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a b s t r a c t

This paper outlines a complete methodology for designing a control system that reshapes the

dynamic response of the flexible structure to robustly match the dynamics of a given adapt-

able reference model. The procedure was experimentally verified on a setup developed at the

European Space Agency, consisting of a cantilevered flexible plate actuated by two shakers.

Angular displacements at the free tip of the plate were measured with sub-microradian res-

olution using a laser autocollimator. Following a comprehensive system identification phase,

mathematical models of the uncertain plant were extracted. The models reliably fit the exper-

imental data and were used to synthesize a low order and high bandwidth structured Linear

Parameter Varying controller. The controller was designed by taking into account the limits

of achievable performance and the closed loop effectively constrained the flexible structure

to behave like it was made out of an adaptable material. The robust stability and worst case

performances were assessed by means of a structured singular value analysis and excellent

agreement between theoretical predictions and experimental results was observed.

1. Introduction

1.1. Background and motivation

The fairing size envelopes of current launchers impose substantial constraints on spacecraft design. To overcome these size

restrictions, a significant number of modern telecommunication, Earth observation, and science missions rely on large deploy-

able structures to meet their performance goals [1,2]. There is currently a strong interest in developing ultralight, compactly

packable [3,4] structures that can be deployed [5] or even manufactured [6] and assembled in space. However, as structures

become larger and more flexible they become more susceptible to mechanical vibrations due to the low structural damping in

the materials and the absence of other forms of damping in the vacuum of space. Moreover, both ESA and other space agencies

are preparing missions that require extremely high pointing accuracy and an ultra-quiet environment for the vibration-sensitive

instruments [7,8]. This is a very challenging problem since a multitude of critical on-board equipment such as reaction wheels,

cryocoolers, solar array drives and antenna pointing mechanisms generate significant levels of mechanical vibrations during

operation [9]. These vibrations can easily propagate and interact with the large number of lightly damped and closely spaced

flexible modes of the spacecraft structure [10]. With the advent of increasingly powerful imaging sensors and more lightweight
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materials, understanding and controlling the propagation of these microvibrations and their dynamic interaction is one of the

most critically important problem areas in spacecraft systems engineering [7].

Over the years, a wide variety [9] of microvibration isolation systems have been developed or proposed in an effort to tackle

this problem. Most of them focus on mechanical isolation of the noisy equipment and/or of the sensitive payload from the rest

of the spacecraft structure [11–17]. For some observation missions, active and adaptive optics [18–20] are a promising technol-

ogy to perform wavefront correction and improve pointing stability at the payload level. Another complementary strategy is

to actively control the spacecraft structure itself and limit its ability to propagate microvibrations. These so-called smart space

structures have been investigated for a number of years with promising results [21–25]. However, most of these control strate-

gies focus solely on vibration isolation and operate under the assumption that performance requirements and flexible plant

dynamics are static.

In this context, the goal of the paper goes beyond microvibration isolation. The main purpose is to design and experimentally

validate a control system that actively modifies the dynamic response of a flexible structure to match the dynamics of an adapt-

able reference model. The objective is to facilitate the development of future lightweight, actively controlled adaptable space

structures. Adaptability is a key point in this study, since space structures can undergo significant changes during operation.

These alternations in the structural dynamics can be induced by thermal gradients or changes in the inertial properties due to

equipment realignment or fuel consumption. Furthermore, the aim is to present how the proposed closed loop system can be

driven to the limits of the achievable performance and how guaranteed performance and stability certificates can be established

without relying on extensive Monte-Carlo validation campaigns.

1.2. Contributions and paper organization

In agreement with the previously stated goals, the aim of the paper is to present the complete controller design cycle for an

active structure experiment developed at ESA. The paper introduces the following key contributions:

• a complete physical model of the uncertain plant is developed. This model captures the various subtle interactions between

the flexible structure and the actuators and provides deep insight into the underlying dynamics and the sensitivity to changes

in various physical parameters. This model is calibrated using a grey-box identification procedure based on non-smooth

optimization techniques. The resulting model is able to explain the structural modes observed experimentally all the way up

to about 100 Hz.

• a model reduction method suitable for the reduction of high order Linear Fractional Transformation (LFT) models of uncertain

or parameter dependent mechanical systems is presented. This reduction method is critical to ensure that the resulting low-

order plant models are simplified enough in terms of numerical complexity to allow the usage of modern analysis and

controller synthesis tools.

• a detailed controller synthesis and analysis procedure for the design, implementation and experimental validation of a low

order LPV controller for guaranteed adaptable model matching of a flexible structure. The resulting controller is discretized

at 2 kHz and ensures that the dynamics of the plant tracks an adaptable reference model in a bandwidth of about 80 Hz.

This paper is organized into three parts: system modeling, controller design and performance analysis. In the first part

(section 2), the experimental setup is presented and mathematical models of the uncertain system dynamics are extracted.

The first model relies purely on the input-output experimental data while the second model is derived from the physical equa-

tions of motion. A grey-box identification procedure is introduced to calibrate the physical model based on the experimental

data. The models are used in the second part of the paper (section 3) to design and optimize a controller capable of reshaping the

response of the setup and match the dynamics of an adaptable reference model. The design process is systematically outlined

together with the constraints imposed on the feedback loop by the different requirements. Lastly, the third part of the paper

(section 4) details the rigorous analysis procedure that was used to obtain robust performance and robust stability certificates

prior to the actual controller implementation. The section also presents a series of experiments that show excellent agreement

with the theoretical predictions and further demonstrate the applicability of the proposed methods.

1.2.1. Notations

For the partitioned matrices M =

[
M11 M12

M21 M22

]
and N =

[
N11 N12

N21 N22

]
of appropriate dimensions, the Redheffer star product

of M and N is M⋆ N =

[
M⋆ N11 M12(I − N11M22)−1N12

N21(I − M22N11)−1N21 N⋆M22

]
where the existence of inverses is assumed. If M or N

don’t have an explicit 2 × 2 structure, then the star product reduces to a linear fractional transformation (LFT). In this case the

operator ⋆ is associative, the lower LFT of M and N is M⋆ N = M11 + M12N(I − M22N)−1N21 and the upper LFT of M and N is

N ⋆M = M22 + N21N(I − M11N)−1M12. The set ℝℍn×m
∞ represents the set of finite gain transfer matrices with n outputs and m

inputs. In the case of a SISO transfer function, this set reduces to ℝℍ∞ . For G ∈ ℝℍn×m
∞ , the value ‖G‖∞ represents the L2 system

gain. The k-th element of the vector signal u is denoted as u{k}. 𝜎 (A) denotes the maximum singular value of the real matrix A.

A right-handed coordinate frame centered at the point  with basis vectors x⃗, y⃗, z⃗ is denoted as
(
 ; x⃗, y⃗, z⃗

)
.



Fig. 1. (a) Top-down photo of the system. (b) Schematic diagram of the setup.

2. Problem formulation and system modeling

2.1. Experimental setup and control objectives

Fig. 1 shows a photo and a schematic diagram of the experimental platform used in this study. The setup is mounted on

an optical table and consists of autocollimator together with an aluminum cantilevered flexible plate with two proof-mass

actuators (PMAs) and a mirror attached to it. The Newport CONEX-LDS autocollimator sends a laser beam that reflects of the

mirror attached at the free tip of the plate and returns on a position sensor within the device. The angular deflection at the

tip of the plate, corresponding to the angle between the outgoing and incoming ray, is subsequently computed down to sub

𝜇rad resolution with a sampling frequency of 2 kHz. This angular measurement yk(t) ∈ ℝ is then sent to a discrete controller

implemented on a dSPACE MicroLabBox platform that computes the control voltages uk(t) ∈ ℝ2 with a 2 kHz frequency. These

signals are combined with the reference signals r(t) ∈ ℝ2 to form u(t) ∈ ℝ2. The voltages u are then used to drive the two

Wilcoxon F5B shakers through a set of two Kepco BOP-100 amplifiers. The purpose of the controller is to alter the dynamic

response from the reference inputs r towards the angular measurements yk in order to robustly match the response of an

adaptable reference model within a given control bandwidth. The aim of the setup is to provide a simplified model of a flexible

space structure and demonstrate how the proposed design methodology can be employed for more complicated assemblies

with more sensors, actuators and flexible modes. While the paper relies on this specific setup for experimental purposes, the

control design process can be generalized to other space application scenarios. For example, the laser autocollimator can be

replaced by a set of accelerometers or angular rate sensors while the proof-mass actuators can be replaced with piezoelectric

patches. For an overview of actuators for space applications see Ref. [26].

2.2. Model identification and mathematical modeling

The techniques presented in this paper rely on a good understanding of the main dynamics of the system in order to guar-

antee worst-case behavior. In essence, to design a controller that pushes the system to the limits of performance, it is critical

to first develop a system model that includes the various perturbations and uncertainties acting on the plant. This is especially

important in the space industry where systems need to be designed to work without maintenance for extended periods of time

and withstand different structural changes induced by thermal deformations, gyroscopic effects or equipment realignment. In

this section, two models of the ESA setup are introduced: an experimental black-box model and an analytical or symbolic model

based upon the physical equations of motion. The experimental model is deduced purely based on the system response to var-

ious excitations. On its own, this empirical model can be used for controller design. However, this black-box representation

provides no physical understanding of the dynamics of the system. As such, it is difficult to analyze and predict the changes

in the overall dynamics as a result of variations in different physical parameters. To overcome such shortcomings, a second

model was developed based upon the key physical principles and equations of motions. This model complemented the exper-

imental one and provided deep insight into the sensitivity of the plant dynamics with respect to changes in different physical

parameters. A procedure is also introduced to calibrate this analytical model and perform grey-box identification based on the

experimental response.

2.2.1. Experimental model identification

Considering the plant schematic shown in Fig. 1b, the black-box model identification together with the uncertainty and noise

characterization was performed in the following way:



Fig. 2. (a) Actuator voltages and measured angular deflection during the first identification experiment. Labeled time regions: a○ environmental noise phase; b○ first actu-

ator phase; © second actuator phase. (b) Maximum sensor amplitude spectral density and cumulative root mean square (dotted line) under the influence of environmental

perturbations and zero actuator signals. Labeled points: 1○ first bending mode; 2○ power supply electric noise.

1. the plant is driven with the voltages u =
[

u{1} u{2}
]⊺

shown in Fig. 2a and the measured deflections yk were recorded at

a sampling frequency of 2 kHz across three experiments. The time-domain identification sequence was organized in distinct

phases as explained below:

(a) In the first part, labeled with a○ in Fig. 2a, the inputs u were kept at zero for 219 samples (≈ 4.37 min) in order to

record in the yk deflection measurement the combined effect of sensor noise and environmental perturbations acting

on the flexible plate. The estimate Φnn(𝜔) of the power spectral density (PSD) of this signal was obtained at frequencies

𝜔 ∈ [7, 160] Hz using Welch’s method with a Hann window of length 219 and 50% overlap.

Fig. 2b shows the estimated peak amplitude spectral density1 (ASD) spectrum Φnn(𝜔)1/2 and cumulative root-mean

square (CRMS), obtained during this phase across all experiments. The CRMS function provides a measure of the power

in a signal, up to a given frequency 𝜔. Note that the ≈ 6.55 𝜇rad bias, occurring in the low frequencies below 0.1 Hz, is

due to the static misalignment between the autocollimator and the mirror attached to the plate. Above this frequency,

it can be seen that most of the power is concentrated around two key regions. Firstly, an increase of ≈ 0.53 𝜇rad occurs

around 10.2 Hz and corresponds to deflections around the first bending mode of the plate due to unavoidable air and

ground vibrations. This bending mode will be described in detail in the subsequent section. A second significant increase

of ≈ 0.04 𝜇rad occurs around 50 Hz and is due to the electrical noise in the power supply of the actuator amplifiers.

For simplicity, the experimental model lumps all the different physical sources of perturbation observed in the laser

measurement yk into a single output noise model. The measurement yk is therefore assumed to be the sum of a “noise-

free” laser displacement response y and an overall noise signal n, i.e.

yk = y + n and n = Wndn with Wn ∈ ℝℍ∞ ; ||Wn(j𝜔)|| ≥ Φnn(𝜔)1∕2 (1)

where dn is a zero mean unit variance white noise signal and the weighting filter Wn is an upper bound on the ASD

spectrum Φnn(𝜔)1/2 of the noise measurements.

(b) In the second and third phase (labeled b○ and c○ in Fig. 2a), each of the actuators was driven in turn by a finite energy

stochastic signal. This random signal was obtained by passing zero mean unit variance white noise with a truncated

normal distribution through a 12th order band-pass Butterworth filter with a pass-band of 5 Hz–200 Hz. The filter is

scaled such that its2 system norm (i.e. the variance of its output in response to unit white noise) is equal to the squared

RMS value desired for each of the actuator signals. The length of each excitation sequence is equal to 221 samples for a

total duration of ≈ 17.5 min. At the beginning of each sequence the input signal was slowly scaled up to its nominal

value to avoid interactions with high frequency modes outside of the identification bandwidth. A similar scale down was

performed at the end of each excitation sequence. Additionally a pause was inserted between these successive excitation

phases to allow a decay of the flexible plate back to its resting state.

2. For each identification sequence, a Welch PSD estimate Φykyk
(𝜔) of the output yk was computed using a Hann window of

length 219 and 50% overlap. This provided a frequency resolution of about 8 mHz in the spectral estimate, averaged across 8

windowed intervals. Using the same method, the PSD estimates Φu{1}u{1}(𝜔) and Φu{2}u{2}(𝜔) were computed for each of the

1 Throughout this paper, the two-sided ASDs and PSDs were calculated.



Fig. 3. Gains of the estimated FRFs and nominal fitted plant model Gyu together with the minimum coherence spectrum across all three identification experiments: (a) u{1}

→ y channel; (b) u{2} → y channel.

input signals together with an estimate Φyku{·}(𝜔) of the cross power spectral density (CPSD) between each input and the

output.

3. The estimates Gyku{·}(𝜔) of the frequency response functions (FRF) from inputs u{·} to output yk together with the corre-

sponding coherence functions Γyku{·}(𝜔) were computed as:

Gyku{·}(𝜔) =
Φyku{·}(𝜔)
Φu{·}u{·}(𝜔)

and Γyku{·}(𝜔) =
|||Φyku{·}(𝜔)

|||2
Φu{·}u{·}(𝜔)Φykyk

(𝜔)
(2)

The coherence function quantifies at each frequency 𝜔, the fraction of the output PSD resulting from the input. The same

function can also be seen as a measure of the causality between the inputs and the output response [27]. Nonlinearities,

measurement noise or unwanted perturbations contribute to a reduction in the coherence spectrum. Hence, the function

provides a strong indicator of the degree of uncertainty in the spectral estimate.

4. For each channel, a transfer function was fitted to the FRF results from the three experiments. The fit was performed with a

vector fitting procedure [28] using MATLAB’s tfest command. The normalized root mean squared error (NRMSE), measuring

how well the response of the model fits the estimation data, averaged around 98%. After fitting each of the channels, the

transfer functions were aggregated into a global system transfer matrix and a balanced order reduction was performed. An

alternative identification method, explored in this study, was to directly estimate, based on both FRFs, the overall system

transfer matrix using subspace methods and nonlinear least-squares fitting (see ssest command in MATLAB). However, this

alternative method proved to be more time consuming and the fit quality was not significantly different. Finally, the resulting

state space system Gyu ∈ ℝℍ1×2
∞ was put into the modal form

Gyu ≔

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋG =

⎡⎢⎢⎢⎢⎢⎣

A1 0

0 A2 ⋱

⋱ ⋱ 0

0 An

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

AG

xG +

⎡⎢⎢⎢⎢⎢⎣

B1

B2

⋮

Bn

⎤⎥⎥⎥⎥⎥⎦
⏟⏟⏟

BG

u

y =
[
C1 C2 … Cn

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

CG

xG

where
Ai =

[
Re(𝜆i) Im(𝜆i)
−Im(𝜆i) Re(𝜆i)

]
i = 1,… , n

(3)

for complex conjugate eigenvalues 𝜆i = Re(𝜆i) ± j Im(𝜆i) and Ai = 𝜆i for real eigenvalues. The state transformation to modal

form was performed using MATLAB’s canon command that computes a block-diagonal Schur factorization of the state matrix.

Fig. 3 shows the FRFs, minimum coherence spectrum and the resulting gains of the 14th order state space model Gyu result-

ing from the previous identification procedure. It can be seen that the FRF estimates do not significantly vary across the three

experiments and that the state space model reliably fits the response data in the bandwidth of interest. Furthermore, the coher-

ence functions remains close to one except for frequencies near the anti-resonances and the 50 Hz power supply noise. This

indicates that reliable FRF estimates were obtained using the experimental data.

The paper aims to demonstrate how the proposed control method can be applied even in the presence of significant model

uncertainty. Linear Fractional Transformations (LFTs) are the one of the most widely employed means of representing uncertain

or varying parameters and other nonlinearities [29] since any rational function can be expressed as an LFT [30]. Furthermore,

interconnections of LFTs retain the LFT structure and therefore uncertainty at subsystem level can be aggregated into uncertainty



at global system level. In the case of the plant considered in this paper, possible parameter variations and model inaccuracies are

considered by augmenting the previously identified nominal model with an uncertainty structure. Three kinds of uncertainties

are assumed to operate simultaneously:

1. Modal uncertainty. Variations in some structural parameters can lead to changes in the natural frequency and damping of

some modes. To take into account these modal uncertainties, the blocks Ai in (3) are replaced by

Âi =

[
(1 + rRi

𝛿Ri
)Re(𝜆i) (1 + rIi

𝛿Ii
)Im(𝜆i)

−(1 + rIi
𝛿Ii
)Im(𝜆i) (1 + rRi

𝛿Ri
)Re(𝜆i)

]
for complex eigenvalues and Âi = [(1 + rRi

𝛿Ri
)𝜆i] (4)

for real eigenvalues 𝜆i. The parameters rRi
, rIi

are used to set the maximum percent of variation for the real and imaginary

parts of each eigenvalue while 𝛿Ri
, 𝛿Ii

∈ [−1, 1] are normalized real uncertainties. In this case, the new uncertain system

matrix Â, replacing the nominal one in (3), is affine in 𝛿Ri
, 𝛿Ii

and can be expressed as the LFT:

ÂG = AG + WmL𝚫modWmR

= 𝚫mod ⋆

[
0 WmR

WmL AG

]
with

𝚫mod = diag
(
𝚫mod1

, … , 𝚫modn

)
⊂ ℝnmod×nmod and

𝚫modi

i = 1,… , n
=

⎧⎪⎨⎪⎩
[
𝛿Ri

I2

𝛿Ii
I2

]
for complex eigenvalues 𝜆i

𝛿Ri
for real eigenvalues 𝜆i

(5)

where the matrices WmL, WmR containing the scaling factors rRi
, rIi

can be computed by means of a singular value decompo-

sition (see Ref. [30] for details).

2. Additive uncertainty. Outside the identification bandwidth or around the frequencies where the coherence spectrum (2) is

low, the dynamics of the system is unknown or uncertain. These inaccuracies in the nominal system Gsys were covered using

the following additive uncertainty model:

Ĝyu = Gyu + Wadd𝚫add where 𝚫add = diag
(
𝛿add1

, 𝛿add2

)
and Wadd =

[
radd1

radd2

]
(6)

The Linear Time Invariant (LTI) weights radd•
∈ ℝℍ∞ are used to scale at different frequencies the magnitude of the additive

normalized LTI uncertainties 𝛿add•
with 𝜎

(
𝛿add•

) ≤ 1.

3. Multiplicative uncertainty. Neglected dynamics or gains fluctuations in the actuators and amplifiers were modeled as mul-

tiplicative uncertainties at the plant input. In this case, the new uncertain control signal û is equal to

û{•} =
(

1 + 𝛿mul•rmul•
)

u{•} or û =

(
𝚫mul ⋆

[
02 Wmul

I2 I2

])
u with

𝚫mul = diag
(
𝛿mul1

, 𝛿mul2

)
Wmul = diag

(
rmul1

, rmul2

) (7)

where 𝛿mul•
are scalar normalized LTI uncertainties satisfying 𝜎

(
𝛿mul•

) ≤ 1 and the magnitudes of the LTI weights rdsk•
∈

ℝℍ∞ quantify for different frequencies the maximum percent of relative uncertainty.

The combined effect of all these uncertainties on the input-output behavior of the system can be studied by aggregating

them into the following global uncertainty model:

(8)

Fig. 4a highlights this LFT structure of the global uncertain model while fig. b shows the separate effects of each type of uncer-

tainty on the gains of the transfer function from the input u{2} to the output y.

2.2.2. Analytical modeling

In order to extract a symbolic representation of the dynamics, the plant is modeled as the interconnection of a finite ele-

ment model (FEM) of the flexible cantilevered plate, two proof-mass actuators and the mirror load. Each of these subsystems is

described below and afterwards assembled into a global structure. The numerical values and range of variation of the various

system parameters that are used in this section are give in Table 1. These values were either measured directly, provided in the

various datasheets or identified based on the experimental data using the techniques given in section 2.2.3.



Fig. 4. (a) Internal structure of the uncertain experimental model of the plant. (b) The effects of different sets of uncertainties on the gains of the channel u{2} → y.

Table 1

Nominal parameter values of the overall system.

Subsystem Parameter Description Value & Uncertainty

Flexible plate 𝜌 density 2692 kg m−3

E Young’s modulus 69 GPa

𝜈 Poisson’s ratio 0.33

l length 30 cm

w width 4 cm

h thickness 3 mm

𝛽M , 𝛽K damping coefficients 0.1, 10−5

⃖⃖⃖⃖⃖⃖⃖⃗ 1 location 1st actuator node [-1 25 0]⊺cm

⃖⃖⃖⃖⃖⃖⃖⃗ 2 location 2nd actuator node [1 10.5 0]⊺cm

⃖⃖⃖⃖⃖⃗ location mirror load node [0 28 0]⊺cm

Actuators m• mass of the moving mass 23.5 g

mc• mass of the casing 96.5 g

Jc• moment of inertia of the outer casing in CoM frame
(
• ; x⃗a•, y⃗a•, z⃗a•

) [
114.04

114.04

]
mg m2

a• gain 1.5 N V−1

k• stiffness 26 N m−1

c• damping 10 N s m−1

r•• attachment point location relative to outer casing CoM, i.e. ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗• •

[
0 0 −1.35

]⊺
cm

Mirror m mass 24.3 g

J moment of inertia in CoM frame
(
 ; x⃗l, y⃗l, z⃗l

) [
1.968

56.266

]
mg m2

r attachment point location relative to CoM i.e. ⃖⃖⃖⃖⃗
[
0 −1.44 −0.81

]⊺
cm

r𝜓
, rz

misalignment parameters between the laser beam and the reflecting surface 1e-3, 5e-3

Note: components of the location vectors are given in the inertial frame
(
 ; x⃗o, y⃗o, z⃗o

)
when the plate is at rest.

1. Flexible plate model. The flexible plate was modeled as a Kirchhoff thin plate subdivided into the assembly of intercon-

nected four-node rectangular plate elements shown in Fig. 5a. Each rectangle element has a side length of 5 mm at rest. The

inertial reference frame
(
 ; x⃗o, y⃗o, z⃗o

)
, visible in Figs. 1 and 5a, is fixed to the node at the center of edge anchored to the

base structure. Attached to each of the unclamped nodes is a frame
(
 • ; x⃗ •

, y⃗ •
, z⃗ •

)
coincident in the rest state with

the inertial frame. Each node has three degrees of freedom q •
=
[

z •
𝜽 •

𝝍 •

]⊺
where z •

is the displacement

along the z⃗ •
axis, 𝜽 •

the rotation angle around the x⃗ •
axis and 𝝍 •

the rotation angle around the y⃗ •
axis. Rotations

around the z⃗ •
axis are not considered. After grouping the node displacements into an overall displacement vector q , the

linearized dynamics of the flexible plate becomes

M q̈ + C q̇ + Kq = f with C = 𝛽MM + 𝛽K K and q (t) ∈ ℝ1512 (9)

where f are the generalized forces acting on every node coordinate of the plate. The state q has a dimension of 1512

since the plate is discretized into 9 × 57 nodes, each with 3 coordinates and 9 of the nodes are in clamped condition. The

mass and stiffness matrices M and K depend on structural properties of the plate given in Table 1. In-depth details on the

construction of the matrices and Kirchhoff plate modeling can be found in Refs. [31,32]. Since damping can be a challenging



Fig. 5. (a) Finite element model of the flexible plate together with corresponding coordinate frames and illustration of the four node plate element. (b) Diagram of the first

proof-mass actuator model in unclamped configuration illustrating the displacements z1 and zc1 relative to the rest state (dashed lines).

phenomenon to model physically, the classical (or Rayleigh) damping matrix C is defined in terms of two uncertain real

scalars 𝛽M and 𝛽K . The model assumes that each of the two PMAs both as well as the mirror load connect to the flexible plate

attachment nodes labeled with
(
 • ; x⃗p•, y⃗p•, z⃗p•

)
and

(
 ; x⃗e, y⃗e, z⃗e

)
in Fig. 5a. The plate’s equations of motion given in (9)

can be rewritten in terms of input forces and output accelerations at the attachment nodes as[
q̈
⊺


q̈
⊺
 1

q̈
⊺
2

]⊺
= D

[
f
⊺


f
⊺
1

f
⊺
2

]⊺
with D = 𝚫 ⋆ D́ ∈ ℝℍ9×9

∞ (10)

where the uncertain block diagonal matrix 𝚫 isolates the uncertain part of the damping coefficients 𝛼M and 𝛼K .

2. Mirror load model. The mirror used to reflect the laser beam is fixed to the plate using an aluminum L-shape (see Fig. 1),

that significantly increases the stiffness of the plate region directly underneath. For simplicity, the mirror, together with the

L-shape and the whole width of the plate under it, are modeled as a single rigid body load of mass m. This combined static

load connects to the plate model at the frame
(
 ; x⃗e, y⃗e, z⃗e

)
corresponding to the central node at the end of the flexible part

of the plate. Coincident with this attachment frame is a body frame
(
 ; x⃗l, y⃗l, z⃗l

)
fixed at the center-of-mass of the load.

The load was coupled to the plate dynamics by first translating plate accelerations q̈ =
[
z̈ �̈� �̈�

]⊺
of the attachment

node frame
(
 ; x⃗e, y⃗e, z⃗e

)
to accelerations q̈ =

[
z̈ �̈� �̈�

]⊺
of the load body frame

(
 ; x⃗l, y⃗l, z⃗l

)
. Multiplying these

body frame accelerations by the dynamic model of the load results in generalized reaction forces f in the load body frame.

These forces were subsequently translated to reaction forces f in the attachment node frame in order to couple the plate

and load dynamics. The linearized dynamical equations can therefore be expressed as

⎧⎪⎪⎨⎪⎪⎩

[
q̈

f

]
=

[
 (r ) 0

0  (r )⊺

][
q̈

f

]
= 𝚫 L

⋆ Ť

[
q̈

f

]

f =

[
m 0

0 J

]
q̈ = 𝚫 ⋆ D́q̈

with

 (r ) = S
⊺


[
I3

[
r

]
×

3 I3

]
S

S =
[

03×2 I3 03×1

]⊺
[
r

]
× =

⎡⎢⎢⎢⎣
0 −r{3} r{2}

r{3} 0 −r{1}
−r{2} r{1} 0

⎤⎥⎥⎥⎦

(11)

where r ∈ ℝ3 are the coordinates of the attachment point  relative to the mirror CoM , i.e. ⃖⃖⃖⃖⃗ expressed in the inertial

frame
(
 ; x⃗o, y⃗o, z⃗o

)
. m and J are the mass and the 2 × 2 moment inertia tensor of the mirror in the body frame. The matrix

J is only 2 × 2 since the load body frame
(
 ; x⃗l, y⃗l, z⃗l

)
is always coincident with the attachment node frame

(
 ; x⃗e, y⃗e, z⃗e

)
and rotations around the z⃗e are not considered in the flexible plate model. The blocks 𝚫 L

and 𝚫 capture the uncertainties

on the geometric and inertial parameters of the mirror load. The selection matrix S is needed to truncate the kinematic

transport matrix

[
I3

[
r

]
×

O3 I3

]
since each plate node only has three coordinates (z •

, 𝜽 •
and 𝜑 •

) instead of the usual

six for a general rigid body.



3. Mirror/laser misalignment model. The noise free laser measurement y was considered to be almost equal to the pitch angle

𝜽 of the mirror around its x⃗ axis. Because of small deformations in the mirror surface as well as the inevitable misalignment

between the laser beam and the reflecting mirror, the measurement y is also influenced by the axial displacement z and the

roll angle 𝝍 of the mirror load. In order to take into account these effects, the following uncertain model was introduced

(12)

where 𝛿𝜓
, 𝛿z

∈ [−1, 1] are real parametric uncertainties and r𝜓
, rz

∈ ℝ are used to set the maximum degree of expected

coupling.

4. Proof-mass actuator model. Fig. 5b illustrates the model of the first PMA. This actuator was modeled as a hollow cylinder

of mass mc1 and enclosing a point mass m1. This small mass attaches to the outside casing with a viscoelastic connection of

stiffness k1 and damping c1. The body frame
(
1 ; x⃗a1, y⃗a1, z⃗a1

)
is fixed to the center-of-mass of the outside shell. Additionally,

this frame forms a rigid connection with the plate frame
(
 1 ; x⃗p1, y⃗p1, z⃗p1

)
corresponding to node directly underneath the

actuator (see Fig. 5a for clarity). Since rotations around ⃖⃖⃖⃗zp1 axis are ignored in flexible plate model and
(
 1 ; x⃗p1, y⃗p1, z⃗p1

)
remains coincident with

(
1 ; x⃗a1, y⃗a1, z⃗a1

)
, the moment of inertia tensor of the shell in the body frame Jc1 is only 2 × 2. The

control signal u{1} generates a magnetic force of magnitude a1u{1} in the voice coil that is applied in opposite directions

to both the shell and the small mass. In the case when the actuator is not clamped to a supporting structure, this force

produces a displacement z1 of the small mass and a displacement zc1 of the cylindrical shell casing in an inertial reference

frame coincident with
(
1 ; x⃗a1, y⃗a1, z⃗a1

)
at rest. In this case, the translational dynamics is described by the following set of

equations:[
m1 0

0 mc1

][
z̈1

z̈c1

]
+

[
c1 −c1

−c1 c1

][
ż1

żc1

]
+

[
k1 −k1

−k1 k1

][
z1

zc1

]
=

[
a1

−a1

]
u{1} +

[
0

1

]
fzc1 (13)

where fzc1 is an external axial force applied to the enclosing shell. When the actuator is clamped to the beam, the previous

set of equations need to be slightly adapted. Firstly, as performed for the mirror load in (11), the static inertia of the shell

casing was added to the plate node  1. Secondly. the axial acceleration of the shell becomes equal to that of the supporting

node, i.e. z̈c1 = q̈1
{1}. In this case, the equations for the clamped PMA are

[
q̈1

f 1

]
=

[
 (r1 1

) 0

0  (r1 1
)⊺

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

T11
=𝚫 1

⋆Ť11

[
q̈1

f1

]
and

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

f1
=

[
mc1 0

0 Jc1

]
q̈1

+

⎡⎢⎢⎢⎣
1

0

0

⎤⎥⎥⎥⎦ fpma1

fpma1 = c1ėz1 + k1ez1 + a1u{1}
ez1 = z1 − q1

{1}
z̈1 = −m−1

1
fpma1

(14)

where r11
are the coordinates of the attachment point  1 relative to outer casing CoM 1, the function  (·) constructs

the truncated kinematic transport matrix as defined in (11) and 𝚫 1
captures the uncertainties in the location of the center

of mass. In terms of input-output behavior, the same PMA dynamics can also be expressed as the following transfer function:

f1
= D1

[
u{1}
q̈1

]
with D1

= 𝚫1
⋆ D́1

∈ ℝℍ3×4
∞ (15)

where 𝚫1
combines the block 𝚫 1

and the uncertainty in the other actuator parameters. The dynamical equations of the

second PMA are almost completely similar to eqs. (13)–(15), except for changes in each of the indices (for example 1

becomes 2 and u{1} becomes u{2}).

The subcomponent models defined in eqs. (9), (11) and (14) were subsequently combined into the following global model

mapping actuator inputs u to laser displacement y:

(16)



Fig. 6. (a) Block diagram of the uncertain plant together with the various subcomponents written in LFT form. Note: the grid on the D́ flexible plate block corresponds to

the FEM node grid and the colored circles indicate the various attachment nodes. (b) Equivalent global LFT form.

where q =
[

q
⊺


z1 z2

]⊺
; q(t) ∈ ℝnq ; nq = 1514 combines the node displacements q of the flexible plane with those of

the proof-masses z1, z2. The matrices ,,,, are the uncertain mass, damping, stiffness, input and output matrices. An

equivalent representation of the same dynamical model can be deduced by combining each of the subsystem LFTs from eqs. (10)

to (12) and (15) into the following global LFT representation:

Gsys = 𝚫sys ⋆
I2nq

s
⋆

∼
Gsys with 𝚫sys = diag

(
𝚫1

,𝚫2
,𝚫 1

,𝚫 2
,𝚫 L

,𝚫 ,𝚫,𝚫

)
(17)

Fig. 6 illustrates the internal structure of this overall LFT model and the interconnections between the various subcomponents.

This block diagram LFT representation of Gsys offers some advantages over the system level description given in (16). Firstly,

this method of assembly can be more versatile since the different component blocks can be easily interchanged with others

from an existing library (see Ref. [33] for an example). Secondly, since the block uncertainty is already isolated at the compo-

nent level, a low order global uncertainty block 𝚫sys can be easily constructed by just concatenating the individual uncertainty

blocks. In the system level description from (16), care must be taken to ensure that the uncertain matrices are properly fac-

torized to avoid unwanted repetitions of the uncertain parameters. However, the first representation also comes with some

distinct advantages. In particular, the first representation was used to compute the nominal mass-normalized modal matrix

𝚽 =
[
𝝋1 𝝋2 … 𝝋nq

]
∈ ℝnq×nq of the overall mechanical system. This matrix was calculated by assuming no damping

and nominal values for the mass and stiffness matrices and satisfies

𝚽⊺M𝚽 = Inq
;

(
K − 𝜔2

i
M
)
𝝋i = 0 for i = 1,… , nq ; 𝚽⊺K𝚽 = diag

(
𝜔2

1
,… , 𝜔2

nq

)
(18)

where 𝜔i is the modal frequency associated with every mode shape𝝋i. The matrix Φ serves two primary purposes:

(a) Mode shape visualization. Each mode shapes 𝝋i can be visualized in order to get insight into the various interactions

between the subcomponents and the different ways the structure can vibrate at the resonant frequencies.

(b) System order reduction by modal truncation. It can be seen from (16) that the order of Gsys is equal to 2nq = 3028.

Such a high order system would introduce significant numerical difficulties in any subsequent analysis. For this rea-

son, the modal matrix 𝚽 was used to perform an order reduction. In this case, the generalized displacements q can be

expressed in terms of the modal coordinates 𝜼(t) ∈ ℝnq as q = Φ𝜂. From the modal orthogonality condition in (18) it fol-

lows that 𝚽−1 = 𝚽⊺M and therefore 𝜼 = 𝚽−1q = 𝚽⊺Mq. Consider now a partitioning 𝚽 =
[
𝚽r 𝚽t

]
and 𝜼 =

[
𝜼
⊺
r 𝜼

⊺
t

]⊺
where 𝚽r ∈ ℝnq×nr contains the nr = 12 modal vectors to be retained and Φt those that will be truncated. The original

displacement vector q =Φr𝜂r +Φt𝜂t from (16) is therefore approximated with q ≈Φr𝜂r . Using again the modal orthogo-

nality condition 𝚽⊺
r M𝚽r = Inr

it follows that 𝚽+
r = 𝚽⊺

r M is a generalized left inverse of Φr i.e. 𝚽+
r 𝚽r = Inr

and therefore

𝜼r ≈
(
𝚽+

r q = 𝚽⊺
r Mq

)
. In this case, (16) and Fig. 6a can be updated to reflect the newly reduced order system by replacing

the integrator relationship on the state
[

q⊺ q̇⊺
]⊺

such that



Fig. 7. (a) Interconnection used for grey-box identification. (b) Solid lines: upper bounds computed using 𝜇-analysis on the gains of the u{2} → y channel for ±25% variation

around the nominal values of various physical parameters. Dashed lines: gains for different values of the corresponding uncertain parameter.

(19)

The system order is therefore reduced from 2nq = 3028 to 2nr = 24. The reduction procedure is equivalent to rewriting

Gsys from (16) as

(20)

However, the integrator reduction method proposed in (19) is slightly more advantageous, since it can be directly applied

to the block diagram LFT representation from (17), also shown in Fig. 6. The truncation errors induced by this model

reduction can be included into an additional additive uncertainty model as performed in Ref. [16].

2.2.3. Grey-box identification

The reduced order analytical model Gsys = 𝚫sys ⋆ Ǧsys detailed in (19) contains k real uncertain parameters 𝛿p•
in the block

diagonal block 𝚫sys . In order to calibrate the nominal values of these various physical parameters, a grey-box identification

procedure was used. The proposed method relies on the interconnection shown in Fig. 7a between Gsys and the uncertain exper-

imental model Gexp = 𝜖𝚫⋆ Ǧexp from (8), where the parameter 𝜖 ≤ 1 was introduced to scale the set of normalized experimental

uncertainty. The idea is to search for a set of parameter values for the uncertainty block 𝚫sys that minimizes the worst-case

weighted additive error between the two models across the reduced subset of experimental uncertainties 𝜖𝚫. This takes the

form of the following optimization procedure:

mininimize
𝚫sys

𝛾 s.t. sup
𝚫 ; 𝜎(𝚫)≤1

We

[(
𝜖𝚫 ⋆ Ǧexp

)
−
(
𝚫sys ⋆ Ǧsys

)]
Wr ∞ ≤ 𝛾 (21)

where the weighting function We was fixed to a unit gain second order band-pass Butterworth filter with a pass-band of

5 Hz–80 Hz. The purpose of this weight is to put more emphasis on the model errors within the control bandwidth. The other

weight Wr can be used, in the general case, to optimize the model error for a specific class of input signals. For simplicity, this

weight was fixed to Wr = I2 in this study and the value 𝜖 = 0.05 was selected to account for only 5% of the total experimental

uncertainty 𝚫.

The optimization problem in (21) was treated as a robust synthesis problem involving the structured block 𝚫sys . This class

of problems is known to be NP-hard even when the controller to be designed is unstructured. Nevertheless, powerful heuristic

methods, have been developed to help deal with such problems. In this work, the heuristic method of choice was the nons-

mooth structured ∞ design technique [34]. Mixed-uncertainty structured synthesis methods such as the ones presented in



Ref. [35] can directly tackle the minimization problem expressed in (21). However, in this work a slightly simplified version

was optimized. In this case, the worst case error is not calculated across all 𝚫; 𝜎 (𝚫) ≤ 1 but rather across a smaller subset of

random samples. This multi-model approach resulted in a faster tuning process but also required a subsequent 𝜇 analysis to

verify if the ∞ norm condition was satisfied across the larger set. If any uncertainty combination was found to invalidate the

norm requirement using the 𝜇 analysis, then that particular uncertainty was added to the collection of random samples. The

optimization process was then repeated until no other uncertainty could be found or a finite number of iterations was reached.

The nominal identified nominal values of the various parameters are provided in Table 1.

Fig. 8 shows the result of this tuning procedure by comparing the gains u{•} → y of the tuned nominal analytical model 𝚫sys

⋆ Ǧsys to the gains of the uncertain experimental model (𝜖𝚫)⋆ Ǧexp. It can be seen that the mathematical model reliably fits

the experimental model in the control bandwidth of interest of 5–80 Hz. The expected model discrepancy occurring at high

frequency most likely occurs due to deviations from the ideal Kirchhoff plate model, nonlinear damping effects or actuator

dynamics. However, the analytical model is sufficient to provide a great deal of physical insight into the system dynamics.

For example, the first six mode shapes 𝚽i; i = 1, …, 6 were calculated up to a frequency of 110 Hz using (18). The mode

shapes labeled 1○ to 6○ are illustrated in Fig. 9 and their respective natural frequency is indicated in Fig. 8. The newly fitted

analytical model also enabled the possibility to perform detailed parametric sensitivity analysis such as the one shown in Fig. 8.

Here, several physical parameters were varied within a ±25% range around their nominal values and an upper bound on the

transfer u{2} → y was computed using standard𝜇 analysis. In this way, the impact of each parameter variation can be accurately

predicted across the frequency range. For example, modifying the mass m of the mirror load corresponds to a frequency shift

of the first bending mode. Similarly, changing the damping coefficient c2 of the second PMA, modifies both the damping of

the corresponding actuator mode and the damping of the second bending mode. On the other hand, modifying the offset rz =
r11

{3} = r2 2
{3} between the center of mass of the two PMAs and the plate attachment nodes causes a shift in both

frequency and damping for all the modes above 40 Hz due to the change in the torsional moment of inertia.

3. Controller design and limits of performance

3.1. Control architecture and synthesis methodology

The purpose of the controller K is to produce an adequate control signal uk = Kyk that meets the following requirements:

R1. Robust stability: the closed loop shall be stable across all the uncertainties 𝚫 modeled using (8).

R2. Robust performance: the control signals and the model error between the experimental plant and an adaptable refer-

ence model H must be minimized and guaranteed to be below a certain specified level for a restricted subset of uncertainties

𝜖𝚫 with 𝜖 ∈ [0, 1].

To ensure such requirements, the controller was optimized following ∞∕𝜇 design practices, by first assembling the

weighted interconnection shown in Fig. 10. This interconnection is composed of the following blocks:

1. Uncertain plant model Gsys: For controller synthesis, either the experimental model Gexp = 𝚫 ⋆
[

Gzw Gzu

Gyw Gyu

]
from (8) or the

reduced physical model Gsys = 𝚫sys ⋆ Ǧsys from (19) can be used. The choice depends on the particular design objectives.

For example, the analytical model provides the user with virtual access to any physical signal in the overall plant. This can

be of considerable advantage since one can rely on these virtual measurements to monitor and possibly manipulate signals

for which no sensor is available. On the other hand, the experimental model can be readily derived for a general flexible

structure with a more complex shape. Since the aim of the paper is to outline a general control methodology for dynamic

reshaping, the choice was made to use the experimental model Gexp for control design and rely on the analytical model Gsys

for a more in-depth worst-case analysis.

2. Disturbance weights Wn and Wr: The measurement noise weight Wn was introduced in (1) and is used to model the upper

bound on the expected ASD spectrum of the experimental closed-loop noise measurements. Similarly, the filter Wr specifies

the upper bound on the ASD of the closed-loop reference signals r. The reference inputs r used in the closed loop experiments

were chosen to be the same as the signals u used during the experimental identification phase (see section 2.2.1 and Fig. 2a).

Therefore, Wr was chosen as a scaled 4th order band-pass Butterworth filter with a pass-band of 5 Hz–200 Hz and the same

amplitude as the one used to color the white noise open loop identification signals.

3. Adaptable reference model H(𝛼): This model represents the target dynamic response for the close-loop plant and is parame-

terized in terms of a normalized scheduling parameter 𝛼 ∈ ℝ ; |𝛼| ≤ 1. In this paper, H(𝛼) ∈ ℝℍ1×2
∞ is based on the nominal

open loop plant Gyu expressed in canonical modal from in (3). The difference is that for H(𝛼), the pairs of complex eigenvalues

𝜆i are parameterized in terms of a 𝛼 as 𝜆i = f i(𝛼) ±jgi(𝛼). In the general case, the functions fi(𝛼), gi(𝛼) ∶ ℝ → ℝ can be any

rational functions. However, for simplicity these functions were chosen as affine in 𝛼. In this case, H can be expressed as the



following LFT:

(22)

where nH = 6 is the minimal number of repetitions of 𝛼 in the LFT description, m = 4 is the number of poles up to 70 Hz

in Gyu and the matrices Bi and Ci are the ones from (3). Fig. 11 shows the gains and pole maps of H for different values of

𝛼 compared to the open loop plant Gyu. It can be seen that for 𝛼 = −1, the damping coefficients of the PMA modes around

35 Hz and the second bending mode around 63 Hz are increased by over an order of magnitude compared to the open loop.

When 𝛼 = 1, the damping of the first open loop bending mode around 10 Hz is increased by two orders of magnitude. At the

same time, the natural frequency of this flexible mode is raised up to 14 Hz. The torsional mode around 45 Hz is kept at the

open loop values. The reason why H(𝛼) was chosen to have this dependency on 𝛼 was to demonstrate that the controller can

distinctly and selectively change the structural behavior of the plant at different frequencies. This particular value for H was

also selected based on the limits of performance analysis detailed in section 3.2.

4. Performance weights Wu and Wp: The purpose of the weight Wu = w−1
u

I2 ; wu ∈ ℝℍ∞ is to impose a desired closed loop

upper bound of |wu(j𝜔)| on the worst-case ASD of the actuator signals u at different frequencies 𝜔. In this way, the specifica-

tion on the maximum actuator RMS can be guaranteed across any frequency band since the RMS is equal to the square root

of the area under the PSD curve. For the specific actuator used in the study, the RMS of the input voltage must stay below

0.1 V to avoid damage to the coil. Therefore wu was fixed to wu = 5.0 · 10−3 to ensure a bound of 5 × 10−3 V∕
√

Hz on the

ASD and a maximum RMS of 0.1 V up to 200 Hz. Likewise, the weight Wp = w−1
p

; wp ∈ ℝℍ∞ is used to specify the desired

upper bound |wp(j𝜔)| on the ASD of the error p between the output yh of the reference model H and the output y of the plant

model Gexp. In this case wp was chosen as a 4th order bandstop filter with maximum tracking error ASD of 50𝜇rad∕
√

Hz in

the 7 Hz–70 Hz stopband and a maximum of 500𝜇rad∕
√

Hz outside of it.

To ensure that the requirements are not conflicting or too conservative, the values for the performance weights Wu and Wp

were chosen after understanding some of the fundamental limits of performance imposed by the control architecture. Details

about this analysis are provided in section 3.2.

5. Structured adaptable controller K(𝛼): To facilitate the implementation of the control law but also provide sufficient adapt-

ability to changes in the reference model H(𝛼), the following affine structure K(𝛼) is imposed on the controller:

(23)

where AK0, AK1, BK0, BK0, CK0, CK0, DK0, DK0 are real matrices of appropriate dimension. The controller order nqk = 6, the

number of repetitions nK = 6 of the scheduling parameter 𝛼 and the initial values for the controller matrices were chosen

after following the iterative procedure detailed in Ref. [16]. To speed up the subsequent optimization, the matrices AK0, AK1

are constrained to be tridiagonal. For ensuing experiments, the controller is implemented in discrete-time following a Tustin

transformation with a sampling time T = 0.5 ms synchronized with the 2 kHz sampling frequency of the autocollimator

sensor. In this case, each of the integrators
1

s
in (23) is replaced with

T

2

1+z−1

1−z−1 , where z−1 is the unit delay. In compact notation

this is equivalent to:

(24)

Using the previous component definitions, the closed-loop relationship between the various input and output signals shown

in Fig. 10 and the controller K can be determined. In the open loop case, the following mapping exists between the input and

output signals shown in Fig. 10:

(25)



Fig. 8. Comparison between the gains of the experimental and analytical models: (a) u{1} → y channel; (b) u{2} → y channel. (Note: the region shaded in corresponds

to the scaled uncertainty set 𝜖𝚫sys considered during the grey-box fitting optimization (21).).

Closing the loop with the controller K(𝛼) such that uk = K(𝛼)yk results in the following new mapping between the signals:

(26)

where S(𝛼) =
[
I + GyuK(𝛼)

]−1
denotes the Output Sensitivity Function and the dependency on 𝛼 of K, H and S was omitted for

clarity. After closing the uncertainty channels with the scaled uncertainty 𝜖𝚫 ; 𝜖 ∈ [0, 1], i.e. wΔ = (𝜖𝚫)zΔ the controller design

problem can be stated as the following optimization:

mininimize
Ǩ∈𝕂

𝛾 s.t. sup
𝚫 ; 𝜎(𝚫)≤1;|𝛼|≤1

𝜖𝚫 ⋆
(
𝛼InH

)
⋆ P̌⋆ Ǩ⋆

(
𝛼InK

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

M(𝛼) ∞

≤ 𝛾 (27)

Any controller for which 𝛾 < 1 satisfies the robust performance and stability requirements. More precisely, it represents a

robust and structured Linear Parameter Varying (LPV) synthesis problem. However, in this work the time-varying aspect of the

parameter 𝛼 is not explicitly taken into account and the constraints on the L2 system gain in (27) are only enforced for fixed

values of 𝛼. Therefore, the optimization is comparable in complexity to the grey-box fitting method proposed in (27) and the

same set of nonsmooth ∞ tools were used to address the problem. In order to improve readability of the paper, additional

details about all the various steps and heuristics needed to solve (27) were suppressed. A complete explanation of the process

used to obtain the structured LPV controller Ǩ ∈ 𝕂 using non-smooth ∞ tools can be found in Refs. [16,17,36]. In the case of

the optimization given in (27), a controller Ǩ was found to achieve a performance level of 𝛾 = 0.989. Fig. 12 shows the gains and

pole map of this controller K(𝛼) = Ǩ ⋆
(
𝛼InK

)
for different values of the scheduling parameter 𝛼 ∈ [−1, 1].

It is important to understand the shape of the resulting controller and also the trade-offs involved in the overall control

design. A detailed analysis of the limits of closed-loop performance is therefore provided in the following subsection.

3.2. Limits of performance and trade-off analysis

During the requirements specification phase, it is important to have an intuition about what can be achieved using feed-

back, subject to the various constraints imposed by available bandwidth, actuator limitations, environmental noise and model

uncertainty. This sort of understanding about the limits of performance can simplify the process of selecting the desired perfor-

mance requirements and the corresponding weights prior to the controller tuning. Additionally, before any experimentation, it

is important to understand the mechanisms of action of the controller and cross-check the results returned by automatic syn-

thesis tools. The goal of this section is to show how this trade-off analysis was performed prior to any control synthesis and how

the results can be used to explain the gains of the synthesized controller shown in Fig. 12.

For any stabilizing controller K(𝛼), the sensitivity S(𝛼) =
[
I + GyuK(𝛼)

]−1
is subject to the following types of constraints for

all fixed values of 𝛼 ∈ [−1, 1]:



Fig. 9. Nominal mode shapes of the undamped analytical model up to 110 Hz numbered in Fig. 8: 1○ 1st bending mode; 2○ 1st actuator mode (in-phase proof-mass

displacements); 3○ 2nd actuator mode (out-of-phase proof-mass displacements); 4○ 1st torsional mode; 5○ 2nd bending mode; 6○ 2nd torsional mode.

Fig. 10. (a) System architecture used for controller synthesis and worst-case analysis. (b) Equivalent standard form of the interconnection.

1. Analytical constraints. Bode’s Sensitivity Integral also known as the waterbed effect can be seen as a conservation law valid

for all stabilizing controllers [37]. Briefly, this constraint states that if the controller pushes on the sensitivity function S at

one frequency it automatically increases its value at some other frequencies by the same amount. More precisely, consider

an arbitrary MIMO plant Gyu and a controller K compatible in size such that each of the entries in the open loop transfer

matrix GyuK are rational functions with at least two more poles than zeros. In this case, if the closed loop is stable, then the

singular values 𝜎i of S with i = 1, …, n𝜎 satisfy [38]:

n𝜎∑
i=1

∫
∞

0

log𝜎i

[
S(j𝜔)

]
d𝜔 = 𝜋

Np∑
i=1

Re(pi) (28)

where pi represents the Np right-hand plane poles. The assumption on the excess number of poles is not restrictive for the

type of plants Gyu considered in this study, namely flexible structures. This is because both actuators and sensors have a

strong roll-off above a certain frequency due to the amplifiers. In the case of the setup considered in this paper, both the



Fig. 11. (a) Comparison between the gains of the adaptable reference model H(𝛼) for different 𝛼 ∈ [−1, 1] and the nominal open loop system Gyu . (b) Comparison between

the poles of H(𝛼) and Gyu (Note: due to pole symmetry, only the upper complex half-plane is shown).

open loop plant Gyu and K are stable and S is SISO. Therefore, the inequality (28) simplifies to

∫
∞

0

log |S(j𝜔)|d𝜔 = 0 (29)

2. Algebraic constraints. Intuitively, the purpose of the controller is to minimize the peak gain between any pair of distur-

bances
[

d
⊺
r d

⊺
n

]
⊺ and performance outputs

[
e
⊺
p e

⊺
u

]
⊺ of the closed loop transfer matrix M from (26). A brief examination

of this matrix reveals that the controller K has an influence on all of the sub-blocks. However, the algebraic dependency on K

is different in every case and sometimes of an inverse nature. Therefore it is not possible to make the gain in any sub-block

arbitrarily small without amplifying the gain of another block. Furthermore, each performance requirement places a different

constraint on the sensitivity S and is important that these requirements are not conflicting. Consider that the optimization

(27) found a controller that achieves a certain peak gain of 𝛾 at system level. This implies that the gain between any pairs of

disturbance and performance signals is also kept below 𝛾 . In the case of the pair dr → ep this is related to the model tracking

error in response to the reference signals. A peak gain of 𝛾 for this transfer implies that

𝜎(Wp(j𝜔)(H(j𝜔) − Gyu(j𝜔)(I − K(j𝜔)S(j𝜔)Gyu(j𝜔))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

= S(j𝜔)Gyu(j𝜔)

)Wr(j𝜔)) ≤ 𝛾 ; ∀𝜔 ∈ ℝ (30)

Using the submultiplicative property of the induced matrix 2-norm, the previous inequality holds if

𝜎
(

H(j𝜔) − S(j𝜔)Gyu(j𝜔)
) ≤ (

𝛾
𝜎
(

Wp(j𝜔)
)
𝜎
(

Wr(j𝜔)
) = �̃�(j𝜔)

)
; ∀𝜔 ∈ ℝ (31)

For clarity, the dependency on the frequency 𝜔 will be subsequently omitted. Considering now that, ||𝜎 (B) − 𝜎 (A)|| ≤
𝜎 (A − B) ; ∀A,B ∈ ℂn×m, the previous inequality becomes

𝜎 (H) − �̃� ≤ 𝜎 (SGyu

) ≤ 𝜎 (H) + �̃� (32)

Finally, as S is a scalar function, it follows from the homogeneity of the matrix 2-norm that 𝜎
(

SGyu

)
= |S|𝜎 (Gyu

)
and there-

fore (32) reduces to

𝜎 (H) − �̃�
𝜎
(

Gyu

) ≤ |S| ≤ 𝜎 (H) + �̃�
𝜎
(

Gyu

) (33)

It is clear that in frequency regions where 𝜎 (H)≫ �̃� the bounds become very tight.

In the case of the control effort performance, a peak gain 𝛾 , i.e. 𝜎
(

Wu

(
I − KSGyu

)
Wr

) ≤ 𝛾 , is satisfied whenever:

𝜎
(

I − KSGyu

) ≤ (
𝛾

𝜎
(

Wu

)
𝜎
(

Wr

) = �̌�
)

(34)

and since 𝜎
(

Gyu

(
I − KSGyu

))
= 𝜎

(
SGyu

)
= |S|𝜎 (Gyu

)
therefore:

𝜎
(

Gyu

(
I − KSGyu

)) ≤ 𝜎 (Gyu

)
𝜎
(

I − KSGyu

)
⟺ |S| ≤ 𝜎 (I − KSGyu

) ≤ �̌� (35)

For brevity, the conditions for the robust performance and stability requirements (i.e. the ones involving the wΔ and zΔ
channels) as well as the nominal performance conditions involving the sensor noise channel dn are omitted.



Fig. 12. (a) Gains and (b) pole maps of the controller K(𝛼) for different values of the scheduling parameter 𝛼 ∈ [−1, 1].

It should be noted that since the nominal plant model Gyu is fixed in the definition of the sensitivity S =
[
I + GyuK

]−1
, the

previous constraints on S also naturally constrain the gains of the controller K. Fig. 13 illustrates the algebraic constraints on S for

three different scheduling values 𝛼 = {−1, 0, 1} together with the closed loop sensitivity using the controller K synthesized in the

previous section. It is clear that the tracking performance requirement (33) tightly constraints the sensitivity function around

the regions where significant control action is applied, i.e. regions where the gain of S is small. Additionally, the waterbed effect

can be clearly observed in the growth of the sensitivity around regions where the same function is forced to a low value. Since

the control effort requirements limits the maximum allowed increase in the sensitivity, it therefore also limits to some extent

the maximum bandwidth over which significant attenuation of S can take place. In general, care must be taken to make sure that

all distortions away from unity of the sensitivity function happen within the allowed bandwidth to avoid unwanted interactions

with unmodeled dynamics [37]. A more in-depth worst-case analysis is provided in section 4.

3.3. Performance impact of actuator and sensor placement

The actuator and sensor placement plays a critical role on the tracking performance of the closed loop system. Intuitively, the

actuators need to have sufficiently authority over the plant dynamics and mode shapes in the bandwidth of interest in order to

reshape the dynamics and track the reference model. Within the same bandwidth, the modes of interest need to be observable

from the sensors measurements to perform feedback control. The dynamical equations of the plant from (16) as well as the

modal matrix Φ from (18) can be recomputed for different actuator and sensor layouts. Subsequently, the new mode shapes of

the flexible structure can be visualized, in a manner similar to the one in Fig. 9, to understand the new structural dynamics in a

given bandwidth. Furthermore, the open loop gains from the actuators towards the sensor measurements, shown in Fig. 8, can

Fig. 13. Closed loop sensitivity functions S(𝛼) for different values of the controller scheduling parameter: (a) 𝛼 =−1; (b) 𝛼 = 0; (c) 𝛼 = 1. Shaded regions correspond

to the algebraic constraints imposed by the requirements on the model tracking (33) and control effort (35).



Fig. 14. Robust stability plots: (a) upper bound on 𝜇𝜹 across a dense grid of frequencies and scheduling parameters. (b) side views of the bounds (solid line for upper and

dashed lines for lower) on 𝜇𝜹 computed only with respect to different subsets of uncertainty.

be recomputed to assess the controllability and observability of the new layout. These gains can then be optimized in order to

increase control authority and tracking performance by tuning the location of the various actuators and sensors. This actuator

and sensor layout optimization was beyond the scope of this paper but would be an interesting topic for future research efforts.

4. Performance and stability analysis

4.1. Worst case analysis

Before implementing the control law, the robust stability of the closed loop interconnection 𝚫⋆M shown in Fig. 10 was eval-

uated. This assessment was done by calculating the bounds on the function 𝜇𝛿
(

Mw→z(𝛼, j𝜔)
)

across a dense grid of frequencies

𝜔 and for multiple values of the scheduling parameter 𝛼 ∈ [−1, 1]. The function 𝜇𝛿 (M) represents the structured singular value

[39] defined as zero if no uncertainty 𝚫 makes I −M𝚫 singular and 𝜇𝜹(M) = 1∕min
𝚫

{
𝜎 (𝚫) , det (I − M𝚫) = 0

}
otherwise. This

function therefore offers precise information about the magnitude of uncertainty need to destabilize the loop at any frequency.

Furthermore, efficient algorithms [40] have been developed to bound this function. Fig. 14a displays the upper bound on this

function for the set of uncertainties 𝚫 = diag
(
𝚫mod, 𝚫add, 𝚫mul

)
; 𝜎 (𝚫) ≤ 1 given in (18). Fig. 14b illustrates side views of

the bounds (upper and lower) of the same function but also bounds on 𝜇𝜹 computed only with respect different subsets of

uncertainty. The minimums in stability margin, i.e. the peaks of 𝜇𝜹 occurs mostly around the regions where control action was

applied to dampen the modes. However, even in the combined uncertainty case, 𝜇𝜹 remains below 0.56 and therefore the loop

can tolerate an increase in the uncertainty of 1/0.56 = 78% while maintaining stability.

Fig. 15. Upper bounds on the gains of different performance channels with respect to multiple and uncertainty sets: (a) the model tracking error channel
[
dr{1} dn

]⊺
→ p;

(b) the control effort channel
[
dr{1} dn

]⊺
→ u{1}. (Note: the bounds were computed via 𝜇-analysis using the plant uncertainty model shown in Fig. 4b and the closed-

loop interconnection detailed in Fig. 10a.)



Fig. 16. Experimentally identified closed loop frequency response functions (dark solid lines ), coherence spectrums (dotted lines) and predicted uncertain response

(regions shaded in a lighter color ): (a) r{1} → y channel; (b) r{2} → y channel. (For interpretation of the references to color in this figure legend, the reader is referred

to the Web version of this article.)

Fig. 17. (a) Predicted and experimental closed loop gains of the r{1} → y transfer for 𝛼 = −1 using the experimental and analytical models. (b) Predicted nominal value

(solid line) and experimental estimate (dotted line) of the amplitude spectral density and cumulative root mean square corresponding to the closed loop actuator control

signal u{1} for scheduling parameter values 𝛼 ∈{−1, 0, 1}.

The impact of uncertainties on different performance indicators was also assessed, prior to experimentation, using struc-

tured singular value calculations. Fig. 15 illustrates the upper bounds on the peak gain for different performance signals, across

all frequencies 𝜔 and scheduling parameter values 𝛼. The first performance transfer that was studied was
[

dr{1} dn

]⊺
→ p

corresponding to the maximum model tracking error using sensor noise and reference signals in the first actuator. In this case, it

has been observed that the worst-case gains channel are mainly sensitive to modal uncertainties 𝚫mod around the flexible mode

frequencies. This drop in performance can be explained by the fact the uncertainties act only on the plant model Gexp and not

on the adaptable reference model H(𝛼) in the closed-loop interconnection (see Fig. 10). Therefore, in the worst-case, because of

the significant modal uncertainty considered for the plant model, big differences can occur around the resonance frequencies

between the gains of Gexp and those of the reference model (see Fig. 12a for the gains of H(𝛼)). Simply put, the peaks in uncertain

plant Gexp can occur at frequencies that are very far from those of the desired reference model. Therefore, the controller needs to

work much harder in this situation in order to reshape the plant dynamics to match those of the reference model. However, due

to the hard constraints on the actuators this is not physically possible in all scenarios and a drop in the tracking performance



Fig. 18. Predicted nominal closed loop ASD spectrum of the two proof-mass displacements, i.e. the gains of the channel dr →
[
z1 z2

]
. The gains were computed for the

controller scheduled at 𝛼 ∈{−1, 0, 1} using the analytical model Gsys and the interconnection from Fig. 10.

naturally occurs. More details about these performance limitations are discussed in section 3.2.

The worst-case gains of a second performance channel
[

dr{1} dn

]⊺
→ u{1} are shown in Fig. 15. The gains correspond to

the maximum control effort ASD in the presence of sensor noise and reference signals in the first actuator. It can be observed

that the channel maintains values close to nominal ones even in the presence of significant model uncertainty.

It must be mentioned that the methodology outlined in this paper, relies on the assumption that the system undergoes small

deflections and that the dynamics remain fairly linear. This assumption covers a wide variety of space applications since most

spacecraft tend to avoid by design large deflections and nonlinearities in the structural dynamics. However, if this condition

doesn’t hold, the specific type of nonlinearity needs to be considered during the tuning and validation procedures. Most likely,

the design procedure would be based on a couple of iteration between a linear controller design and a Monte-Carlo analysis on

the full nonlinear plant model.

4.2. Experimental results

Satisfied with robust stability and robust performance characteristics, the controller was subsequently evaluated in a series

of experiments. Fig. 16 shows the gains of the experimentally identified closed loop frequency response functions r{•} → y

for five different experiments with the controller scheduled at 𝛼 ∈{−1, −0.5, 0, 0.5, 1}. The reference signals r used during the

experiments are the same as the open loop identification signals u shown in Fig. 2a and discussed in section 2.2.1. Fig. 16 also

includes the coherence plots and the predicted closed loop uncertain response. The predictions were made using the experi-

mental model arranged in the architecture shown in Fig. 10. To compute the different predictions, the model uses a reduced

uncertainty subset scaled to 10%, i.e. 𝚫 ; 𝜎 (𝚫) ≤ 0.1. Excellent agreement between experiment and theoretical prediction can

be observed. For the same reduced uncertainty set and 𝛼 = −1, Fig. 17a illustrates the different closed loop predictions made

Fig. 19. Experimental time domain performance in open and closed loop for a 10.2 Hz sine excitation. In the first phase, the sine input in one of the actuators excites the

first bending mode. In the second phase, the excitation is stopped and the controller (scheduled at 𝛼 ∈{−0.5, 1}) is activated.



using the experimental (section 2.2.1) and analytical plant models (sections 2.2.2 and 2.2.3). While both models reliably antici-

pate the closed-loop behavior, in the neighborhood of 35 Hz the analytical model correctly predicts the clear separation of the

two PMA modes around this frequency. This is a natural consequence of the fact that the experimental model only fitted a single

mode at that frequency (see Fig. 3). On the other hand, the analytical model physically models the two modes as distinct but

close in frequency (see the corresponding mode shapes in Fig. 9). Predictions about the closed-loop ASD and CRMS of the control

signals were also made in Fig. 17b. The figure illustrates these prediction on top of the experimental results for the closed loop

scheduled at 𝛼 ∈{−1, 0, 1}. As visible in these plots, the control signals can be accurately predicted before the experiments are

performed.

Interestingly, the analytical model can be used to perform a closed loop examination of certain signals without relying on

additional sensors. The model therefore acts as a window through which the typically black-box dynamics can be observed. For

example, Fig. 18 displays the calculated nominal ASD spectrum of the two proof-mass displacements, i.e. the singular values of

dr →
[
z1 z2

]
using the interconnection from Fig. 10 and replacing the plant model Gexp with the analytical model Gsys. The

gains are calculated in both open loop and in closed loop with 𝛼 ∈{−1, 0, 1}. The cross-coupling between the two actuators as

well as the interactions with the flexible modes of the supporting plate are thus revealed. For example, when 𝛼 = −1 and the

controller focuses more on dampening the first bending mode around 10 Hz, the mass displacements internal to the actuators

are also significantly reduced.

Fig. 19 reveals the time domain experimental performance results in open and closed loop. In the first half of the experiment,

the first actuator is driven by a constant sine input at 10.2 Hz around the first bending mode frequency of the plate. In the second

phase, the excitation is stopped and the controller is activated with 𝛼 ∈{−0.5, 1}. Compared to the open loop, the controller

significantly increases the damping of this mode and the structure settles back to equilibrium almost 100 times faster for 𝛼 = 1.

This result is consistent with the results presented in Fig. 16.

5. Conclusions

This paper presented a complete experimental modeling, analytical modeling and control design methodology to actively

alter the response of a flexible structure. The framework ensures that the closed loop plant dynamics robustly matches that

of a given adaptable reference model even in the presence of significant model uncertainty and sensor noise. The controller

synthesis procedure includes a step by step description of the design process including details about the interplay between

the different requirements and the limits of performance. The extended robust performance assessment performed prior to

the various closed loop experiments was a necessary step to ensure the safety and reliability of the proposed control law. The

work also demonstrated that accurate predictions can be made about the closed loop behavior, provided that sufficient effort is

placed in extracting a physical model of the plant and characterizing the different disturbances acting on it. The paper outlines

the process of deriving such an uncertain model either in a purely data-driven fashion or as an analytical model calibrated

from experimental data. These results provide the confidence to extend the proposed methodology to more complex scenarios

involving other flexible space structures equipped with more sensors and actuators.

References

[1] L.PuigA.BartonN.RandoA review on large deployable structures for astrophysics missionsActa Astronaut.671220101226https://doi.org/10.1016/j.actaastro.

2010.02.021
[2] I.AlexanderR.GonaloC.TizianaA.CliffordS.-P.JulianDeployable structures activities at the European space agency’s structures sectionECSSMET 2016 - 14th

European Conference on Spacecraft Structures, Materials and Environmental Testing2016
[3] F.RoyerS.PellegrinoUltralight ladder-type coilable space structures2018 AIAA Spacecraft Structures Conference2018American Institute of Aeronautics and

AstronauticsReston, Virginiahttps://doi.org/10.2514/6.2018-1200

[4] M.AryaN.LeeS.PellegrinoUltralight structures for space solar power satellites3rd AIAA Spacecraft Structures Conference2016American Institute of Aero-
nautics and AstronauticsReston, Virginiahttps://doi.org/10.2514/6.2016-1950

[5] W.WangH.RodrigueS.-H.AhnDeployable soft composite structuresSci. Rep.61201620869https://doi.org/10.1038/srep20869
[6] T.PraterN.WerkheiserF.LedbetterD.TimucinK.WheelerM.Snyder3D Printing in Zero G Technology Demonstration Mission: complete experimental results

and summary of related material modeling effortsInt. J. Adv. Manuf. Technol.2018https://doi.org/10.1007/s00170-018-2827-7
[7] C.DennehyO.S.Alvarez-SalazarSpacecraft Micro-vibration: A Survey of Problems, Experiences, Potential Solutions, and Some Lessons Learned2018
[8] K.KomatsuH.UchidaMicrovibration in spacecraftMech. Eng. Rev.122014SE0010https://doi.org/10.1299/mer.2014se0010

[9] C.LiuX.JingS.DaleyF.LiRecent advances in micro-vibration isolationMech. Syst. Signal Process.565720155580https://doi.org/10.1016/j.ymssp.2014.10.007
[10] ECSS, ECSS-E-HH-32-26ASpacecraft Mechanical Loads Analysis Handbook2013

[11] L.DavisJ.WilsonR.JewellJ.RodenHubble Space Telescope Reaction Wheel Assembly Vibration Isolation System1986
[12] L.P.DavisD.R.CarterT.T.HydeSecond-generation hybrid D-strutC.D.JohnsonProceedings of SPIE - The International Society for Optical Engineeringvol.

24451995Society of Photo-Optical Instrumentation Engineers161175https://doi.org/10.1117/12.208885

[13] V.CameloA.BronowickiR.HejalS.SimonianS.BrennanDamping and isolation concepts for vibration suppression and pointing performance50th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference2009https://doi.org/10.2514/6.2009-2637

[14] J.R.MalyD.EricksonT.J.PargettVibrationsuppression for the gemini planet imagerSPIE Astronomical Telescopes+ Instrumentation2010International Society
for Optics and Photonics77331F

[15] D.-O.LeeG.ParkJ.-H.HanHybrid isolation of micro vibrations induced by reaction wheelsJ. Sound Vib.112015https://doi.org/10.1016/j.jsv.2015.10.023
[16] V.PredaJ.CieslakD.HenryS.BennaniA.FalcozRobust microvibration mitigation and pointing performance analysis for high stability spacecraftInt. J. Robust

Nonlinear Control2818201856885716https://doi.org/10.1002/rnc.4338

[17] V.PredaRobust Microvibration Control and Worst-Case Analysis for High Pointing Stability Space MissionsPh.D. thesis2017University of Bordeaux
[18] R.BastaitsD.AlalufM.HorodincaI.RomanescuI.BurdaG.MarticG.RodriguesA.PreumontSegment ed bimorph mirrors for adaptive optics: segment design and

experimentAppl. Opt.532920146635https://doi.org/10.1364/AO.53.006635

https://doi.org/10.1016/j.actaastro.2010.02.021
https://doi.org/10.1016/j.actaastro.2010.02.021
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref2
https://doi.org/10.2514/6.2018-1200
https://doi.org/10.2514/6.2016-1950
https://doi.org/10.1038/srep20869
https://doi.org/10.1007/s00170-018-2827-7
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref7
https://doi.org/10.1299/mer.2014se0010
https://doi.org/10.1016/j.ymssp.2014.10.007
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref10
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref11
https://doi.org/10.1117/12.208885
https://doi.org/10.2514/6.2009-2637
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref14
https://doi.org/10.1016/j.jsv.2015.10.023
https://doi.org/10.1002/rnc.4338
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref17
https://doi.org/10.1364/AO.53.006635


[19] P.RauschS.VerpoortU.WittrockUnimor ph deformable mirror for space telescopes: design and manufacturingOpt. Express2315201519469https://doi.org/

10.1364/OE.23.019469
[20] B.P.BowlerImaging Extrasolar Giant Planets2016Publications of the Astronomical Society of the Pacifichttps://doi.org/10.1088/1538-3873/128/968/

102001

[21] D.WuL.HuangB.PanY.WangS.WuExperimental study and numerical simulation of active vibration control of a highly flexible beam using piezoelectric
intelligent materialAero. Sci. Technol.3720141019https://doi.org/10.1016/j.ast.2014.04.008

[22] D.W.SparksJ.-N.JuangSurvey of experiments and experimental facilities for control of flexible structuresJ. Guid. Control Dyn.1541992801816https://doi.
org/10.2514/3.20912

[23] M.BalasTrends in large space structure control theory: fondest hopes, wildest dreamsIEEE Trans. Autom. Control2731982522535https://doi.org/10.1109/
TAC.1982.1102953

[24] T.T.HydeActive Vibration Isolation for Precision Space StructuresPh.D. thesis1996Massachusetts Institute of Technology

[25] G.J.BalasJ.C.DoyleRobustness and performance trade-offs in control design for flexible structuresIEEE Trans. Control Syst. Technol.241994352361https://
doi.org/10.1109/87.338656

[26] C.AllegranzaL.GaillardR.Le LettyS.PattiL.ScolamieroM.TosoActuators for space applications: state of the art and new technologiesProc. 14th Int. Conf. New
Actuators2014283288

[27] A.PreumontTwelve Lectures on Structural Dynamics, Vol. 198 of Solid Mechanics and its Applications2013Springer NetherlandsDordrechthttps://doi.org/

10.1007/978-94-007-6383-8
[28] A.Arda OzdemirS.GumussoyTransfer function estimation in system identification toolbox via vector fittingIFAC-PapersOnLine2017https://doi.org/10.1016/

j.ifacol.2017.08.1026
[29] J.DoyleA.PackardK.ZhouReview of LFTs, LMIs, and muConference on Decision and Control1991IEEE12271232https://doi.org/10.1109/CDC.1991.261572

[30] S.HeckerA.VargaSymbolic manipulation techniques for low order LFT-based parametric uncertainty modellingInt. J. Control7911200614851494https://
doi.org/10.1080/00207170600725644

[31] R.D.CookConcepts and Applications of Finite Element Analysis2007John wiley & sons

[32] F.SanfedinoD.AlazardV.Pommier-BudingerA.FalcozF.BoquetFinite element based N-Port model for preliminary design of multibody systemsJ. Sound
Vib.4152018128146https://doi.org/10.1016/j.jsv.2017.11.021

[33] D.AlazardC.CumerSate Llite Dynamic Toolbox: Principle, User-Guide and Tutorials2018
[34] P.ApkarianNonsmooth mu-synthesisInt. J. Robust Nonlinear Control2113201114931508https://doi.org/10.1002/rnc.1644
[35] R.S.Da Silva De AguiarP.ApkarianD.NollStructured robust control against mixed uncertaintyIEEE Trans. Control Syst. Technol.2018https://doi.org/10.1109/

TCST.2017.2723864
[36] V.PredaJ.CieslakD.HenryS.BennaniA.FalcozA H-infinity/mu solution for microvibration mitigation in satellites: a case studyJ. Sound

Vib.39920172144https://doi.org/10.1016/j.jsv.2017.03.015
[37] G.SteinRespect the unstableIEEE Control Syst.23420031225https://doi.org/10.1109/MCS.2003.1213600

[38] J.S.FreudenbergD.P.LoozeFrequency Domain Properties of Scalar and Multivariable Feedback Systemsvol. 1041988Springer
[39] A.PackardJ.DoyleThe complex structured singular valueAutomatica291199371109https://doi.org/10.1016/0005-1098(93)90175-S
[40] G.BalasR.ChiangA.PackardM.SafonovRobust Control Toolbox User’s Guide2016

https://doi.org/10.1364/OE.23.019469
https://doi.org/10.1364/OE.23.019469
https://doi.org/10.1088/1538-3873/128/968/102001
https://doi.org/10.1088/1538-3873/128/968/102001
https://doi.org/10.1016/j.ast.2014.04.008
https://doi.org/10.2514/3.20912
https://doi.org/10.2514/3.20912
https://doi.org/10.1109/TAC.1982.1102953
https://doi.org/10.1109/TAC.1982.1102953
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref24
https://doi.org/10.1109/87.338656
https://doi.org/10.1109/87.338656
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref26
https://doi.org/10.1007/978-94-007-6383-8
https://doi.org/10.1007/978-94-007-6383-8
https://doi.org/10.1016/j.ifacol.2017.08.1026
https://doi.org/10.1016/j.ifacol.2017.08.1026
https://doi.org/10.1109/CDC.1991.261572
https://doi.org/10.1080/00207170600725644
https://doi.org/10.1080/00207170600725644
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref31
https://doi.org/10.1016/j.jsv.2017.11.021
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref33
https://doi.org/10.1002/rnc.1644
https://doi.org/10.1109/TCST.2017.2723864
https://doi.org/10.1109/TCST.2017.2723864
https://doi.org/10.1016/j.jsv.2017.03.015
https://doi.org/10.1109/MCS.2003.1213600
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref38
https://doi.org/10.1016/0005-1098(93)90175-S
http://refhub.elsevier.com/S0022-460X(19)30649-2/sref40

	Robust and adaptable dynamic response reshaping of flexible structures
	1. Introduction
	1.1. Background and motivation
	1.2. Contributions and paper organization
	1.2.1. Notations


	2. Problem formulation and system modeling
	2.1. Experimental setup and control objectives
	2.2. Model identification and mathematical modeling
	2.2.1. Experimental model identification
	2.2.2. Analytical modeling
	2.2.3. Grey-box identification


	3. Controller design and limits of performance
	3.1. Control architecture and synthesis methodology
	3.2. Limits of performance and trade-off analysis
	3.3. Performance impact of actuator and sensor placement

	4. Performance and stability analysis
	4.1. Worst case analysis
	4.2. Experimental results

	5. Conclusions
	References




