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Abstract. Completing a Swiss-Cheese theorem of Lieb and Lebowitz, we prove
that any population of spheres with power-law radius distribution ∝ 1/rdf+1 can
completely fill 3D Euclidean space if the exponent is such that 2.8 ≤ df < 3. This
sufficient condition extends considerably the known part of the ensemble of space-
filling populations of polydisperse spheres. The self-similar spatial arrangement of the
polydisperse spheres related to the theorem is discussed using a numerical example
with df = 2.875. By calculating the small-angle scattering structure factor of the
resulting packing, we found it to present several crystalline peaks indicating some
regularity. This is significantly different from the featureless structure factor of an
Apollonian packing which represents total disorder. We thereby argue that the Lieb
and Lebowitz algorithm for filling space with spheres is fundamentally different from
Apollonian constructions.

1. Introduction

Dense vitreous materials are much sought after because of their unique technological
applications. Indeed, they manifest remarkable mechanical properties such as high
resilience and high formability [1]; they often possess amazing optical and electrical
properties [2]; their thermal properties are anomalous [3] etc. Two classic examples
of dense vitreous materials are 1) vitrified ceramics [4] and 2) ultra-high performance
concrete [5]. A main issue for the practical preparation of such materials is that the
disordered local structure requires a lot of energy (thermal and mechanical) to obtain and
control [6]. Therefore, any avenue to lower energy consumption is of paramount interest.
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An efficient way to get around the problem is to pack together a large population of
small particles to form a paste as dense as possible before melting or sintering the paste
to eliminate tiny voids and obtain the final vitreous material [7]. Intuitively, it is clear
that such an approach requires a very wide initial size distribution since one has to use
smaller and smaller pieces to occupy the likewise increasingly smaller voids remaining
in the packed system during the filling process. Hence the crucial question: is there
an optimal particle size distribution that can give the most compact paste by simple
mixing?

We address here this question when the particles are all spherical in shape, because
spherical particles are either natural in some cases (e.g. extremely dense emulsions of
spherical droplets may result from elastic energy minimization [8]), or provide good
approximation for small pebbles or convex grains. In spite of Ulam’s packing conjecture
[9] stating that spheres are one of the worst possible cases of all the convex bodies for
occupying space densely [10, 11], the number of space-filling populations of spheres is
nonetheless expected to be very limited and thus relatively easy to identify. From the
current state of the art, we know that polydisperse sphere populations with power-law
distributions, n(r) ∝ 1/rdf+1, of the sphere radii r, can geometrically fill space entirely
without overlaps when the exponent df has specific values: df = 2.47 (numerical result)
[12], df = 2.73 (numerical result) [13], any value of df such that 2.47 < df < 2.88

(numerical range) [14] and an infinite number of discrete values of df between 2.9885

and 3 (exact result) [15].
Interestingly, the last result, engendered by a little-known theorem of Lieb and

Lebowitz (LL) [15], is often neglected in modern discussions pertaining to dense sphere-
packings. A brief literature search in the domain reveals a multitude of publications
relating to Apollonian packing algorithms, but few mentions of the LL algorithm (likely
due to its description having been casually tucked away by the authors within a dense,
mathematical, work). In the present work, we seek to revive general interest in the
LL theorem, by extending it to demonstrate that any population of spheres with
2.8 ≤ df < 3 (exact range) can be packed as densely as desired without overlaps. In
fact, several naturally-occurring distributions are empirically known to be within these
bounds, e.g. (see [16] for extensive data) gravel (df = 2.82) or glacial tills (df = 2.88).
We compare LL and Apollonian packings in the 3D space, deducing that the extended
LL theorem authorises space-filling populations of spheres previously inaccessible by
Apollonian constructions.

Our initial motivation was to compare packings resulting from the LL algorithm
and packings found in our own experiments of extremely dense emulsions of spherical
droplets [8, 17]. We then discuss in the present work such sphere arrangements in the
only 3D Euclidean space. Similar work could also be interesting to do in the 2D space,
though comparison with real experiments might be more limited in that case.
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1.1. The mathematical context

The enduring popularity of Apollonian constructions has a historical root. From the
mathematical point of view, Leibniz [18] was the first to propose an algorithm to cover
the 2D Euclidean space with an infinite number of disks of decreasing radii, based on
a geometric construction introduced by Apollonius de Perga that builds a disk tangent
to three existing disks. Much later, Mandelbrot [19] conjectured that one could use a
similar algorithm to fill the 3D Euclidean space with spheres arranged in a self-similar
way. A rigorous self-similar packing algorithm based on inversive geometry was proposed
in [14]. All Apollonian algorithms are based on a maximal geometric condition and is
generically called ‘osculatory packing’ [12] or ‘Apollonian packing’ [20]. In 3D, it is based
on the iterative addition of the largest interstitial sphere compatible (that is without
overlaps) with the biggest void remaining in the system [21]. The algorithm can be used
to build regular and disordered packings alike, attaining the final volume fraction ϕ = 1

[22] (in the mathematical sense that the interior of the set complementary to the sphere
packing is of null measure).

An osculatory packing definitely different from Apollonian has been suggested
by Manna in [23]. In the Apollonian algorithm, the nth sphere is the largest sphere
consistent with the empty pore space left by the n − 1 spheres, while, in the Manna’s
algorithm, the centre of the nth sphere is chosen randomly in the empty pore space of
the n − 1 spheres and its radius is the largest possible in that place. Both algorithms
are in the group of the ‘osculatory algorithms’ since the nth sphere is tangent to at least
one of the n− 1 spheres, but the Apollonian algorithm is known to require significantly
less number of small spheres than the Manna’s case.

1.2. The self-similar assumption

In the following, we consider the problem of totally filling a unit cube with a polydisperse
population of perfect spheres.

By firstly packing spheres all of the same radius, one can obtain a system of
maximum volume fraction ϕ = π/3

√
2 ≃ 0.74 if the arrangement is regular (face-

centered cubic lattice), or ϕ ≃ 0.64 if the packing is disordered (random close packing)
[24]. The next step is to fill with smaller spheres the voids remaining in the system.
Using again monodisperse spheres of radius smaller than the radius of the largest-void
insphere, one can increase the volume fraction of the system. But because of their
complicated shapes, one cannot totally fill the voids in such a way: when this second
step is completed, many smaller voids still remain. These voids can be partially filled
in the same manner; by iterating the process using increasingly smaller spheres, all
voids are eventually filled completely when the sphere radius tends to 0. Note that such
schematic description of this algorithm does not require any length scale to be defined,
and one can then expect the resulting packing to be self-similar. Therefore, we are now
looking for a radius distribution of the spheres, n(r), in the form of a scale-free power
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law [25, 26]:

n(r) ∝ 1

r df+1
. (1)

The radius distribution is written here as a continuous distribution of the radii, r, but
discrete distribution can be used as well (and will be used later on). The exponent, df ,
of the power law is a positive constant equal to the fractal dimension of the matter-void
interface [27, 28], that is, asymptotically, the union of the surfaces of all the spheres
forming the packing [23].

1.3. The fractal dimensions of the Apollonian packing and related sphere packings

The value, dApo
f , of the fractal dimension of the 3D Apollonian packing has been variously

and precisely estimated from intensive numerical works [12, 21]:

dApo
f = 2.4739... (2)

It would appear that the value (2) is characteristic of an osculatory packing process as it
is the same whether the initial packing is regular or random. Slightly different values of
df have also been found for non-osculatory, packing-limited growth algorithms. [13, 29].

Besides the commonly discussed Apollonian packing, Lieb and Lebowitz [15] also
described filling space with populations of spheres whose radii are power-law distributed
as long as the corresponding value of df is larger than 2.9885. In the following sections,
we examine how the original LL theorem may be extended down to df = 2.8, by
gradually approaching a spherical geometry from known space-filling polyhedra (known
as plesiohedra).

1.4. Wesler’s theorem

A theorem by Wesler [30] states that the total surface of any sphere-packing filling the
unit cube is infinite. Then, applying the theorem to the radius-distribution (1), the
value of df must be in the range:

2 ≤ df < 3 . (3)

This condition was tentatively improved upon by Aste [26], who argued that among all
the space-filling polydisperse sphere packings, the Apollonian packing is the one with the
lowest possible value of df (i.e. with the smallest proportion of tiny spheres). Then, a
necessary condition stronger than (3) for spheres filling space could be: 2.4739 ≤ df < 3;
up to now, this argument remains a conjecture.

In the following, we demonstrate and discuss sufficient conditions of the form (3)
on the value of df for a population of spheres with radius distribution (1) to be space-
filling. As the argument uses space-filling polyhedra, we start first in setting out a short
review of these objects.
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2. Space-filling polyhedra

2.1. Definitions of two geometric quantities related to convex bodies

Let us call ω(r) a finite convex body, in which r is the radius of the insphere, that is
the largest sphere that can fit inside ω(r) [31]. We introduce two characteristic numbers
related to ω(r):

• the asphericity number [11] γc is the ratio between the radius of the circumscribed
sphere (that is the smallest sphere containing ω(r)) and the radius of the insphere.
The index c, in “γc”, is to remind that this number is related to the circumscribing
sphere

• the number av comes from the volume of ω(r), written: av4πr3/3. The index v, in
“av”, reminds one that this number is related to the volume of the convex body

These characteristic numbers are practical for measuring the distances in terms of r for
the convex body ω(r).

Note that if ω(r) is the sphere of radius r, these quantities are respectively: γc = 1,
av = 1.

2.2. Introducing the plesiohedra

Perfect tessellation of space with identical polyhedra has been a long-pondered prob-
lem. An anecdote attributed to Aristotle (4th century BC) is well known: he proclaimed
without proof in his book De Caelo that space could be filled by identical tetrahedra
(“among solids [it is agreed that ] only two [fill the place that contain them ], the regular
tetrahedron and the cube ”). This conjecture was disproved in the 15th century by Re-
giomontanus in a lost manuscript [32, 33]. Even back then, it was already recognised
that drawing up a complete list of space-filling polyhedra was not as straightforward a
problem as one would have thought.

Many different convex polyhedra have been found to fill 3D Euclidean space by
tiling identical copies of them. They are generically named plesiohedra [34]. In the
following we shall restrict the discussion to three convex plesiohedra selected among
the five parallelohedra, because they are simple and rather “close” to the sphere. We
list these selected plesiohedra in decreasing order of γc (smaller γc corresponds to more
sphere-like polyhedra):

• the cube is the only Platonic solid to be a plesiohedron. Its characteristics are:
γc =

√
3 ≃ 1.73 and av = 6/π ≃ 1.90. The Cartesian coordinates of the 8 vertices

of the cube ω(r) centred in the origin (0, 0, 0) are: (± r,± r,± r). The cube is the
Wigner-Seitz cell of the regular simple cubic lattice.

• the rhombic dodecahedron is an Archimedean solid that has: γc =
√
2 ≃ 1.41

and av =
√
18/π ≃ 1.35. The Cartesian coordinates of the 14 vertices of the

rhombic dodecahedron ω(r) centred in the origin are: (± r/
√
2,± r/

√
2,± r/

√
2),
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(± r
√
2, 0, 0), (0,± r

√
2, 0) and (0, 0,± r

√
2). The rhombic dodecahedron is the

Wigner-Seitz cell of the regular fcc lattice.
• the Kelvin’s truncated octahedron is another space-filling Archimedean solid that

has: γc =
√
5/3 ≃ 1.29 and av = 8/π

√
3 ≃ 1.47. The Cartesian coordinates

of the 24 vertices of the truncated octahedron ω(r) centred in the origin are:
(0,± r/

√
3,± 2 r/

√
3) and the six permutations of the three coordinates. The

truncated octahedron is the Wigner-Seitz cell of the regular bcc lattice.

Figure 1. Sketch of the three plesiohedra used as examples in this work. From left
to right: the cube, the rhombic dodecahedron and the truncated octahedron. The
respective circumscribing spheres are shown to realise how ‘round’ they are.

3. General sufficient space-filling conditions

Let us consider the ensemble whose elements are all the populations of perfect spheres
with discrete distribution of their radii, rk, such that:

{nk, rk}k=0,1,2,... means nk spheres (nk ∈ N⋆) of radius rk , (4)

k → rk is a decreasing sequence of positive real numbers ,

nkr
3
k ≤

1√
32

for any k = 0, 1, 2, . . . (5)

∞∑
k=0

nkr
3
k =

3

4π
(space-filling condition of the packing) , (6)

∞∑
k=0

nkr
2
k = ∞ (infinite surface of the packing) . (7)

For every population in the ensemble above, the index k is called the rank. The
condition (5) expresses that the ensemble of monodisperse spheres of rank k cannot
constitute a volume fraction larger than the maximum value π/3

√
2.
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Though necessary for spheres with discrete radius distribution, (5)-(7) do not con-
stitute sufficient conditions to represent a space-filling population of spheres. To do so,
one has to find a geometrical algorithm able to build iteratively the sphere packing into
the unit cube, adding nk spheres of radius rk without overlap at each rank k. This way
is analogous to invoking a kind of Maxwell’s demon able to put each sphere at its correct
place in space [35].

3.1. Sufficient condition using the LL algorithm

The following algorithm – named “LL algorithm” since it was introduced by Lieb and
Lebowitz in [15] – can be used to build perfect packing of spheres complying with (5)-(7).
We describe below the algorithm starting from the 3D cube of edge length 1, though
any initial 3D compact domain can, in principle, be used (in [15], the unit ball was used
instead). In the case of the unit cube, the unit length is defined as the cube edge, i.e.
all particle radii in the formulae below will be expressed on the scale of the cube-edge
length.

3.2. Running through the LL algorithm

At rank 0 of the sphere packing, n0 spheres of radius r0 are placed without overlap inside
the empty cube of edge length 1 (periodic boundary conditions are used). Placement
of these spheres can be regular or random, and they act as seeds for the packing. Such
placement is possible because of (5). When the rank 0 is completed, the volume V0 of
the domain Ω0 left empty in the cube is:

V0 = 1− 4π

3
n0r

3
0 < 1 . (8)

In the LL algorithm, a loop of iteration builds the system of rank j from the system
completed at rank j−1, that is when all the nk spheres of radius rk, k = 0, 1, · · · , j−1,
have been positioned inside the cube by the Maxwell’s demon. The main loop is as
follows:

• loop “j − 1 → j” :
- step 1 : part of the empty domain Ωj−1 is covered with a dense regular array of
ν j non-overlapping identical plesiohedra ω(rj), each of them totally included inside
Ωj−1 (that is none of these polyhedra intersects the boundaries of Ωj−1). This step
can always be completed as long as the value of of rj is so small that νj ≥ 1.
- step 2 : nj plesiohedra are chosen amongst the νj, and replaced by their inspheres.
The selection of the plesiohedra is random. The value of nj is given by (4). The
νj − nj remaining polyhedra are left empty. Clearly, this step can be achieved
provided nj ≤ νj.
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After the loop has been completed, it results in the void Ωj−1 of volume

Vj−1 = 1− 4π

3

j−1∑
k=0

nkr
3
k < 1 , (9)

in the system.
The loop above starts from j = 1, and is continued for all integer positive values

of j. The radii rk being all > 0, the sequence of void volumes Vj−1, as written in (9),
is decreasing and its limiting value vanishes for j → ∞ because of the complete space
filling condition (6). A sketch of the iterative process as a Swiss-Cheese construction, is
shown on Fig. 2 in the 2D case.

It is clear from the construction shown in Fig.2 that the LL algorithm is a vari-
ant of the Sierpiński algorithm used to build 3D Menger cubes [19]. Let us recall that,
similarly to the asymptotic complete sphere-packing, Menger cubes have asymptotically
zero volume (corresponding to (6)) and infinite surface (corresponding to (7)). Notice-
able differences are: 1) open spheres (open disks in 2D space) are removed at each rank,
instead of open cubes for the Menger sponge ; 2) LL algorithm is basically random
(though it is not mandatory) whereas Sierpiński algorithm is usually regular.

The only condition (by induction) required for the LL algorithm to be continued to
infinity is that nj ≤ νj at each rank j. This is an explicit sufficient condition, but hard to
use because the intricate shape of void domains complicates the task of calculating the
number νj of plesiohedra included in the void domain Ωj−1. To overcome this difficulty,
one could search analytically for the lower-bound number of plesiohedra, depending on
the actual shape of Ωj−1. If such a lower-bound can be found (named Rj), the less
stringent sufficient condition nj < Rj can be used instead for each value of j = 1, 2, · · · .

3.3. Determining Rj

Considering the system at rank j − 1, the domain Ωj−1 is the union of ν j complete
polyhedra ω(rj) (‘complete polyhedron’ means here: ‘totally inside Ωj−1’) and of a
domain δΩj, of volume δVj, which is too thin to accept any complete polyhedron ω(rj):

Vj−1 = ν j vj + δVj . (10)

By construction, the domain δΩj cannot include any sphere of diameter 2γcrj (that is
the diameter of the sphere circumscribing a polyhedron ω(rj)), then δVj is smaller than
the sum of the volumes of the outer shells of width 2γcrj around each sphere of rank
k ≤ j − 1:

δVj ≤
4π

3

j−1∑
k=0

nk

[
(rk + 2γcrj)

3 − r3k
]
. (11)
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Figure 2. The 2D LL algorithm in the unit square, described as a Swiss-Cheese
model. At rank k = 0, an initial tessellation with big squares is used and the initial
holes are the open disks inscribed in n0 squares. These initial circular holes are kept at
rank k = 1 . Then, n1 smaller squares of edge length r1 are created to tile the plane,
wherein open disks are randomly inscribed so long as they do not intersect with any
other holes. At rank k = 2, smaller tiling squares of edge length r2 are used in which
newer open disks are now inscribed without overlaps with all existing holes, etc. In
this manner, the iteration is performed such that the plane at rank k is punched by a
number of non-overlapping open disks, and, for k → ∞, the unit square is full except
the complementary set of the union of all the open holes. This complementary set is
of null measure if the condition (6) holds.

The inequality (11) is the key ingredient that allows one to write explicitly a sufficient
condition for the population (4) of spheres be space-filling. This inequality is more
precise than the corresponding inequality written by Lieb and Lebowitz in their work
(the expression (3.4) in [15]) and it results in a much better estimate of the lower bound
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Rj. Using (6), (9) and (11), the following lower bound for νj is obtained:

ν j ≥
3

4παv

1

r3j
− 1

αv

j−1∑
k=0

nk

(
rk
rj

+ 2γc

)3

. (12)

It results in the sufficient condition (named: (CS 1)):

the LL algorithm builds a space-filling packing of spheres with distribution (4)-(7) if the
inequality:

3

4π

1

nj r3j
−

j−1∑
k=0

nk

nj

(
rk
rj

+ 2γc

)3

≥ αv (13)

holds true for every value of j = 1, 2, · · ·

In (13), the parameters αv and γc depend only on the plesiohedron used in the LL
algorithm.

4. Sufficient condition for a generic fractal sphere population

In this section we shall derive the sufficient condition on the exponent df , for the discrete
distribution of spheres (4)-(7) with:

nk = n0 n
k ; rk =

r0
nk/df

, k = 0, 1, 2, · · · ,∞ (14)

such that these spheres are space-filling using the LL algorithm. This discrete
distribution writes nk ∝ 1/r

df
k similar to the continuous distribution (1) written:

n(r) dr = (1/rdf ) dr/r. Indeed, from (14), the index k is proportional to the logarithm
of the corresponding radius, hence the term dr/r may be put aside in the continuous
distribution.

There are four constant parameters in (14), namely: n0 and n are two integer
numbers such that n0 ≥ 1 and n ≥ 2, and two real parameters r0 and df such that
0 < r0 < 1/(2 5/6n

1/3
0 ) and 2 ≤ df < 3, to be consistent with (5) and (7). We have also

the rough but useful inequality: γcr0 < 1, which comes from r0 < 1/2 (because the edge
length of the cube is 1), and γc < 2.

We note first that, using the distribution (14), the space-filling condition (6) writes
as the equality:

4π

3
n0r

3
0 = 1− n1−3/df , (15)

from which the volume fraction of the system at rank j ≥ 0, namely: ϕj =∑
k=0,··· ,j nk4πr

3
k/3, is found to depend only on the two parameters n and df :

ϕj = 1− 1

n(j+1)(3/df−1)
. (16)
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Since n ≥ 2, ϕj tends clearly to 1 when j → ∞. This formula can also be written:

1− ϕj =

(
rj+1

r0

)3−df

, (17)

a popular formula for the porosity of fractal sphere-packing [36] (in theoretical physics)
and of concrete [37] (in applied physics).

4.1. The seed-particle radius r0

From the equality (15), the condition (5) gives an upper bound of the parameter n:

2 ≤ n < 2 2df/(3−df ) , (18)

where we used for the sake of simplicity the inequality: 1− π/
√
18 > 1/4.

Also from (15), one finds the value of r0 as a function of the three other parameters
n0, n and df :

r0 =

(
3

4πn0

(
1− n1−3/df

))1/3

. (19)

4.2. The condition Rj/nj ≥ 1

Using (14) and (19), the sufficient condition (13) is written:

f1 +
6γc

nj(1−2/df )
g2 +

12γ2
c

nj(1−1/df )
g1 +

8γ3
c

nj
g0 ≥ αv , (20)

in which the four functions f1, g0, g1, g2, independent of the rank j, are given by:

f1 ≡
1

1− n1−3/df
−
(

6γc
n1−2/df − 1

+
12γ2

c

n1−1/df − 1
+

8γ3
c

n− 1

)
, (21)

gm ≡ 1

n1−m/df − 1
, (22)

and m = 0, 1, 2. Since all the functions gm are > 0, the relation (20) is fulfilled if the
weaker inequality (independent on the rank j): f1 > αv is realized.

4.3. Summarizing the sufficient condition

The corresponding sufficient condition (named: (CS 2)) is written as:

the LL algorithm builds a perfect space-filling packing of spheres with the distribution
(14) if there is at least one integer number n ∈ [2, 22df/(3−df )) (the notation [a, b) denotes
the interval a ≤ n < b), such that:

f1 ≡
1

1− n1−3/df
−
(

6γc
n1−2/df − 1

+
12γ2

c

n1−1/df − 1
+

8γ3
c

n− 1

)
> αv . (23)
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Once the inequality (23) is fulfilled for a value of n, we may select any integer number
n0 such that:

n0 >
6

π

(
1− 1

n3/df−1

)
, (24)

which comes from the fact that r0 < 1/2 (no sphere can be larger than the edge length
of the box) and relation (15). At last, the value of r0 is given by (19) as a function of
df , n and n0.

5. Explicit sufficient conditions for various space-filling polyhedra
approaching the derivation for spheres

5.1. The cube

The cube has parameters:

γc =
√
3 ; αv =

6

π
, (25)

hence the expression of the function f1:

f1 ≡
1

1− n1−3/df
−

(
6
√
3

n1−2/df − 1
+

36

n1−1/df − 1
+

24
√
3

n− 1

)
. (26)

The function f1 is an increasing function of df for any fixed value of n > 2.
The inequation f1 ≥ 6/π, with f1 given in (26) admits solutions in integer numbers
n ∈ [ 2, 22df/(3−df )) for any value of df in the range:

2.855 ≤ df < 3 , (27)

The evolution of the f1 as a function of n is plotted in Fig.3 for several relevant values
of df .

The sufficient condition (27) is much wider than the set of discrete values df =

2+ log p/ log(p+1) (with p any integer ≥ 26) derived in [15] and which are all included
in the range [2.9885, 3).

5.2. The rhombic dodecahedron

This polyhedron has parameters:

γc =
√
2 ; αv = 8 . (28)

It is closer to the sphere in the sense that the value of γc is smaller than for the cube.
The same analysis as before leads to the sufficient condition:

2.847 ≤ df < 3 , (29)

that is a slightly wider range than for the cube case.
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Figure 3. Shape of the function f1 as given in (26) in the case of the cube as the
plesiohedron used in the LL algorithm. Three values of the fractal dimension df are
used to exemplify the threshold of (23). The maximum of the function f1 increases
regularly with the value of df . For df > 2.855, the values of f1 are larger than
αv = 6/π ≃ 1.91 (the horizontal line) on some interval of n, making true the sufficient
condition for the sphere population (14) be space-filling.

5.3. The truncated octahedron

This polyhedron is more interesting than the previous one since its parameters:

γc =
√

5/3 ; αv = 8/π
√
3 (30)

show that its shape is much closer to the shape of a sphere (the ratio between the radius
of the circumscribed sphere and the one of the inscribed sphere is only 1.29). In this
case, the same analysis as before leads to the sufficient condition:

2.800 ≤ df < 3 , (31)

The stricter sufficient condition (CS 1) allows the replacement of the lower threshold
2.800 by 2.798 in (29).
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In short, using the sufficient condition (CS 2) with, successively, the cube, the rhombic
dodecahedron and the truncated octahedron as the plesiohedra required in the LL
algorithm, we showed the following theorem:

• for any value of df in the range 2.8 ≤ df < 3, it is possible to pack iteratively
nk ∝ 1/r

df
k spheres of radii in geometric progression rk ∝ ρk (with 0 < ρ < 2−1/3)

in the unit 3D cubic box. The packing is complete in the sense that the packing
density equals 1 for k → ∞.

5.4. A note about the best possible sufficient condition

The only parameters of the sufficient condition (23) are γc and αv of the plesiohedron
used in the LL algorithm. The more sphere-like is the plesiohedron, and the closer to
1 are these two parameters, no matter how complicated the shape of the polyhedron.
Even aperiodic space tiling [38] can be used as well. So far, we have considered only
three plesiohedra, with the truncated octahedron having a shape relatively close to the
sphere (this is the “Kelvin’s polyhedron” [39]).

At this juncture, one wonders how much more the range of fractal dimensions given
by (31) could be expanded, if all possible plesiohedra (known or yet to be discovered)
were considered in this gradual geometrical approach towards perfect sphericity. A
partial answer may be gleaned from the remark that the parameters γc > 1 and αv > 1

for any plesiohedron, with the limiting values = 1 for both parameters (these limit
values are the respective values for the perfect sphere). Let us then suppose that
we know a sequence of different plesiohedra with decreasing values of γc approaching
1. Such sequence could begin with: /cube (γc = 1.73)/ rhombic dodecahedron
(γc = 1.35)/ truncated octahedron (γc = 1.29)/ · · · . Provided such a sequence exists,
the smallest value of df compatible with a space-filling sphere population (14) under
the LL algorithm, is given by the sufficient condition (23) written with γc = αv = 1:

1

1− n1−3/df
−
(

6

n1−2/df − 1
+

12

n1−1/df − 1
+

8

n− 1

)
> 1 , (32)

We first solve numerically the corresponding equation in df , with the variable n > 1:

1

1− n1−3/df
−
(

6

n1−2/df − 1
+

12

n1−1/df − 1
+

8

n− 1

)
= 1 , (33)

For any value of n, there is only one solution of (33), which is shown on the Fig.4.
Moreover, when n ≫ 1, the two first terms of (33) are dominant, and the equation leads
to:

n2−5/df ≃ 6 (34)

that is: df ≃ 5/(2− log 6/ log n) which tends to 5/2 when n → ∞.
There is no acceptable solution corresponding to df ≤ 5/2. The more general

sufficient condition (CS 1) leads to the same conclusion since the left-hand term of (13),
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Figure 4. Solution (black curve) in df of the equation (33) versus the variable n. The
red dashed line is the special value df = 5/2. The asymptotic solution for n → ∞
is df ≃ 5/(2 − log 6/ log n) → 5/2. This figure shows that, for given value of df , the
inequation (32) has solution in n only if df > 5/2.

calculated for df = 5/2, grows from a negative value for n = 2, to the value 1− (as
1− 5/n1/5 when n → ∞) for any value of j.

We conclude that, using the algorithm LL, the range of values of df sufficient for
the packing of spheres (14) be space-filling is always included in the interval:

5/2 < df < 3 .

An interesting remark here is that the Apollonian fractal dimension dApo
f ≃ 2.474±

0.001 being smaller than 2.5, the Apollonian sphere-packing cannot be a population (14)
packed using the LL algorithm, whatever the plesiohedron we use in this algorithm. In
Section 6, we will examine more closely the difference between packings resulting from
LL and from Apollonian constructions.

5.5. Conceivable improvements of the theorem

As discussed in Section 5.4, the theorem derived in Section 5.3 can be straightforwardly
improved using space-filling polyhedra ‘rounder’ than the truncated octahedron adhering
to the sufficient condition (23). These polyhedra remain to be found, and their values
of αv and γc can then be calculated to see how the range of acceptable df is affected.

A more complicated improvement might result from finding a better lower bound Rj

of the coefficients νj, following the reasoning detailed in Section 3.3. This would require
an analysis of the shapes of the voids left in the intermediary sphere packings, more
carefully than the simple calculation presented in 3.3. This approach could probably be
effective, but requires much work.

Another improvement consistent with the LL algorithm would include tessellation
of space with two (or more) different sorts of polyhedra [40]. This would change the
formula appearing in the sufficient condition (CS 1), involving then two (or more) values
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of γc and αv. That way, two (or more) sphere radii in fixed ratios between them would
have to be considered at each rank of the LL algorithm iteration.

6. A numerical example

In this Section, we propose using the LL algorithm to build numerically the first stages
of a sphere packing in the cube of edge-length L = 1 with periodic boundary conditions.
The fractal dimension df = 2.875 > 2.8 is selected, and we use the truncated octahedron
in the algorithm.

The inequation (23) solves into:

74 ≤ n ≤ 2.2 1011 (35)

Selecting the value n = 74 and the number n0 = 2 of initial spheres, we give in
Table 1 the characteristics of the numerical simulation compatible with the parameters
deduced from the sufficient condition (23).

j Ns rj ϕj

0 2 0.2731 0.171

1 150 0.0611 0.312

2 11 102 0.0137 0.430

3 821 550 0.003 0.527

4 6.0 107 6.8 10−4 0.608

5 4.5 109 1.5 10−4 0.675

6 3.3 1011 3.4 10−5 0.730

· · · · · · · · · · · ·
15 2.2 1028 4.8 10−11 0.950

· · · · · · · · · · · ·

Table 1. Parameters of a possible numerical simulation of sphere packing using the
LL algorithm with truncated octahedron as the plesiohedron. The sphere population
is chosen with fractal dimension df = 2.875, n = 74 and n0 = 2. When the rank j of
the iteration increases, the total number, Ns, of spheres increases exponentially, while
the volume fraction ϕj increases very smoothly. Numerical simulation of such sphere
packing is hardly conceivable beyond the rank j = 4 using this method.

We performed a numerical simulation up to j = 3 (number total of spheres:
Ns = 821 550) using the LL algorithm starting from 2 randomly-placed spheres of radius
r0 = 0.2731 in the unit cube. At every rank k = 1, 2, 3, the selection of the nk truncated
octahedra among the νk, is performed randomly. Visualization of a small part of the
packing showing the particles of ranks 0, 1, 2 and 3 is shown on Fig. 5, and the succes-
sive regular lattices, on which the truncated octahedra are lying, are quite visible on it.

A similar conclusion about the spurious evidence of local lattices of plesiohedra
in the LL algorithm case can be drawn from the analysis of the sphere-packing in
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Figure 5. Cut through the rank 3 sphere packing obtained using the LL algorithm
with truncated octahedron as the plesiohedron. The parameters are: df = 2.875,
n = 74, n0 = 2. Colors correspond to the sizes of the spheres (that is: r0 = 0.273

(blue), r1 = 0.061 (green), r2 = 0.014 (yellow), r3 = 0.003 (red)). The size of that part
of the packing is 10% of the unit cube. Since it is a 2D projection of a 3D arrangement
of spheres, this image is not as informative as the 2D model shown on Figure 2.
However, one can see clearly the underlying regular truncated-octahedra honeycomb
used by the LL algorithm, despite the random selection of the sphere locations amongst
the available sites at each iteration.

the reciprocal space. The reciprocal space is the natural framework to analyze the
Small-Angle X-ray Scattering data from systems of particles. In this space, the
natural coordinate frame is represented by the scattering wave vector coordinate
q = (2π/λ)(usca − uinc), in which λ is the wavelength of the scattered X-ray, and
uinc,usca are the unit vectors in the incident and scattered directions respectively. The
static structure factor [41]:

S(q) =
∑
i,j

fifj e
iq(ri−rj)/

∑
i

f 2
i (36)

of an ensemble of spheres (with the centre of the sphere labelled i is located in ri, and its
form factor is fi) is a measured quantity which includes most of the information about
the spatial arrangement of the spheres in the system. The structure factor depends only
on the modulus q = 4π/λ sin(θ/2), in which θ is the scattering angle, when spherical
symmetry applies.

In the case of the LL algorithm packing of spheres, the structure factor function is
almost constant, with a number of strong fine peaks reminiscent of Bragg peaks coming
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Figure 6. Structure factor (black curve) of the ensemble of spheres shown on Fig.5,
built using the LL algorithm up to level 3. The restricted Braggs peaks are due to the
limited regular packing sets inherent to the LL algorithm. The variable q is counted
in units determined by the choice of the unit length (the edge of the cube). For
comparison, the dotted red curve is the structure factor of an Apollonian packing, as
discussed in [17], and the blue curve quite close to value 1 is for packing obtained using
the Manna’s algorithm, as discussed in [13]. In these three examples, the systems were
made of about 800 000 spheres, and angle-averaging was performed with 25 000 random
Euler angles. No Bragg peak is seen either in the Apollonian packing or in the Manna
packing structure factor.

from the BCC symmetry of the tessellation of space by truncated octahedra (see Fig.
6). The LL structure factor is quite different from the structure factor of an Apollonian
packing (dotted red curve) and from the structure factor of a Manna packing (blue
curve), both shown on the Fig. 6 for comparison. This result confirms our conjecture
that the osculatory algorithms are different in essence from the LL algorithm.

7. Conclusion

In the present work, we extended a theorem from Lieb and Lebowitz to derive a wide
range of values of the exponent df for which a population of spheres with continuous
radius-distribution ∼ 1/rdf+1 is space-filling. The method can probably be improved
and hints are given in the text. Although the basis of the LL algorithm does not allow
for the inclusion of all possible space-filling populations of spheres - as evidenced by
the comparison with Apollonian packing - the extended LL theorem nevertheless grants
access to a much larger set of sphere populations, previously unknown or unexplored.
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Physical properties of extremely dense sphere packings, as generated by the LL
algorithm or by the Apollonian osculatory algorithm, remain to be discovered. However,
unusual properties can be expected if one refers to the case of the Menger sponges
since both sorts of systems share basic features (e.g. extreme density, extreme surface,
self-similar spatial distribution of matter, etc.). Indeed, Menger sponges are known
for the spectacular – and still unexplained – localization of electromagnetic waves [42]
or strongly anomalous thermal diffusion [43]. But unlike the Menger cubes – which
are artificial structures –, extremely dense sphere packings appear naturally as high
internal-phase-ratio emulsions [17, 8]. For studies and applications involving physical
properties of extreme sphere-packing, the role of the exponent df is probably of utmost
importance and we may now begin to understand how the value of df is related to the
building process.
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