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Constructing a quantum description of crystals from scattering experiments is of paramount
importance to explain their macroscopic properties and to evaluate the pertinence of theoretical
ab-initio models. While reconstruction methods of the one-electron reduced density matrix have
already been proposed, they are usually tied to strong assumptions that limit and may introduce
bias in the model. The goal of this paper is to infer a one-electron reduced density matrix (1-
RDM) with minimal assumptions. We have found that the mathematical framework of Semidefinite
Programming can achieve this goal. Additionally, it conveniently addresses the nontrivial constraints
on the 1-RDM which were major hindrances for the existing models. The framework established
in this work can be used as a reference to interpret experimental results. This method has been
applied to the crystal of dry ice and provides very satisfactory results when compared with periodic
ab-initio calculations.

I. INTRODUCTION

The computation of one-electron expectation values
such as the mean position, the mean momentum or the
mean kinetic energy of electrons in a crystal does not re-
quire more than the mere knowledge of the one-electron
reduced density matrix (1-RDM)1–4. This quantity pro-
vides a quantum description of an average electron and
has been proved to be sufficient5,6. Furthermore, the
electron density in position and momentum spaces can
easily be derived from such a quantity. It is therefore a
useful tool for describing electronic properties at a quan-
tum level. Additionally, using the 1-RDM is well suited
to represent mixed states systems using statistical ensem-
bles of pure states. This is generally the case for crystals
at non-zero temperature.

Several models have been proposed to approximate
and refine a 1-RDM from experimental expectation
values7–18. The complementarity between position and
momentum space expectation values in the description
of the 1-RDM is now well accepted19,20. For this rea-
son, deep inelastic X-ray scattering data known as “direc-
tional Compton scattering profiles” (DCPs), have been
taken into account in addition to X-ray or polarized neu-
tron diffraction structure factors (SFs) to refine a variety
of models. The former are related to 2D projections of
electron density in momentum space, while the latter are
linked to the Fourier coefficients of the electron density
in position space. However, almost all of these models
require an initial guess or assumption on the electronic
configuration. When these are inappropriate or too sim-
ple, there is a risk that the model, hence the results, will
be affected by a severe bias. The purpose of this work
is to investigate and assess a new method to obtain a
1-RDM from expectation values with minimal bias.

In order to serve as a reference, an initial periodic

ab initio calculation (at the DFT level) has been con-
ducted from which the reference 1-RDM was extracted.
From the same calculation, a limited number of structure
factors and directional Compton profiles were generated.
Once a random noise was added, these deteriorated data
constituted our pseudo-experimental data.

The method explicitly takes into account the so called
N-representability conditions2, which ensure that the in-
ferred 1-RDM is quantum mechanically acceptable, i.e.
that there exists a many-electron wavefunction from
which the 1-RDM can be derived. Addressing these
nontrivial conditions is made possible by the use of
Semidefinite Programming21, a recent subfield of convex
optimization22 which is of growing interest in Systems &
Control Theory, Geometry and Statistics23.

II. METHOD

A. Molecular spin-traced 1-RDM

In the following section, for simplicity, we will restrict
our treatment to a crystal with a single molecule per cell
that has N paired electrons. The method can be gener-
alized to several molecules by either assigning a 1-RDM
to each molecule provided that they can be considered
electronically isolated from each other (as in Sec.III), or
defining one 1-RDM for a group of interacting molecules.
Additionally, spin-orbitals can be employed to construct
two spin resolved 1-RDMs when the system bears un-
paired electrons.

Let {χi}i∈{1,...,n} be a set of atomic orbitals describing
the electrons of each atom taken as an independent sys-
tem. From {χi}i∈{1,...,n}, one can deduce an orthogonal
basis set {φi}i∈{1,...,n} for the molecule, using Löwdin or-

thogonalization procedure24 for example. Expanding the
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spin-traced 1-RDM Γ̂(r, r′) in such a basis, one reveals

its basis set representation: the population matrix P̂, so
that:

Γ̂(r, r′) =

n∑
i,j

P̂ijφ
∗
i (r)φj(r

′) (1)

Although it is not necessary to use an orthogonal basis,
it is done here because the N-representability conditions
are conveniently expressed in such a basis. In general,
these conditions are expressed on the eigenvalues of the
spin-traced 1-RDM. In this case, they are translated into

conditions on the eigenvalues of P̂ and state that they
must lie in [0, 2] (as N is even) and their sum must be
equal to N .

B. Expectation values

Any one-electron expectation value 〈Ô〉 can be calcu-

lated from its operator Ôr′ applied to the 1-RDM Γ̂(r, r′):

〈Ô〉 =

∫ (
Ôr′ Γ̂(r, r′)

)
r′=r

dr (2)

where Ôr′ means that the operator only acts on variable

r′. By defining, the basis set representation of Ô as:

Ôij =

∫
φ∗i (r)

(
Ôr′ φj(r

′)
)
r′=r

dr (3)

one can conveniently write the expectation value as

〈Ô〉 = tr(P̂Ô) (using Eq.1), where tr is the matrix trace
operator.

In particular, in position space, the X-ray structure
factors F (q), which are given by:

F (q) =

∫
Γ̂(r, r)eiq·rdr (4)

=

n∑
i,j

P̂ij

∫
φ∗i (r)φj(r)eiq·rdr (5)

have an operator whose basis set representation is:

F̂ij(q) =

∫
φ∗i (r)φj(r)eiq·rdr (6)

In momentum space, the directional Compton profiles
Ju(q) can be defined through the autocorrelation func-
tion B(r)25–27 as:

Ju(q) =

∫
1

2π
B(tu)e−it qdt (7)

B(r) =

∫
Γ̂(r′, r + r′)dr′ (8)

Their operator basis set representation is therefore:

Ĵu
ij(q) =

∫ ∫
1

2π
φ∗i (r

′)φj(tu + r′)e−it q dt dr′ (9)

From Eq.4 and Eq.7-8, one can appreciate the comple-
mentarity of both expectation values as they, respec-
tively, shed light upon the diagonal and the off-diagonal
directions of the 1-RDM.

C. Constrained least-squares fitting scheme

In the Bayesian sense, the objective is to infer the most

probable population matrix P̂ so that it fits given in-

dependent expectation values 〈Ôα〉. In the following,

the expectation values 〈Ôα〉 are SFs and DCPs data.
Supposing the latter follow Gaussian error distributions
with standard deviations σα and no a priori knowledge

is given on P̂, the problem is equivalent to minimizing
the so-called χ2 function with respect to the elements of

P̂12,28. It can be summarized in the following optimiza-
tion program:

minimize
P̂

∑
α

1

σ2
α

∣∣∣〈Ôα〉 − tr(P̂Ôα)
∣∣∣2

subject to tr(P̂) = N,

P̂ < 0,

2 I− P̂ < 0

(10)

where I is the identity matrix and the notation A < 0
means that A is a symmetric positive semi-definite ma-
trix, i.e. its eigenvalues are non-negative. The last two
constraints are mathematically equivalent to the condi-

tion that the eigenvalues of P̂ must lie in [0, 2].
The following passage will cast program (10) as a

semidefinite optimization program. These steps are quite
standard in the field of convex optimization22. Intro-
ducing a new variable t, program (10) is equivalent
to:

minimize
P̂, t

t

subject to tr(P̂) = N,

P̂ < 0,

2 I− P̂ < 0,

t− ||∆σO||2 ≥ 0

(11)

where ∆σO is a column vector whose elements are
(〈Ôα〉 − tr(P̂Ôα))/σα and || · || is the euclidean norm.

Using Schur’s complement29, the last constraint of pro-
gram (11) can be written as a linear matrix inequality :[

I ∆σO
(∆σO)T t

]
< 0 (12)

where I is the identity matrix of appropriate dimensions.

This inequality is indeed linear with respect to P̂ as ∆σO

is a linear function of P̂.
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This type of program where the objective function is
linear and the constraints are linear combinations of sym-
metric matrices that must be positive semidefinite, has
been extensively studied and is referred to as the class of
Semidefinite Programming21. Interior-point algorithms
can be used to solve this class of problems and no initial
guess is required. Treatment of the 2-RDM by Semidefi-
nite Programming has already been reported in the con-
text of variational computation of molecules30.

In the present work, this program has been addressed
by using the optimization software Mosek31 interfaced
by Yalmip toolbox32 under Matlab.

III. APPLICATION TO DRY ICE

Dry ice CO2 is a molecular crystal with four molecules
per cubic unit cell (Fig.1).

FIG. 1: Unit cell of dry ice: space group Pa3̄,
a = 5.63 Å33.

A. Expectation values generation

For the following example, structure factors and di-
rectional Compton profiles have been generated using
the Crystal14 periodic ab-initio software34,35. Density
Functional Theory and the B3LYP of hybrid exchange
and correlation functional have been chosen as a theoret-
ical framework. Large polarized and diffuse atomic basis
sets (triple-zeta valence with polarization quality)36,37 for
both types of atoms have been used.

In the following, 1800 structure factors
((h, k, l)cubic cell ∈ Z3 | 0 ≤ h ≤ 7,−7 ≤ k ≤
7,−7 ≤ l ≤ 7, sin(θmax)/λ ∼ 1.08 Å−1) and three
directional Compton profiles (u = (h, k, l)cubic cell ∈
{(0, 0, 1), (1, 1, 0), (1, 1, 1)}), with a resolution of 0.15
a.u. and limited to 6 a.u. were computed.

To prove the robustness of the method, Gaussian er-
rors have been added to the data. For each structure

factor, the standard deviation is 3% of its modulus and
for each directional Compton profile Ju(q), it is set to

be
√
Ju(q)/αu where αu is such that

√
Ju(0)/αu =

0.03 × Ju(0). Such distorted DCPs and SFs are illus-
trated respectively in Fig.2 and in Fig.3 by means of
a Fourier density map. In the following, the resulting
distorted DCPs and SFs will be qualified as “pseudo-
experimental” data.
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FIG. 2: Directional Compton profile Ju(q) (in red) and

tr(P̂Ĵu(q)) (in blue) for dry ice in the crystallographic
direction u = (1, 1, 1) in the conventional cell. The

spectrum is in atomic units and the profile is
normalized to one electron.

B. Independent molecule model

As the four CO2 molecules in the unit cell are identical
and sufficiently distant from each other, each molecule
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FIG. 3: Density map reconstructed from truncated

Fourier series with coefficients tr(P̂F̂(q)) (left) and F (q)
(right) in a plane including the O-C-O bonding.

Contours at intervals of ±0.01× 2n a.u.−3 (n = 0-20):
positive and negative contours38 are blue solid lines and

red dashed lines respectively.
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FIG. 4: Spin-traced 1-RDM Γ̂(r, r′) contour maps for two different segments39. For each segment, the position
vectors r (horizontal axis) and r′ (vertical axis) are restricted to vary along the segment. Upper panel: along the
O-C-O bonding. Lower panel: along a segment parallel and 1 a.u. away from the O-C-O bonding. Left column:
inferred from position and momentum space expectation values. Right column: periodic ab-initio computation.

Contours at intervals of ±0.01× 2n a.u.−3 (n = 0-20): positive and negative contours are blue solid lines and red
dashed lines respectively.

can be described by the same molecular spin-traced 1-
RDM in a different orientation set of local axes. Con-
sequently, the total structure factors Ftot(q) and direc-
tional Compton profiles Ju

tot(q) can be computed from
the molecular structure factors and directional Compton
profiles F (q) and Ju(q) by:

Ftot(q) =F (q) +

4∑
m=2

e−i (Ω̂mq)·rmF (Ω̂mq) (13)

Ju
tot(q) =Ju(q) +

4∑
m=2

J (Ω̂mu)(q) (14)

where rm and Ω̂m are respectively, the translation vector
and the inverse of the rotation matrix, bringing the first
molecule to molecule m (m ∈ 2, 3, 4).

To assess the robustness of the method, the basis set
{χi}i∈{1,...,n} used to represent the spin-traced 1-RDM
has been chosen to have fewer degrees of freedom and

diffuseness than the one used to generate the expectation
values (3-21G(d))40–42.

C. Results analysis

Program (11) has been successfully solved for the case
of dry ice. The DCPs and SFs computed with the opti-
mized population matrix are near identical to their refer-
ence. In Fig.2, one DCP derived from the 1-RDM model
is plotted together with its pseudo-experimental refer-
ence for comparison (see Ancillary Material for the other
two DCPs). The same comparison is made for the SFs
in a Fourier density map in Fig.3.

The inferred and the periodic ab-initio spin-traced
1-RDM are in close agreement along the O-C-O bond
(Fig.4). Although slight differences are observed in the
off-diagonal regions, corresponding to the subtle interac-
tions between both bonds, the general features have been
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(a) Inferred from position and momentum
expectation values.
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(b) Periodic ab-initio computation.

FIG. 5: Deformation density contour map in a plane including the O-C-O bonding. Contours at intervals of
±0.01× 2n a.u.−3 (n = 0-20): positive and negative contours are blue solid lines and red dashed lines respectively.

accurately reproduced.

In a plane comprising of the atoms of the molecule,
the overall expected picture of the deformation density
map i.e. the difference between the total density and
the non-interacting atom density, is recovered with mi-
nor discrepancies on the oxygen atoms and around the
carbon atom (Fig.5). The fact that the axial symme-
try is not obtained originates from the lack of symme-
try constraints and the limited amount of experimental
information (Fig.3). It could possibly be recovered by
providing additional knowledge (symmetry constraints)
to the model or using more expectation values.

The off-diagonal regions in Fig.4 are highly sensitive
to the amount of noise added to the DCPs and the sharp
contrast around the O-O interaction (region 5 a.u. -
1 a.u.) is quickly lost as the standard deviation is in-
creased. This sensitivity might be particularly high for
the case of dry ice as limited information can be deduced
from DCPs because of their relatively low anistropies.
Additionally, as the noise added to the SFs grow, further
discrepancies appear quite naturally on the deformation
density map.

Furthermore, restricting the optimization on the SFs
only severely impacts the results (Fig.6) and therefore
clearly illustrates the complementarity of both momen-
tum and position expectation values as mentioned in
Sec.II B. Of course, restricting the optimization on the
DCPs gives an even worse result.

IV. CONCLUSION

With the aim of inferring a 1-RDM from structure fac-
tors and directional Compton Profiles with minimal prior
knowledge, a method based on Semidefinite Program-
ming was proposed. The effectiveness of this method has
been evaluated on the crystal of dry ice taking periodic
ab-initio calculations as reference. In this example, the
method was in very good agreement with the reference,
showing that the use of both structure factors and direc-
tional Compton profiles provides sufficient information to
infer the 1-RDM in a given atomic basis set.

Such a method could be used as a reference to interpret
experimental results. For now, it is only applicable to
molecular crystals but it could possibly, in the future,
be extended to the modeling of 1-RDM of more general
crystalline systems.

While this method is quite general, it still depends on
the choice of the atomic basis set. Its result can be refined
through optimization of the basis, such as in14, however
the most ideal solution would be an inference process that
does not require a basis set altogether. At this stage,
further work is required to achieve this as, to the best
of our knowledge, the N-representability conditions are
more conveniently expressed in a given basis.
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FIG. 6: SF-only inferred deformation density map in a plane including the O-C-O bonding and spin-traced 1-RDM

Γ̂(r, r′) along the O-C-O bonding. Contours at intervals of ±0.01× 2n a.u.−3 (n = 0-20): positive and negative
contours are blue solid lines and red dashed lines respectively.
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