
HAL Id: hal-02482540
https://hal.science/hal-02482540

Submitted on 12 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fully Automated HTML and JavaScript Rewriting for
Constructing a Self-healing Web Proxy
Thomas Durieux, Youssef Hamadi, Martin Monperrus

To cite this version:
Thomas Durieux, Youssef Hamadi, Martin Monperrus. Fully Automated HTML and JavaScript
Rewriting for Constructing a Self-healing Web Proxy. Journal of Software Testing, Verification and
Reliability, 2019, 30 (2), �10.1002/stvr.1731�. �hal-02482540�

https://hal.science/hal-02482540
https://hal.archives-ouvertes.fr

Fully AutomatedHTML and Javascript Rewriting
for Constructing a Self-healingWeb Proxy
Thomas Durieux1 | Youssef Hamadi2 | Martin
Monperrus3
1INESC-ID and IST, University of Lisbon,
Portugal
2Uber Elevate Research, Paris, France
3KTHRoyal Institute of Technology
Stockholm, Sweden

Correspondence
Thomas Durieux, INESC-ID, and IST,
University of Lisbon, Portugal
Email: thomas@durieux.me

Funding information
This material is based uponwork supported
by Fundação para a Ciência e a Tecnologia
(FCT), with the reference
PTDC/CCI-COM/29300/2017.

Over the last few years, the complexity of web applications
has increased to provide more dynamic web applications
to users. The drawback of this complexity is the growing
number of errors in the front-end applications. In this pa-
per, we present an approach to provide self-healing for the
web. We implemented this approach in two different tools:
1) BikiniProxy, an HTTP repair proxy, and 2) BugBlock, a
browser extension. They use five self-healing strategies to
rewrite the buggyHTML and Javascript code to handle er-
rors in web pages. We evaluate BikiniProxy and BugBlock
with a new benchmark of 555 reproducible Javascript er-
rors of which 31.76% can be automatically self-healed by
BikiniProxy and 15.67% by BugBlock.

1 | INTRODUCTION
According to [1], at least 76% of all websites on the Internet use Javascript. The Javascript code used in today’s web
pages is essential: it is used for social media interaction, dynamic user-interface, usage monitoring, advertisement,
content recommendation, fingerprinting, etc, all of this being entirely part of the “web experience”. For example, when
a user browses the website cnn.com, she is loading more than 125 Javascript files, which represent a total of 2.8
megabytes of code.

The drawback of this complexity is the growing number of errors in web pages. For instance, a common Javascript
error is due to uninitialized errors, resulting in an error message such as cannot read property X of null. Ocariza
et al. [2] have performed a systematic study showing that themajority of themost visited websites contain Javascript
errors.

In this paper, we propose a novel technique to provide self-healing for the web. It is along the line of previous work

1

cnn.com

2

on self-healing software [3, 4], also called failure-oblivious computing (e.g. [5, 6]), automated recovery and remediation
(e.g. [7]). Themajority of the self-healing literature focuses on the C/Unix runtime. On the contrary, we are interested in
the Javascript/browser runtime, which is arguably much different. Indeed, the topic of self-healing for the web is a very
little researched area [8, 9].

Our novel self-healing technique is founded on two insights. Our first key insight is that proxying the source code
before it is executed can be used for providing self-healing capabilities to an application. In this paper, we focus on
two types of proxy: 1) an HTTP proxy between the browser and theweb server, 2) a browser extension that modifies
the request inside the browser. Our second key insight is that themost common Javascript errors can be fixed by an
automated rewriting of HTML or Javascript code.

In this paper, we present two novel self-healing tools: a proxy for the web called BikiniProxy, and a browser
extension called BugBlock. The two tools contain five self-healing strategies that are specifically designed for Javascript
errors. Those strategies are based on rewriting, defined as an automated modification of the code. BikiniProxy and
BugBlock automatically modify the Document Object Model (DOM) of HTML pages or automatically transforms
Javascript abstract syntax trees (AST).

Our approach does not make any assumption on the architecture or libraries of web applications. First, proxy
servers are used inmostweb architectures, and browser extensions are commonly used to change the browser behavior,
for example, to block ads. Second, our approach does not require a single change to existing web pages and applications.
As such, it is highly applicable.

We evaluate our approach as follows. First, we set up a crawler to randomly browse the Internet, for each browsed
page, it logs the Javascript errors, if any, occurring during the loading of the page content. Second, we observe how
BikiniProxy and BugBlock heal those errors by collecting and comparing traces. Over eight full days, our crawler
has visited 96174web pages and identified 4282web pages with errors. We observed that 3727 errors were either
transient (due to asynchronicity [2]) or fixed by the developer after crawling. Eventually, we evaluated BikiniProxy and
BugBlock on 555web pages with errors, representing a random sample of real field errors. BikiniProxy is able tomake
all errors disappear in 176/555 of the cases, that is 31.76%. BugBlock is able tomake all errors disappear in 87/555
of the cases, that is 15.67%. In the best cases, the self-healing provides the user with new features or new content.
We provide a detailed qualitative and quantitative analysis of themain categories of self-healing outcome. To sum up,
BikiniProxy and BugBlock are novel fully automated self-healing techniques that are designed for the web, evaluated on
555 real Javascript errors, and based on original self-healing rewriting strategies for HTML and Javascript.

Our contributions are:
• A novel self-healing approach for today’s web: implemented into two independent tools: a self-healing proxy

(BikiniProxy) and a self-healing browser extension (BugBlock).
• Five self-healing strategies for the web, specifically designed to automatically recover from the most frequent

Javascript errors happening in the browser.
• A benchmark of 555 real web pages with Javascript errors. Special care has been taken so that all error are fully

reproducible for future experiments in this research area.
• AnevaluationofBikiniProxyandBugBlockover555Javascript errors fromourbenchmark. It shows thatBikiniProxy

makes all errors disappear for 31.76% of web pages with errors and BugBlock handles all the errors in 15.67%
of theweb pages from our benchmark. This quantitative evaluation is complemented by a qualitative analysis of
BikiniProxy’s and BugBlock’s effectiveness.

• The implementations of BikiniProxy and BugBlock are open-source and publicly available for future research in
[10].

3

This paper is an extended version of [11]. In the conference paper, we presented only BikiniProxy and its evaluation.
In this extension, we devise and evaluate the corresponding browser extension BugBlock. Both tools have the same
purpose and target the same failures, but they target different use cases and execution environments. Having both
shows that our underlying self-healing concept is generic andwidely applicable.

The remainder of this paper is organized as follows. Section 2 explains the background of BikiniProxy. Section 3
details our approach for introducing self-healing web application and two implementations: BikiniProxy and BugBlock.
Section 4 details the evaluation. Section 5 discusses the security and applicability aspects of the approaches. Section 6
details the threats to validity of the contribution. Section 7 presents the related works, and Section 8 concludes.

2 | BACKGROUND
2.1 | The Complexity of Today’sWeb
Aweb page today is a complex computational object. Amodern web page executes code and depends onmany different
resources. Those resources range fromCSS styles of thousands of lines, external fonts, media objects, and last but not
least, Javascript code.

For example, when a user browses thewebsite cnn.com, he is loadingmore than 400 resources, and 125 of them are
Javascript, which represents a total of 2.8mb of code. Anecdotally, back in 2010, the sameweb page cnn.com contained
890kb of Javascript code [2] (68% less code!).

Today’s web page Javascript is essential: it is used for social media interaction, usagemonitoring, advertisement,
content recommendation, fingerprinting, etc., all of this being entirely part of the “web experience”. Consequently, 76%
of all websites on the Internet use Javascript [1]. To this extent, a web page today is a program, and as such, suffers from
errors.

2.2 | Javascript Errors
Web pages and applications load and execute a lot of Javascript code [12]. This code can be buggy; in fact, the top 100 of
themost visited websites contains Javascript errors [2]. One kind of Javascript error is an uncaught exception, which is
similar to uncaught exceptions inmodern runtimes (Java, C#, Python). While the Javscript community uses the term
“error”, the research community use “failure” in this case. Those errors are thrown during execution if the browser state
is invalid as when accessing a property on a null element (a null dereference).

If an error is not caught by the developer, the execution of the current script is stopped. In Javascript, there is
a different “execution scope” for each loaded scripts (i.e., for each HTML script tag) and for each asynchronous call.
Consequently, contrary to classical sequential execution, in a browser, only the current execution scope is stopped, and
the main thread continues running. This means that one can observe several uncaught exceptions for a single page.
Therefore, depending onwhere the error is happening the error is perceived differently by the end-user. If the error
happens in themain execution scope, the failure will prevent the execution of all the code that is after the crash. This
will have an important impact on the user experience. However, if the error happens is an execution scope that is not
meant to provide a feature for the user, the user will not perceive it, and it will give the impression that the browser
tolerates the failure. But, in this case, there can still be an observable impact on the system, for example, if the error
happens in the loggingmodule.

The uncaught errors are logged in the browser console that is accessible with the developer tool. Most browsers
provide an API to access all the errors that are logged in the browser console. This means that it is relatively easy to

cnn.com
cnn.com

4

monitor Javascript errors in web applications.

2.3 | WebProxies

Aweb proxy is an intermediate component between a client browser andweb server. In essence, a proxy transmits the
client request to the server, receives the response from the server, and forwards it to the client browser. On theweb,
proxies aremassively used for different purposes.

1. A Network Proxy is used to expose a service that is not directly accessible because of network restrictions [13].
The proxy, in this case, is a bridge between two networks, and its only task is to redirect requests and responses.
For example, a popular network proxy is Nginx. It is used to expose websites on port 80which are indeed served on
other ports > 1024. This avoids granting root access to web applications.

2. A Cache Proxy is a proxy that is used to cache some resources directly in the proxy in order to improve the serving
time to an external resource [14]. The cache proxy stores the response of the server locally, and if a request is made
for the same resource, the local version is directly sent to the client without sending the request to the server. A
bluewidely used cache proxy is, for example, a content-delivery network (CDN) that provides optimized access to
static resources on the Internet.

3. A Security Proxy is used to verify whether a client browser is legitimate to access a server [15]. This type of proxy
can be used, for example, to protect a server against Denial-of-service attacks.

4. A Load-balancer Proxy is used on popular applications to distribute the load of users on different backend
servers [16]. A load balancer can be as simple as a round-robin, but can also bemore sophisticated. For instance, a
load-balancer can try to find the least loaded server available in the pool.

2.4 | Browser Extensions

Browser extensions are used by end-users to extend the functionalities of their browsers. It is used for changing the
user interface of the browser, for blocking ads, and for increasing the privacy.

The browser extensions are HTML/Javascript micro-applications that havemore permissions than the traditional
browser Javascript. Those applicationswork at three different levels in the browser. The first level is called “background”.
It means that the code in the extension constantly runs, and is generally used for the core behavior of the extension and
the state storage. It is also the only part of the extension that can register to specific events, such as a new request event,
a new tab event. The second level is the “action” level. It is used for providing information to the user. It is generally
presented as an icon on the right of the URL bar. This level has access to the state of the first level. The third level is the
“injected script” level. This level is used to inject specific Javascript behavior on the page. It can be used, for example, by
a passwordmanager to inject the login and password in a login form.

With those three levels, browser extensions have the possibility to drastically change the behavior of web pages
and interact with the users. Oneway tomodify the behavior of web pages is to block, redirect, and inject scripts in web
pages. For example, ads blockers block the HTTP requests that match specific patterns.

5

3 | FULLY AUTOMATED SELF-HEALING APPROACH AND TOOLS
Wenow present our novel approach to fully automate self-healing of HTML and Javascript in production. This approach
is composed of threemain parts: firstly, the failure-oblivious computing central component (see Section 3.1), secondly,
the self-healing strategies that are used to inject failure-oblivious properties to an application (see Section 3.2), and
finally, the two implementations of the approach BikiniProxy, a HTTP-proxy (see Section 3.3), BugBlock, a browser
extension (see Section 3.4.1).

Those two different implementations show the power of our self-healing concept in different environments. The
first one is more powerful but less practical (BikiniProxy), and the second one is less powerful but more practical
(BugBlock).

3.1 | Failure-oblivious Computing
Ourwork is founded on the failure-oblivious computing principle [5].

Failure-oblivious computing principle It is possible to perform speculative execution after the failure point instead of
crashing.

The goal of failure-oblivious computing is to provide a degraded behavior instead of no behavior at all when the
application is crashing. It is not a long-term solution, but it increases availability. It can be compared to a temporary
hotfix tomitigate a problem before it is permanently fixed. Failure-oblivious computing is desirable when availability
must be maximized while having limited resources for engineering expensive highly reliable and available software.
There is indeed an engineering tradeoff between cost and reliability [17]. Failure-oblivious computing fits in the general
context of self-healing software [3, 4], that is software with seatbelts and airbags [18]. Self-healing is also known as
runtime repair [19] or automated recovery [20, 21].

3.2 | Self-healing Strategies
This section presents the five self-healing strategies that we designed and implemented tomitigate Javascript errors.
We designed those strategy to target themost frequent Javascript errors happening on theweb (see Section 4.2 for
howwe identify thosemost common errors). Those fives strategies are implemented in two tools: in BikiniProxy and in
BugBlock.

We designed:
1. HTTP/HTTPS Redirector that changes HTTPURLs to HTTPSURLs (see Section 3.2.1).
2. HTML Element Creator that creates missing HTML elements (see Section 3.2.2).
3. Library Injector injects missing libraries in the page (see Section 3.2.3).
4. Line Skipper wraps a statement with an if to prevent invalid object access (see Section 3.2.4).
5. Object Creator initializes a variable with an empty object to prevent further null dereferences (see Section 3.2.5).

3.2.1 | HTTP/HTTPS Redirector
Themodern browsers have the policy to block unsecured content (i.e., HTTP resources) in secured web pages (HTTPS).
For example, https://foo.com cannot load http://foo.com/f.js (no https). The rationale is that the unsecured

6

requests can be easily intercepted andmodified to inject scripts that will steal information from the secure page, for
example, your banking information.

As of 2019, we still are in a period of transition where both HTTP andHTTPSweb pages exist, and somewebsites
provide access to their content with both HTTP and HTTPS protocol. Consequently, it happens that the developers
forget to change someURL in their HTTPS version, and those resources are blocked, resulting in incomplete web pages
or Javascript errors.

The self-healing strategy of HTTP/HTTPS Redirector is to change all the HTTPURL by HTTPS URL in HTTPS pages.
By doing this, all resources are loaded, and the unwanted behavior due to blocked resources is fixed.

3.2.2 | HTML Element Creator
As shown byOcariza et al. [12], most of the Javascript errors are related to the DOM. This is especially true when the
developers try to dynamically change the content of a specific HTML element using getElmentById, like:
document . getElmentById (‘ ‘ elementID ’ ’) . innerText = ‘ ‘ Dynamic content ’ ’ ;
Since the HTML and the Javascript are provided in different files, it is not rare that an HTML element with an ID is
removed or changed without changing the associated Javascript code. For example, if DOM element "elementID" is
removed, document.getElmentById(...) returns null and the execution results on a null dereference when the property
innerText is set.

When an error happens, BikiniProxy and BugBlock determine if the error is related to the access of a missing
element in the DOM: it does so by looking at the Javascript code at the failure point. If it is the case, “HTML Element
Creator” extracts the query that the Javascript used to access the element and create an empty and invisible HTML
element in the DOM. The Javascript code then runs without error, and the execution continues without affecting the
client browser.

3.2.3 | Library Injector
In Javascript, it is a common practice to rely on external libraries to facilitate the development of the web applications.
Some of these libraries are extremely popular and are used by millions of users every day, like jQuery or AngularJS.
Sometimes, these libraries are not correctly loaded into web pages, and this produces a very characteristic error: for
example, jQuery is not defined. In those cases, we can parse the error message and determine which library is missing.

To do so, we realize an initial offline training phase, missing libraries are simulated on a test website, and reference
errors are collected for the top 10 libraries presented in [1]. Based on these reference errors, error parsing rules have
beenmanually written to determine which library is missing. When Library Injector detects that a web page contains an
error related to amissing library, it injects the related library on the web page. The rewritten page contains themissing
library, and the web page can be completely loaded.

3.2.4 | Line Skipper
The errors XXX is not defined and XXX is not a function in Javascript are errors that are related to invalid access to a
variable or a property. XXX is not defined is triggeredwhen an identifier (name of variable/function) is used but was
never defined in the current scope. For example, if we call if(m){}without defining m, the execution ends with the error
‘m’ is not defined.

7

Algorithm 1Algorithm to rewrite Javascript codewith “Line Skipper” strategy
Input: E: error
Input: R: resource
1: (line, column, resource_url) = extractFailurePoint(E, R.body)
2: if resource_url is R.url then
3: ast = getAST(R.body)
4: elem = getElementFromAst(ast, line, column)
5: wrapElemWithIf(elem)
6: R.body =writeAST(ast)
7: end if

The second error, XXX is not a function, is triggeredwhen a variable that is not a function is called. For example,
the code var func = null; func()will trigger the error func is not a function.

To avoid these errors, Line Skipper wraps the statement that contains the invalid codewith an if that verifies that
the element is correctly defined for the first error, if (typeof m != ‘undefined’ && m) {if(m){}}. And to verify that
a variable contains a reference to function, the rewriter changes the Javascript code as follows if (typeof func ===

‘function’) {func()}.
Algorithm 1 presents the algorithm of Line Skipper. First Line Skipper extracts the line, column, and URL of the

resource from the failure point of the error. Line Skipper verifies that the current request is the resource that contains
the error. Then Line Skipper extracts the AST from the Javascript code and looks for the element that is not defined.
Finally, the AST is transformed back to a textual form to be sent back to the client.

3.2.5 | Object Creator
The Object Creator strategy is created to handle null dereferences (e.g., NullPointerException in Java), which is
one of the most frequent error type [22] in Java and also the most frequent failure in Javascript [12]. The typical
strategy to handle those errors is to initialize the null variable or replace the null expression by another non-null variable
or expression. Since Javascript is an untyped language, all null dereferences can be handled by initializing the null
variable/expression with a generic empty object var obj = ;. For example, the code var m = null; m.test = ”; will
trigger the error Cannot set property test of null and can be handled by adding if (m == null) {m = {};} before
setting m.test.

3.3 | BikiniProxy
We now are presenting BikiniProxy, the first of the two implementations of our approach. The intuition behind
BikiniProxy is that a proxy between web applications and the end-users could provide the required monitoring and
intercession interface for automatic error handling. This is the concept of “self-healing proxy” that we explore in this
paper. BikiniProxy is composed of threemain parts that are presented in Figure 1.

1. Proxy (see Section 3.3.1) is a stateless HTTP proxy that intercepts the HTML and Javascript requests between the
browser (also called “client” in this paper) and the webserver.

2. The Rewriting Service (see Section 3.3.2) that contains the self-healing strategies to handle Javascript errors.
3. TheMonitoring and Self-healing Backend (see Section 3.3.3) stores information about the known errors that have

8

BikiniProxy

Client

HTTP request
HTTP
request

HTTP response HTTP
response

Rewriting
Service

Monitoring & Self-Healing
Backend

query
JS errors

Browser

Proxy (stateless)

Server

F IGURE 1 The Architecture of BikiniProxy. The key idea is that all requests are proxied by “BikiniProxy”. Then, if an
error is detected, a self-healing strategy based onHTML and/or Javascript rewriting is automatically applied.

happened and the success statistic of each self-healing strategies for each error.

Let us start with a concrete example. Bob, a user of the website http://foo.com browses the page gallery.html
and uses BikiniProxy to improve his web experience. Since BikiniProxy is a proxy, when Bob opens gallery.html, the
request goes through the proxy. When the request is made, BikiniProxy queries the backend to knowwhether another,
say Alice, has experienced errors on gallery.html. Indeed, Alice’s browser got a jQuery is not defined error two days
before. The backend sends this error to the proxy, which consequently launches the Rewriting Service to handle the
error. For gallery.html, the rewriting is HTML-based and consists of injecting the library jQuery in the HTML response.
BikiniProxy also injects its error monitoring framework before sending the rewritten response to Bob’s browser. The
rewritten page is executed by Bob’s browser, BikiniProxy’s monitoring tells the proxy that Alice’s error does not appear
anymore, meaning that the self-healing strategy handled it.

Algorithm 2 shows the complete workflow of BikiniProxy. BikiniProxy receives the HTTP request from the browser
(Line 1). Then it redirects the request to theWeb Server (Line 2) like any proxy. For each HTML response, BikiniProxy
injects a framework (Line 4) to monitor the Javascript errors in the client browser. When an error happens on the client
browser, it is sent to BikiniProxy’s backend for being saved in a database.

BikiniProxy queries the Monitoring & Self-healing backend to know which Javascript resource has thrown an
error in the past: for each HTML and Javascript resource, BikiniProxy queries the backend service with the URL of the
requested resource to list all the known errors (Line 6). If there is at least one known error, BikiniProxy triggers the
Rewriting Service to apply the self-healing strategies the requested resource (Line 10). Then the response is sent to the
client (Line 15) with a unique id tomonitor the effectiveness of the applied self-healing strategy.

Resource Aweb resource is a content on which a web page is dependent. For instance, an image or a Javascript script
is a web resource. In this paper, a web resource is defined by 1) an URL to address the resource; 2) its content (text or
binary content) and 3) the HTTP headers that are used to serve the resource. The resource can be used as an attribute
of an HTML tag (<script>, , <link >, <iframe>, etc.) or used as an AJAX content.1

1AJAXmeans requested programmatically in Javascript code

http://foo.com

9

Algorithm 2 Themain BikiniProxy algorithm
Input: B: the client browser
Input: W: theWeb Server
Input: R: the rewriting services
Input: D: BikiniProxy Backend
1: while newHTTP r equest fromB do
2: r esponse←W(r equest)
3: if request is html page then
4: r esponse ← i nj ect _bi k i ni pr ox y _code(r esponse)
5: end if
6: er r or s←D .pr ev i ous_er r or s_f r om(r equestur l)
7: if errors is not empty then
8: for r in R do
9: if i sT oAppl y (r , er r or s, r equest , r esponse) then
10: r esponse ← r .r ewr i t e(r esponse, r equest , er r or s)

11: r esponse ← r esponse + uui d

12: end if
13: end for
14: end if
15: send (r esponse)

16: endwhile

3.3.1 | The Proxy
A proxy intercepts the HTML code and the Javascript code that is sent by the webserver to the client browser. By
intercepting this content, the proxy canmodify the source code of the website and therefore change the behavior of the
web application. Onewell-known example of such a change is tominimize the HTML and Javascript code to increase
the download speed.

In BikiniProxy, the proxy automatically changes the Javascript code of the web application to handle known errors.
BikiniProxy is configuredwith what we call “self-healing strategies”. A self-healing strategy is a way to recover from a
certain class of errors automatically. The strategies are presented in Section 3.2 and how they are applied is presented
in Section 3.3.2.

3.3.2 | Rewriting Service
The role of the Rewriting Service is to rewrite the content of the Javascript and HTML resources in order to: 1) monitor
the Javascript errors that happen in the field 2) change the behavior when a Javascript resource has been involved in an
error in the past. In this paper, a “known error” is an error that has been thrown in the browser of a previous client, that
has been detected by themonitoring feature of BikiniProxy and that has been saved in theMonitoring & Self-healing
Backend (see Section 3.3.3).

We design five self-healing strategies that target themost frequent Javascript errors that we observe whenwe
craw the Internet. Those strategies are presented in Section 3.2. In addition, the Rewriting Service is plugin-based, it
can be easily extendedwith new self-healing strategies to follow the fast evolution of the web environment.

10

Client

HTTP
request

HTTP
response

Monitoring & Self-Healing
Backend

query

JS errors

Browser
Server

Browser
Extension

Self-healing
Strategies

F IGURE 2 The architecture of BugBlock. The key idea is that the browser extension intercepts the HTTP requests
of the server and applies a self-healing strategy when an error is known in the request directly in the browser.

3.3.3 | Monitoring and Self-healing Backend
The Monitoring and Self-healing Backend fulfills three tasks. The first task is to receive and store all the Javascript
errors happening on client browsers. The Backend provides an API for BikiniProxy to query if a specific resource (URL)
contains known errors.

The second task of the backend is tomonitor the effectiveness of the different self-healing strategies. Each time
that the section of the Javascript code rewrite by one of the five self-healing strategies is executed, an event is sent to
the BikiniProxy backend to keep track of the activation of the different strategies. Based on the number of activation
and the number of errors per page, we can estimate the relative effectiveness of the self-healing strategies.

The third task is to provide a layer of communication with the developers about the monitored errors and the
effectiveness of all self-healing strategies. For example, the following message can be given to the developer: “The
strategy Library Injector has injected jQuery 22 times in the page gallery.html to handle the error jQuery is not

defined”. This is valuable information to assist the developers in designing a permanent fix. The backend also provides a
visual interface that lists all the errors that the end-users face during the browsing of the web page.

3.4 | BugBlock
Wenowpresent the components of the second implementation of our approach. BugBlock is the second implementation
of our approach that aims to provide self-healing abilities toweb applications. BugBlock is like an ad-blocker, but instead
of blocking the advertisement, it blocks the Javascript errors. This implementation is independent of BikiniProxy.

Figure 2 presents the architecture of BugBlock. It is composed of twomain parts.
1. BugBlock (see Section 3.4.1) is a browser extension that intercepts the HTML and Javascript requests between the

browser and page rendering. The extension is also responsible for applying the self-healing strategies that handle
Javascript errors.

2. TheMonitoring Backend (see Section 3.4.3) stores information about the known errors that have happened and
the success statistics of each self-healing strategy for each error. This part can be share with theMonitoring and
Self-healing Backend of BikiniProxy.

11

Algorithm 3 Themain BugBlock algorithm
Input: T: a browser tab
Input: W: theWeb Server
Input: R: self-healing strategies
Input: D: BikiniProxy Backend
1: while new r equest to T do
2: if r equest is main request then
3: er r or s←D .pr ev i ous_er r or s_f r om(r equestur l)
4: i nj ect _bi k i ni pr ox y _code in T
5: end if
6: if r equest triggers an error from er r or s then
7: r esponse←W(r equest)
8: for r in R do
9: if i sT oAppl y (r , er r or s, r equest , r esponse) then
10: r esponse ← r .r ewr i t e(r esponse, r equest , er r or s)

11: end if
12: end for
13: r ed i r ect (r esponse)

14: end if
15: endwhile

3.4.1 | The Extension
The extension part of BugBlock contains all the logic required to apply the self-healing strategies to automatically
handle Javascript errors directly inside the browser.

Algorithm 3 shows the workflow of BugBlock. BugBlock listens to all web requests for each tab in the browser
(Line 1). For eachmain request of a tab (the request that corresponds to the URL of the bab), BugBlock requests the
backend to knowwhich Javascript resource has thrown an error in the past (Line 3) and it injects a monitoring script in
the tab (Line 4). When an error happens on the client browser, it is sent to BikiniProxy’s backend for being saved in a
database.

For all the other requests, BugBlock checks if they triggered errors in the past (Line 6). If it is the case, it requests
the response of the request to theWeb Server (Line 7). Then, it applies the self-healing strategies on the requested
content (Line 10). BugBlock redirects the request to data format URL (Line 13) that allows to send content to the
browser in the base64 format, for example, data:text/javascript,<base64>.

3.4.2 | Interface
BugBlock is a browser extension that has a similar user interface to ad-blockers. It is directly integrated into the browser,
displays its logo next to the URL bar, and it provides feedback to the users about what has been detected andwhat code
transformations have beenmade and executed.

Figure 3 presents a screen capture of the user interface. It provides the list of known errors for the page, the list of
errors that are currently faced, and the list of the self-healing strategies that have been applied to the current page. The
interface can be extended to provide further statistics to the users, such as themost frequent errors and the websites

12

F IGURE 3 The user interface of BugBlock. It shows the known errors, the errors that are currently detected, and
the self-healing strategies that are applied.

Characteristics BikiniProxy BugBlock
Environment HTTP proxy Browser extension
Difficulty of installation Specialist End-user
Permission level Full control of HTTP traffic Limited by the browser API
Feedback level Developer feedback via a dashboard User feedback via the extension and developer

feedback via a dashboard
self-healing strategies 5 5
Self-healing location Server-side Client-side
Update Handle by the server owner Handle automatically by the extension store
TABLE 1 Summary of the differences between BikiniProxy and BugBlock.

that contain the biggest number of errors per visited page. Those statistics can help to educate the user to knowwhat is
happening on their web session.

3.4.3 | Monitoring and Self-healing Backend
TheMonitoring and Self-healing Backend of BugBlock is the same component as the one present in BikiniProxy. If some
users use the proxy, while others use the browser extension, having the same component allows our system to share the
self-healing knowledge between the two groups of users. In theory, this component could also be directly integrated
into the browser extension. This would allow us to have a complete decentralized approach and to increase the privacy
since no content will ever be sent to an external server.

3.5 | Difference between BikiniProxy and BugBlock
BikiniProxy and BugBlock are two different implementations of the same approach. They aim to provide self-healing
ability to web applications. BikiniProxy is anHTTP proxy, and BugBlock is a browser extension. Both tools intercept
HTTP requests to inject self-healing strategies to handle known Javascript errors.

Despite those similarities, BikiniProxy and BugBlock are different and have different characteristics. Table 1

13

highlights their differences. The proxy-based approach of BikiniProxy is the most powerful approach of the two: it
allows tomodify all the requests that go through the proxy freely. However, it is complex to be set up by end-users and
introduces a potential security issue since BikiniProxy behaves as aman in themiddle.

On the other hand, the main strength of BugBlock is that it is easy to be set up by end-users. This set up also
contributes to limit the performance overhead since all the modifications are made locally. There is no centralized
server that needs to handle all the requests from all potential users of the system. However, BugBlock is limited by
the API of the browsers. Therefore it is not possible to modify the scripts that are present in the main HTML page
of thewebsite, and consequently limits the ability of the tool. An additional advantage of BugBlock over BikiniProxy
is that it provides a direct feedback to the users, i.e., to tell her whether a self-healing strategy has been applied (see
Section 3.4.2). The final advantage of BugBlock is that the implementation is less complex compared to BikiniProxy. This
difference in complexity makes BugBlock amore reliable approach compared to BikiniProxy. The technical difference
between the two implementations is described in Section 3.6.

In the evaluation (see Section 4), we compare the effectiveness of BikiniProxy compared to BugBlock. The goal is to
identify howmuch is the decrease in effectiveness with the extension-based approach. It is important to analyze this to
understand the trade off between applicability and performance.

3.6 | Implementation
In this section, we describe the technical aspects of BikiniProxy and BugBlock. The source code and the usage examples
are publicly available on GitHub [10].

3.6.1 | Implementation of BikiniProxy
The implementation of BikiniProxy is composed of twomain parts: the proxy itself and the code rewriting part.

Implementation of the Proxy
As previously explained, BikiniProxy is a technique that intercepts the requests between the clients and the server
andmodifies them on the fly. This is also known as anHTTP-proxy or aMan-in-the-Middle technique [23] depending
on the usage. blueSince BikiniProxy is designed as a system or browser proxy not as a server proxy, it implies that
BikiniProxywill serve content from different servers. This is actually close to aman-in-the-middle technique since it
needs to intercepts HTTPS requests that are encrypted between the clients and theweb servers. In order to decrypt
them, we need to perform a man-in-the-middle certificate spoofing. It consists of installing a root certificate in the
browser. This root certificate is then used to decrypt all requests between the client and the webserver. The proxy then
modifies the request, re-encrypts it and finally sends it the webserver. We base the implementation of the proxy on an
existing proxy AnyProxy.2 AnyProxy is a monitoring proxy designed by Alibaba to assist the debugging of their web
systems. Wemodify AnyProxy to be able tomodify the requests, and we include the system that allows us to easily add
new self-healing strategies.

For the evaluation, the proxy is combinedwith puppeteer3 in order to automate the process.

2anyproxy Github repository: https://github.com/Alibaba/anyproxy
3puppeteer GitHub repository: https://github.com/GoogleChrome/puppeteer

https://github.com/Alibaba/anyproxy
https://github.com/GoogleChrome/puppeteer

14

Implementation of Code Rewriting
The second component is responsible for rewriting the source code of the web pages. This poses four main challenges:
1) identify themain request giving the HTML that defines header and body of the page, 2) regroup all the requests from
the same session 3) localize the embedded Javascript scripts in HTML source code 4) being fast enough in order not to
disturb the user experience.

The two first challenges are related to track the requests and to knowwhich requests need to be rewritten. Indeed,
in order tomonitor the Javascript errors, BikiniProxy needs to inject a monitoring script in all the web pages. The only
way to inject this script is to identify themain request of the page and to inject themonitoring script inside it. The naive
approach of injecting themonitoring script in all HTML requests does not work. Indeed, someHTML requests cannot
contain Javascript code, and therefore, this strategy would introduce additional bugs in the web application under
consideration. Our solution is to only inject the script in HTML requests that have a HEADHTML tag. The drawback of
this solution is an increase of required processing, because it requires to analyze all HTML responses.

The second challenge is to link all the Javascript resources to themain page, for example, the page foo.com loads
the script bar.com/jquery.js andwe need to create a logical link between that resource and themain page foo.com.
This is required in order to be able to track down which resource contains the bug, or which page contains a bug. In
order to handle this challenge, the proxy defines a unique ID on eachmain page. This ID is then used to bluetrack the
Javascript resources that are loaded on each page.

The third challenge is to rewrite the Javascript that is embedded directly in the HTML. This is a problem since we
rely on the line number defined in the Javascript error to rewrite the Javascript. Since the content of the HTML page
can bemodified dynamically in Javascript, the line number of the error can be impactedwhich would break the causal
relationship between line numbers and errors. We handle this problem by 1) looking at the exact location where the
error has been triggered and 2) verifying that the surrounding linesmatch the error by looking at the variable names
and function name.

The final challenge is about the performance of source code rewriting. Parsing and iterating over the HTML/-
Javascript AST is CPU intensive. Therefore, the self-healing strategies have to be optimized to reduce the number
of parsed AST and the number of times the AST is traversed. For this, we designed the plugin system for the self-
healing strategies in a way that allows to only parse and print once each Javascript resource. This drastically increases
performance.

We use htmlparser24 to parse and iterate the HTMLAST and the library babel.js5 for analyzing and transforming
the Javascript abstract syntax tree. The implementation of BikiniProxy is composed of 4378 lines of Javascript code
and 17 dependencies (504.804 lines of code).

3.6.2 | Implementation of BugBlock
In this section, we present the prototype implementation of BugBlock. blueBugBlock does not have challenge 1, 2 and 4
described in the implementation of BugBlock. With a browser extension, we can directly know fromwhich web page
a request comes and what the main request is. Therefore, challenge 1 and 2 do not exist. For challenge 4, BugBlock
is less impacted by the performance problem because, firstly, it does not need to parse themain request to inject the
monitoring script. Secondly, the AST parsing and iterating are directly executed by the client. Therefore a single server
does not need to handle all the load because the load is distributed among all clients.

However, BugBlock suffers from a different challenge. Browsers do not provide a direct API tomodify Javascript
4htmlparser2 Github repository: https://github.com/fb55/htmlparser2
5babel.js GitHub repository: https://github.com/babel/babel

https://github.com/fb55/htmlparser2
https://github.com/babel/babel

15

code, which we require to apply the self-healing strategies. The solution that we implemented consists of blocking the
request that loads the resource, and then create a newHTTP request using the Ajax API that downloads the Javascript
resource as a textual file. Once the file is downloaded, it can be rewritten and injected back to the web page in order to
be executed.

The implementation of BugBlock is composed of 1634 lines of Javascript code and four dependencies (39866 line
of code).

4 | EVALUATION
In our evaluation, we answer the following research questions.

RQ1. [Effectiveness] How are BikiniProxy and BugBlock effective at automatically fixing Javascript errors in
production, without any user or developer involvement? The first research question studies if it is possible to handle
field Javascript errors with our proxy-based approach. Wewill answer this question by showing how real-world errors
have been handled with one of our implemented self-healing strategies.

RQ2. [Outcome]What is the outcome of self-healing strategies with BikiniProxy and BugBlock on the page be-
yondmaking the error disappear? In this research question, we explore what are the possible outcomes of BikiniProxy
on buggy web pages. Wewill answer this research question by presenting real-world case studies of different possible
outcomes.

RQ3. [Comparison] Do the different self-healing strategies perform equivalently? We present to what extent
the different self-healing strategies are used: Which type of errors are handled by the five self-healing strategies?

4.1 | Experimentation Protocol
We set up the following experimentation protocol to evaluate BikiniProxy and BugBlock. Our idea is to compare the
behavior of an erroneous web page, against the behavior of the same, but self-healed page using our tools: BikiniProxy
and BugBlock. In order to achieve this goal, we apply the experimentation protocol twice, one for each tool. The
comparison is made at the level of “web trace”, a concept we introduce in this paper, defined as follows.

web trace Aweb trace is the loading sequence and rendering result of a web page. Aweb trace contains 1) the URL
of the page 2) all the resources (URL, content, see Definition 3.3) 3) all the Javascript errors that are triggeredwhen
executing the Javascript resources and 4) a screenshot of the page at the end of loading.

Given a benchmark of web pages with Javascript errors, the following steps are made. The first step is to collect the
web trace of each erroneous web page. The second step is to collect the newweb trace of each erroneousweb page
with one of our implementation of proxy-based failure-oblivious approaches (Recall that all resources are rewritten
by our five self-healing strategies). In addition to the web trace, we also collect data about the self-healing process:
the strategies that have been activated, defined by the tuple (initial error, strategy type). The third step is to compare
for eachweb page the original web trace against the self-healedweb trace. The goal of the comparison is to identify
whether our approach is able to heal the Javascript errors. For instance, the comparisonmay yield that all errors have
disappeared, that is a full self-healing.

We apply this protocol twice, once for BikiniProxy and once for BugBlock. At the end of the experimentation, we
have for each tool the web trace and the self-healing strategies that have been applied for each bug of the benchmark.

16
TABLE 2 Descriptive Statistics of DeadClick

Crawling stats Value
Visited Pages 96174
Pages with Error 4282 (4.5%)
Benchmarks stats Value
Pages with Reproduced Errors 555
#Domains 466
Average # resources per page 102.55
Average scripts per page 35.51
#Min errors per page 1
Average errors per page 1.49
#Max errors per page 10
Average pages size 1.98mb

4.2 | Construction of a Benchmark of Javascript Field Errors
To evaluate our approaches, we need real-world Javascript that are reproducible. For each reproducible errors, wewant
to compare the behavior of the web pagewith andwithout the self-healing approaches. To our knowledge, there is no
publicly available benchmark of reproducible Javascript errors. We create a new benchmark. We call it the DeadClick
benchmark. The creation of our benchmark is composed of the following steps:

1. Randomly browses the web to discover web pages on Internet that have errors (see Section 4.2.1).
2. Collect the errors and their execution traces (see Section 4.2.2).
3. Ensure that one is able to reproduce the errors in a closed environment(see Section 4.2.3).

4.2.1 | WebPage Finder
The first step of the creation of DeadClick is finding web pages that contain errors. In order to have a representative
picture of errors on the Internet, we use a random approach. Ourmethodology is to take randomly twowords from the
English dictionary and to combine those twowords in a Google search request. A fake crawler then opens the first link
that Google provides. If an error is detected on this page, the page URL is kept as tentative for the next step. The pros
and cons of this methodology are discussed in Section 6

4.2.2 | Web Trace Collector
The Javascript environment is highly dynamic and asynchronous. It means that many errors are transient and as such
are not reproducible in the future, even in a very short period of time after their observation.

For identifying bluereproducible errors, our idea is to collect the web trace of the erroneous page and to try to
reproduce the exact sameweb trace in a controlled environment, see Section 4.2.3

17

0

2 k

4 k

6 k

8 k

10 k

12 k

14 k

16 k

javascript

gif

jpeg

htm
l

png

css

x-javascript

json

x-font-woff
N

b
Re

qu
es

ts

F IGURE 4 Bar plot of the number of requests by content-type.

We implement the trace collection using the library puppeteer fromGoogle6, which provides an API to control
Chrome in a programmatic manner. The big advantage of this library is that it uses the same browser engine as Chrome
end-users, meaning that, by construction, DeadClick is only composed of errors that really happen on user browsers.

Since Javascript is mostly asynchronous, theWeb Trace Collector waits for the end of loading where loading is
defined as follows: 1) it opens the URL, 2) it waits for seven seconds, in order to load and execute all resources, in
particular, Javascript files. 3) it scrolls the page to the bottom, in order to trigger additional initialization and Javascript
execution. 4) it waits again for one second.

During this process, the Web Trace Collector logs 1) all errors that occur in the browser console and 2) all the
requests (including the HTTP headers and the body) made from the browser. When the page is completely loaded, a
screenshot of the page is taken, it provides a visual representation of the page. At the end of this process, for each page,
the collected data is stored on disk if at least one error has been logged during the page browsing.

4.2.3 | WebPage Reproduction
The last step of the benchmark creation consists of verifying that the collected errors can be reproduced. We consider
that we succeed to reproduce the behavior of the web page when the observed errors during reproduction are identical
to the ones in the originally collected web trace.

The reproduction of the error is done by browsing the erroneous page again, but instead of using the resources
from the Internet, theWeb Page Reproduction is cut from the Internet and only serves the resources stored on disk. In
addition, it denies all the requests that have not been observed during the initial collection of the page.

6puppeteer repository https://github.com/google/puppeteer

https://github.com/google/puppeteer

18
TABLE 3 The Top 10 Error Types in DeadClick (left-hand side).
Error messages #Web Pages # Domains # Initial Errors
1 XXX is not defined 200 166 307
2 Cannot read property XXX of null 156 126 176
3 XXX is not a function 92 86 111
4 Unexpected token X 54 51 61
5 Cannot set property XXX of null 21 17 24
6 Invalid or unexpected token 18 12 21
7 Unexpected identifier 13 11 15
8 Script error for: XXX 8 3 10
9 Themanifest specifies content that cannot be displayed on

this browser / platform.
5 5 7

10 adsbygoogle.push() error: No slot 4 4 7
53 different errors 555 466 826

4.3 | Description of DeadClick
Table 2 gives the main statistics of DeadClick. TheWeb Page Finder visited a total of 96174 pages, and 4282 of the
pages contains at least one error (4.5%), out of which 555 errors have been successfully reproduced. The final dataset
contains errors from 466 different URL domains representing a large diversity of websites. There is, on average, 1.49
error per page, and each page has between one and ten errors.

Table 3 presents the top 10 of the errors present in DeadClick. In total DeadClick contains 53 different error types
for a total of 826 collected errors. 69% of the Javascript errors are the first three error types: XXX is not defined,
Cannot read property XXX of null and XXX is not a function. Figure 4 presents the number of requests for the top 9
resource types. In our benchmark, the most common external resources are Javascript files. The rest of the distribution
illustrates how complexmodern web pages are. For sake open of open-science, DeadClick and its mining framework are
available on Github [10].

4.4 | RQ1: Effectiveness of Self-healingWebApplications
Wenow present the results of the first research question. Table 4 shows the top 10 types of errors in the considered
benchmark and how they are handled by BikiniProxy and BugBlock.

The first column contains the rank of the error type. The second column contains the error type, represented by
themessage of the error. The third column contains the number of healed errors with BikiniProxy. The fourth column
contains the percentage of errors fixedwith BikiniProxy. The fifth column contains the number of healed errors with
BugBlock. The sixth column contains the percentage of errors fixedwith BugBlock.

The first major result lies in the first row. It presents the error “XXX is not defined”, which is themost common on
theweb according to our sampling. This error is present in 200web pages across 166 different domains (see Table 3).
It is thrown 307 times, meaning that some web pages throw it several times. With BikiniProxy, this error is healed
184/307 times, which represents amajor improvement of 59.93%. With BugBlock, this error is healed 36/307 times,

19
TABLE 4 The effectiveness of BikiniProxy and BugBlock (right-hand side).

BikiniProxy BugBlock# Error messages #Healed Errors Improvement #Healed Errors Improvement
1 XXX is not defined 184 59.93% 36 11.72%
2 Cannot read property XXX of null 42 23.86% 10 5.74%
3 XXX is not a function 11 9.9% 20 18.01%
4 Unexpected token X 2 3.27% 8 13.11%
5 Cannot set property XXX of null 11 45.83% 0 0%
6 Invalid or unexpected token 0 0% 0 0%
7 Unexpected identifier 0 0% 0 0%
8 Script error for: XXX 2 20% 0 0%
9 The manifest specifies content

that cannot be displayed on this
browser / platform.

0 0% 0 0%

10 adsbygoogle.push() error: No slot 0 0% 0 0%
53 different errors 248/826 30.02% 88/826 10.67%

which represents amajor improvement of 11.72%.
A secondmajor result is that BikiniProxy is able to handle at least one error for the fivemost frequent Javascript

errors. It succeeds to heal between 3.27% and 59.93% of the fivemost frequent Javascript errors in our benchmark.
Overall, BikiniProxy handles 248 errors, and BugBlock handles 88 errors. It means that BikiniProxy reduces by 30.02%
the number of errors in the benchmark and BugBlock 10.67%. Those results also indicate that the drawback of using a
browser extension is almost 20% fewer handled error.

Nowwe discuss the categories of healed errors. We identify whether:

1. All errors disappeared: no error happens anymore in the page loadedwith our tool, meaning that one or a combination
of rewriting strategies have removed the errors.

2. Some errors disappear: there are fewer errors than in the original web trace.
3. Different errors appear: at least one error still, and it is a new error (new error type or new error location) that has

never been seen before.
4. No strategy applied: the error type is not handled by any of the strategies, and thus there are the same errors than in

the original web trace.

Table 5 presents the number of web pages per category. The first line of Table 5 shows that the number of web
pages that have all the Javascript errors healed by BikiniProxy and BugBlock. BikiniProxy is able to handle all errors for
176/555 (31.76%) web pages of the DeadClick benchmark. BugBlock is able to handle all errors for 87/555 (15.67%) of
the DeadClick benchmark. The second line shows the number of web pages that have been partially self-healed, by
partially, wemean that the number of Javascript errors decrease but are still not zero. With BikiniProxy, 42web pages
contain fewer errors than before, andwith BugBlock, nine web pages are in this case. The third line shows the number

20
TABLE 5 Analysis of the healing effectiveness per page.

BikiniProxy BugBlockMetric Name # Pages Percent # Pages Percent
All Errors Disappeared 176/555 31.76% 87/555 15.67%
Some Errors Disappeared 42/555 7.58% 9/555 1.62%
Different/Additional Errors 140/555 25.27% 52/555 9.37%
No Strategy Applied 196/555 35.31% 407/555 73.15%

(a)Without BikiniProxy, some content is missing (b) Using BikiniProxy, the page loading is self-healed.

F IGURE 5 A real web page suffering from a Javascript bug. With BikiniProxy, the bug is automatically healed,
resulting in additional information provided to the web page visitor.

of web pages that have new errors than before: with BikiniProxy, this case is detected for 140/555 (25.27%) web pages,
and 52/555 (9.42%) with BugBlock. The last line shows the number of web pages where none of the strategies has been
applied: in 196/555 (35.13%) the errors are of a type that is not considered by BikiniProxy. In the case of BugBlock,
406/555 (73.28%) of the buggy pages have not been handled by BugBlock. To better understand the case where no
strategy can be applied, we perform amanual qualitative analysis.

Unhandled Errors
The errors are unhandled when none of the five rewriting strategies succeed to heal the errors. In our experiment, this
type of scenario is frequent for BugBlock with 73.28% of the web pages not being handled, and in a lower proportion for
BikiniProxy with 196/555 of web pages have errors not healed, which represents 35.13% of the erroneous web pages
of DeadClick.

The difference between the number of unhandled errors betweenBikiniProxy andBugBlock is related to a technical
limitation of BugBlock. BugBlock is not able to rewrite theHTML content of the page before they are executed. It means
that in all the cases where the error is triggered inside anHTML page, for example, in a <SCRIPT>tag, BugBlock is not
able to handle the error. This is due to a technical limitation of browser extensions.

For the other bluecases, we identify twomain root causes. The first cause of non-healed errors is that the error type
is not supported. For example, the web page http://dnd.wizards.com/articles/unearthed-arcana/artificer is
loading a JSON file. However, the JSON file is invalid, and the browser does not succeed to parse it which produces
an Unexpected token < error. None of the five strategies is able to handle malformed JSON errors. The second cause
of non-healed errors is that the self-healing strategies have not enough information to rewrite the resource. For
example, the web page http://moreas.blog.lemonde.fr/2007/02/28/le-pistolet-sig-sauer-est-il-adapte-

http://dnd.wizards.com/articles/unearthed-arcana/artificer
http://moreas.blog.lemonde.fr/2007/02/28/le-pistolet-sig-sauer-est-il-adapte-a-la-police/
http://moreas.blog.lemonde.fr/2007/02/28/le-pistolet-sig-sauer-est-il-adapte-a-la-police/

21

F IGURE 6 The two buttons in orange aremissing in the original buggy page. When BikiniProxy is enabled, the two
orange buttons provide the user with new user-interface features.

a-la-police/ contains the error Cannot read property ’parents’ of undefined, this error should be healed with “Ob-
ject Creator” rewriting. However, the trace of the error does not contain the URL of the resource that triggers this error
because the Javascript code has been unloaded. Consequently, “Object Creator” is not able to knowwhich resource has
to be rewritten to handle the error.

In summary, Table 5 shows that BikiniProxy is almost able to heal all the errors from a third of DeadClick. The
second third of the benchmark is pages that cannot be healed with BikiniProxy. The last third contains web pages that
are partially headed or that the self-healing strategies produce new errors. In the case of BugBlock, Table 5 shows that
BugBlock is not able to handle the errors in themajority of the cases (73%) and is able to handle the errors of 15.67% of
the pages completely. It shows that the technical limitations of browser extension have an important impact on the
healing effectiveness of BugBlock.
Answer to RQ1. How are BikiniProxy and BugBlock effective at automatically fixing Javascript errors in pro-
duction, without any user or developer involvement? BikiniProxy is effective the handle the five most frequent
Javascript errors present in our benchmark. With the currently implemented self-healing rewriting strategies,
BikiniProxy is able to fully heal 248/826 (30.02%) of all errors, representing 196/555 (31.76%) of all buggyweb pages
of our benchmark. The healing effectiveness of BugBlock is reduced by the technical limitation of browser extensions.
Our experiment shows that 10.67% of the errors have been fully healed by BugBlock. This shows that despite being
more practical, a browser extension has a lower performance.

4.5 | RQ2: Outcome
In this second research question, we focus on category “All Errors Disappeared”, and further refines the classification as
follows:

1. The errors have disappeared, but the end-user can see no behavioral change.
2. The errors have disappeared, and newUI features (e.g., new buttons) are available to the end-user.
3. The errors have disappeared, and new content is available for the end-user.

http://moreas.blog.lemonde.fr/2007/02/28/le-pistolet-sig-sauer-est-il-adapte-a-la-police/
http://moreas.blog.lemonde.fr/2007/02/28/le-pistolet-sig-sauer-est-il-adapte-a-la-police/

22

L I ST ING 1 Error on the web page https://bluecava.com/
Uncaught TypeError : Cannot read property ’ id ’ of n u l l

at bluecava . j s ? v=1.6:284 . . .
at post (bluecava . j s ? v =1 .6 :40)
at i d e n t i f y (bluecava . j s ? v =1 .6 :156) . . .

Contrary to RQ1, it is not possible to automatically classify all pages with this refined category, because it requires a
human-based assessment of what is new content or new features. For this reason, we answer this RQwith a qualitative
case study analysis, andwe do not consider BikiniProxy and BugBlock separately since the case studies are valid for
both tools.

4.5.1 | Error Handled but No Behavior Change
A healed error does not automatically result in a behavior change in the application. For example, this is the case for the
website https://cheapbotsdonequick.com/source/bethebot, which triggers the error "module" is not defined.
This error is triggered by line module.exports = tracery;. This type of line is used tomake a library usable by another
file in a Node.js environment. However, Node.js has a different runtime from a browser, and themodule object is not
present, resulting in the error. With BikiniProxy, the self-healing strategy “Object Creator” automatically initializes
the variable module, however, since this line is the last line of the executed Javascript file, this has absolutely no further
consequence on the execution or the page rendering. This means that the error was irrelevant. However, from a
self-healing perspective, this cannot be known in advance. From a self-healing engineering perspective, the takeaway is
that it is more straightforward to heal irrelevant errors than to try to predict their severity in advance.

4.5.2 | New Feature Available
One possible outcome of our approach is that the self-healing strategy unlocks new features. For example, this is the
case of https://bluecava.com/. This page has an error, shown in Listing 1, which is triggered because the developer
directly accesses the content of Ajax requests without checking the status of the request. However, there are requests
that are denied due to cross-domain access restrictions implemented in all browsers. Since the developer did not verify
if there is an error before accessing the property ’id’ on a null variable, the Javascript event loop crashes.

With our approach, the self-healing strategy “Object Creator” ensures the initialization of the variable if it is null.
This executionmodification allows the execution to continue and to finally enter into an error handling block written by
the developer, meaning that the event loop does not crash anymore. The execution of the page continues and results in
two buttons being displayed and enabled for the end-user. Figure 6 presents the two buttons that are now available for
the user.

4.5.3 | NewContent Available
One other outcome of our approach is that additional content is displayed to the end-user.

Let us consider theweb page http://personal.lse.ac.uk/birchj1/ that is the personal page of a researcher.
This page triggers the following error: $ is not defined at (index):20

https://bluecava.com/
https://cheapbotsdonequick.com/source/bethebot
https://bluecava.com/

23
TABLE 6 The number of activations of each self-healing strategy and the number of error types that the strategy
can handle.

ActivationsSelf-healing Strategies BikiniProxy BugBlock
Supported
Error Types

Line Skipper 233 89 4
Object Creator 109 17 2
Library Injector 75 55 3
HTTP/HTTPS Redirector 18 18 NA
HTML Element Creator 14 11 2

This error is thrown because a script in the HTML page calls the jQuery library before the library is loaded. The
script that throws the error is responsible for changing the visibility of some content on the page. Consequently, because
of the error, this content stays hidden for all visitors of the page.

Using our tool, the error is detected as being caused by amissing jQuery library. This error is healed by rewriting
strategy “Library Injector” Consequently, the missing the jQuery library is injected in the buggy page. When the
rewritten web page is executed, jQuery is available, and consequently, the script is able to change the visibility of hidden
HTML elements, resulting in newly visible content.

Figure 5 presents the visual difference between the original page (left side), and loaded with BikiniProxy (right
side). All the elements in a grey box on the right-hand side aremissing on the left image. They have appeared thanks to
self-healing.

Finally, we havemanually checked the presence of potentially harmful effects. Bymanually analyzing a random
sample of 25 self-healed subjects, we did not find a single harmful effect.
Answer to RQ2. What is the outcome of self-healing strategies with BikiniProxy and BugBlock on the page be-
yond making the error disappear? We observe three outcomes in our benchmark: (1) no visible change; (2) new
features; and (3) new content. BikiniProxy and BugBlock are able to restore broken features or broken content
automatically. We have not observed any harmful effect of speculative execution.

4.6 | RQ3: Strategies
In this research question, we compare the five different self-healing strategies. For each strategy, Table 6 shows the
number of times it has been activated to heal errors of DeadClick, with our two tools: BikiniProxy and BugBlock. The
last column presents the number of different error types for which the strategy has been selected. For example, the first
row of Table 6 shows that “Line Skipper” has been selected to handle 233 errors with BikiniProxy and 89with BugBlock,
and it has healed four different error types.

In the case of BikiniProxy, themost used strategy is “Line Skipper” with 233 activations. It is also the strategy that
supports the highest number of different error type: 1) “XXX is not defined”, 2) “XXX is not a function”, 3) “Cannot read
property XXX of null”, 4) “Cannot set property XXX of null”. On the other hand, BugBlock uses themost the strategy
“Line Skipper” strategywith 89 activations, followed by “Library Injector” with 55 activations. The secondmost used
strategy for BikiniProxy is “Object Creator” with 109 errors for which it has initialized a null variable. This strategy

24

handles two different error types: “Cannot set property XXX of null” and “Cannot read property XXX of null”. These
two strategies have something in common, they target the failure point, the symptom, and not the root cause (the
root cause is actually unknown). For example, the error CitedRefBlocks is not defined is triggered in the web page
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC504719/, because the function CitedRefBlocks is not defined.
Line Skipper strategy avoids the error by skipping themethod call, it is a typical example of a fix at the failure point and
not at the root cause of the absence of CitedRefBlocks.

On the contrary, “Library Injector” addresses the root cause of the problem: themissing library is extracted from
the error message, and it is used to rewrite the content of the request. In this case, the self-healing tools exploit the fact
that we have a direct relation between root cause (no included library) and symptom (unknown used library name) for
this error type.

The case of “HTTP/HTTPS Redirector” is the opposite. Recall that “HTTP/HTTPS Redirector” directly looks in the
HTML body of the resource if there are scripts that will be blocked. This means that the rewriting addresses the root
cause of potential future problems. For example, the page https://corporate.parrot.com/en/documents tries to
load the resource http://www.google-analytics.com/urchin.js, but the request is blocked by the browser (HTTP
request in an HTTPS page). Consequently, the Google tracking library is not loaded and function urchinTracker is not
defined, resulting in the error urchinTracker is not defined. “HTTP/HTTPS Redirector” strategy rewrites the URL of
the resource in the <SCRIPT>tag to https://www.google-analytics.com/urchin.js, and this fixes the error of the
page. This strategy can potentially fix error types that we cannot envision. Hence, we do not know the exact number of
handled error types, so we put “NA” in Table 6. Finally, strategy “HTML Element Creator” is applied tomore rare errors
happening only 14 times in our benchmark with BikiniProxy and 11 times with BugBlock.

In this research question, we also observe that the number of activations is lower for BugBlock. This observation is
directly related to our observation of unhandled errors in the research question one (see Section 4.4).
Answer to RQ3. Do the different self-healing strategies perform equivalently? In our experiment, the most used
strategy is “Line Skipper” for BikiniProxy because it is able to heal from four common error types with the same
strategy. This strategy is not themost frequent in the case of BugBlock because it is not able tomodify the HTML
page of an application. Other self-healing strategies can be designed and added to BikiniProxy and BugBlock in order
to address the rare error types in the long tail of field errors.

5 | DISCUSSION
5.1 | Security Analysis
BikiniProxy and BugBlock are founded on the core failure-oblivious computing principle [5]: any execution happening
after the avoided failure is, in essence, speculative. This speculative executionmust be sandboxed.

The security guarantees of BikiniProxy and BugBlock are provided by the sandboxing in the browser and on the
server-side. First, all browsers contain very carefully engineered code to sandbox the execution of Javascript code.
This sandboxingmeans that 1) the Javascript code cannot access or transfer data to other tabs andwindows (aka tab
sandboxing) 2) the Javascript code cannot access or transfer data to other websites (cross-domain restrictions) 3) the
Javascript code cannot access to the file-system.

Second, in distributed Internet applications with code running on the server-side and on the client-side, it is known
that one cannot trust the execution of the client code. Consequently, the best practice is to protect the server-side state
with appropriate checks in the REST API accessed by client-side Javascript. Those checks form the second sandboxing

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC504719/
https://corporate.parrot.com/en/documents
http://www.google-analytics.com/urchin.js
https://www.google-analytics.com/urchin.js

25

of speculative execution of this approach: the unwanted side-effects are confined to the current browser window.
In term of privacy, the only information that is shared between BikiniProxy, BugBlock, and the backend is the

stacktraces of errors. The stacktraces do not contain personal information or information that can lead to identifying a
specific user or its browsing habit. With BugBlock, this can even be addressed: BugBlock could be extended by including
the backend service directly inside the browser extension. Using this approach, no information ever is sent by BugBlock
to a third-party server.

5.2 | Applicability Analysis
The usage of BikiniProxy and BugBlock is practically zero cost, and as such, it is widely applicable. First, it requires no
change to the original web pages or applications. Second, for the BikiniProxy case, the usage of an HTTP proxy in web
applications is very common. A BikiniProxy self-healing proxies can be set up by: 1) a company in front of their web
content; 2) a SaaS-based provider 3) a hosting service. BikiniProxy targets the professional sector, while BugBlock
targets the end-user that only needs to click on one button to install the extension in its browser. Thus, BikiniProxy and
BugBlock target two different public.

6 | THREATS TO VALIDITY
Wenow discuss the threats to the validity of our experiment. First, let us discuss internal validity. Our experiment is
relying on the implementation of our prototype, consequently, a bug in our codemay threaten the validity of our results.
However, since the source code of the approach and of the benchmark is publicly available [10], future researchers will
be able to identify these potential bugs. It is unknownwhether the errors of our benchmark are representative of all
errors in the web, and whether 96174 visited pages is enough compared to the trillions of pages of the Internet. To our
knowledge, there is no work on the bluerepresentativeness of Javascript bugs.

Our approach has been carefully designed tomaximize bluerepresentativeness: 1) the randomness of keyword
choice allows us to discover websites aboutmany different topics, done by a variety of persons, with different back-
grounds (a website on CSS done by aweb developer is likely to have fewer errors than awebsite on banana culture done
by a hobbyist). 2) the ranking of Google for a specific query provides us with a filter which favors popular websites. If
errors are detected on those websites, they likely affect many users.

7 | RELATED WORK
7.1 | Javascript Error & Repair
Several studies on client-side Javascript been have beenmade byOcariza et al [2, 24, 12]. In 2011, they showed that
most websites contain Javascript errors even in the top 100 of Alexa [2]. They have also investigated [24, 12] the nature
of the Javascript errors as follows. Theymanually analyze Javascript bug reports from various web applications and
Javascript libraries. They find that themajority of reported Javascript bugs are related to the Document ObjectModel
(DOM). None of this work has explored self-healing strategies for the web.

Now, we discuss the works on reproducing Javascript errors or to extract regression tests. Wang et al. [25] present
a technique to reproduce sequences of events that lead to a Javascript error. Schur et al. [26] present a fully automatic
tool to generate test scripts based on the behavior of multi-user web applications. The goal of those works are different

26

ours: the focuses on creating tests while we focus on healing the error on the fly, in production.
Hanam et al. [27] present BugAID a data mining technique for discovering common unknown bug patterns in

server-side Javascript. Hanam et al. focus on server-side bugs, on the contrary, BikiniProxy targets client-side Javascript
code, and it heals the errors on the fly.

There have been several repair tools targeting Javascript front-end code. Ocariza et al. [28] present Vejovis, a
technique that suggests Javascript code modifications to handle DOM-related errors. Pradel et al. [29] and Bae et
al. [30] proposed tools for detecting type inconsistencies andweb API misuses in Javascript, respectively. They also
present common fault types and common web API misuse patterns. Roy et al. [31] present X-PERT, an automatic
technique to detect cross-browser issues in web applications. Thoseworks are offline program repair requiring test
cases [32], while BikiniProxy is online self-healing, in production, without the developer in the loop.

7.2 | Self-healing in Production
There aremany kinds of self-healing approaches, we refer the reader to recent surveys on this topic [33, 34]. We now
concentrate on self-healing for the web.

Carzaniga et al. [8] propose a technique that automatically applies workarounds to handle API issues. The
workarounds are based on a set of manually written API-specific alternative rule. The difference with our work
is that we defined five self-healing strategies that are generic, i.e., which are not application specific. On the contrary,
Carzaniga et al.’s work relies on specific templates for specific APIs and new templates have to bemanually created to
support newAPIs. In subsequent work, the same group has proposed away to automatically mine those workarounds
[9]. However, those workarounds do not consider generic Javascript errors as we do, they target API specific errors for
which workarounds have been identified ormined.

Several approaches also use a proxy-based architecture in their contribution. Kiciman et al. [35] present a web
proxy named AjaxScope, that instruments the Javascript code tomonitor the performance of web applications. It does
monitoring and not self-healing. Zhang et al. [36] present a technique to change the user interface ofmobile applications
on the fly. In particular, they aim at providing accessible UIs to blind users. Appelt et al. [37] do automatic repairs of
firewall rules to improve the security of web application. While a firewall and a proxy are similar, the goal and themeans
are different: they focus on security while we focus on availability, they change firewall rules while BikiniProxy rewrites
HTML and Javascript code.

8 | CONCLUSION

In this paper, we have presented a novel approach to provide self-heal capabilities for the web, focusing on client-side
Javascript errors and two different implementations of this approach: an HTTP proxy called BikiniProxy and a browser
extension called BugBlock. We have evaluated our technique on 555 web pages with Javascript errors, randomly
collected on theWeb. Our qualitative and quantitative evaluation has shown that BikiniProxy is effective and self-
healing results in providing the web user with new features and content. It also shown that BugBlock is able to heal
buggy web pages but with a smaller proportion due to technical limitations of browser extensions. Future work is
required to devise new self-healing rewriting strategies for solving themaximum number of Javascript runtime errors.

27

REFERENCES
[1] Surveys WWWWT, Usage ranking of Javascript libraries; 2018. https://w3techs.com/technologies/overview/

Javascript_library/all.
[2] Ocariza Jr FS, Pattabiraman K, Zorn B. JavaScript errors in the wild: An empirical study. In: Software Reliability Engi-

neering (ISSRE), 2011 IEEE 22nd International Symposium on IEEE; 2011. p. 100–109.
[3] Keromytis AD. Characterizing self-healing software systems. In: Fourth International Conference on Mathematical

Methods, Models, and Architectures for Computer Network Security; 2007. p. 22–33.
[4] KoopmanP. Elements of the self-healing systemproblem space. In: Proc. workshop on architecting dependable systems;

2003. .
[5] RinardMC,CadarC,DumitranD,RoyDM,LeuT,BeebeeWS. EnhancingServerAvailability andSecurityThroughFailure-

Oblivious Computing. In: OSDI, vol. 4; 2004. p. 21–21.
[6] Durieux T, Cornu B, Seinturier L, Monperrus M. Dynamic patch generation for null pointer exceptions using metapro-

gramming. In: Software Analysis, Evolution and Reengineering (SANER), 2017 IEEE 24th International Conference on
IEEE; 2017. p. 349–358.

[7] Candea G, Kiciman E, Zhang S, Keyani P, Fox A. JAGR: An autonomous self-recovering application server. In: Autonomic
ComputingWorkshop. 2003. Proceedings of the IEEE; 2003. p. 168–177.

[8] CarzanigaA,GorlaA, PerinoN,PezzèM. Automaticworkarounds forwebapplications. In: Proceedingsof theeighteenth
ACMSIGSOFT international symposium on Foundations of software engineering ACM; 2010. p. 237–246.

[9] Carzaniga A, Gorla A, Perino N, Pezze M. Automatic workarounds: Exploiting the intrinsic redundancy of Web applica-
tions. ACMTransactions on Software Engineering andMethodology (TOSEM) 2015;24(3):16.

[10] Durieux T, Hamadi Y,MonperrusM, BikiniProxy repository; 2018. https://github.com/Spirals-Team/bikiniproxy/.
[11] Durieux T, Hamadi Y, Monperrus M. Fully Automated HTML and Javascript Rewriting for Constructing a Self-healing

Web Proxy. In: 2018 IEEE 29th International Symposium on Software Reliability Engineering (ISSRE) IEEE; 2018. p. 1–
12.

[12] Ocariza FS, Bajaj K, Pattabiraman K,Mesbah A. A study of causes and consequences of client-side JavaScript bugs. IEEE
Transactions on Software Engineering 2017;43(2):128–144.

[13] Luotonen A. Web proxy servers. Prentice-Hall, Inc.; 1998.
[14] Pistriotto JC, Montinola K, Method and apparatus for configuring a client to redirect requests to a caching proxy server

based on a category IDwith the request. Google Patents; 2000. US Patent 6,138,162.
[15] Krueger T, Gehl C, Rieck K, Laskov P. TokDoc: A self-healing web application firewall. In: Proceedings of the 2010 ACM

Symposium on Applied Computing ACM; 2010. p. 1846–1853.
[16] Bowman-AmuahMK, Load balancer in environment services patterns. Google Patents; 2003. US Patent 6,578,068.
[17] Gorla A, Pezzè M, Wuttke J, Mariani L, Pastore F. Achieving Cost-Effective Software Reliability Through Self-Healing.

Computing and Informatics 2010;29:93–115.
[18] Berger E. Software Needs Seatbelts and Airbags. ACMQueue 2012;10.
[19] Lewis C,Whitehead J. Runtime repair of software faults using event-drivenmonitoring. In: Software Engineering, 2010

ACM/IEEE 32nd International Conference on, vol. 2 IEEE; 2010. p. 275–280.

https://w3techs.com/technologies/overview/Javascript_library/all
https://w3techs.com/technologies/overview/Javascript_library/all
https://github.com/Spirals-Team/bikiniproxy/

28

[20] ShehoryO,Martinez J, Andrzejak A, Cappiello C, FunikaW, KondoD, et al. Self-Healing andRecoveryMethods and their
Classification. In: Andrzejak A, Geihs K, ShehoryO,Wilkes J, editors. Self-Healing and Self-Adaptive SystemsNo. 09201
in Dagstuhl Seminar Proceedings, Dagstuhl, Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany;
2009. http://drops.dagstuhl.de/opus/volltexte/2009/2108.

[21] Gu T, Sun C, Ma X, Lü J, Su Z. Automatic runtime recovery via error handler synthesis. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering ACM; 2016. p. 684–695.

[22] Burton S, We Crunched 1 Billion Java Logged Errors - Here’s What Causes 97% of Them; 2018.
https://blog.takipi.com/we-crunched-1-billion-java-logged-errors-heres-what-causes-97-of-them/.

[23] Callegati F, Cerroni W, Ramilli M. Man-in-the-Middle Attack to the HTTPS Protocol. IEEE Security & Privacy
2009;7(1):78–81.

[24] Ocariza F, Bajaj K, Pattabiraman K, Mesbah A. An empirical study of client-side JavaScript bugs. In: Empirical Software
Engineering andMeasurement, 2013 ACM/IEEE International Symposium on IEEE; 2013. p. 55–64.

[25] Wang J, Dou W, Gao C, Wei J. JSTrace: Fast Reproducing Web Application Errors. Journal of Systems and Software
2017;.

[26] SchurM, Roth A, Zeller A. ProCrawl: Mining test models frommulti-user web applications. In: Proceedings of the 2014
International Symposium on Software Testing and Analysis ACM; 2014. p. 413–416.

[27] Hanam Q, Brito FSdM, Mesbah A. Discovering bug patterns in javascript. In: Proceedings of the 2016 24th ACM SIG-
SOFT International Symposium on Foundations of Software Engineering ACM; 2016. p. 144–156.

[28] Ocariza Jr FS, Pattabiraman K, Mesbah A. Vejovis: suggesting fixes for JavaScript faults. In: Proceedings of the 36th
International Conference on Software Engineering ACM; 2014. p. 837–847.

[29] Pradel M, Schuh P, Sen K. TypeDevil: Dynamic type inconsistency analysis for JavaScript. In: Proceedings of the 37th
International Conference on Software Engineering-Volume 1 IEEE Press; 2015. p. 314–324.

[30] Bae S, ChoH, Lim I, Ryu S. SAFEWAPI:WebAPImisuse detector for web applications. In: Proceedings of the 22ndACM
SIGSOFT International Symposium on Foundations of Software Engineering ACM; 2014. p. 507–517.

[31] Roy Choudhary S, Prasad MR, Orso A. X-PERT: accurate identification of cross-browser issues in web applications. In:
Proceedings of the 2013 International Conference on Software Engineering IEEE Press; 2013. p. 702–711.

[32] KongX, Zhang L,WongWE, Li B. Experience report: Howdo techniques, programs, and tests impact automated program
repair? In: 26th IEEE International Symposium on Software Reliability Engineering; 2015. p. 194–204.

[33] Monperrus M. Automatic Software Repair: a Bibliography. ACM Computing Surveys 2017;51:1–24. https://hal.
archives-ouvertes.fr/hal-01206501/file/survey-automatic-repair.pdf.

[34] Gazzola L,MicucciD,Mariani L. Automatic SoftwareRepair: A Survey. IEEETransactions on SoftwareEngineering 2018;.
[35] Kiciman E, Livshits B. AjaxScope: A Platform for RemotelyMonitoring the Client-side Behavior ofWeb 2.0 Applications.

In: Proceedings of Twenty-firstACMSIGOPSSymposiumonOperating SystemsPrinciples SOSP ’07,NewYork,NY,USA:
ACM; 2007. p. 17–30. http://doi.acm.org/10.1145/1294261.1294264.

[36] Zhang X, Ross AS, Caspi A, Fogarty J, Wobbrock JO. Interaction proxies for runtime repair and enhancement of mobile
application accessibility. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems ACM;
2017. p. 6024–6037.

[37] AppeltD, Panichella A, Briand LC. Automatically RepairingWebApplication Firewalls Based on Successful SQL Injection
Attacks. In: 28th IEEE International Symposium on Software Reliability Engineering; 2017. p. 339–350.

http://drops.dagstuhl.de/opus/volltexte/2009/2108
https://hal.archives-ouvertes.fr/hal-01206501/file/survey-automatic-repair.pdf
https://hal.archives-ouvertes.fr/hal-01206501/file/survey-automatic-repair.pdf
http://doi.acm.org/10.1145/1294261.1294264

