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Abstract. This work proposes a new method for texture analysis that
combines fractal descriptors and complex network modeling. At first, the
texture image is modeled as a network. Then, the network is converted
into a surface where the Cartesian coordinates and the vertex degree is
mapped into a 3D point in the surface. Then, we calculate a descrip-
tion vector of this surface using a method inspired by the Bouligand-
Minkowski technique for estimating the fractal dimension of a surface.
Specifically, the descriptor corresponds to the evolution of the volume oc-
cupied by the dilated surface, when the radius of the spherical structuring
element increases. The feature vector is given by the concatenation of the
volumes of the dilated surface for different radius values. Our proposal is
an enhancement of the classic complex networks descriptors, where only
the statistical information was considered. Our method was validated on
four texture datasets and the results reveal that our method leads to
highly discriminative textural features.

Keywords: Complex Networks · Fractal Dimension · Texture analysis.

1 Introduction

Texture is a visual pattern related to the surface of a material or an object and
it is considered as a key feature to image interpretation. Texture classification
is used in many fields such as material science [43], industrial inspection [29],
geology [42], etc. There are many classical texture characterization methods in
the literature that can be divided into four different categories: statistical-based
(e.g., gray-level co-occurrence matrices (GLCM) [22] and local binary patterns
(LBP) [32]), spectral methods (e.g. Gabor filters [24] and wavelet transform [41]),
structural methods (e.g. morphological decomposition [27]) and model-based
methods (e.g. Fractal models [6, 5, 37], complex networks [36] and stochastic
models [34])
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Currently, methods based on complex networks theory have attracted signif-
icant attention of the computer vision community, due to the promising results
and their capacity to represent the relationships among structural properties of
texture [15, 38, 1]. The complex network techniques represent the texture im-
age as a network and extract measures capable of characterizing precisely the
structural patterns of texture modeled. In this sense, the network modeling is an
important step whose aim is to represent different aspects like spatial and pixel
intensity distribution, texture irregularities, auto-similarity scales, etc. [15]. Now
a challenging problem is to find a relevant set of measures to extract from the
network to characterize it. Previous works [7, 10] use simple metrics based on
degree distribution, however, it is noticeable that more complex measures are
needed for a finer characterization [15, 12].

To this end, we propose in this paper a new approach for texture analysis
that uses fractal descriptors as measures for complex network characterization.
The proposal is to use the fractal measures to characterize the network topology
instead of using network statistical measures. To achieve this, firstly, the tex-
ture image is modeled as a network and this network is converted to a surface.
Then, we calculate a feature vector using a method inspired by the Bouligand-
Minkowski technique to estimate the fractal dimension of the surface that maps
a network. The proposed signature is composed of the influence volume com-
puted of this surface for different radius values. We verify the performance of
the proposed approach in the classification of four texture image datasets and
the results are compared to other literature methods.

The paper is organized as follows. In Section 2, we describe the proposed
approach in detail. Section 3 reports the experimental setup. The results and
discussion are presented in Section 4, followed by the conclusion in Section 5.

2 Proposed Method

2.1 Modeling texture as network

According to Backes et al [7] a texture image I can be modeled as a network
G = (V,E) considering each pixel as a vertex. Each pixel i ∈ V is characterized
by its Cartesian coordinates xi and yi, and an integer value I(i) ∈ [0, 255] which
represents its gray-level. Two vertices (pixels) i and j are connected by a non-
directed edge eij ∈ E if the Euclidean distance between them is smaller or equal
than a given value d, according to:

eij ∈ E ⇐⇒
√

(xi − xj)2 + (yi − yj)2 ≤ d (1)

For each edge a weight w(eij) is defined by a normalized combination of the
Euclidean distance and the difference of intensities between two pixels:

w(eij) =
(xi − xj)2 + (yi − yj)2 + d2 |I(i)−I(j)|255

2d2
(2)
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This weight function includes information about the pixel surroundings and
the normalization of the difference of pixel intensity in the interval [0, d2] aims
to balance the relative importance between geometric and color information in
the texture representation [7]. Each network vertex i has a degree ki, which is
the number of edges connected to i. Note that until now the network vertices all
have the same degree. Thus, it is necessary to apply a transformation in order
to highlight texture properties. This can be done by applying a threshold t over
the network, removing all edges whose weight is higher than a given value t and
obtaining a new set of edges Et. In this way, a set of thresholds T, t ∈ T can be
applied over the network in order to study the behavior of its properties along
the successive transformations.

2.2 Fractal Dimension of Network Degrees

A way to describe how irregular is an object is to use the Fractal dimension,
which can be estimated in various ways [17]. In this paper, we compute the fractal
descriptors of the complex network using a method inspired by the Bouligand-
Minkowski method, which is one of the most accurate approach to estimate the
fractal dimension [4, 9]. This method estimates the fractal dimension based on
the size of the influence area |S(r)| generated by the dilation of surface S ⊂ R3

using a radius r [17]. The Bouligand-Minkowski fractal dimension D of a surface
S varying the radius r is defined as:

D(S) = 3− lim
r→0

log VS(r)

log r
, (3)

where VS(r) is the influence volume achieved with the dilation process of all
points s of the surface S using a sphere of radius r [17, 4]. VS(r) can be calculated
by the Euclidean Distance Transform (EDT) in order to achieve a fast algorithm
[4, 13]. The distance transform DT is the function defined as:

DT (x, y, k) = min
(x′,y′,k′)∈S

d ((x, y, k), (x′, y′, k′)) , (4)

for all points (x, y, k) from the cubic grid N3 [4, 39]. This way, the set of
possible radii (distances) R is

R = {r : r =
√
x2 + y2 + k2; (x, y, k) ∈ N3}, (5)

with the values r sorted increasingly to create the set of possible radii R =
{0, 1,

√
2,
√

3, 2
√

2, ..., rmax} [39]. In this approach, the influence volume is com-
puted by VS(r) = #{(x, y, k) : DT (x, y, k) = r} [39].

In the proposed method, we apply the fractal dimension theory to charac-
terize the topology of a network that models a texture image. To achieve this,
a network modeling texture can be easily mapped onto a 3D surface S ⊂ R3,
by converting the Cartesian coordinates (xi, yi) and the degree ki of each vertex
i into a 3D point si = (xi, yi, ki). In this way, we can characterize the network
topology relating the degree and the vertex/pixel position in the image. Figure
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1(a) illustrates a network modeling a texture image and (b) the degree of the
vertices.

Figures 1(b) and (c) illustrate the mapping of the network onto a surface.
Note that the Z axis is the degree of the vertices. The dilation process of this
surface is shown in Figures 1(d) and (e). Figure 2(a) shows the degree of vertices
of a network modeling a texture image represented by an image. Figures 2(a)-
(c) show the dilatation process of the surface that represents this network with
each point of the 3D surface dilated by a sphere of radius r. Notice that more
collisions happen among the dilated points as we increase the value of radius
r. These collisions are directly related to the geometry of the surface S and
determine the way the total influence volume VS(r) increases, according to the
changes in the network topology. Thus, the pattern produced by the influence
volume VS(r) for different radii can be used to describe the network topology
and, consequently, the texture patterns.

2.3 Feature Vector

In this paper, we propose to use the influence volume VS(r) of the surface (that
maps a network) as a feature vector. The influence volume provides a rich shape
descriptor and it was used with success to discriminate texture in previous works
[17, 4]. Thus, the feature vector is composed of the concatenation of the influence
volume VS(r) computed for different values of radius r:

Ψd
t = [VS(1), VS(

√
2), VS(

√
3), ..., VS(rmax)], (6)

where t is the value of threshold applied in the network, d is the distance
used in network modeling and rmax is the maximum radius.

Note that the feature vector Ψd
t is built using all possible radius values from

r = 1 to rmax. In order to analyze the behavior of the network topology from
the successive transformation, we combine the feature vector Ψd

t for different
values of threshold t, starting from t0 to tf , to finally get the complete texture
signature as follows:

Υ d = [Ψd
t0 , Ψ

d
t1 , ..., Ψ

d
tf

]. (7)

3 Results and Discussion

3.1 Experimental setup

The proposed signature is computed for each image. After that, the supervised
classification is carried out by applying a Canonical Analysis [11] followed by a
Linear Discriminant Analysis (LDA) [16]. This is a simple classifier that empha-
sizes the features extracted by the methods. We apply the Canonical Analysis
here due to the presence of high correlation of the volume features [39]. Basically,
the canonical analysis is a geometric transformation of the feature space to gener-
ate new uncorrelated features. Thus, p−canonical variables can be obtained from
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(a) (b)

(c) (d)

(e)

Fig. 1. Illustration of the proposed approach inspired by the Bouligand-Minkowski
method for estimating the fractal dimension of a network. (a) Network modeling pixels.
(b) Degree of the vertices. (c) 3D surface mapping the network in (a), converting each
vertex into a 3D point. (d)-(e) Dilation process of the surface.
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(a) Degree of vertices (b) 3D space

(c) r = 2 (d) r = 3

Fig. 2. Dilation process for estimating the fractal dimension of the space × degree
surface representing a texture. Degree of vertices (a) is mapped onto a 3D surface (b)
by converting the Cartesian position and the degree into a point in the surface. Then,
this surface is dilated, e.g. radius r = 2 (c) and radius r = 3 (d).
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the original features and the LDA supervised classification is accomplished by
using the most significant p−variables [39]. To separate the training and testing
sets we adopted the leave-one-out cross-validation scheme. Thus, one sample is
used for testing and the remainder for training. This process is repeated for each
sample of the dataset. The average accuracy of all tests is used as a performance
measure.

To evaluate the methods the databases used as benchmark were:

– Brodatz [8]: just as in [7], this dataset is composed of 1776 texture images
of 128 × 128 pixel size divided into 111 classes, 16 images per class.

– Outex [31]: the dataset used in this work is composed of 68 texture classes
from TC Outex 00013 with 20 samples each of 128 × 128 pixel size without
overlapping. The dataset has a total of 1 360 textures.

– USPTex [6]: this dataset is composed of 2 292 samples divided into 191
classes, 12 images per class, and each image has 128 × 128 pixels size.

– Vistex [35]: the database Vision Texture has 54 images 512×512 which were
split into 16 sub-images 128 × 128 pixel size without overlapping, totalizing
864 images.

We compare the accuracy of our proposed method to other descriptors pro-
posed in the literature. For fair comparison purposes, all methods are compared
using the LDA classifier and leave-one-out cross-validation scheme. The com-
pared methods are: Grey-Level Co-occurrence Matrix (GLCM) [21], Gray Level
Difference Matrix (GLDM) [26], Windowed Fourier transforms [3], Gabor Fil-
ters [30], Fractal [5], Fractal Fourier [14], Local Binary Patterns (LBP) [32],
Local Binary Patterns Variance (LBPV) [20], Complete Local Binary Pattern
(CLBP) [19], Local Phase Quantization (LPQ) [33], Local Configuration Pattern
(LCP) [18], Local Frequency Descriptor (LFD) [28], Binarized Statistical Image
Features (BSIF) [25] and Complex Network Texture Descriptors (CNTD) [7].

3.2 Parameter Evaluation

In this paper, the set of thresholds T and distance for connection d used are
identical as the ones used in [7]. It was defined by an initial threshold t0 = 0.005,
an increment of ∆t = 0.015 and a final threshold tf = 0.530. The maximal
distance d for connection of the vertices was set up as d = 3. Figure 3(a) shows
the accuracy variation with respect to the number of the p-canonical variables
used in the LDA classifier for different datasets and with a fixed value of maximal
radius r = 3. Note that, for all datasets, the accuracy increases at a first moment,
achieves an optimal accuracy and then stabilizes. Such behavior is expected and
is a good indicator for adjusting the dimension of the descriptor, since the high
number of features damages the efficiency of the classifier [39]. From the behavior
observed in Figure 3(a), we accomplish the remainder of the experiments using
a total of 130 p−canonical variables.

Figure 3(b) presents the accuracy variation for all datasets when the maximal
value of radius rmax is ranged. The original feature vector before the canonical
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analysis has the size of 36, 144, 288 ,504, 792, 1 116, 1 512, 1 944, 2 484, 3 060,
3 672, 4 356, 5 112, 5 940, 6 804 for the 15 respective integer values of rmax be-
tween 1 and 15. We observe that, as we increase the maximal radius value the
accuracy also increases. However, it begins to stabilize or decrease from the
radius rmax = 5 and rmax = 6. Based on this behavior, we define the value
of radius rmax = 6 as the maximum dilation radius. Therefore, we define the
following feature vector Ψd

t = [VS(1), VS(
√

2), VS(
√

3), ..., VS(
√

36)].
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Fig. 3. Accuracy of our approach for different datasets. (a) Accuracy versus number
of p−canonical variables. (b) Accuracy versus the maximal values of the radius.

3.3 Comparison with other methods

In this section, we performed comparisons with literature methods in order to
evaluate the performance obtained by the proposed approach. In all experiments
were used the LDA classifier with leave-one-out, except for CLBP descriptor
(1-Nearest Neighborhood (1-NN) classifier with distance Chi-square), which fol-
lowed the original paper. For our approach, it was adopted the parameter setup
discussed in section 3.2.

The results obtained by all the texture methods in the four datasets are
presented in Table 1. We can note that the proposed approach achieved the best
results when compared to the other literature methods in the four datasets. In
the Brodatz and Vistex datasets, the CLBP and CNDT methods obtained the
second best results. On the other hand, the second best accuracy in the Outex
and USPTex datasets was obtained by the GLDM and CNDT methods.

We can also verify in Table 1 that our method reached higher accuracy than
the CNDT method. The CNDT method is also based on complex networks, and
we use in our approach the same network modeling as them. The difference be-
tween the CNDT method and our approach is the measure (statistical measures
based on the degree histogram) used to characterize the network. Therefore, this
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suggests that our approach obtained superior performance due to the fractal
measure extracted from the network. Our interpretation is that our volumetric
fractal descriptors can characterize more richly the network topology, consid-
ering the degree and spatial arrangement of the vertices, in contrast with the
CNDT method that only used the degree frequency.

On the other hand, the proposed method also outperformed the Fractal
method [5] which also uses the volumetric fractal descriptors to describe the
image. However, this approach uses the Cartesian coordinates and the gray in-
tensities to represent the surface. This shows that the proposed approach that
combines fractal measures and complex networks improves the ability of discrim-
ination when compared to both approaches isolated.

We can also compare our results with learned descriptors (e.g. using convo-
lutional neural network (CNN)). For comparison purposes, we considered the
Outex and USPTex datasets, which are the most challenging. The results using
the HardNet++ [2], InceptionV3 [40] and ResNet101 [23] methods for feature
extraction were considered. On the USPTex dataset, our approach obtained the
highest accuracies when compared to the InceptionV3 (92.71%) and HardNet++
(94.20%). On the other hand, the ResNet101 obtained an accuracy of 96.50%.
For the Outex dataset, the accuracies were 86.98%, 88.97% and 89.34% for the
InceptionV3, ResNet101 and HardNet++, respectively. Our approach overcomes
the CNN methods in some cases and in others it obtain close results. Thus, our
method is still competitive due to its simplicity.

Table 1. Comparison of accuracies of different texture analysis methods in four texture
databases.

Methods Number of features Outex USPTex Brodatz Vistex

GLCM [21] 24 80.73 83.63 90.43 92.24
GLDM [26] 60 86.76 91.92 94.43 97.11
Gabor Filters [30] 64 81.91 83.19 89.86 93.28
Fourier [3] 63 81.91 67.70 75.90 79.51
Fractal [5] 69 80.51 78.22 87.16 91.67
Fractal Fourier [14] 68 68.38 59.45 71.96 79.75
LBP [32] 256 81.10 85.42 93.64 97.92
LBPV [20] 555 75.66 55.13 86.26 88.65
CLBP [19] 648 85.80 91.13 95.32 98.03
BSIF [25] 256 77.43 77.48 91.44 88.66
LCP [18] 81 86.25 91.31 93.47 94.44
LFD [28] 276 82.57 83.59 90.99 94.68
LPQ [33] 256 79.41 85.29 92.51 92.48
CNTD [7] 108 86.76 91.71 95.27 98.03

Proposed approach 130 87.86 94.41 96.45 98.96
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4 Conclusion

In this paper, we have proposed a new method based on fractal descriptors and
complex network for texture analysis. The method extracts fractal measures
from a network that models a texture image. For this, we have proposed to map
the network into a 3D surface by converting the Cartesian coordinates and the
vertex degree as a point in the surface.

We have demonstrated how the texture description can be improved by com-
bining the fractal descriptors and complex networks, instead of using only the
fractal descriptor or complex network approaches separated. Experiments on
four datasets indicate that our method significantly improved the classification
rate with regard to the original complex networks method and fractal descriptors
method. The results also showed that our approach overcomes the other com-
pared literature methods. As future work, we believe that different techniques to
estimate the fractal dimension of the network can be investigated. In addition,
new ways to obtain the feature vector can be studied, such as using different
sets of radius values. Another future idea is to extend the proposed approach to
boundary shapes analysis. The proposed idea also opens a promising research
field for network characterization using fractal measures.
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