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Summary 59 

Recent advances in bioelectronics and neural engineering allowed the development of brain machine 60 

interfaces and neuroprostheses, capable of facilitating or recovering functionality in people with 61 

neurological disability. To realize energy-efficient and real-time capable devices, neuromorphic 62 

computing systems are envisaged as the core of next-generation systems for brain repair. We 63 

demonstrate here a real-time hardware neuromorphic prosthesis to restore bidirectional interactions 64 

between two neuronal populations, even when one is damaged or missing. We used in vitro modular 65 

cell cultures to mimic the mutual interaction between neuronal assemblies and created a focal lesion 66 

to functionally disconnect the two populations. Then, we employed our neuromorphic prosthesis for 67 

bidirectional bridging to artificially reconnect two disconnected neuronal modules, and for hybrid 68 

bidirectional bridging to replace the activity of one module with a real-time hardware neuromorphic 69 

Spiking Neural Network. Our neuroprosthetic system opens avenues for the exploitation of 70 

neuromorphic-based devices in bioelectrical therapeutics for healthcare. 71 

 72 

Keywords: 73 

In vitro neuronal networks; micro-electrode arrays; real-time signal processing; closed-loop; 74 

neurobiohybrid; brain repair. 75 
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Introduction 77 

One of the greatest challenges of modern neuroscience is to find reliable and sustainable 78 

treatments for the disabling effects caused by many chronic and incurable brain conditions. 79 

With the greatest impact carried by stroke (Feigin et al. 2017) and traumatic brain injury 80 

(Maas et al. 2017), brain disorders are among the leading causes of disabilities worldwide. 81 

Due to recent advances in bioelectronics and in neural and neuromorphic engineering, direct 82 

interfacing of artificial circuits with large neuronal networks is possible to develop novel 83 

‘neurobiohybrid’ systems (such as neuroprostheses (Vassanelli and Mahmud 2016)), which 84 

are envisaged as potentially interesting clinical applications for brain lesions (Broccard et al. 85 

2017). In this paper, we introduce an innovative bioelectronic system acting as a 86 

neuroprosthesis which, thanks to a neuromorphic real-time hardware interface, can re-87 

establish the communication between two disconnected neuronal populations. 88 

Neural interfaces are promising solutions for brain repair (Soekadar et al. 2015). 89 

Modern neural interfaces are mainly designed to restore lost motor functions in only one 90 

direction, i.e., from the brain to the body (Abdulkader et al. 2015) or from the body to the 91 

brain (Flesher et al. 2016). Additionally, recent neuroprosthetic developments have shown the 92 

enormous potential of neural interfaces to aid and accelerate functional recovery (Bouton et 93 

al. 2016; Rosin et al. 2011). However, a major obstacle in developing novel neuroprostheses 94 

for bidirectional communication with and within the brain is the complex nature of 95 

interactions among different brain areas, which in turn presents a challenge for the 96 

development of appropriate stimulation protocols as well as for testing such devices using in 97 

vivo models (Kohler et al. 2017). 98 

Despite very recent technological progress (Jun et al. 2017; Steinmetz et al. 2018), in 99 

vivo models still have two main bottlenecks. The first bottleneck is the technical challenge to 100 

faithfully reproduce specific/focal network lesions (mainly due to their complexity) that the 101 
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neuroprosthesis aims to treat, whereas the second is the difficulty in disentangling the actual 102 

effect of the adopted electrical therapy from the complex activity of a brain constantly 103 

processing sensory inputs and producing behaviour. Therefore, since in vivo models exhibit 104 

inherent complexity and low controllability, using in vitro reduced neuronal systems to model 105 

precise and reproducible neuronal network lesions and test neuroprosthetic devices for their 106 

treatment may be advantageous. This approach is also justified by a growing recognition that 107 

in vitro testing of both research and medical devices can be more effective in terms of cost, 108 

time consumption and ethical issues and much more reliable than in vivo testing (Myers et al. 109 

2017).  110 

In this work, we bidirectionally interfaced in real-time a neuroprosthetic system with 111 

an in vitro culture constituted by interconnected ‘neuronal assemblies’ (Hebb 1949). 112 

Therefore, our first objective was to create a simplified yet plausible in vitro model of a focal 113 

brain lesion by using bimodular cultures grown onto micro-electrode arrays (MEAs) (Bisio et 114 

al. 2014; Bonifazi et al. 2013; Shein-Idelson et al. 2011) with reciprocal connections cut by a 115 

custom-made laser setup (Difato et al. 2011) to mimic the pathological effect of a traumatic 116 

brain injury (Hayes et al. 2016). We created a neurobiohybrid system connecting the 117 

biological element (the bimodular culture) following the lesion with a neuroprosthetic 118 

prototype. Our hardware neuroprosthesis could perform low-power computations in hard 119 

real-time (Pirog et al. 2018), collecting the inputs coming from neural recordings, processing 120 

those signals and generating suitable electrical stimulation triggers as an output. With this 121 

experimental setup, we tested two specific applications, namely, bidirectional bridging (BB) 122 

to artificially reconnect two disconnected neuronal modules and hybrid bidirectional bridging 123 

in which a real-time spiking neural network (SNN) replaced the activity of one of the two 124 

modules in real-time while implementing bidirectional connectivity with the remaining 125 

neuronal module. 126 
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The motivation of our research is to provide a new technological instrument as a 127 

novel form of neuroprosthesis aimed at treating disabling brain pathologies. The hardware 128 

choice (field-programmable gate array, FPGA) maximise the real-time performances of the 129 

system and allows for a faster development of a future implantable biolectronic device for 130 

biomedical applications. The adoption of bidirectional communication allows the 131 

development of a generalized non-specific approach that is applicable to the central nervous 132 

system (CNS) or peripheral nervous system. In particular, prostheses for the CNS should 133 

restore the communication between two or more neuronal assemblies whose functional and 134 

anatomical path could be distributed and sparse and not necessarily known a priori. 135 

Indeed, our idea to develop a generalized approach comes from the future perspective 136 

of creating a cerebral neuroprosthesis for direct implantation in the brain that could be used 137 

by patients affected by stroke or brain injury. Our proof-of-principle results are the first for a 138 

next-generation neurobiohybrid system to restore brain functions (Broccard et al. 2017; 139 

Vassanelli and Mahmud 2016). 140 

  141 
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Results 142 

 143 

Neuroprosthetic architecture 144 

To create bimodular in vitro systems, we developed PDMS masks with two connecting 145 

compartments that constrained the growth of neuronal cells in two precise areas over 60-146 

electrode MEAs (Figure S1). The obtained bimodular neuronal culture constitutes the 147 

biological neuronal network (BNN) of our system (Figure 1A). The signal from the BNN was 148 

amplified by a commercial system and acquired by a custom-developed FPGA-based 149 

neuromorphic board (Figure S2) previously configured by a custom-made MATLAB code 150 

(MathWorks, Natick, MA, USA) running on a general purpose personal computer. The 151 

neuromorphic board triggered a commercial stimulator to close the loop with the BNN. The 152 

general protocol designed for this study involved three steps. First, spontaneous activity in 153 

both neuronal modules was recorded (‘pre-lesion condition’). Then, laser ablation of the 154 

biological connections between the two modules was performed (see Transparent Methods), 155 

followed by recording of spontaneous activity in both modules (‘post-lesion condition’) to 156 

assess the viability of the networks. Finally, we tested our neuroprosthetic device using two 157 

experimental frameworks. In the first case, we applied a reconnection strategy using a 158 

bidirectional activity-dependent stimulation (‘bidirectional bridging’, BB), whereas in the 159 

second case, we interfaced a hardware-implemented biomimetic SNN with one of the two 160 

neuronal modules (‘hybrid bidirectional bridging’, HBB) to simulate a ‘replacement’ strategy 161 

that utilizes the bidirectional interaction between the biological system and its artificial 162 

counterpart (Figure 1B). The sequence of algorithms (e.g., spike detection, network burst 163 

detection) implemented on the board to realize both experimental approaches (BB or HBB) is 164 

schematically depicted in Figure 1C. 165 

 166 
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<FIGURE 1 ABOUT HERE> 167 

 168 

Control experiments 169 

To evaluate the stability and effect of the focal lesion on bimodular BNN activity, we first 170 

performed two sets of control experiments. In the first set defined as ‘experiments with no 171 

lesion’ (Figure 2A1), we recorded 4 consecutive hours of spontaneous activity (S1-S4, n=9 172 

cultures). In the second set defined as ‘experiments with a lesion’ (Figure 2A2), we recorded 173 

one hour of spontaneous activity (S1), followed by laser ablation of the connections between 174 

the two modules, which usually took less than 20 minutes. Next, we recorded 3 hours of 175 

spontaneous activity post lesion (SPL1-SPL3) to quantify the effects of laser ablation (n=4 176 

cultures). As depicted in the raster plot of one representative experiment (Figure 2B1), 177 

bimodular neuronal networks exhibited spontaneous, synchronized, multi-unit activity 178 

composed of network-wide bursts (NBs) spreading over the two modules. Following laser 179 

ablation, the propagation between compartments was disrupted, as shown in Figure 2B2. 180 

With no lesion, the percentage of active channels with respect to the first hour of 181 

recording (S1) was higher than 98% and was maintained for the entire duration of the 182 

experiment (Figure 2D1, light blue bars). The mean firing rate (MFR) was stable for all 183 

control experiments with no lesion (from S1 to S4, Figure S3 A). Alternatively, control 184 

experiments with lesions showed a reduced number of active channels (close to 73%) during 185 

the first hour after ablation (SPL1). During the following two hours (SPL2-SPL3), this value 186 

increased and reached 93% at the end of the recording (Figure 2C1, dark grey bars). No 187 

significant differences were found. The MFR was quite stable for all control experiments 188 

with lesions except between S1 and SPL1 (Figure S4 A). The activity level with respect to 189 

the S1 phase, expressed by the MFR ratio with respect to S1, was stable during the control 190 

experiments without lesions (Figure 2D2, light blue bars). The lesion produced a clear 191 
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decrease in activity in most cultures, especially during the first two hours (SPL1-SPL2, 192 

Figure 2D2). We found a significant difference between the two experimental sets during the 193 

first two hours after S1 but not during the last hour. This result suggests that two hours after a 194 

lesion, almost complete spontaneous recovery occurred in terms of the firing rate for the two 195 

neuronal modules. 196 

To evaluate changes in the synchronicity between the two modules, we performed 197 

cross-correlation (CC) analysis between the collapsed spike trains of each module. The shape 198 

of the CC function was stable throughout the entire recordings in experiments without 199 

lesions, as reported in Figure 2C1 for a representative experiment. After a lesion, the CC 200 

function collapsed to zero and did not recover during the experiment (Figure 2C2: 201 

representative experiment). To quantify this difference, we integrated the CC function in a 202 

range of ±500 ms to obtain the CC area. We did not find any significant change in the CC 203 

area values for all experiments with no lesion (Figure S3B). By contrast, the CC area values 204 

showed a marked decrease following the lesion (SPL1). This decrease was due to the lack of 205 

anatomical connections between the compartments and did not recover by itself (Figure 206 

S4B). Comparing the CC area ratio between later phases and S1 resulted in a significant 207 

difference between matching periods in ‘lesion’ and ‘no lesion’ experiments (Figure 2E1). 208 

We also computed the correlation coefficient (i.e. Pearson Correlation, PC) among all the 209 

active channels both intra module and inter module (Figure 2E2). The intra-module PC was 210 

constant across experimental phases for controls with no lesion (light blue bars). On the other 211 

hand, for controls with lesion (dark grey bars) there was a drop in the intra-module PC, 212 

related to the reduced firing rate following the lesion, but no statistical difference was found 213 

(Figure 2E2, left panel). The inter-module CC was stable for controls with no lesion. On the 214 

other hand, following the lesion the inter-module PC collapsed and never recovered by itself 215 

(Figure 2E2, right panel) as already demonstrated with the previous analysis. 216 
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The network bursting rate (NBR) was stable during all experiments with no lesions 217 

(Figure S3C). For the experiments with lesions, this parameter was less stable but with no 218 

significant differences between phases (Figure S4C). When comparing the two experimental 219 

protocols with the NBR ratio with respect to S1, we found significant differences during the 220 

first and the second hour post lesion (Figure 2F1). The mean probability to have NBs 221 

composed of spikes belonging to a single module (i.e. Prob smNB, see Transparent Methods) 222 

was close to 0.2 in the experiments without lesions (Figure S3D), meaning that the majority 223 

of NBs in an intact bimodular network involved both modules. Alternatively, following the 224 

lesion, the probability became close to 1 (Figure S4D), meaning a total loss of functional 225 

communication between the two compartments. Using the Prob smNB ratio with respect to 226 

S1 (Figure 2F2), we found significant differences between the two experimental groups 227 

during all phases post lesion (Mann-Whitney test; p < 0.05). Thus, for the no lesion 228 

experiment, the Prob smNB remained very similar to the initial values, while for the lesion 229 

experiments, it changed abruptly due to the lesion. This result further confirmed that the 230 

lesion was effective in functionally disconnecting the two modules. 231 

 232 

< FIGURE 2 ABOUT HERE > 233 

 234 

Experiment 1: Bidirectional Bridging (BB) 235 

The goal of this experiment is to restore communication between two neuronal assemblies 236 

after lesion-induced separation. To achieve this goal, we designed and implemented a 237 

stimulation reactive paradigm inspired by the ‘activity-dependent stimulation’ (ADS) 238 

described in (Guggenmos et al. 2013) in our neuromorphic board. In contrast to the control 239 

experiments, the general protocol (Figure 3A) included 20 minute recordings of spontaneous 240 

activity before the lesion (S1). Upon the lesion execution, we waited for two hours to reach 241 
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stable activity in both modules, as shown by the results of control experiments (see Figure 2). 242 

Then, we recorded 20 minutes of spontaneous activity (SPL3). The raster plot of a 243 

representative experiment is reported in Figure 3b. Before the lesion (S1), the bursting 244 

activity involved both modules (Figure 3B1), whereas after the lesion (SPL3), the activity 245 

was characterized by single-module NBs (Figure 3B2). To choose the best parameters 246 

(threshold and window time, see Transparent Methods) that allowed us to reliably detect NBs 247 

in both modules, we performed offline NB detection. After the FPGA was updated with these 248 

parameters, a 20 minute session of BB was conducted. (see, Figure 1B and C for the 249 

description of the BB protocol). The BB approach implemented a reactive paradigm: every 250 

time an NB was detected in one module, a stimulation pulse was delivered to an electrode in 251 

the other module (see Transparent Methods) in both directions. During the BB phase, the 252 

bursting activity involved both modules similar to the intact condition due to the bidirectional 253 

stimulation pulses (Figure 3B3, blue and red lines represent electrical stimulation pulses 254 

delivered from module 1 to module 2 and vice versa). The last phase of the protocol involved 255 

20 additional minutes of spontaneous activity (SPL4), which showed the same activity as 256 

SPL3 (Figure 3B4). We did not observe significant changes in spiking activity (i.e., MFR) 257 

throughout the recordings (Figure 3c). 258 

Next, we evaluated the effect of this configuration in terms of CC (Figure 3d1and 2). 259 

During spontaneous activity before the lesion (S1), the CC peak was high and stable due to 260 

the functional and anatomical connections between the two modules, which was also reported 261 

for the control experiments. After the lesion (SPL3), there was a decrease in CC that was not 262 

expected to recover without external intervention, as we demonstrated before (see, Figure 263 

2D). The bidirectional stimulation at least partially recovered the CC area and consequently 264 

the communication between modules (Figure 3D2), as demonstrated by statistical analysis. 265 

Regarding the number of NBs, we did not find any significant difference between the 266 
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experimental phases (Figure 3E1). However, the probability of isolated NBs was not uniform; 267 

it reached the maximum value after the lesion, as we previously observed in the control 268 

experiments with lesions (see, Figure 2D2). During bidirectional stimulation, these values 269 

became closer to the spontaneous recording (Figure 3E2), meaning that NBs mainly involved 270 

both modules. This finding further confirmed that the BB protocol could reconnect two 271 

disconnected modules though a real-time ADS acting in both directions (from module 1 to 272 

module 2 and from module 2 to module 1). 273 

 274 

<FIGURE 3 ABOUT HERE> 275 

 276 

Experiment 2: hybrid bidirectional bridging (HBB) 277 

With an injury causing damage to an entire neuronal subnetwork, a reconnection strategy 278 

such as the BB illustrated above would not be feasible. For this reason, we developed a 279 

second reconnection strategy based on the use of a hardware SNN that can interact in real-280 

time with its biological counterpart, HBB (see Figure 1). We created a set of SNNs (i.e., SNN 281 

library) by tuning the mean value of the synaptic weight distributions of our models to cover 282 

the variability of the BNNs (i.e., BNN library, Figure 4A). The biomimetic SNN (see Figure 283 

S5), working in hardware real-time to allow bidirectional communication with living 284 

neurons, was modelled as a network of 100 Izhikevich (IZH) neurons (Izhikevich 2003), with 285 

80 excitatory and 20 inhibitory neurons (see Transparent Methods), according to the 286 

biological composition of dissociated cultures (Bonifazi et al. 2005; Hayashi et al. 2003). 287 

Synaptic noise (Grassia et al. 2016), inhibitory and excitatory synapses (Izhikevich 2004), 288 

short-term plasticity (Izhikevich and Edelman 2008) and axonal delays were included in the 289 

model to recreate the network dynamics (see Transparent Methods and Figure S6 A1 and 290 

A2). Regarding the connectivity rules, we set the outdegree (i.e., the number of post-synaptic 291 
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neurons) to 25 for all neurons in the network, while the indegree (i.e., the number of pre-292 

synaptic neurons) followed a normal distribution with a mean value of 25 and a standard 293 

deviation of 4.3 (Figure S6, R-Square=0.806). The goal of creating an SNN library was to 294 

cover a wide range of NBRs because NB was chosen as the triggering event for our 295 

reconnection paradigm, as explained above. To this end, we tuned only the mean value of the 296 

normal distribution of synaptic weights (the standard deviation was kept constant at the value 297 

of 0.3). By increasing or decreasing the mean synaptic weights, we tuned the NBR. For 298 

excitatory synapses, the mean value ranged from 0.99 to 1.34 (Figure 4C left), while that for 299 

inhibitory synapses ranged from -2.02 to -1.02 (Figure 4C right and Table S1). As previously 300 

stated, our goal was to cover the NBR variability and not the MFR. The MFR variability in 301 

our BNN library was higher than that obtained with our SNN library (Figure 4E and F1). 302 

Nevertheless, the BNN variability in terms of NBR was completely covered by our SNN 303 

library, which also contains networks with a much higher NBR than that in the BNN library 304 

(Figure 4F2). 305 

 306 

<FIGURE 4 ABOUT HERE> 307 

 308 

The general HBB protocol (Figure 5A) is similar to the BB protocol. The HBB 309 

procedure included a 20 minute recording of spontaneous activity before the lesion. This 310 

recording was used to quantify activity in terms of the NB rate of the network. This feature 311 

was used to choose one SNN from the SNN library that had an NB rate closer to its biological 312 

counterpart. We waited two hours after the lesion to allow activity in both modules to 313 

stabilize, as shown by the results of control experiments (e.g., Figure 2). Then, we recorded 314 

20 minutes of spontaneous activity. After setting FPGA detection parameters, we performed a 315 

20 minute HBB session (see, Figure 1B and C for the description of the HBB protocol). As 316 

anticipated, the HBB approach also implemented an ADS paradigm; every time an NB was 317 
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detected on the ’surviving’ module (i.e., when one of the two modules was completely 318 

damaged), a stimulation pulse was delivered to the SNN. The board implemented the 319 

corresponding paradigm in the opposite direction. Detection of NBs occurred in the SNN, 320 

while stimulation was delivered to the ‘surviving’ module, thus avoiding the imposition of 321 

any predefined unidirectional communication. Next, we recorded 20 additional minutes of 322 

spontaneous activity.  323 

We did not observe significant changes in terms of spiking activity (i.e., MFR) 324 

throughout the recordings (Figure 5C). Then, we evaluated the effect of this configuration in 325 

terms of CC (Figure 5D1 and 2). During spontaneous activity before the lesion (S1), the CC 326 

peak was high and stable due to the functional and anatomical connections between the two 327 

modules, which was also reported for the control experiments. As expected, with no external 328 

intervention, CC decreased sharply after the lesion (SPL3), as we previously observed. One 329 

of the two modules was damaged, while the correlation was evaluated between the SNN and 330 

the surviving module during the HBB phase. The bidirectional stimulation created a relevant 331 

correlation area between SNN and the surviving module, as demonstrated by statistical 332 

analysis. Regarding the number of NBs, we did not find a significant difference between the 333 

S1 and HBB phases (Figure 5E1). However, the probability of isolated NBs was not uniform; 334 

it reached the maximum value after the lesion, as we previously observed in the control 335 

experiments with lesions (see, Figure 3E2). During the hybrid bidirectional stimulation, these 336 

values became closer to the spontaneous recording (Figure 5E2), meaning that NBs mainly 337 

involved both modules. This finding further confirmed that the HBB protocol created a 338 

hybrid system with the surviving biological module though real-time ADS acting in both 339 

directions (from BNN to SNN and from SNN to the BNN). 340 

 341 

<FIGURE 5 ABOUT HERE>  342 
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Discussion 343 

We presented an innovative neuromorphic prosthesis based on a FPGA board and 344 

demonstrated two successful reconnection paradigms for a lesion interrupting the 345 

communication between two neuronal populations in vitro.  346 

According to previous reports, in vitro systems constitute a successful experimental 347 

model of neuronal dynamics (Javier et al. 2013; Johnson et al. 2010), thus providing an 348 

excellent test bed for adaptive closed-loop neural interfaces (Potter 2010). Starting from our 349 

recently developed methodology (Kanner et al. 2015), we created custom bimodular cultures 350 

with the goal of reproducing two interacting neuronal populations, thus mimicking the 351 

intrinsic modularity of the brain (Bonifazi et al. 2013). Our bimodular cultures were highly 352 

temporally stable in terms of firing properties at the whole network level as the activity 353 

between the two populations remained highly correlated for the entire duration of the 354 

recording. A lesion produced via laser ablation was employed to physically cut the 355 

connections between the two modules. This methodology was proven to be safe because it 356 

produced localized damage by selectively ablating subcellular compartments without 357 

damaging adjacent structures (Difato et al. 2011; Habibey et al. 2015; Soloperto et al. 2016). 358 

We assume that such a focal damage, allowing to specifically cut few connections among 359 

those available in the network, together with possible intrinsic compensatory mechanisms of 360 

synaptic scaling (le Feber et al. 2017; Turrigiano 2008), were responsible of the spontaneous 361 

recovery of the firing rate on a timescale of two-three hours. This demonstrates the 362 

effectiveness of our technique in preserving the functionality of the two modules while 363 

decoupling their activity, as proven by the loss of correlation of bursting behaviour. 364 

Two different applications of our neuroprosthesis, BB and HBB, were tested. Our 365 

neuromorphic prosthesis, independently of the stimulation paradigm, works according to a 366 

closed-loop reactive policy as follows: each time a condition is met (i.e., an ‘event’ is 367 
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detected), a stimulus is delivered. The hardware architecture was designed to be flexible 368 

enough to allow the implementation of different experimental paradigms and the definition of 369 

different triggering events. In our study, we chose ‘NBs’ as trigger events (see Transparent 370 

Methods). The choice to deliver a stimulation depending on a network-wide event has two 371 

main advantages as follows: first, NB frequency is low enough to avoid inducing plasticity 372 

phenomena by electrical stimulation in our cultures (Wagenaar et al. 2006), which could 373 

confound the final results and effectiveness of neuroprosthetic reconnection. The second 374 

point is anticipation of the following major issue that will emerge during in vivo recordings: 375 

monitoring single neurons presents problems at both theoretical (Guggenmos et al. 2013) and 376 

practical levels. Namely, how much information on complex functions can be obtained by 377 

single-neuron observation remains unclear (Luczak et al. 2015; Panzeri et al. 2017), while 378 

tracking the activity of the same neuron for extended periods of time is problematic (Kozai et 379 

al. 2015). Taking multiple input sources into account was also used in the work of Berger 380 

(Berger et al. 2012), but they employed a neuroprosthetic strategy different from ours. In 381 

particular, these authors used a generalized linear model to predict the CA1 activity from 382 

spikes in CA3 of the hippocampal circuit. Our system is considered more flexible and 383 

adaptable to networks with different connectivity, not just feedforward similar to that in the 384 

hippocampus. Moreover, we were interested in mimicking the overall spiking activity of the 385 

network and not mapping an input-output transformation only. 386 

Another important novelty of our system regards directionality. To our best 387 

knowledge, this neuroprosthetic system is the first to implement a truly bidirectional 388 

interaction with a SNN through a hard real-time interface. We recorded activity from the first 389 

module (via multiple sources); when a criterion was met, the device stimulated the second 390 

module (this is how a ‘typical’ closed-loop in neuroscience works, for a review see 391 

(Greenwald et al. 2016)). The novelty is simultaneously monitoring multiple sources from 392 
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another module and delivering the stimulation when the triggering event is detected. To date 393 

and as far as we are aware of, only Jung and colleagues (Jung et al. 2001) have performed a 394 

bidirectional interface to a neuromorphic device, but their models were not precise at the 395 

spike level (modelling neuron populations) and they used non configurable analogue 396 

electronics, which resulted in an experiment-specific setup. The other neuroprosthetic devices 397 

that have been proposed in the literature can implement a ‘unidirectional’ artificial link only 398 

from one area to another (or maybe the same) but not doubling it. Here, we are not imposing 399 

any preferred directionality to the communication; networks are self-organizing on the basis 400 

of their intrinsic natural relationship (we are not imposing who is driving whom). This 401 

approach has the main advantage of informing both brain regions (i.e., neuronal modules, in 402 

our case) that an event occurred in the other region, given that interaction in the brain is 403 

intrinsically bidirectional (Roelfsema and Holtmaat 2018). For example, in the sensorimotor 404 

system, sensory simulation can help motor recovery (Cuppone et al. 2018), and motor 405 

learning can enhance sensory functions (Ostry et al. 2010; Takeuchi and Izumi 2013). 406 

Applications of our neuroprosthetic systems to conditions where the sensorimotor interaction 407 

is impaired would allow restoration of both communication channels, suggesting 408 

improvements in current rehabilitation therapies. Moreover, although tested on a bimodular 409 

system, the neuromorphic FPGA board can be easily upgraded to play the bridging role on an 410 

arbitrary number (within reason) of different neuronal circuits. A recent work (Forró et al. 411 

2018) developed directional networks of primary hippocampal neurons on MEA and 412 

compared the information flow of these networks with respect to bidirectional networks 413 

(similar to our bimodular preparations). They found that without physically imposing a 414 

unidirectional configuration, there is a continuous back and forth communication between 415 

nodes thus suggesting the importance of a bidirectional communication in a healthy network. 416 
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The second paradigm we tested was based on the use of a biomimetic SNN to 417 

‘substitute’ a missing/damaged neuronal population. Currently, SNN applications span 418 

different fields, including computational neuroscience (Markram 2012; Melozzi et al. 2017), 419 

and very recently, they were used for sensory encoding in hand prosthesis for amputees 420 

(Osborn et al. 2018; Valle et al. 2018). SNNs can be simulated in software (Goodman and 421 

Brette 2009) and/or neuromorphic hardware (Thakur et al. 2018). As time and energy 422 

consumption are fundamental in neuroprosthetic applications for translational purposes, the 423 

use of hardware-based computing systems becomes mandatory. 424 

In general, hybrid systems composed of in vitro BNNs coupled to SNNs are rare. In 425 

one approach, the SNN served as a self-organizing classifier of activity patterns exhibited by 426 

the BNN, with output of the SNN being subsequently used to control the behaviour of a robot 427 

(Pizzi et al. 2009). Other studies focused on the unidirectional or bidirectional influence of 428 

the two networks, investigating the dynamics of the interaction between the BNN and SNN in 429 

which the SNN played a role of an artificial counterpart of its biological original (Bruzzone et 430 

al. 2015; Chou et al. 2015). However, closed-loop effects in those hybrid networks were not 431 

thoroughly determined. In one of these studies, only unidirectional connectivity was 432 

considered with input from the SNN to the BNN, which was also simulated beforehand 433 

(Bruzzone et al. 2015). In this study, we established hybrid communication in the case of an 434 

entire neuronal population that needed substitution. 435 

A study by Chou et al. (Chou et al. 2015) implemented a bidirectional interface 436 

between an SNN and a retinal slice obtained from an adult rat and recorded by an MEA. This 437 

system is quite interesting, but there is a 1 s delay between the BNN and SNN interactions. 438 

Therefore, this delay in Chou’s setup is 3 orders of magnitude larger than that in our work in 439 

which the sampling of biological activity is never interrupted, and the step size of the SNN is 440 

1 ms. The difference between the two systems is radical; bidirectional communication in real-441 
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time allows actual clinical application, whereas delays in the range of seconds prevent (or at 442 

least seriously reduce) the possibility of meaningful control of a biological system. 443 

A recent study, inspired by a previous work (Hogri et al. 2015), implemented a hybrid 444 

interaction (Xu et al. 2018) between the cerebellum of a rat and an SNN implemented on 445 

FPGA. Their model involved 10k leaky integrate and fire (LIF) neurons and did not integrate 446 

other biomimetic behaviours, such as axonal delay, short-term plasticity and synaptic noise, 447 

unlike the IZH neurons implemented in our system. Both the hard real-time processing and 448 

simplified neuronal model (which allow mimicking the richness of the electrophysiological 449 

patterns in vivo) are mandatory for reproducing the biological dynamics of living neural 450 

networks and for performing useful real-time hybrid experiments. 451 

In this work, we demonstrated the possibility to design a neuromorphic all-hardware 452 

prosthesis capable of artificially reconnect two disconnected neuronal networks or artificially 453 

replacing one entire neuronal sub-network. 454 

 455 

 The use of a fully integrated hardware computing system allowed hard real-time 456 

performances and low power consumption, which are crucial for translational purposes 457 

related to therapeutic applications in humans (Kipke et al. 2008; Wang et al. 2010). 458 

Limitations of the study 459 

A limitation of the present work is that we deliberately chose to downsample both the 460 

number of biological neurons recorded through a low density MEA and the number of 461 

artificial neurons implemented on the FPGA. For the purpose of detecting network-wide 462 

activity, this oversimplification of biological complexity can be acceptable to test the 463 

functionality of the device and the feasibility of the approach, but if the goal is to functionally 464 

replace a biological network, a higher resolution would be preferable. It is worth underlying 465 

that this hardware implementation is not exploiting the full resources of the FPGA, thus in 466 
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follow-up studies, also thanks to the flexibility of our system, we foresee to scale up the 467 

number of neurons and synapses and to upgrade the computational algorithms to deal with 468 

more complex experimental designs. From a technological point of view, the current state of 469 

the art makes possible the use of devices with a large number (thousands) of recording 470 

electrodes (Berdondini et al. 2009; Frey et al. 2009). Such an improvement would also allow 471 

to have more information about functional connectivity of the biological network (Pastore et 472 

al. 2018) and thus developing more realistic, in terms of topology, artificial models. In this 473 

work, we arbitrarily modeled the network connectivity with a random adjacency matrix since 474 

the use of MEAs with 60 electrodes made impossible to correctly identify the topological 475 

properties (e.g., hubs, recurring connections, modules, etc.) of the network under 476 

investigation.  477 

We are aware that the road is still long to target human applications. Despite this, we think 478 

that the extensive work performed represent an important milestone to start from. The next 479 

fundamental (and critical) step would be to test the neuromorphic prosthesis in vivo, for 480 

example on animal models affected by ischemic or traumatic lesions (Guggenmos et al. 481 

2013). Even if the adaptation to the new experimental set-ups will require time, we believe 482 

these are necessary steps to further push the translational potential of our system, which will 483 

be able to create real innovation in the clinical therapeutics. 484 

  485 



22 

Acknowledgements 486 

The presented research results has received funding from the European Union's Seventh 487 

Framework Programme (ICT-FET FP7/2007-2013, FET Young Explorers scheme) under 488 

grant agreement n° 284772 BRAIN BOW (www.brainbowproject.eu).  489 

The authors would like to thank: Dr Daisuke Ito, Dr Marina Nanni, Dr Claudia Chiabrera, 490 

and Dr Giacomo Pruzzo for precious technical support in performing the in vitro experiments 491 

at IIT. The authors are grateful to Dr Marianna Semprini for useful comments on the final 492 

drafts of the manuscript. The authors wish to thank Prof. Sergio Martinoia, Prof. Sylvie 493 

Renaud, Prof. Sylvain Saighi and Prof. Ari Barzilai for their mentorship during the BrainBow 494 

project and for useful discussions on the final results. 495 

Author contributions 496 

T. L., Y. B., P. M., P. B. and M. C. designed the study. Y. B. and T. L. designed and 497 

fabricated the hardware board. S. B., V. P., F. D., and M. C. designed the experiments. M. A., 498 

P. M., P. N., F. G. and T. L. designed and worked on SNN. I. C., M. B., and M. T. prepared 499 

the bimodular cultures. S. B., L. M., A. A. and F. D. performed the experiments. S. B., L. M., 500 

J. T., V. P., and M. C. designed the analyses. S. B. and L. M. performed the analyses. S. B., I. 501 

C., and V. P. performed the statistical analyses. S. B. and I. C. prepared the original figures. 502 

S. B., I. C., T. L., and M. C. wrote the manuscript. T. L., P. M., P. B. and M. C. acquired 503 

funding to conduct the research. All authors have read, corrected and approved the final 504 

version of the manuscript. 505 

  506 



23 

Declaration of Interests 507 

The Authors report no competing interests. 508 

References 509 

Abdulkader, S.N., Atia, A., Mostafa, M.-S.M., 2015. Brain computer interfacing: applications and 510 

challenges. Egypt. Inform. J. 16(2), 213–230. 511 

Berdondini, L., Imfeld, K., Maccione, A., Tedesco, M., Neukom, S., Koudelka-Hep, M., Martinoia, S., 512 

2009. Active pixel sensor array for high spatio-temporal resolution electrophysiological 513 

recordings from single cell to large scale neuronal networks. Lab on a chip 9(18), 2644-2651. 514 

Berger, T.W., Song, D., Chan, R.H., Marmarelis, V.Z., LaCoss, J., Wills, J., Hampson, R.E., Deadwyler, 515 

S.A., Granacki, J.J., 2012. A hippocampal cognitive prosthesis: multi-input, multi-output 516 

nonlinear modeling and VLSI implementation. IEEE Trans. Neural Syst. Rehabil. Eng. 20(2), 517 

198–211. 518 

Bisio, M., Bosca, A., Pasquale, V., Berdondini, L., Chiappalone, M., 2014. Emergence of bursting 519 

activity in connected neuronal sub-populations. PLoS One 9(9), e107400. 520 

Bonifazi, P., Difato, F., Massobrio, P., Breschi, G.L., Pasquale, V., Levi, T., Goldin, M., Bornat, Y., 521 

Tedesco, M., Bisio, M., Kanner, S., Galron, R., Tessadori, J., Taverna, S., Chiappalone, M., 522 

2013. In vitro large-scale experimental and theoretical studies for the realization of bi-523 

directional brain-prostheses. Front. Neural Circuits 7, 40. 524 

Bonifazi, P., Ruaro, M.E., Torre, V., 2005. Statistical properties of information processing in neuronal 525 

networks. Eur. J. Neurosci. 22(11), 2953–2964. 526 

Bouton, C.E., Shaikhouni, A., Annetta, N.V., Bockbrader, M.A., Friedenberg, D.A., Nielson, D.M., 527 

Sharma, G., Sederberg, P.B., Glenn, B.C., Mysiw, W.J., 2016. Restoring cortical control of 528 

functional movement in a human with quadriplegia. Nature 533(7602), 247. 529 

Broccard, F.D., Joshi, S., Wang, J., Cauwenberghs, G., 2017. Neuromorphic neural interfaces: from 530 

neurophysiological inspiration to biohybrid coupling with nervous systems. J. Neural. Eng. 531 

14(4), 041002. 532 

Bruzzone, A., Pasquale, V., Nowak, P., Tessadori, J., Massobrio, P., Chiappalone, M., 2015. Interfacing 533 

in silico and in vitro neuronal networks. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 3391–534 

3394. 535 

Chou, Z., Lim, J., Brown, S., Keller, M., Bugbee, J., Broccard, F., Khraiche, M.L., Silva, G.A., 536 

Cauwenberghs, G., 2015. Bidirectional neural interface: closed-loop feedback control for 537 

hybrid neural systems. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 3949–3952. 538 

Cuppone, A.V., Semprini, M., Konczak, J., 2018. Consolidation of human somatosensory memory 539 

during motor learning. Behav. Brain Res. 347, 184–192. 540 

Difato, F., Dal Maschio, M., Marconi, E., Ronzitti, G., Maccione, A., Fellin, T., Berdondini, L., 541 

Chieregatti, E., Benfenati, F., Blau, A., 2011. Combined optical tweezers and laser dissector 542 

for controlled ablation of functional connections in neural networks. J. Biomed. Opt. 16(5), 543 

051306. 544 

Feigin, V.L., Norrving, B., Mensah, G.A., 2017. Global burden of stroke. Circ. Res. 120(3), 439–448. 545 

Flesher, S.N., Collinger, J.L., Foldes, S.T., Weiss, J.M., Downey, J.E., Tyler-Kabara, E.C., Bensmaia, S.J., 546 

Schwartz, A.B., Boninger, M.L., Gaunt, R.A., 2016. Intracortical microstimulation of human 547 

somatosensory cortex. Sci. Transl. Med. 8(361), 361ra141. 548 

Forró, C., Thompson-Steckel, G., Weaver, S., Weydert, S., Ihle, S., Dermutz, H., Aebersold, M.J., Pilz, 549 

R., Demkó, L., Vörös, J., 2018. Modular microstructure design to build neuronal networks of 550 

defined functional connectivity. Biosensors and Bioelectronics 122, 75-87. 551 



24 

Frey, U., Egert, U., Heer, F., Hafizovic, S., Hierlemann, A., 2009. Microelectronic system for high-552 

resolution mapping of extracellular electric fields applied to brain slices. Biosensors and 553 

Bioelectronics 24(7), 2191-2198. 554 

Goodman, D.F., Brette, R., 2009. The brian simulator. Front. Neurosci. 3(2), 192–197. 555 

Grassia, F., Kohno, T., Levi, T., 2016. Digital hardware implementation of a stochastic two-556 

dimensional neuron model. J. Physiol. Paris 110(4 Pt A), 409–416. 557 

Greenwald, E., Masters, M.R., Thakor, N.V., 2016. Implantable neurotechnologies: bidirectional 558 

neural interfaces--applications and VLSI circuit implementations. Med. Biol. Eng. Comput. 559 

54(1), 1–17. 560 

Guggenmos, D.J., Azin, M., Barbay, S., Mahnken, J.D., Dunham, C., Mohseni, P., Nudo, R.J., 2013. 561 

Restoration of function after brain damage using a neural prosthesis. Proc Natl Acad Sci U S 562 

A 110(52), 21177-21182. 563 

Habibey, R., Golabchi, A., Latifi, S., Difato, F., Blau, A., 2015. A microchannel device tailored to laser 564 

axotomy and long-term microelectrode array electrophysiology of functional regeneration. 565 

Lab on a chip 15(24), 4578-4590. 566 

Hayashi, K., Kawai-Hirai, R., Harada, A., Takata, K., 2003. Inhibitory neurons from fetal rat cerebral 567 

cortex exert delayed axon formation and active migration in vitro. J. Cell Sci. 116(21), 4419–568 

4428. 569 

Hayes, J.P., Bigler, E.D., Verfaellie, M., 2016. Traumatic brain injury as a disorder of brain 570 

connectivity. J. Int. Neuropsychol. Soc. 22(2), 120–137. 571 

Hebb, D.O., 1949. The organization of behavior: A neuropsychological approach. John Wiley & Sons. 572 

Hogri, R., Bamford, S.A., Taub, A.H., Magal, A., Del Giudice, P., Mintz, M., 2015. A neuro-inspired 573 

model-based closed-loop neuroprosthesis for the substitution of a cerebellar learning 574 

function in anesthetized rats. Sci. Rep. 5, 8451. 575 

Izhikevich, E.M., 2003. Simple model of spiking neurons. IEEE Trans. Neural. Netw. 14(6), 1569–1572. 576 

Izhikevich, E.M., 2004. Which model to use for cortical spiking neurons? IEEE Trans. Neural. Netw. 577 

15(5), 1063–1070. 578 

Izhikevich, E.M., Edelman, G.M., 2008. Large-scale model of mammalian thalamocortical systems. 579 

Proceedings of the National Academy of Sciences of the United States of America 105(9), 580 

3593–3598. 581 

Javier, G.O., Soriano, J., Alvarez-Lacalle, E., Teller, S., Casademunt, J., 2013. Noise focusing and the 582 

emergence of coherent activity in neuronal cultures. Nat. Phys. 9(9), 582. 583 

Johnson, H.A., Goel, A., Buonomano, D.V., 2010. Neural dynamics of in vitro cortical networks 584 

reflects experienced temporal patterns. Nature Neurosci. 13(8), 917. 585 

Jun, J.J., Steinmetz, N.A., Siegle, J.H., Denman, D.J., Bauza, M., Barbarits, B., Lee, A.K., Anastassiou, 586 

C.A., Andrei, A., Aydin, C., Barbic, M., Blanche, T.J., Bonin, V., Couto, J., Dutta, B., Gratiy, S.L., 587 

Gutnisky, D.A., Hausser, M., Karsh, B., Ledochowitsch, P., Lopez, C.M., Mitelut, C., Musa, S., 588 

Okun, M., Pachitariu, M., Putzeys, J., Rich, P.D., Rossant, C., Sun, W.L., Svoboda, K., 589 

Carandini, M., Harris, K.D., Koch, C., O'Keefe, J., Harris, T.D., 2017. Fully integrated silicon 590 

probes for high-density recording of neural activity. Nature 551(7679), 232-236. 591 

Jung, R., Brauer, E.J., Abbas, J.J., 2001. Real-time interaction between a neuromorphic electronic 592 

circuit and the spinal cord. IEEE Transactions on neural systems and rehabilitation 593 

engineering 9(3), 319-326. 594 

Kanner, S., Bisio, M., Cohen, G., Goldin, M., Tedesco, M., Hanein, Y., Ben-Jacob, E., Barzilai, A., 595 

Chiappalone, M., Bonifazi, P., 2015. Design, surface treatment, cellular plating, and culturing 596 

of modular neuronal networks composed of functionally inter-connected circuits. J. Vis. 597 

Exp.(98), doi: 10.3791/52572. 598 

Kipke, D.R., Shain, W., Buzsaki, G., Fetz, E., Henderson, J.M., Hetke, J.F., Schalk, G., 2008. Advanced 599 

neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. 600 

Neurosci. 28(46), 11830–11838. 601 



25 

Kohler, F., Gkogkidis, C.A., Bentler, C., Wang, X., Gierthmuehlen, M., Fischer, J., Stolle, C., Reindl, 602 

L.M., Rickert, J., Stieglitz, T., Ball, T., Schuettler, M., 2017. Closed-loop interaction with the 603 

cerebral cortex: a review of wireless implant technology. Brain Comput Interfaces 4(3), 146–604 

154. 605 

Kozai, T.D., Jaquins-Gerstl, A.S., Vazquez, A.L., Michael, A.C., Cui, X.T., 2015. Brain tissue responses to 606 

neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 607 

6(1), 48–67. 608 

le Feber, J., Erkamp, N., Van Putten, M.J., Hofmeijer, J., 2017. Loss and recovery of functional 609 

connectivity in cultured cortical networks exposed to hypoxia. Journal of neurophysiology 610 

118(1), 394-403. 611 

Luczak, A., McNaughton, B.L., Harris, K.D., 2015. Packet-based communication in the cortex. Nat. 612 

Rev. Neurosci. 16(12), 745–755. 613 

Maas, A.I.R., Menon, D.K., Adelson, P.D., Andelic, N., Bell, M.J., Belli, A., Bragge, P., Brazinova, A., 614 

Buki, A., Chesnut, R.M., Citerio, G., Coburn, M., Cooper, D.J., Crowder, A.T., Czeiter, E., 615 

Czosnyka, M., Diaz-Arrastia, R., Dreier, J.P., Duhaime, A.C., Ercole, A., van Essen, T.A., Feigin, 616 

V.L., Gao, G., Giacino, J., Gonzalez-Lara, L.E., Gruen, R.L., Gupta, D., Hartings, J.A., Hill, S., 617 

Jiang, J.Y., Ketharanathan, N., Kompanje, E.J.O., Lanyon, L., Laureys, S., Lecky, F., Levin, H., 618 

Lingsma, H.F., Maegele, M., Majdan, M., Manley, G., Marsteller, J., Mascia, L., McFadyen, C., 619 

Mondello, S., Newcombe, V., Palotie, A., Parizel, P.M., Peul, W., Piercy, J., Polinder, S., 620 

Puybasset, L., Rasmussen, T.E., Rossaint, R., Smielewski, P., Soderberg, J., Stanworth, S.J., 621 

Stein, M.B., von Steinbuchel, N., Stewart, W., Steyerberg, E.W., Stocchetti, N., Synnot, A., Te 622 

Ao, B., Tenovuo, O., Theadom, A., Tibboel, D., Videtta, W., Wang, K.K.W., Williams, W.H., 623 

Wilson, L., Yaffe, K., In, T.P., Investigators, 2017. Traumatic brain injury: integrated 624 

approaches to improve prevention, clinical care, and research. Lancet Neurol. 16(12), 987–625 

1048. 626 

Markram, H., 2012. The human brain project. Sci. Am. 306(6), 50–55. 627 

Melozzi, F., Woodman, M.M., Jirsa, V.K., Bernard, C., 2017. The virtual mouse brain: a computational 628 

neuroinformatics platform to study whole mouse brain dynamics. eNeuro 4(3), doi: 629 

10.1523/ENEURO.0111–1517.2017. 630 

Myers, D.K., Goldberg, A.M., Poth, A., Wolf, M.F., Carraway, J., McKim, J., Coleman, K.P., Hutchinson, 631 

R., Brown, R., Krug, H.F., 2017. From in vivo to in vitro: the medical device testing paradigm 632 

shift. ALTEX 34(4), 479–500. 633 

Osborn, L.E., Dragomir, A., Betthauser, J.L., Hunt, C.L., Nguyen, H.H., Kaliki, R.R., Thakor, N.V., 2018. 634 

Prosthesis with neuromorphic multilayered e-dermis perceives touch and pain. Sci. Robot. 635 

20(9), eaat3818. 636 

Ostry, D.J., Darainy, M., Mattar, A.A., Wong, J., Gribble, P.L., 2010. Somatosensory plasticity and 637 

motor learning. J. Neurosci. 30(15), 5384–5393. 638 

Panzeri, S., Harvey, C.D., Piasini, E., Latham, P.E., Fellin, T., 2017. Cracking the Neural Code for 639 

Sensory Perception by Combining Statistics, Intervention, and Behavior. Neuron 93(3), 491-640 

507. 641 

Pastore, V.P., Massobrio, P., Godjoski, A., Martinoia, S., 2018. Identification of excitatory-inhibitory 642 

links and network topology in large-scale neuronal assemblies from multi-electrode 643 

recordings. PLoS computational biology 14(8), e1006381. 644 

Pirog, A., Bornat, Y., Perrier, R., Raoux, M., Jaffredo, M., Quotb, A., Lang, J., Lewis, N., Renaud, S., 645 

2018. Multimed: an integrated, multi-application platform for the real-time recording and 646 

sub-millisecond processing of biosignals. Sensors (Basel) 18(7), 2099. 647 

Pizzi, R.M., Rossetti, D., Cino, G., Marino, D., Vescovi, A.L., Baer, W., 2009. A cultured human neural 648 

network operates a robotic actuator. Biosystems 95(2), 137–144. 649 

Potter, S.M., 2010. Closing the loop between neurons and neurotechnology. Front. Neurosci. 4, 15. 650 

Roelfsema, P.R., Holtmaat, A., 2018. Control of synaptic plasticity in deep cortical networks. Nat. 651 

Rev. Neurosci. 19(3), 166–180. 652 



26 

Rosin, B., Slovik, M., Mitelman, R., Rivlin-Etzion, M., Haber, S.N., Israel, Z., Vaadia, E., Bergman, H., 653 

2011. Closed-loop deep brain stimulation is superior in ameliorating parkinsonism. Neuron 654 

72(2), 370-384. 655 

Shein-Idelson, M., Ben-Jacob, E., Hanein, Y., 2011. Engineered neuronal circuits: a new platform for 656 

studying the role of modular topology. Frontiers in neuroengineering 4, 10. 657 

Soekadar, S.R., Birbaumer, N., Slutzky, M.W., Cohen, L.G., 2015. Brain-machine interfaces in 658 

neurorehabilitation of stroke. Neurobiol. Dis. 83, 172–179. 659 

Soloperto, A., Bisio, M., Palazzolo, G., Chiappalone, M., Bonifazi, P., Difato, F., 2016. Modulation of 660 

neural network activity through single cell ablation: an in vitro model of minimally invasive 661 

neurosurgery. Molecules 21(8), 1018. 662 

Steinmetz, N.A., Koch, C., Harris, K.D., Carandini, M., 2018. Challenges and opportunities for large-663 

scale electrophysiology with Neuropixels probes. Curr. Opin. Neurobiol. 50, 92–100. 664 

Takeuchi, N., Izumi, S., 2013. Rehabilitation with poststroke motor recovery: a review with a focus on 665 

neural plasticity. Stroke Res. Treat. 2013, 128641. 666 

Thakur, C.S.T., Molin, J., Cauwenberghs, G., Indiveri, G., Kumar, K., Qiao, N., Schemmel, J., Wang, 667 

R.M., Chicca, E., Olson Hasler, J., 2018. Large-scale neuromorphic spiking array processors: A 668 

quest to mimic the brain. Frontiers in neuroscience 12, 891. 669 

Turrigiano, G.G., 2008. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135(3), 670 

422-435. 671 

Valle, G., Mazzoni, A., Iberite, F., D'Anna, E., Strauss, I., Granata, G., Controzzi, M., Clemente, F., 672 

Rognini, G., Cipriani, C., Stieglitz, T., Petrini, F.M., Rossini, P.M., Micera, S., 2018. Biomimetic 673 

intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual 674 

dexterity in a bidirectional prosthesis. Neuron 100(1), 37–45. 675 

Vassanelli, S., Mahmud, M., 2016. Trends and challenges in neuroengineering: toward "intelligent" 676 

Neuroprostheses through brain-"brain inspired systems" communication. Front Neurosci. 677 

10, 438. 678 

Wagenaar, D.A., Pine, J., Potter, S.M., 2006. Searching for plasticity in dissociated cortical cultures on 679 

multi-electrode arrays. J. Negat. Results Biomed 5, 16. 680 

Wang, W., Collinger, J.L., Perez, M.A., Tyler-Kabara, E.C., Cohen, L.G., Birbaumer, N., Brose, S.W., 681 

Schwartz, A.B., Boninger, M.L., Weber, D.J., 2010. Neural interface technology for 682 

rehabilitation: exploiting and promoting neuroplasticity. Phys. Med. Rehabil. Clin. N. Am. 683 

21(1), 157–178. 684 

Xu, T., Xiao, N., Zhai, X., Kwan, C.P., Tin, C., 2018. Real-time cerebellar neuroprosthetic system based 685 

on a spiking neural network model of motor learning. J. Neural. Eng. 15(1), 016021. 686 

 687 

  688 



27 

Figure titles and legends 689 

Figure 1. Interfacing a biological neural network and neuromorphic neuroprosthesis. A, 690 

Schematic representation of the main elements of the setup: cartoon of an MEA coupled with a BNN; 691 

picture of the amplification system; picture of the custom FPGA board; picture of the stimulus 692 

generator. Out of the loop, we used a PC to configure the board. B, Schematic representation of the 693 

different phases of two experimental approaches which share a pre-lesion, a lesion (performed 694 

through laser ablation, not shown) and a post lesion phase. The final experimental phase can be either 695 

bidirectional bridging (BB) or hybrid bidirectional bridging (HBB). C, Schematic of real-time data 696 

processing performed by the board: the first step is spike detection followed by network burst (NB) 697 

detection monitoring module 1. After NB detection, delivering stimulation to module 2 of the BNN 698 

(BB approach) or to the SNN is possible. In the second modality, there is also NB detection of the 699 

SNN, which can result in stimulation delivered to the BNN (HBB approach). 700 

 701 

Figure 2. A laser ablation-induced lesion can disconnect two neuronal modules. A1, Schematic of 702 

the first experimental protocol. Experiments with no lesion: we recorded four consecutive hours of 703 

spontaneous activity (S1-S4). A2, Schematic of the second experimental protocol. Experiments with 704 

lesion: we recorded one hour of spontaneous activity (S1) followed by laser ablation and three 705 

consecutive hours of spontaneous activity post lesion (SPL1-SPL3). The grey-shaded area indicates 706 

20 minutes of no recording due to the execution of the lesion. B1, A 20 s raster plot of the network 707 

bursting activity of one representative experiment during the S1 phase. B2, a 20 s raster plot of the 708 

network bursting activity of one representative experiment during SPL3. C1, Cross-correlation (CC) 709 

function for one representative experiment during the S1-S4 phases. The CC profiles between the 710 

spike trains of each module (light blue) in the four phases of the experiment were high and stable 711 

(lines shifted for the sake of clarity). Time axis [-500, +500] ms. C2, CC profile between the spike 712 

trains of each module for one representative experiment with lesion. Before the lesion (light blue 713 

profile), CC was high; following the lesion (dark grey), CC collapsed to zero (lines shifted for the 714 

sake of clarity). Time axis [-500, +500] ms. D1 Percentage of active channels with respect to S1 for 715 
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the experiments with no lesions (light blue columns, n=9) and with lesions (n=4, dark grey columns). 716 

No significant difference was found using the Mann-Whitney test (S2 VS SPL1 p = 0.2042; S3 VS 717 

SPL2: p=0.31608; S4 VS SPL3: p=0.70769). D2, Mean firing rate (MFR) ratio with respect to S1 for 718 

experiments without (light blue bars) and with lesions (dark grey bars). No significant difference was 719 

found during the last hour using the Mann-Whitney test (S2 vs SPL1: p = 0.0028; S3 vs SPL2: p = 720 

0.01119; S4 vs SPL3: p = 0.10629). E1, Comparison of the CC area ratio with respect to S1 for the 721 

experiments without (light blue bars) and with lesions (dark grey bars) (Mann-Whitney test; S2 vs 722 

SPL1: p =0.0028; S3 vs SPL2: p = 0.0028; S4 vs SPL3: p = 0.0028). E2, On the left, comparison of 723 

the intra-module correlation coefficient (i.e., Pearson Correlation, PC) ratio with respect to S1 for the 724 

experiments without (light blue bars) and with lesions (dark grey bars). No significant difference was 725 

found using the Mann-Whitney test (S2 VS SPL1 p = 0.71049; S3 VS SPL2: p= 0.14825; S4 VS 726 

SPL3: p= 0.07552). On the right, the same comparison regarding inter-module PC that showed clear 727 

differences between experiments without and with lesion (Mann-Whitney test; S2 vs SPL1: p 728 

=0.0028; S3 vs SPL2: p = 0.0028; S4 vs SPL3: p = 0.0028). F1, Network burst rate (NBR) ratio with 729 

respect to S1 showing significant differences during the first and second hour after the lesion (Mann-730 

Whitney test; S2 vs SPL1: p = 0.0028; S3 vs SPL2: p = 0.01119; S4 vs SPL3: p = 0.26014). F2, 731 

Probability of single-module NB (Prob smNB). The ratio with respect to S1 shows stability for 732 

experiments without (light blue bars) and with lesions (dark grey bars) (Mann-Whitney test; S2 vs 733 

SPL1: p = 0.0028; S3 vs SPL2: p = 0.0028; S4 vs SPL3: p = 0.0028). 734 

 735 

Figure 3. Bidirectional bridging is effective in reconnecting functionally and anatomically 736 

disconnected neuronal modules. A, Schematic of the experimental protocol. We recorded 20 737 

minutes of spontaneous activity (S1) followed by laser ablation. The grey-shaded area indicates 20 738 

minutes of no recording during ablation. Dots represent two hours of no recording after the lesion to 739 

maintain a stable activity in both modules. Then, we recorded 20 minutes of SPL activity (SPL3) 740 

followed by 20 minutes of the bidirectional bridging (BB) protocol and another 20 minutes of 741 

spontaneous activity (SPL4). B1-4, The 20 s-long raster plots of representative experiments 742 

(respectively, from phases S1, SPL1, BB and SPL4). In B3, Blue and red lines represent electrical 743 
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stimulation pulses delivered from module 1 to module 2 and vice versa, respectively. C, MFR during 744 

the 4 experimental phases was stable (colour code as in panel a: S1: light blue dot; SPL3, SPL4: dark 745 

grey dots; BB: red dot). No significant difference was found (one-way RM ANOVA, p=0.469, DF = 746 

3, F = 0.872) D1, CC function during the 4 experimental phases. Small arrows indicate the blanking 747 

period of 8 ms following each stimulation. Colour code the same as that in panel a. Note that during 748 

BB, the cross-correlation function (red) recovers even if not completely with respect to the initial 749 

profile (light blue), while it stays at zero during the spontaneous activity phases post lesion (SPL3 and 750 

SPL4, dark grey profiles). D2, CC area was highly reduced during the post-lesion phases. The CC 751 

area partially recovered during the BB protocol and collapsed again when stimulation was switched 752 

off (one-way repeated measures analysis of variance; degrees of freedom=3; F=101,832. S1 vs SPL3 753 

p=5.67E-13; S1 vs SPL4 p=7.54E-13; S1 vs BB p=1.60E-07; BB vs SPL3 p=1.77E-06; BB vs SPL4 754 

p=2.81E-06; SPL4 vs SPL3 p=1). E1, NBR remained stable during the experiments. No significant 755 

difference was found (one-way repeated measures analysis of variance: p=0.501, DF=3; F=0.810). 756 

E2, Probability of the single-module NB (Prob smNB) was close to one after the lesion. During the 757 

BB protocol, the probability was similar to the pre-lesion condition. (Friedman’s repeated measures 758 

analysis of variance; p<0.001, DF=3, Chi-square=24.3. SPL4 vs S1 and SPL3 vs S1: p<0.001). 759 

 760 

Figure 4. Spiking neural network (SNN) design and characterization. A, Schematic of the 761 

procedure used to create a library of SNNs. Starting from the Izhikevich model implemented on the 762 

FPGA and a library of 34 BNNs with a large spectrum of activity, we tuned the mean value of the 763 

synaptic weight distribution to obtain and select from a collection of SNNs (SNN library, comprising 764 

27 different configurations). B, Representative 20 s-long raster plots of different BNNs showing 765 

different NB rates. C, Left, distribution of excitatory synaptic weights from the 27 SNNs. In red, the 766 

slower SNN of the library (SNN 1). The blue arrow indicates the shift of the mean value (from 0.99 to 767 

1.34) of the normal distribution with standard deviation = 0.3 to obtain increasing NBR values. Right, 768 

distribution of inhibitory synaptic weights from the 27 SNNs. In red, the slower SNN of the library 769 

(SNN 1). The blue arrow indicates the shift of the mean value (from -2.02 to -1.02) of the normal 770 

distribution with standard deviation = 0.3 to obtain increasing NBR values. D. Representative 20 s-771 
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long raster plots of different SNNs showing different NB rates. E, Left, cumulative MFR profile for 772 

the BNN library. Right, cumulative MFR profile for the SNN library. F1, Comparison between BNN 773 

and SNN libraries in terms of network MFR (i.e., the mean value of all active electrodes for BNN and 774 

neurons for SNN). F2, Comparison between BNN and SNN NBR, showing that the SNN library 775 

covers the BNN variability and contains networks with a higher NBR. 776 

 777 

Figure 5. The hybrid bidirectional bridging approach is effective when a neuronal assembly 778 

must be replaced. A, Schematic of the experimental protocols. We recorded 20 minutes of 779 

spontaneous activity (S1) followed by laser ablation. Grey-shaded area indicates 20 minutes of no 780 

recording during ablation. Dots represent two hours of no recording after the lesion to obtain stable 781 

activity in both modules and to test different stimulation channels. Then, we recorded 20 minutes of 782 

SPL activity (SPL3) followed by 20 minutes of a hybrid bidirectional bridging (HBB) protocol and 783 

another 20 minutes of spontaneous activity (SPL4). B1, Top, 20 s-long raster plot depicting the BNN 784 

bursting activity involving both modules before lesion. Bottom, activity of SNN uncorrelated with the 785 

BNN. The networks are not linked. B2, Top, 20 s-long raster plot after lesion showing uncorrelated 786 

bursting activity on BNN modules 1 and 2. Bottom, same as that in B1. B3, 20 s-long raster plot 787 

during HBB depicting two hybrid events. The first event on the left was an NB detected on module 1 788 

of the BNN. The detection resulted in a stimulation pulse delivered to 10 excitatory neurons of the 789 

SNN (blue line, bottom). An NB on the SNN was detected 18 ms after the stimulation and triggered 790 

the delivery of a stimulation pulse to module 1 of the BNN (grey line, top). B4, 20 s-long raster plot 791 

depicting the uncorrelated activity of BNN modules (top) and SNN network (bottom). C, MFR during 792 

the 4 experimental phases was stable (colour code as in panel a: S1: light blue dot; SPL3, SPL4: dark 793 

grey dots; HBB: red dot). No significant difference was found (one-way repeated measures analysis of 794 

variance. p<0.001, DF=3, F=3,16; Bonferroni test: all comparisons with p>0.05). D1, CC function 795 

during the 4 experimental phases. Colour code the same as that in panel A. Note that during BB, the 796 

cross-correlation function (red) recovers even if not completely with respect to the initial profile (light 797 

blue). D2, CC area was highly reduced during the post-lesion phases. The CC area partially recovered 798 

during the BB protocol and collapsed again when stimulation was switched off (one-way repeated 799 
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measures analysis of variance. p<0.001, DF=3; F=70,448; S1 vs SPL3: p=5.80E-10; S1 vs SPL4 800 

p=2.72E-09; S1 vs HBB: p=9.16E-04; HBB vs SPL3 p=1.16E-07; HBB vs SPL4 p=1.02E-06; SPL4 801 

vs SPL3 p=0.73643). E1, NBR did not change during HBB with respect to the S1 phase (one-way 802 

repeated measures analysis of variance. p=0.005, DF=3; F=6,069; S1 vs SPL3 p=0.02482; S1 vs 803 

SPL4 p=1; S1 vs HBB p=1; HBB vs SPL3 p=0.01022; HBB vs SPL4 p=1; SPL4 vs SPL3 804 

p=0.00674). E2, Probability of a single-module NB (Prob smNB) was close to one after the lesion. 805 

During the HBB protocol, the probability was similar to that in the pre-lesion condition (one-way 806 

repeated measures analysis of variance. p<0.001, DF=3; F=453,439; S1 vs SPL3 p=4.96E-13; S1 vs 807 

SPL4 p=1.03E-12; S1 vs HBB p=0.22606; HBB vs SPL3 p=1.94E-12; HBB vs SPL4 p=4.30E-12; 808 

SPL4 vs SPL3 p=1). 809 

Supplemental video 810 

Performing the lesion, related to Figure 2. Video recorded during a laser ablation of the 811 

connections between two modules (visible on the left and right side) of a bimodular cell 812 

culture. Video recorded on November 16th 2016. Duration 18s. Link:  813 

https://data.mendeley.com/datasets/bnjckk2kht/draft?a=bb802c21-d45c-4c17-be78-814 

34b11d53bed0  815 
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