., priority-sharing, VC-sharing and buffer backpressure, covered by BATA

AUTOMOTIVE CASE STUDY

In this section, we confront our model to a realistic automotive case study. This case study was used in several previous works to test NoC real-time analysis models, and recently in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. It consists of 38 flows on a 4 × 4 manycore platform with a 2D-mesh NoC. The parameters of the flows can be found in [START_REF] Burns | Schedulability analysis for real time on-chip communication with wormhole switching[END_REF]. For convenience reasons, we reordered the flows as in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. We also conducted a comparative analysis with the state-of-the-art method detailed in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF] in terms of derived delay bounds tightness.

The NoC parameters used in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF] are the following:

• The duration of a cycle is 0.5 ns;

• All routers have a technological latency of 3 cycles;

• The link capacity is one flit per cycle; Average tightness difference +0.07% +0.08% -0.03% Maximum tightness difference +3.70% +3.49% +0.01% Minimum tightness difference -0.10% -0.10% -0.10% • To compare our results to the ones in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF], we performed the analysis for different buffer sizes (2, 100 and 1000000 flits, the latest being large enough to assume buffer size is infinite).

We then plotted comparative graphs on Figure 9 and we notice that our approach gives similar results to [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. To further quantify the similarity of the results, we introduce the "tightness difference" for a given flow:

∆𝜏 = 𝜏BATA -𝜏ST ,
where 𝜏𝐵𝐴𝑇 𝐴 is the tightness ratio of the bound yielded by BATA, and 𝜏𝑆𝑇 is the tightness ratio of the bound yielded by the method of [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF]. ∆𝜏 is positive when BATA gives the tighter bound and negative otherwise. We synthesized the differences in Table 3. We computed the minimum, maximum and average tightness difference.

As we can notice, both approaches give very close results, giving credit to both models.

Authors in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF] have shown that only 4 VCs are sufficient to find a mapping of flows to VCs that ensures each flow has exclusive use of the VC within each router, which greatly simplifies the computation. However, having only one flow per VC at each node can raise scalability problems: with larger and/or less favorable configurations, ensuring each flow has the exclusive use of a VC within each router would require a number of different VCs that is not reasonable any more.

In that respect, we want to stress out that our model allows priority sharing and VC sharing (several flows sharing priority levels and VCs). Therefore, we have performed another analysis on the same configuration using only 2 VCs, with the following priority mapping:

• Flows 1 to 19 have the higher priority and are mapped to VC0; • Flows 20 to 38 have the lower priority and are mapped to VC1.

We also analyze a configuration with only 1 shared VC.

We have plotted the results with the different VC configurations on Figure 10. We only displayed the results for a buffer size of 2 flits, but the trend is similar with other sizes. To get an insight into the impact of reducing the number of VCs on delay bounds computed with BATA, we also computed, for each flow and for each 𝑛 VC configuration, the relative increase of the worst-case delay bounds compared to the delay bound with 4 VCs, as follows: 𝑖𝑛𝑐𝑛 = delay with 𝑛 VCs -delay with 4 VCs delay with 4VCs

The results are on Table 4. First, as we can notice from Fig. 10, all flows have delay bounds less than their periods (the shortest period is 40 ms); thus remain schedulable. More particularly, when we reduce the number of VCs, the computed delay bound for each flow increases (respectively 34 and 32 times out of 38) or remains the same (respectively 4 and 1 time out of 38). However, for 5 flows cases with one VC, the computed bound decreases compared to the original configuration with no shared VC (4 VCs). The concerned flows are among the flows that have the lowest priorities in the original configuration. Mapping all flows to the same priority allows more fairness. Consequently, it tends to increase the delay bounds of the flows that had the highest priorities in the original mapping, and conversely to decrease the waiting time of lower priority flows. 4, we compute the average increase of the worst-case delay bounds computed with BATA when we reduce the number of VCs, compared to the bound with 4 VCs. The average bound increase stays reasonable (up to 150 %) when the number of available VCs is divided by 2 or 4. In comparison to the state-of the-art method in [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF], BATA does not need the non-shared VCs assumption; thus, BATA enables the delay bounds computation with shared VCs. In this particular case study, we are able to show that decreasing the number of Virtual Channels (and consequently the platform complexity) can be done while maintaining the schedulability of all flows and complying with the timing constraints.

Finally, we provide some insights into the runtime of our method. For each buffer size and number of VCs, we measured the runtime of our analysis and summarized our results in Table 5. We notice that runtimes with non-shared VCs are in the order of 10 times lower than runtimes with 1 and 2 VCs. This confirms our conclusions in Section 5 concerning the inherent complexity of BATA to handle the priority-sharing and VC-sharing assumptions.

Actually, when no VC is shared between several flows, the IB latency is zero. However, when VCs are shared, there are additional recursive calls to end-to-end service curve function needed to compute the IB latency; thus we can expect an increase in the analysis duration.

CONCLUSION

In this paper, we proposed an extensive evaluation of the tightness and computation time of our previously published Table 5: Runtimes of BATA for different NoC configurations when sharing VCs buffer-aware worst-case timing analysis (BATA) for wormhole NoCs [START_REF] Giroudot | Buffer-aware worst-case timing analysis of wormhole nocs using network calculus[END_REF]. To evaluate the tightness, we first studied how the various system parameters impact the computed end-to-end delay bounds. We found our model to be most sensitive to rate and buffer size. Consequently, we proceeded the tightness analysis with a set of different buffer sizes and flow rates. We were able to achieve a tightness ratio up to 80% on average, with reference to simulation.

We then estimated the scalability of our approach in terms of computation time when increasing the number of flows. We found that the main complexity of the analysis lies in the indirect blocking latency computation, as it leads to additional recursive calls to the function computing the endto-end service curve. However, this complexity comes from the fact that the model is able to cover configurations with shared priority and shared VCs. If no VCs are shared, the analysis is much less complex.

Finally, we compared our results to those of [START_REF] Nikolic | Real-time analysis of priority-preemptive nocs with arbitrary buffer sizes and router delays[END_REF] on an automotive case study. We have shown that the results are very similar, with tightness ratios differing by less than 0.1% on average. Moreover, since our model is not limited by the assumptions of no priority-sharing and no VC-sharing, we have analyzed other configurations with reduced number of VCs (thus lower complexity) while maintaining the schedulability of all flows.

Our next focus will be to rethink the indirect blocking analysis in order to decrease the computational cost of BATA while covering a large panel of NoC configurations.
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 1 Figure 1: Router architecture and output multiplexing
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 2 Figure 2: Example configuration (left) and packet stalling (right)Consider a packet A of flow 3 that has just been injected into the NoC and granted the use of the North output port of R6. Simultaneously, a packet B of flow 2 is requesting the same output, but as A is already using it, so B has to wait. B is stored in input buffers of R6, R5 and R4. Finally, a
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 3 Figure 3: Flow configuration on a 6×6 mesh NoCTo achieve this aim, we consider the configuration described on Table1and Figure3. This configuration remains quite simple but exhibits sophisticated indirect blocking patterns. We assume periodic flows with no jitter having the same period and packet length. We also assume each router can handle one flit per cycle and it takes one cycle for one flit to be forwarded from the input of a router to the input of the next router, i.e., for any node 𝑟, 𝑇 𝑟 = 1 cycle and 𝑅 𝑟 = 1 flit/cycle. Finally, to maximize indirect blocking, we consider that all the flows are mapped on the same VC. Our flow of interest is flow 1, because it is one of the flows that is most likely to undergo indirect blocking.Figure4illustrates the end-to-end delay bounds of the foi when varying buffer size. For the top graph, we keep each flow rate constant at 4% of the total bandwidth; whereas for the bottom graph, we keep each flow payload at 16 flits.We notice on both graphs that end-to-end delay bounds decrease with buffer size, with occasional stalling from one value to another. This is something we could expect because at a given packet length, the greater the buffer, the less a packet can spread in the network. Consequently, the IB set tends to be smaller, or to contain smaller subpaths. We notice that past a certain buffer size, the end-to-end delay bounds stay constant with larger buffers. This results from the fact that the IB set remains the same once buffers are big enough to hold an entire packet. Therefore, adding buffer space after a certain point does not improve end-to-end delay bounds. Hence, over-dimensioning the buffers within routers is not efficient to enhance NoC performance.Next, we focus on the packet length impact on the end-toend delay bound, as illustrated in Figure5. The top graph presents results when the buffer size is constant (4 flits) and
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 4 Figure 4: Buffer size impact on end-to-end delay bounds the one when the rate of each flow is constant (4% of the link capacity).The first observation we can make from both graphs is that the delay bounds evolve in an almost linear manner with the packet length. For instance, on the top graph, with 8 flits of buffer size and payload equal to 16, 64, 96 and 128 flits, the ratio of payload and end-to-end delay bound is 17.2, 19.9, 19.8, 19.7.On the top graph, we observe further interesting aspects:
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 5 Figure 5: Payload impact on end-to-end delay bounds
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 6 Figure 6: Rate impact on end-to-end delay bounds
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 7 Figure 7: Results of the scalability analysis
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 8 Figure 8: Number of calls to the function endToEnd-ServiceCurve()
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 9 Figure 9: Worst-case end-to-end delay bounds comparison for different buffer sizes (2, 100 and ∞)

1 :

 1 Compute 𝑅 𝑓 2: Compute 𝑇 P 𝑓 // Compute 𝑇𝐷𝐵: 3: 𝑇𝐷𝐵 ← 0 4: for 𝑘 ∈ 𝐷𝐵 𝑓 do 𝑟0 ← cv(𝑘, 𝑓 ) // Get convergence point of 𝑓 and 𝑘

	5:
	6:

  10: end for // Compute 𝑇𝐼𝐵: 11: IB 𝑓 ← indirectBlockingSet(𝑓 ) 12: 𝑇𝐼𝐵 ← 0 13: for {𝑘, 𝑆} ∈ IB 𝑓 do ̃︀ 𝛽 𝑘 ← VC-service curve of 𝑘 on 𝑆 // Compute the service curve of 𝑘 from its first node to the beginning of 𝑆:

	14:
	15:

  add the delay over the subpath to 𝑇𝐼𝐵 :

	17:	𝑇𝐼𝐵 ← 𝑇𝐼𝐵+ delayBound(𝛼 𝑘 , ̃︀ 𝛽 𝑆[0] 𝑘	)
	18: end for	

19: return 𝑅 𝑓 (𝑡 -(𝑇 P 𝑓 + 𝑇𝐷𝐵 + 𝑇𝐼𝐵)) +

Table 1 :

 1 Flow characteristics

	WC delay bound (cycles)	1000 1500 2000 2500	BUFFER_SIZE=1, BATA BUFFER_SIZE=8, BATA BUFFER_SIZE=16, BATA BUFFER_SIZE=32, BATA BUFFER_SIZE=48, BATA		
		500					
		0					
		0	20	40	60 PAYLOAD	80	100	120

Table 2 :

 2 Tightness ratio results for the tested configuration

	Rate Buffer Tightness statistics		Per-flow tightness ratio							
			Average	Max	Min	1	2	3	4	5	6	7	8	9	10	11	12
	8%	4	70.1% 91.7% 40.6% 44% 41% 64% 68% 77% 75% 89% 68% 47% 88% 92% 89%
		8	72.1% 92.0% 38.1% 46% 38% 69% 71% 80% 79% 90% 70% 49% 90% 92% 90%
		16	80.8% 88.3% 48.9% 79% 79% 85% 86% 85% 86% 87% 70% 49% 88% 88% 87%
	32%	4	49.7% 95.6% 20.8% 44% 24% 51% 64% 46% 21% 44% 46% 24% 70% 96% 66%
		8	64.2% 88.9% 33.3% 66% 47% 59% 81% 53% 46% 69% 65% 33% 88% 79% 85%
		16	79.8% 97.3% 43.8% 87% 97% 54% 87% 64% 86% 97% 71% 44% 88% 96% 88%

Table 3 :

 3 Tightness differences for various buffer sizes between BATA and state-of-the-art approach

	• Flows' priority assignment follows a rate monotonic
	policy;
	• Each router supports 4 Virtual Channels with no
	priority-sharing and no VC-sharing, i.e., one flow per
	VC;

Table 4 :

 4 Relative increase of the worst-case end-toend delay bounds for 𝐵 = 2 with BATA Moreover, in Table

		120 140	BATA, original 4 VCs configuration, B=2 BATA, 2 shared VCs BATA, single shared VC
	End-to-end delay (µs)	40 60 80 100	
		20	
		0	
			1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 Flow index
	Figure 10: Delay bounds with 4, 2 and 1 VC with
	buffer size = 2 flits for BATA
				2 VCs	1 VC
	Average bound increase 101.11%	145.13%
	Minimal bound increase	0.00%	-95.05%
	Maximal bound increase 464.16% 2293.01%

The pipelined behavior of networks infers that the interference between flows along their shared subpaths should be counted only once, i.e., at their first convergence point.