Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers
Bandwidth and central frequency control on tunable bandpass filter by using MEMS cantilevers
Résumé
This paper deals with a tunable bandpass filter topology which controls independently and simultaneously both the central frequency and bandwidth. This tunable filter results from the association of MEMS cantilevers, used as variable capacitors, with an original passive topology. The latter is based on dual behavior resonators (DBRs), each of them is constituted of low- and high-frequency open-ended stubs. The associated filter electrical response is characterized by tunable frequency transmission zeros. A millimeter bandpass filter with central frequency and relative bandwidth tunability of about 10 and 75%, respectively, is presented.
This paper deals with a tunable bandpass filter topology which controls independently and simultaneously both the central frequency and bandwidth. This tunable filter results from the association of MEMS cantilevers, used as variable capacitors, with an original passive topology. The latter is based on dual behavior resonators (DBRs), each of them is constituted of low- and high-frequency open-ended stubs. The associated filter electrical response is characterized by tunable frequency transmission zeros. A millimeter bandpass filter with central frequency and relative bandwidth tunability of about 10 and 75%, respectively, is presented.