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Abstract

This article is about the development and the analysis of an enhanced positive
control volume finite element scheme for degenerate convection-diffusion type prob-
lems. The proposed scheme involves only vertex unknowns and features anisotropic
fields. The novelty of the approach is to devise a reliable upwind approximation with
respect to flux-like functions for the elliptic term. Then, it is shown that the discrete
solution remains nonnegative. Under general assumptions on the data and the mesh,
the convergence of the numerical scheme is established owing to a recent compactness
argument. The efficiency and stability of the methodology are numerically illustrated
for different anisotropic ratios and nonlinearities.

1 Introduction

Convection-diffusion equations arise from uncountable physical processes such as mod-
eling complex flows in porous media [14, 15], environmental sciences [31], chemistry and
biology, etc [33]. Performing numerical methods for the approximation of such models
is of significant importance in understanding the behavior of their solutions. Despite
the large number of works on the topic, devising stable and convergent discretizations
is still a challenging task.

In the present paper we focus our attention on the design and analysis of a positive
finite volume scheme for a particular class of nonlinear degenerate convection-diffusion
equations recast in the following formulation

∂tu− div(ϕ(u)Λ∇u) + div(f(u)V) = 0 in QT := Ω× (0,T). (1.1)

The domain Ω is a polygonal connected bounded open of Rd (d ≥ 2) and T represents
the physical time. The velocity of the convection process is provided by V. In addition,
ϕ is a nonlinear nonnegative function that accounts for the behavior of the diffusion
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within Ω. The matrix Λ gives information on the anisotropy of the considered domain.
The primary unknown of the problem is u, which may stand for the concentration,
saturation, density, etc. To close the model problem, a boundary condition of Dirichlet-
Neumann type is prescribed :

u = 0, on Γ1 × (0,T),
(
ϕ(u)Λ∇u− f(u)V

)
· n = 0, on Γ2 × (0,T). (1.2)

where {Γ1,Γ2} is a disjoint partition of the boundary ∂Ω such that |Γ1| > 0 and n the
outward unit normal vector to Γ2. The initial solution is known at t = 0 :

u(·, 0) = u0, in Ω, (1.3)

where u0 is given. It is worth mentioning that (1.1) includes several major difficulties
encountered in the development and the convergence analysis of modern finite volume
schemes addressed to such problems. This is mainly due to the degeneracy of the
function ϕ together with the anisotropy of the tensor Λ and the geometric configuration
of the mesh.

Before defining the nature of the approximate solution, the following hypotheses
are required on the data. They will be assumed to hold throughout the rest of this
paper.

(A1) u0 is an L2(Ω) function with u0(x) ≥ 0 a.e. x ∈ Ω.

(A2) Λ : Ω −→ Rd×d is a symmetric uniformly coercive matrix i.e. there exist positive
constants Λ and Λ such that

Λ|ζ|2 ≤ Λ(x)ζ · ζ ≤ Λ|ζ|2, for all ζ ∈ Rd and a.e. x ∈ Ω.

(A3) V belongs to C0(Ω× [0,T]) and satisfies div V = 0.

(A4) ϕ is a continuous nondecreasing function from R+ into R+ such that ϕ(0) = 0
and ϕ(s) > 0 for all s > 0. It is further extended by 0 on (−∞, 0).

(A5) Kirchhoff’s function ξ is defined by

ξ(v) =

∫ v

0

√
ϕ(s) ds, ∀v ∈ R+. (1.4)

The function ξ−1 exists, is continuous and increasing. We also need to control
the behavior of ϕ for large values by supposing the growth assumption

∃ε > 0 ∀s ∈ R+ ϕ(s) ≤ C(1 + ξ(s)2−ε). (1.5)

Moreover, we assume that

∀s ∈ R+ s ≤ C(1 + ξ(s)). (1.6)

(A6) The mobility-like function f is increasing, assumed to be in C1(R+,R+) and fulfills

f(0) = 0,
∥∥f ′∥∥∞ <∞.

It is also extended by 0 on (−∞, 0).
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Remark 1.1. Assumption (A4) especially (1.5) accounts for the weakest possible re-
quirement on the nonlinear diffusion function. For instance, it allows any polynomial
growth of ϕ and it is satisfied by a wide range of nonlinearities. Notice that ε should
take very small positive values. For a convenient fixed ε, there holds

ξ(s)2

ξ(s)2−ε −−−−→ +∞ as s −−−−→ +∞.

Consequently, there exists δε > 0 and Cδε > 0 fulfilling

∀s ∈ R+ ξ(s)2−ε ≤ Cδε + δεξ(s)
2. (1.7)

The hypothesis (1.6) incorporates a class of functions obeying the following limit on ξ

ξ(s)

s
−−−−→ l ∈ (0,+∞] as s −−−−→ +∞.

Remark 1.2. (i) Under Assumption (A6), especially f(0) = 0, ‖f ′‖∞ <∞, f is a
globally Lipschitz continuous function. Then

∀s ∈ R+ |f(s)| ≤
∥∥f ′∥∥∞ s ≤ C(1 + ξ(s)

)
. (1.8)

(ii) The monotonicity condition on f in Assumption (A6) might seem restrictive.
It is only taken to simplify the presentation of the upwind discretization of the
hyperbolic term. The general case can be tackled by considering a classical splitting
of type f = f↑+ f↓ where f↑ is the increasing part while f↓ is the decreasing part.
Then, this convective term rewrites

div
(
f(u)V

)
= div

(
f↑V

)
+ div

(
(−f↓)(−V)

)
.

Therefore, the approximation of the right hand side of this equality using a first
order upstream scheme yields the Engquist-Osher numerical flux. Hence, the anal-
ysis carried out through the paper remains valid.

We recall the classical Sobolev space

H1
Γ1

(Ω) = {u ∈ H1(Ω) / u = 0 on Γ1},

equipped by the standard norm

||u||H1
Γ1

= ||∇u||L2(Ω)d .

We next define the notion of a weak solution to the continuous model.

Definition 1.1. Under Assumptions (A1)-(A6,), we say that u is a weak solution to
the problem (1.1)-(1.3) if :

u, ϕ(u) ∈ L1(QT), u ≥ 0 a.e. in QT, ξ(u) ∈ L2(0,T;H1
Γ1

(Ω)),

and for all ∀ψ ∈ C∞c (Ω× [0,T)), such that ψ = 0 on Γ1 × [0,T), one has

−
∫
QT

u∂tψ dx dt−
∫

Ω
u0ψ(x, 0) dx+

∫
QT

√
ϕ(u)Λ∇ξ(u) · ∇ψ dx dt

−
∫
QT

f(u)V · ∇ψ dx dt = 0. (1.9)
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Existence of a weak solution to (1.1)−(1.3) has been proved in [14]. Under smooth-
ness assumptions on the data, especially on f and f ◦ξ−1, one can retain the uniqueness
of the solution. See for instance [28] for more information.

During the past few decades, enormous amount of numerical methods were devel-
oped for approaching the solutions to problems having the form (1.1). In particular,
finite element schemes were proposed and studied in [6, 14]. Approximations based
on finite elements and finite volumes were discussed and analyzed in [3, 27]. Owing
to their attractive properties and cheaper computational cost, finite volume schemes
have received an increasing interest on both : the application and the theoretical sides.
They have been extensively applied to and preferred for systems resulting from con-
servation laws [35] written like (1.1). In fact, the main idea of such an approach is
based on a balance equation where the approximation of the fluxes through the in-
terfaces defines the method in question. A simple and very practical finite volume
scheme is the pioneer two-point flux approximation (TPFA) method, which has been
used in Computational Fluid Dynamics in a large context. In the framework of porous
media flows, the convergence study for such a scheme has been carried out for in-
stance in [8, 23, 25, 39]. Contrary to the TPFA approach, the control volume finite
element methodology (CVFE) [10, 22, 34] features cell grids centered on the vertices.
Its structure resembles to that of the TPFA scheme. However, schemes written in the
two-point formulation may lose consistency in the presence of anisotropy or lack ro-
bustness on distorted meshes. This has led to the development of alternatives utilizing
more than two points. Depending on the stencil, many propositions exist in the lit-
erature. We may cite multi-point flux approximation schemes (MPFA) [1, 2], discrete
duality finite volume methods (DDFV) [4, 17], vertex approximation gradient approach
(VAG) [9, 26]. We also mention the mixed finite volume scheme (MFV) [19] as well
as the hybrid strategy (HFV) [24]. Except TPFA-based methods, the aforementioned
discretizations belong to the gradient discretization formalism [20].

The primordial advantage of TPFA-like schemes [23] resides in theirs native uncon-
ditional monotony. Yet, this comes with the price of a geometric shape condition on
the grids of the mesh. Such a constraint is too restrictive in practice. Without more
assumptions on the anisotropy of the tensor Λ or on the mesh, the monotonicity prop-
erty is not an easy outcome for schemes based on the gradient discretization methods
as pointed out in [18, 32]. The latter are somehow based on central approximations of
the fluxes across edges which may offer a high resolution even in the presence of hetero-
geneities, especially for diffusion processes. On the hand, they may induce undershoots
and/or overshoots on coarse meshes in case of strong anisotropic fields and advected-
dominated regimes. To eliminate such oscillations, many works have been devoted to
this subject. Among them, only a few papers were focused on the convergence of the
numerical scheme [11, 12, 30, 38, 40]. The authors in [12] suggested a positive finite
volume scheme that is applicable to complex situations. Nevertheless, it suffers from an
excessive numerical viscosity and thus the convergence rate is completely deteriorated
in case of zero-flux boundary conditions. To alleviate this issue, we have proposed a
correction in [29] that shows a considerable improvement, especially for isotropic media.
The point is that the correction occurs when it is only necessary. Practically, the idea
still however necessitates an enhancement targeting big anisotropic ratios. As a conse-
quence, designing novel positive schemes which ameliorate the numerical convergence
is of chief interest.
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In the current contribution we develop a new positive vertex-centered finite vol-
ume discretization for the model example (1.1). The scheme is derived thanks to a
direct approximation of the fluxes across the interfaces of the control volumes. This
is achieved by replacing the continuous gradient by its discrete counterpart. To avoid
the use of Kirchhoff’s transform, a special remedy is proposed. The originality of
our approach consists in eliminating the ”bad” terms by using an adequate upwind
scheme with respect to nonlinear flux-like functions. This technique allows to prevent
the scheme from producing too artificial diffusion in case of strong anisotropic rates.
The numerical analysis of the method stems some inspiration from [13]. However, our
approach uses only vertex unknowns without processing centered ones. Numerical
tests confirm our prediction where optimal convergence rate are achieved as known for
popular approximations to (1.1). We emphasize that our technique can be extended
to more complex problems involving (1.1) without any major issue.

The remainder of this article is organized as follows. Section 2 exposes the discrete
setting of the considered vertex-centered discretization. Section 3 describes the positive
numerical scheme as well as some preliminary results. Section 4 is concerned with the
proof of a discrete maximum principle on the solution and the a priori estimates on the
gradient of the Kirchhoff function. In Section 5 we study the convergence of the finite
volume scheme by means of a recent compactness argument. Finally, Section 6 reports
a number of academic tests in order to illustrate the efficiency of our methodology and
its ability to deal with sever anisotropic situations.

From now non, we focus on the two-dimensional setting to ease the readability of
our approach. The extension to three dimension follows in the same fashion.

2 Discrete framework

This section aims to specify and fix some terminologies that will be used in the sequel.
For expositional convenience, we would like to keep most of our notations as in the
same spirit of the standard finite volumes so that our scheme can be understandable
by the reader.

The finite volume or the dual mesh M is defined around vertices of a given primal
partition T of Ω. In the two dimensional case, the considered primal mesh is nothing
more than a conforming triangulation [16]. T is about a collection of open subsets
(triangles in 2D or simplices in 3D setting) covering Ω. In 2D the intersection of
triangles is either an edge, a point or the empty set. In 3D the simplices may share
a face, a straight segment, a vertex or the empty set. We refer to V as the set of the
mesh nodes. We consider VT the set of the vertices of the element T . We denote |T |
(resp. xT , hT , %T ) the Lebesgue measure (resp. barycenter, diameter, the diameter of
the biggest inscribed ball) of the simplex T ∈ T . We consider hT = max{hT , T ∈ T }.

The control volumes or the dual cells are then constructed around the vertices of
T . This is performed locally in each element. For instance, in the 2D case, it suffices
to connect the midpoints of the edges of a triangle T ∈ T with the barycenter of the
same triangle as depicted in Fig. 1. Following the finite volumes philosophy we define
E the set of dual interfaces of M. We also consider ET = {σ ∈ E/σ ⊂ T}, for all
T ∈ T . This gives E = ∪T∈TET . In the two dimensional setting each dual interface
inside the simplex T is obtained through two vertices xK and xL : σTKL := K ∩L ∩ T .
Moreover, the vector nTKL stands for to the unit normal to σTKL pointed from K to L.
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We designate by
∣∣σTKL∣∣ the (d− 1)-dimensional measure of this face.

We hereafter would like to emphasize that the 2D aspect is mostly employed through
this paper while the 3D version is fully analogous.

Let {Th}h be a sequence of refined meshes of T . We assume that {Th}h is regular
in the sense that the following shape condition holds :

∃Θ > 0 : max
T∈Th

hT
%T
≤ Θ, ∀hTh ∈ (0, h0). (2.1)

Figure 1: Schematic illustration of the control volume and some related notations in the two
dimensional case.

We also suppose that the articulation points of Γ1 and Γ2 are the midpoint of some
boundary edges of T .

Next, a one-step approximation in time is taken into account. To this end, the
time interval (0,T) is broken into a collection of sub-intervals whose boundaries can be
defined by an increasing sequence (tn)n∈J0,NK. We moreover take a uniform time step
δt for sake of simplicity. One can get tn = nδt for all n ∈ J0, NK. Then, we deduce
that δt = T/N

Define
Vh = {uh ∈ C0(Ω), uh|T ∈ P1(T ), ∀T ∈ T },

where P1(T ) is the set of polynomial functions of degree at most 1 on T . The Lagrange
finite element basis of Vh is denoted by (φK)K∈M where φK(xL) = 1 for K = L and
φK(xL) = 0 otherwise. Then, every function of Vh writes

uh =
∑
K∈M

uKφK .

We hereafter set MD = {K ∈ M/xK ∈ Γ1} and Mc
D = M\MD. We consider the

functional space of Vh defined by

V 0
h = {uh ∈ Vh : uh(xK) = 0, ∀K ∈MD} ⊂ H1

Γ1
(Ω).

The standard metric on V 0
h comes from the energy norm

‖uh‖V 0
h

=

∫
Ω
|∇uh|2 dx.
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To perform the analysis of the numerical scheme we need to specify the trial space.
We talk about the finite volume space Wh consisting of piecewise constant functions
on the dual cells. Each element of Wh is uniquely represented by

ũh =
∑
K∈M

uK1K̊ , (uK ∈ R, ∀K ∈M),

where 1K̊ designates the characteristic of the topological interior of AK .
Finally, we associate zn+1

h ∈ {un+1
h , ũn+1

h }, for n ∈ J0, N − 1K, with the discrete
function zh,δt which is defined in each sub-interval (tn, tn+1] by zn+1

h . We then define

W 0
h,δt = {ũh,δt / ũh,δt(xK , ·) = 0, ∀K ∈MD}.

In case of a nonlinear function G, the reconstruction of the composition G ◦ u is
provided by the interpolation. This means that

G(uh,δt) = (G ◦ u)h,δt and G̃(uh,δt) = ˜(G ◦ u)h,δt.

We recall the discrete integration by parts formula∫
T

Λ∇uh · ∇vh dx =
∑

σTKL∈ET

ΛTKL(uK − uL)(vK − vL), ∀T ∈ T , (2.2)

where ΛTKL is termed the transmissibility coefficient :

ΛTKL = −
∫
T

Λ∇φK · ∇φL dx.

Remark 2.1. (i) We would like to point out that the tensor Λ can be assumed to be
constant on the elements of T . In the general case, one can retain this assumption
by taking the average of Λ over T :

(Λh)|T =
1

|T |

∫
T

Λ(x) dx, ∀T ∈ T .

(ii) If the triangulation T satisfies Delaunay’s condition and the tensor Λ reduces to
a positive scalar function, then all ΛTKL are nonnegative [21].

Let us consider T ∈ T . Choosing for instance the positive rotation sense, we define
the permutation τT which allows to connect two vertices of T . To fix the ideas, we
assume that VT = {xK , xL, xS}. For each vertex i ∈ VT we associate with a neighbor
vertex τT (i) of the same triangle. Then, one gets τT (VT ) = {xL, xS , xK}. As a
consequence, one can write ET such that ET = {σT

iτT (i)
}i∈VT . By abuse of notation we

may keep τ instead of τT . Now, using the fact that

|T | ∇φi = −
( ∣∣∣σTiτ(i)

∣∣∣nTiτ(i) +
∣∣∣σTiτ◦τ(i)

∣∣∣nTiτ◦τ(i)

)
,

one can see in a straightforward way that the discrete gradient can be reformulated as
follows :

∇uh|T = − 1

|T |
∑
i∈VT

∣∣∣σTiτ(i)

∣∣∣ (ui − uτ(i))n
T
iτ(i). (2.3)
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We next introduce a local matrix MT = (βij)1≤i,j≤#VT whose entries read

βij =
1

|T |

∣∣∣σTiτ(i)

∣∣∣ ∣∣∣σTjτ(j)

∣∣∣ΛnTiτ(i) · n
T
jτ(j). (2.4)

Combining (2.3)-(2.4), one obtains the two-point like relation

−∇uh ·
∣∣∣σTjτ(j)

∣∣∣nTjτ(j) =
∑
i∈VT

βij(ui − uτ(i)). (2.5)

Therefore, the integral (2.2) is expressed by∫
T

Λ∇uh · ∇vh dx =
∑
i∈VT

∑
j∈VT

βij(ui − uτ(i))(vj − vτ(j))

= δTu ·MT δT v, ∀T ∈ T , (2.6)

where we have set

δTu =

 ui − uτ(i)

uτ(i) − uτ◦τ(i)

uτ◦τ(i) − ui

 .

Whence, one gets the following crucial relationship that is drawn from (2.2) and (2.6).

Lemma 2.1. For every T ∈ T , one has∫
T

Λ∇uh · ∇vh dx = δTu ·MT δT v =
∑

σTKL∈ET

ΛTKL(uK − uL)(vK − vL), ∀u, v ∈ R#VT .

As a direct consequence of this result, one claims that the matrix MT is definite-
positive since the tensor Λ is so. On the other hand, we observe that : if all ΛTKL ≥ 0, the
transformation (2.6) yields a stiffness matrix which preserves the M -matrix structure
[41].

The following result confirms the equivalence of some specific norms on R#VT that
will be useful later on. It shows on a second place that the condition number of MT is
uniformly bounded independently of the mesh steps.

Lemma 2.2. There exist positive constants C1, C2 depending only on Θ,Λ and Λ such
that for ever every T ∈ T there holds

C1δTu · δTu ≤ δTu ·MT δTu ≤ C2δTu · δTu, ∀u ∈ R#VT . (2.7)

Proof. The proof is given in the two dimensional case. Using Lemma 2.1 yields

δTu ·MT δTu ≤
∑

σTKL∈ET

∣∣ΛTKL∣∣ (uK − uL)2.

Now, the regularity of the mesh (2.1) guarantees the existence of a C > 0 depending
only on Θ and Λ ∣∣ΛTKL∣∣ ≤ C, ∀σTKL ∈ ET .

Let µTmax (resp. µTmin) stand for the biggest (reps. smallest) eigenvalue of the local
matrix MT . We denote by vµTmax , vµTmin

some eigenvectors associated to µTmax , µTmin
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respectively. It is easy to check that the operator δT : w 7→ δTw defines a surjection
from R#VT into R#VT . Therefore, we make use of the latter fact to deduce

µTmax ≤ C.

By taking C2 = C, we show the second inequality of the required result (2.7). Following
[9, 12] and bearing in mind the coercivity of Λ, one can find a C ′1 > 0 :

δTu · δTu =
∑

σTKL∈ET

(uK − uL)2 ≤ C ′1
∥∥∥√Λ∇uh

∥∥∥2

L2(T )2
.

Combine (2.1) and once more Lemma 2.1 to obtain

1

C ′1
≤ µTmin.

This conclude the proof by setting C1 = 1/C ′1.

We now show that the difference between the finite volume and finite element
reconstruction is dominated by the norm of the discrete gradient up to the size of T .

Lemma 2.3. Let wh be an element of Vh. Define two piecewise functions wh, wh such
that

wh|T = max
x∈T

wh(x), wh|T = min
x∈T

wh(x), ∀T ∈ T .

Then

‖wh − wh‖L2(Ω) ≤ #VThT ‖∇wh‖L2(Ω)d , ‖w̃h − wh‖L2(Ω) ≤ #VThT ‖∇wh‖L2(Ω)d .

Proof. Let us select a T in T . By the definition of the function wh we get∣∣∣wh|T − wh|T ∣∣∣ ≤ #VT max
i∈VT

∣∣wi − wτ(i)

∣∣ ≤ #VThT
∣∣∇wh|T ∣∣ .

Therefore

‖wh − wh‖
2
L2(Ω) =

∑
T∈T
|T |
∣∣∣wh|T − wh|T ∣∣∣2 ≤ (#VT )2h2

T
∑
T∈T
|T |
∣∣∇wh|T ∣∣2 .

This proves the first inequality. Concerning the second one, it suffices to observe that∣∣w̃h|T − wh|T ∣∣ ≤ ∣∣∣wh|T − wh|T ∣∣∣ .
Hence, one uses the previous inequality to conclude. The proof is then finished.

Now, we are in a position to introduce the positive finite volume scheme.
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3 Finite volume scheme

In view of stability reasons, we are led to perform a fully Euler implicit scheme in time.
As usual, the finite volume discretization is derived by integrating model’s equation on
the dual cells and applying the divergence theorem to get balance relationships across
dual edges. We point out that the hyperbolic fluxes are approximated by a classical
upstream scheme. Here our contribution targets the diffusive terms. More precisely,
through the approximation process the discrete diffusive flux

−∇ξ(uh) ·
∣∣∣σTjτ(j)

∣∣∣nTjτ(j) =
∑
i∈VT

βij

(
ξ(ui)− ξ(uτ(i))

)
,

is replaced by a nonlinear function Fn+1
KL,T (u) to avoid the introduction of Kirchhoff’s

transformation. At this stage, we decide to upwind with respect to the underlined
function so that the positivity can be reinforced.

Then, the positive scheme we propose consists in finding a finite family (un+1
K )K∈M,n∈J0,N−1K

fulfilling the following algebraic system made from :

u0
K =


1

|K|

∫
K
u0(x) dx, for K ∈Mc

D

0 for K ∈MD

, (3.1)

and the following set of equations at each time level n ∈ J0,N− 1K

|K|
δt

(un+1
K − unK) +

∑
T∩K 6=∅

∑
σTKL∈EK∩T

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)

+
∑

T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,T = 0, for K ∈Mc
D

un+1
K = 0, for K ∈MD

. (3.2)

The convective flux is written in the upstream fashion where

uup,n+1
KL =

{
un+1
K if Vn+1

KL,T ≥ 0

un+1
L otherwise

, (3.3)

and the velocity at the interface σTKL is computed by

Vn+1
KL,T =

∫
σTKL

Vn+1 · nTKL dσ and Vn+1 = V(·, tn+1). (3.4)

dσ is the (d − 1)-dimensional measure. As we mentioned before, we aim to maintain
the nonnegativity of the discrete solution. We are aware that possible undershoots may
arise from the diffusion. To cope with this issue, we treat the nonlinear elliptic term is
the same spirit of upstream schemes as proposed in [12] where the authors upwinded
with respect to the transmissibility coefficients. The latter approach suffers from an
excessive artificial diffusion. Here our idea draws some inspiration from [12], but the
construction of the scheme is different. As a matter of fact, it consists in upwinding
with regards to the discrete flux-like function defined by

Fn+1
KL,T (u) =

1

|T |

( ∑
i∈VT

√
ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )
∣∣∣σTiτ(i)

∣∣∣ΛnTiτ(i)

)
·
∣∣σTKL∣∣nTKL, (3.5)
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which plays the role of the velocity in the context of the hyperbolic framework. We

denote aTi,KL =
1

|T |

∣∣∣σTiτ(i)

∣∣∣ΛnTiτ(i) ·
∣∣σTKL∣∣nTKL. Therefore one can rewrite Fn+1

KL,T (u) as

follows

Fn+1
KL,T (u) =

∑
i∈VT

aTi,KL

√
ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )

As we are avoiding Kirchhoff’s transformation, the factor ϕn+1
iτ(i) may be expressed as

ϕn+1
iτ(i) =

ϕ(un+1
i ) + ϕ(un+1

τ(i) )

2
, ∀i ∈ VT .

Like uup,n+1
KL , we choose udiff,n+1

KL in the upstream sense with regards to the sign of
Fn+1
KL,T (u) :

udiff,n+1
KL =

{
un+1
K if Fn+1

KL,T (u) ≥ 0

un+1
L else

. (3.6)

In order to make an easily readable analysis of the scheme, we can introduce two
practical matrices as done for instance in [13]. We begin with defining DT (un+1) by

∀i, j ∈ VT , DT (un+1)ij =

{√
ϕn+1
iτ(i) if j = τ(i)

0 if j 6= τ(i)
. (3.7)

We next set
AT (un+1) = DT (un+1)MTDT (un+1). (3.8)

It follows that AT := AT (un+1) is symmetric and semi-definite since ϕ may degenerate
at 0. The point of introducing this matrix lies in the crucial relationship

∑
σTKL∈ET

√
ϕ(un+1

K ) + ϕ(un+1
L )

2
Fn+1
KL,T (u)(un+1

K − un+1
L ) = δn+1

T u · AT δn+1
T u,

where (δn+1
T u)i = un+1

i −un+1
τ(i) for all i ∈ VT . More importantly, this structure and the

prominent properties of MT will provide the key path to the coercivity of the scheme
as it will be developed and detailed in Section 4.

Remark 3.1. (i) Due to the homogeneous Neumann condition (1.2) prescribed on
Γ2 and the assumption on Γ1 ∩ Γ2, we indicate that the fluxes across the dual
edges located on this part of the boundary do not contribute to (3.2).

(ii) According to Assumption (A3) together with the choice (3.4), one gets the following
discrete divergence-free equality

∑
T∩K 6=∅

∑
σTKL∈EK∩T

Vn+1
KL,T = 0 for all K ∈M. Thereby,

∑
T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,T

=
∑

T∩K 6=∅

∑
σTKL∈EK∩T

(
f(un+1

K )− f(un+1
L )

)(
−Vn+1

KL,T

)+
, (3.9)

where we hereafter adopt the notation x = x+ + x− where x+ = max(x, 0) and x− =
min(x, 0) for all x ∈ R.
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(iii) We can switch the role of f by a nonlinear increasing function F : R+ −→ R+. As
a consequence of a discrete integration by parts computation and the fact that Vn+1

KL,T =

−Vn+1
LK,T , we infer

∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
F (un+1

K )− F (un+1
L )

)(
−Vn+1

KL,T

)+
= 0. (3.10)

4 A priori analysis

This section claims stability results that serve to prove the existence for the numerical
scheme and study its convergence. We first begin by establishing a lower bound on any
discrete solution. It is about processing the sign of scheme terms appropriately.

Lemma 4.1. For every n ∈ J0,NK, the numerical scheme (3.1)-(3.2) is positivity-
preserving i.e.

unK ≥ 0 ∀K ∈M.

Proof. The proof is carried out by an induction argument. It is clear that the statement
holds for n = 0. Select K ∈ M such that un+1

K = min
L∈M

un+1
L that we assume negative.

Multiplying the equation associated to K by
(
un+1
K

)−
= min(un+1

K , 0) < 0 gives

|K|
δt

∣∣(un+1
K )−

∣∣2 − unK(un+1
K

)−
+

∑
T∩K 6=∅

∑
σTKL∈EK∩T

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)

(
un+1
K

)−
+

∑
T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,T

(
un+1
K

)−
= 0.

Assumption (A4) and the definition of the upstream value (3.6) for udiff,n+1
KL ensures

that

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)

(
un+1
K

)−
≥√ϕ(un+1

K )Fn+1
KL,T (u)

(
un+1
K

)−
= 0,

∀σTKL ∈ EK∩T , ∀T : T ∩K 6= ∅.

Now, taking advantage of Assumption (A6), we check in a similar manner that

f(uup,n+1
KL )Vn+1

KL,T

(
un+1
K

)−
≥ f(un+1

K )Vn+1
KL,T

(
un+1
K

)−
= 0,

∀σTKL ∈ EK∩T , ∀T : T ∩K 6= ∅.

As a result
∣∣(un+1

K )−
∣∣2 − unK(un+1

K

)−
≤ 0. Introduce the induction hypothesis to con-

clude that
(
un+1
K

)−
= 0, which yields a contradiction. Hence, the proof is com-

plete.

We next state and prove energy estimates.
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Lemma 4.2. Let (un+1
K )K∈M,n∈J0,N−1K be a family of reals that defines the numerical

scheme (3.1)-(3.2). Then, there exists C such that

N−1∑
n=0

δt
∑
T∈T

∑
i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2 ≤ C. (4.1)

N−1∑
n=0

δt
∥∥∇ξ(un+1

h )
∥∥2

L2(Ω)d
≤ C. (4.2)

N−1∑
n=0

δt
∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
f(un+1

K )− f(un+1
L )

)2(
−Vn+1

KL,T

)+
≤ C. (4.3)

Proof. For every K ∈M, we multiply the line corresponding to K in the system (3.2)
by δtun+1

K . We sum on all K ∈M and n ∈ J0,N− 1K :

A1 +A2 +A3 = 0, (4.4)

where each term is given by

A1 =
N−1∑
n=0

∑
K∈M

|K| (un+1
K − unK)un+1

K ,

A2 =
N−1∑
n=0

δt
∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)un+1

K ,

A3 =
N−1∑
n=0

δt
∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,Tu
n+1
K .

Thanks to the elementary inequality
a2 − b2

2
≤ (a− b)a we directly show that

A1 ≥
∑
K∈M

|K|
(

(uNK)2 − (u0
K)2
)
. (4.5)

Being rearranged by dual edges, the diffusion term becomes

A2 =

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)(un+1

K − un+1
L ).

The crucial choice udiff,n+1
KL given in (3.6) entails

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)(un+1

K − un+1
L ) ≥

√
ϕ(un+1

K ) + ϕ(un+1
L )

2
Fn+1
KL,T (u)(un+1

K − un+1
L ),

regardless the sign of Fn+1
KL,T (u)(un+1

K − un+1
L ). Indeed, we should distinguish two cases

:
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(i) If Fn+1
KL,T (u)(un+1

K − un+1
L ) ≥ 0, then the definition of udiff,n+1

KL ensures that

udiff,n+1
KL = max(un+1

K , un+1
L ). Now, using the fact that

√
ϕ is a nondecreasing

function, we automatically obtain

√
ϕ(udiff,n+1

KL ) ≥

√
ϕ(un+1

K ) + ϕ(un+1
L )

2
.

(ii) Otherwise, if Fn+1
KL,T (u)(un+1

K − un+1
L ) < 0, the relationship (3.6) amounts to

writing udiff,n+1
KL = min(un+1

K , un+1
L ) and therefore one gets

√
ϕ(udiff,n+1

KL ) ≤

√
ϕ(un+1

K ) + ϕ(un+1
L )

2
,

where we also used the monotonicity of
√
ϕ.

We recall the crucial relationship

∑
σTKL∈ET

√
ϕ(un+1

K ) + ϕ(un+1
L )

2
Fn+1
KL,T (u)(un+1

K − un+1
L ) = δn+1

T u · AT δn+1
T u.

where the local matrix AT is expressed by (3.8). Then, Lemma 2.2 implies

A2 ≥
N−1∑
n=0

δt
∑
T∈T

DT (un+1)δn+1
T u ·MTDT (un+1)δn+1

T u

≥ C1

N−1∑
n=0

δt
∑
T∈T

DT (un+1)δn+1
T u · DT (un+1)δn+1

T u

= C1

N−1∑
n=0

δt
∑
T∈T

∑
i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2.

Utilizing the fact that ϕ is a nondecreasing function and once more Lemma 2.2 entails∑
i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2 ≥ 1

2

∑
i∈VT

(
max{ϕ(un+1

i ), ϕ(un+1
τ(i) )}

)
(un+1
i − un+1

τ(i) )2

≥ 1

2
δn+1
T ξ(u) · δn+1

T ξ(u)

≥ 1

2C2
δn+1
T ξ(u) ·MT δn+1

T ξ(u).

Hence, we make use of Lemma 2.1 to deduce

C1

2C2

N−1∑
n=0

δt
∥∥∇ξ(un+1

h )
∥∥2

L2(Ω)d
≤

N−1∑
n=0

δt
∑
T∈T

∑
i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2 ≤ A2. (4.6)

Following [3, 23], we intend to establish a sort of a weak BV estimate on the
hyperbolic term. By the equality (3.9) we rewrite A3 such that

A3 =
N−1∑
n=0

δt
∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
f(un+1

K )− f(un+1
L )

)(
−Vn+1

KL,T

)+
un+1
K .
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First, we define G(z) =

∫ s

0
zf ′(z) dz. In the same spirit of [3] we find

(
f(un+1

K )− f(un+1
L )

)2
≤ 2
(
G(un+1

L )−G(un+1
K ) + (f(un+1

K )− f(un+1
L ))un+1

K

)∥∥f ′∥∥∞ .
Next, by virtue of Assumption (A6) and the point (iii) of Remark 3.1 we get∑

K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
G(un+1

L )−G(un+1
K )

)(
−Vn+1

KL,T

)+
= 0.

Thus, one concludes the estimation on A3 by writing

1

2 ‖f ′‖∞

N−1∑
n=0

δt
∑
K∈M

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
f(un+1

K )− f(un+1
L )

)2(
−Vn+1

KL,T

)+
≤ A3.

(4.7)

Finally, we gather (4.4)-(4.7) for the conclusion.

Following we show that our numerical scheme is well-defined.

Lemma 4.3. For every J0,N − 1K, the algebraic system resulting from the numerical
scheme (3.1)-(3.2) has at least one solution (un+1

K )K∈M.

Proof. We use the induction argument to prove the existence result. We denote Un+1 =
(un+1
K )K∈M. Let us consider R#M equipped with the usual inner product. We next

define from R#M into itself the continuous operator Υ whose components are

Υ(Un+1)|K =
|K|
δt

(un+1
K − unK) +

∑
T∩K 6=∅

∑
σTKL∈EK∩T

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)

+
∑

T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,T , ∀K ∈Mc
D,

Υ(Un+1)|K = 0, ∀K ∈MD.

With this notation, the numerical scheme (3.1)-(3.2) takes the vector form :

find Un+1 ∈ R#M : Υ(Un+1) = 0.

It follows from the proof of Lemma 4.2 that

Υ(Un+1) · Un+1 ≥ Ch,δt
∣∣Un+1

∣∣2 − C ′h,δt|Un|2.
Note that the constants Ch,δt, C

′
h,δt > 0 are depending this time on the discretization

parameters. They are obtained by the fact that all norms are equivalent on R#M. For
a sufficiently large

∣∣Un+1
∣∣ we get

Υ(Un+1) · Un+1 > 0.

Applying a fixed point criterion [36] ensures the existence of Un+1 ∈ R#M to the
nonlinear system

Υ(Un+1) = 0.

Hence, the numerical scheme admits a solution as required.
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5 Convergence

This section is devoted to the convergence proof of the finite volume scheme. To this
end, we first specify without proof compactness estimates on the space translates of
the discrete functions.

Lemma 5.1. There exists a constant C depending only on the data and on the regu-
larity of the mesh Θ such that∫

Ωy×(0,T)
|ṽh,δt(x+ y, t)− ṽh,δt(x, t)| dx dt ≤ C |y|

(N−1∑
n=0

δt
∥∥∇vn+1

h

∥∥2

L2(Ω)d

) 1
2
, (5.1)

∀y ∈ Rd, ∀ṽh,δt ∈W 0
h,δt, where Ωy = {x ∈ Ω : [x, y] ⊂ Ω}.

Proof. The proof mimics classical ideas as done for instance in [23, 30].

In order to make use of the compactness criterion given in [5] we require the following
result.

Lemma 5.2. Let us select ψ ∈ C∞c (Ω × [0,T)) with ψ = 0 on Γ1 × [0,T). We set
ψn+1
K = ψ(xK , t

n+1), ∀K ∈M, n ∈ J0, N − 1K. Then, there exists a constant depending
only on the physical data, the mesh regularity Θ and ε such that

N−1∑
n=0

∑
K∈Mh

|K| (un+1
K − unK)ψn+1

K ≤ C ‖∇ψ‖∞ . (5.2)

Proof. Multiplying (3.2) by δtψn+1
K summing over both K ∈ M and n ∈ J0, N − 1K

together with the integration by parts procedure yields

D1 = D2 +D3, (5.3)

where

D1 =

N−1∑
n=0

∑
K∈M

|K| (un+1
K − unK)ψn+1

K ,

D2 = −
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)(ψn+1

K − ψn+1
L ),

D3 = −
N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

f(uup,n+1
KL )Vn+1

KL,T (ψn+1
K − ψn+1

L ).

It follows from the smoothness of the test function and the regularity of the mesh that∣∣ψn+1
K − ψn+1

L

∣∣ ≤ C√|TKL| ‖∇ψ‖∞ ,
for some C > 0, where TKL is the sub-triangle made by K,L and the barycenter of T .
In addition, we have ∣∣∣Fn+1

KL,T (u)
∣∣∣ ≤ C ∑

i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2.
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According to these materials, the Cauchy-Schwarz inequality, the estimate (4.1) and
the inequality (1.7) we find

|D2| ≤ C ‖∇ψ‖∞

N−1∑
n=0

δt
∑
T∈T

∑
i∈VT

ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )2

 1
2

×

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|TKL|ϕ(udiff,n+1
KL )

 1
2

≤ Cε ‖∇ψ‖∞

N−1∑
n=0

δt
∑
T∈T

∑
σTKL∈ET

|TKL|
(
ξ(udiff,n+1

KL )
)2

 1
2

By (4.2) and Poincaré’s inequality we prove the existence of C ′ > 0 so that we estimate

‖ξ(uh,δt)‖L2(QT) ≤ C
′.

As a consequence of Lemma 2.3 and again (4.2) we deduce

|D2| ≤ C ′ε ‖∇ψ‖∞

(
N−1∑
n=0

δt
∥∥∥ξ(uh,δt)− ξ(uh,δt)∥∥∥2

L2(QT)
+ ‖ξ(uh,δt)‖2L2(QT)

)
≤ C ′′ε ‖∇ψ‖∞ .

Similar guidelines can be adapted to establish |D3| ≤ C ‖∇ψ‖∞. The cornerstone
element of the latter proof relies heavily on Assumption (A6) and particularly on
inequality (1.8).

We now state and demonstrate the main result of this paper.

Proposition 5.1. Assume that hypotheses (A1)-(A6) hold. Let (Th)h be a family of
refined meshes to Ω such that the geometric condition (2.1) is satisfied. Let (uh,δt) be a
sequence of discrete solutions to the finite volume scheme (3.1)-(3.2). When h, δt tend
to 0, one gets up to a subsequence :

ũh,δt, uh,δt −−−−→ u a.e. in QT and strongly in L1(QT), (5.4)

ϕ(ũh,δt), ϕ(uh,δt) −−−−→ ϕ(u) a.e. in QT and strongly in L1(QT), (5.5)

∇ξ(uh,δt) −−−−→ ∇ξ(u) weakly in L2(QT)d. (5.6)

Moreover, one has u ≥ 0 a.e. in QT and ξ(u) ∈ L2(0,T;H1
Γ1

(Ω)). Finally, the limit
function u is then a weak solution to the continuous equations (1.1)-(1.3) as specified
in Definition 1.1.

Proof. First, Poincaré’s inequality ensures a uniform L2(QT) bound on ξ(uh,δt) i.e.
there exists a positive constant C > 0 such that

‖ξ(uh,δt)‖L2(QT) ≤ C. (5.7)

Owing once more to Lemma 2.3 and the inequality (4.2), we check that

‖ξ(ũh,δt)‖L2(QT) ≤ C, (5.8)
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for some C > 0. Now, by the estimations of Lemma 5.1 and making use of the
compactness criterion [5, Theoreme 3.9] we get

ũh,δt −−−−→ u a.e. in QT. (5.9)

Applying Lemma 2.3 gives

ξ(ũh,δt)− ξ(uh,δt) −−−−→ 0 a.e. in QT, (5.10)

up to the extraction of another subsequence. Combining (5.9) and the continuity of
ξ−1 we claim

uh,δt −−−−→ u a.e. in QT. (5.11)

By virtue of Lemma 4.1 we check that u ≥ 0 a.e. in QT. Thanks to the latter and (5.7)-
(5.8) we get the equi-integrability of ξ(uh,δt) and ξ(ũh,δt) in L2−δ(QT) for every small
δ > 0 thanks to De La Vallée Poussin equi-integrability criterion [7, 4.5.9.Theorem].
Now, we employ Vitali’s convergence argument to obtain

ξ(ũh,δt), ξ(uh,δt) −−−−→ ξ(u) strongly in L2−δ(QT), (5.12)

for all small δ > 0. According to (1.6) we deduce the L1(QT)-equi-integrability of the
sequences uh,δt, ũh,δt. As a consequence of Vitali’s convergence theorem we affirm that

ũh,δt, uh,δt −−−−→ u strongly in L1(QT), (5.13)

completing the proof of (5.4). Next, the continuity of ϕ and the a.e. convergence (5.4)
lead to √

ϕ(ũh,δt),
√
ϕ(uh,δt) −−−−→

√
ϕ(u) a.e. in QT. (5.14)

We fix 0 < δ < ε where ε is mentioned in (1.5). Recall that ξ(uh,δt) and ξ(ũh,δt) are
equi-integrable in L2−δ(QT). By virtue of the growth assumption (1.5) we check once
again that

‖√ϕ(uh,δt)‖L2+α(QT) + ‖√ϕ(ũh,δt)‖L2+α(QT) ≤ C, (5.15)

for every 0 < α < 2(ε− δ)/(2− ε). Hence, the equi-integrability of the both sequences√
ϕ(uh,δt) and

√
ϕ(ũh,δt) holds in L2(QT) by another application of De La Vallée Poussin

equi-integrability criterion. As a result, Vitali’s convergence theorem guarantees that
the limit (5.14) is enhanced and it holds now strongly in L2(QT) which concludes the
proof of (5.5). On the other hand, Lemma 4.2 guarantees the existence of G ∈ L2(QT)d

such that

∇ξ(uh,δt) −−−−→ G weakly in L2(QT)d.

We finally apply (5.12) and the identification of the limit process to get G = ∇ξ(u).
This proves by the way that ξ(u) ∈ L2(0,T;H1

Γ1
(Ω)).

It remains to establish that u is a weak solution to (1.1)-(1.3) in the sense of
Definition 1.1. To this purpose let us pick a test function ψ ∈ C∞c (Ω × [0,T)), such
that ψ = 0 on Γ1 × [0,T). We denote ψn+1

K = ψ(xK , t
n+1), ∀K ∈ M, n ∈ J0, N − 1K.

We multiply (3.2) by δtψn+1
K and sum on both K ∈M and n ∈ J0, N − 1K. This gives

G1
h,δt + G2

h,δt + G3
h,δt = 0, (5.16)
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where

G1
h,δt =

N−1∑
n=0

∑
K∈Mh

|K| (un+1
K − unK)ψn+1

K ,

G2
h,δt =

N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)ψn+1

K ,

G3
h,δt =

N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

f(uup,n+1
KL )Vn+1

KL,Tψ
n+1
K .

The discrete integration by parts in time with the fact that ψNK = 0 yields

G1
h,δt = −

N−1∑
n=0

∑
K∈Mh

|K|unK(ψn+1
K − ψnK)−

∑
K∈Mh

|K|u0
Kψ

0
K

= −
N−1∑
n=0

∫ tn+1

tn

∫
K
ũnh∂tψ(xK , t) dx dt−

∫
QT

u0ψ̃h(x, 0) dx dt.

In light of the regularity of ψ and the strong convergence of ũh,δt towards u we infer

G1
h,δt −−−−→ −

∫
QT

u∂tψ dx dt−
∫

Ω
u0ψ(x, 0) dx.

Next, we focus on the convergence of the diffusive term. We first reorder G2
h,δt by

dual edges. Then

G2
h,δt =

N−1∑
n=0

δt
∑
T∈Th

∑
σTKL∈ET

√
ϕ(udiff,n+1

KL )Fn+1
KL,T (u)(ψn+1

K − ψn+1
L ).

To study the convergence of G2
h,δt, we need to define two discrete functions uh,δt and

uh,δt so that their restrictions respectively to T × (tn, tn+1] are set to

un+1
T = max

i∈VT
un+1
i , un+1

T = min
i∈VT

un+1
i . (5.17)

We observe that

‖ξ(uh,δt)− ξ(u)‖L2−δ(QT) ≤ C
(
‖ξ(ũh,δt)− ξ(u)‖L2−δ(QT) + ‖ξ(uh,δt)− ξ(ũh,δt)‖L2(QT)

)
≤ C ′

(
‖ξ(ũh,δt)− ξ(u)‖L2−δ(QT) +

∥∥∥ξ(uh,δt)− ξ(uh,δt)∥∥∥
L2(QT)

)
.

So, Lemma 2.3, the energy estimate (4.2) and the strong limit (5.12) allow us to
establish that∥∥∥ξ(uh,δt)− ξ(uh,δt)∥∥∥2

L2(QT)
=

N−1∑
n=0

δt
∑
T∈Th

|T |
∣∣ξ(un+1

T )− ξ(un+1
T )

∣∣2
≤ ChTh

N−1∑
n=0

δt
∥∥∇ξ(un+1

h )
∥∥2

L2(Ω)d
≤ ChTh −−−−→ 0.
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Consequently, ξ(uh,δt), ξ(uh,δt) −−−−→ ξ(u) strongly in L2−δ(QT). Then, using the

continuity of ξ−1, there exists a new subsequence such that

uh,δt, uh,δt −−−−→ u a.e. in QT. (5.18)

We mimic an analogous proof as we have conducted for (5.5) to justify

√
ϕ(uh,δt),

√
ϕ(uh,δt) −−−−→

√
ϕ(u) strongly in L2(QT). (5.19)

Now, we decompose G2
h,δt into three parts as follows :

G2
h,δt = G2,1

h,δt + G2,2
h,δt + G2,3

h,δt,

such that

G2,1
h,δt =

N−1∑
n=0

δt
∑
T∈Th

√
ϕ(un+1

T )
∑

σTKL∈ET

∑
i∈VT

aTi,KL

(
ξ(un+1

i )− ξ(un+1
τ(i) )

)
(ψn+1

K − ψn+1
L ),

G2,2
h,δt =

N−1∑
n=0

δt
∑
T∈Th

√
ϕ(un+1

T )
∑

σTKL∈ET

∑
i∈VT

aTi,KL

(√
ϕn+1
iτ(i)(u

n+1
i − un+1

τ(i) )−
(
ξ(un+1

i )− ξ(un+1
τ(i) )

))
× (ψn+1

K − ψn+1
L ),

G2,3
h,δt =

N−1∑
n=0

δt
∑
T∈Th

∑
σTKL∈ET

(√
ϕ(udiff,n+1

KL )−√ϕ(un+1
T )

)
Fn+1
KL,T (u)(ψn+1

K − ψn+1
L ).

Thanks to Lemma 2.6 we can express G2,1
h,δt in the following integral form

G2,1
h,δt =

N−1∑
n=0

δt
∑
T∈Th

√
ϕ(uT

n+1)δn+1
T ξ(u) ·MT δn+1

T ψ

=

∫
QT

√
ϕ(uh,δt)Λ∇ξ(uh,δt) · ∇ψh,δt dx dt.

Thereby, using the weak convergence of ∇ξ(uh,δt) and the strong convergence of ∇ψh,δt
together with (5.19), we can pass to the limit in G2,1

h,δt :

G2,1
h,δt −−−−→

∫
QT

√
ϕ(u)Λ∇ξ(u) · ∇ψ dx dt.

Let us now move on to study the limit of G2,1
h,δt. The function ϕ being nondecreasing,

we notice that

√
ϕ(un+1

T ) ≤

√
ϕ(un+1

i ) + ϕ(un+1
τ(i) )

2
=
√
ϕn+1
iτ(i), ∀i ∈ VT . (5.20)

We define u∗,n+1
iτ(i) ∈ [min(un+1

i , un+1
τ(i) ),max(un+1

i , un+1
τ(i) )] such that

∀i ∈ VT ,
√
ϕ(u∗,n+1

iτ(i) ) =


ξ(un+1

i )− ξ(un+1
τ(i) )

un+1
i − un+1

τ(i)

if un+1
i 6= un+1

τ(i)

√
ϕ(un+1

i ) if un+1
i = un+1

τ(i)

. (5.21)
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Observe that such a real exists via the mean value theorem. Gathering (5.20)-(5.21)
leads to

∣∣∣G2,2
h,δt

∣∣∣ ≤ N−1∑
n=0

δt
∑
T∈Th

√
ϕ(un+1

T )
∑

σTKL∈ET

∑
i∈VT

∣∣aTi,KL∣∣ (√ϕn+1
iτ(i) −

√
ϕ(u∗,n+1

iτ(i) )
)

(un+1
i − un+1

τ(i) )


× (ψn+1

K − ψn+1
L )

≤ 2
N−1∑
n=0

δt
∑
T∈Th

∑
σTKL∈ET

∑
i∈VT

∣∣aTi,KL∣∣√ϕn+1
iτ(i)

(√
ϕn+1
iτ(i) −

√
ϕ(u∗,n+1

iτ(i) )
)

(un+1
i − un+1

τ(i) )


× (ψn+1

K − ψn+1
L )

≤ 2
N−1∑
n=0

δt
∑
T∈Th

∣∣√ϕ(un+1
T )−√ϕ(un+1

T )
∣∣

×
∑

σTKL∈ET

∑
i∈VT

∣∣aTi,KL∣∣√ϕn+1
iτ(i)

(
un+1
i − un+1

τ(i)

) (
ψn+1
K − ψn+1

L

)
.

We introduce the regularity of the mesh to see that
∣∣∣aTi,KL∣∣∣ ≤ C regardless σTKL and

T ∈ T . The smoothness of ψ implies that
∣∣ψn+1
K − ψn+1

L

∣∣ ≤ √|T |Cψ. As a result of
the latter and the Cauchy-Schwarz inequality we explore

∣∣∣G2,2
h,δt

∣∣∣ ≤ Cψ
N−1∑
n=0

δt
∑
T∈Th

|T |
∣∣√ϕ(un+1

T )−√ϕ(un+1
T )

∣∣2 1
2

×

N−1∑
n=0

δt
∑
T∈Th

∑
σTKL∈ET

∑
i∈VT

ϕn+1
iτ(i)

(
un+1
i − un+1

τ(i)

)2

 1
2

︸ ︷︷ ︸
Xh,δt

.

Owing to energy estimate (4.1) we have Xh,δt ≤ C. As a consequence of the strong
convergence (5.19) we conclude that

G2,2
h,δt −−−−→ 0.

One can draw the same conclusion for the term G2,3
h,δt.

Finally, it is left to identify the limit of the hyperbolic term. To this purpose, we
rewrite its otherwise keeping in mind that

∑
T∩K 6=∅

∑
σTKL∈EK∩T

Vn+1
KL,T = 0. First, we set

ψn+1
σTKL

=
1

δt
∣∣σTKL∣∣

∫ tn+1

tn

∫
σTKL

ψ dσ dt, and V̂n+1
σTKL

=
1∣∣σTKL∣∣

∫
σTKL

Vn+1 dσ.

21



Then

G3
h,δt = −

N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

f(un+1
K )ψn+1

σTKL
Vn+1
KL,T︸ ︷︷ ︸

G3,1
h,δt

+
N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(
f(uup,n+1

KL )− f(un+1
K )

)
Vn+1
KL,T

(
ψn+1
K − ψn+1

σTKL

)
︸ ︷︷ ︸

G3,2
h,δt

.

Let us first prove that G3,2
h,δt −−−−→ 0. It follows from the definition of uup,n+1

KL stated
in (3.3) that∑
T∩K 6=∅

∑
σTKL∈EK∩T

∣∣∣f(uup,n+1
KL )− f(un+1

K )
∣∣∣ ∣∣∣Vn+1

KL,T

∣∣∣ =
∑

T∩K 6=∅

∑
σTKL∈EK∩T

∣∣f(un+1
L )− f(un+1

K )
∣∣ (−Vn+1

KL,T

)+
.

This identity together with the Cauchy-Schwarz inequality gives

∣∣∣G3,2
h,δt

∣∣∣ ≤
N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

∣∣f(un+1
K )− f(un+1

L )
∣∣2 (−Vn+1

KL,T

)+

 1
2

×

N−1∑
n=0

δt
∑

K∈Mh

∑
T∩K 6=∅

∑
σTKL∈EK∩T

‖V‖∞
∣∣σTKL∣∣ (ψn+1

K − ψn+1
σTKL

)2

 1
2

Thanks to the estimation (4.3), the smoothness of the test function ψ and the regularity
of the mesh (2.1) we get ∣∣∣G3,2

h,δt

∣∣∣ ≤ Cψh 1
2 −−−−→ 0.

On the other hand, we split G3,1
h,δt in its turn into two parts

G3,1
h,δt = R1

h,δt + R2
h,δt

where each one writes

R1
h,δt = −

N−1∑
n=0

δt
∑

K∈Mh

f(un+1
K )

∑
T∩K 6=∅

∑
σTKL∈EK∩T

∫
σTKL

ψVn+1 · nTKL dσ,

R2
h,δt = −

N−1∑
n=0

δt
∑

K∈Mh

f(un+1
K )

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(∫
σTKL

(ψn+1
σTKL
− ψ)Vn+1 · nTKL dσ

)
.

We utilize Green’s formula and the condition div V = 0 to obtain

R1
h,δt = −

∫
QT

f(ũh,δt)∇ψ ·Vδt dx dt with Vδt|(tn,tn+1] = Vn+1.
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By Assumption (A6), it can be easily seen that

‖f(ũh,δt)− f(u)‖L1(QT) ≤
∥∥f ′∥∥∞ ‖ũh,δt − u‖L1(QT) −−−−→ 0.

As a consequence of Assumption (A3)

R1
h,δt −−−−→ −

∫
QT

f(u)∇ψ ·V dx dt.

In addition, the residual term R2
h,δt can be rewritten as

R2
h,δt = −

N−1∑
n=0

δt
∑

K∈Mh

f(un+1
K )

∑
T∩K 6=∅

∑
σTKL∈EK∩T

(∫
σTKL

(ψn+1
σTKL
− ψ)(Vn+1 − V̂n+1

σTKL
) · nTKL dσ

)

−
N−1∑
n=0

δt
∑

K∈Mh

f(un+1
K )

∑
T∩K 6=∅

∑
σTKL∈EK∩T

V̂n+1
σTKL
· nTKL

(∫
σTKL

(ψn+1
σTKL
− ψ) dσ

)
︸ ︷︷ ︸

=0

.

We ultimately finish the proof by seeing that

∣∣R2
h,δt

∣∣ ≤ CψhN−1∑
n=0

δt
∑

K∈Mh

f(un+1
K )

∑
T∩K 6=∅

∑
σTKL∈EK∩T

∣∣σTKL∣∣ ∥∥∥∥Vn+1 − V̂n+1
σTKL

∥∥∥∥
∞

≤ Cψ ‖f(ũh,δt)‖L1(QT) sup
σTKL∈E

∥∥∥∥Vn+1 − V̂n+1
σTKL

∥∥∥∥
∞
−−−−→ 0.

This last convergence holds since ‖f(ũh,δt)‖L1(QT) is bounded and thanks to the con-
tinuity assumption on the field V. Hence, the proof is complete.

6 Numerical results

In this final section, we perform several numerical experiments in two dimensions in
space to test the efficiency of our methodology and its ability to respect the lower
bound on the computed solution, especially when the medium of interest is strongly
anisotropic.

Here we take the computational domain as the unit square Ω = (0, 1)2. This
square is meshed thanks to a refined series of triangular meshes used for benchmarking
problems [32]. An illustration of the latter is depicted in Fig. 2.

Following, the tensor Λ is chosen to be diagonal so that we can determine analytical
solutions

Λ =

(
λx 0
0 λy

)
.

We have implemented a Newton-Raphson algorithm for the resolution of the nonlinear
system (3.1)-(3.2) at each time iteration. Its stopping criterion is fixed to 10−10. To
assess the difference between the approximate solution and the exact one we compute
the errors

‖ũh,δt − u‖p = ‖ũh,δt − u‖Lp(QT) , p = 2,∞.
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Figure 2: First (left) and second (right) triangular meshes used for the tests.

6.1 Test 1 : Pure diffusion

In this first example we compare the efficiency of the linear control volume finite element
scheme and the improvement provided by the nonlinear versions. To this end, we focus
on the linear pure diffusion where we neglect the convection effects i.e. V ≡ 0. Let us
consider the heat equation

∂tu− div(Λ∇u) = 0,

which is supplemented with a zero-flux condition on ∂Ω × (0,T). We take the one-
dimensional classical solution given by the formula

u(x, y, t) =
1

2

(
cos(πx)e−π

2λxt + 1
)
, ∀(x, y, t) ∈ Ω× (0,T),

where the final time is set to T = 0.15 and the tensor is chosen such as λx = 1 and
λy = 1000. First, the linear control volume finite element discretization for the heat
equation reads

|K|
δt

(un+1
K − unK) +

∑
T∩K 6=∅

∑
σTKL∈EK∩T

ΛTKL

(
un+1
K − un+1

L

)
. (6.1)

In Table 1 we present the numerical errors, their corresponding convergence rates as
well as the minimum value of the discrete solution computed by solving the algebraic
system (6.1). From the same table, it is clear that the linear scheme is privileged by
the superconvergence feature. However, it gives rise to undesirable undershoots linked
to the anisotropy of Λ. To cope with this issue, we propose two nonlinear schemes.
Both of them require a nonlinear reformulation of the heat equation as follows

∂tu− div(uΛ∇ log(u)) = 0.

The first nonlinear approach is taken from [12]. The key idea consists in treating the
diffusion fluxes as if they were of hyperbolic kind. Then, an upstream technique with
respect to the transmissibility coefficients is introduced to reinforce the positivity of
the solution. So, the approximation proposed in [12] for the underlined problem is :

|K|
δt

(un+1
K − unK) +

∑
T∩K 6=∅

∑
σTKL∈EK∩T

ΛTKLu
n+1
KL

(
log(un+1

K )− log(un+1
L )

)
, (6.2)

such that un+1
KL is determined by the upwind relationship

un+1
KL =

{
max(un+1

K , un+1
L ) if ΛTKL ≥ 0

min(un+1
K , un+1

L ) else
. (6.3)
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Table 2 gives the obtained numerical results by running the nonlinear scheme (6.2)-
(6.3). We observe that this technique allows to suppress the nonphysical oscillations.
However, it comes with the price of adding too artificial diffusion which slows dramat-
ically the convergence speed and deteriorates the accuracy. This is indeed confirmed
since the rate is about 0.245 even on refined meshes. To cope with this deficiency of
the above nonlinear methodology, we implement the scheme (3.1)-(3.2) and the results
are reported in Table 3. It is seen that the convergence rate is significantly enhanced.
This is mainly due to the crucial choice (3.6). The accuracy is of order 1 because
of the unwinding which seems natural. On the other hand, the physical range of the
computed solution is preserved. We deduce from the last table that there is a good
agreement with the expected errors, which are known for upstream methods, together
with the obtained results.

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.117 E-01 - 0.691 E-01 - - 0.0392
0.125 0.283 E-02 2.044 0.204 E-01 1.756 - 0.0123
0.063 0.700 E-03 2.041 0.534 E-02 1.958 - 0.0032
0.031 0.175 E-03 1.956 0.136 E-02 1.931 - 0.0008
0.016 0.436 E-04 2.102 0.342 E-03 2.084 - 0.0002

Table 1: Test 1 : Linear heat equation with scheme (6.1).

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.701 E-01 - 0.381 E-00 - 0
0.125 0.686 E-01 0.030 0.370 E-00 - 0.001 0
0.063 0.644 E-01 0.091 0.337 E-00 0.072 0
0.031 0.579 E-01 0.150 0.292 E-00 0.135 0
0.016 0.492 E-01 0.245 0.239 E-00 0.231 0

Table 2: Test 1 : Nonlinear heat equation with scheme (6.2)-(6.3).

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.142 E-01 - 0.778 E-01 - 0
0.125 0.430 E-02 1.724 0.253 E-01 1.618 0
0.063 0.148 E-02 1.549 0.101 E-01 1.332 0
0.031 0.616 E-03 1.241 0.401 E-02 1.313 0
0.016 0.282 E-03 1.178 0.168 E-02 1.312 0

Table 3: Test 1 : Nonlinear heat equation with scheme (3.1)-(3.2).

6.2 Test 2 : Nonlinear diffusion with drift

As in the first example, this test is concerned with the porous medium equation with
drift :

∂tu− div(2uΛ∇u) + div uV = 0.
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We set the velocity as V = −Λ∇x = −(λx, 0)t. An analytical solution to the above
equality is selected under the form

u(x, y, t) = max(αt− x, 0), ∀(x, y, t) ∈ Ω× (0,T), (6.4)

where α = 3λx. In accordance with (6.4), a Dirichlet boundary condition is taken into
account on ∂Ω×(0,T). Here, the final time is fixed to T = 0.1. The information on the
anisotropy reads : λx = 1 and λy = 100. The behavior of our method is compared to
the quasilinear discretization and the nonlinear approach suggested by [37]. Let us first
take a look at the quasilinear scheme. Here the fluxes are approached by a centered
approximation. Then, this finite volume scheme is given by

|K|
δt

(un+1
K − unK)

+
∑

T∩K 6=∅

∑
σTKL∈EK∩T

ΛTKL

(
(un+1
K )2 − (un+1

L )2 +
un+1
K + un+1

L

2
(xK − xL)

)
= 0. (6.5)

Note that xK stands for the x−coordinate of the center of the control volume K. The
errors of the discretization (6.5) as well as their corresponding convergence rates are
displayed in Table 4. It is shown that the quasilinear scheme (6.5) converges with an
order strictly less than 2. This is natural since the exact solution lacks regularity which
is due to the degeneracy of the problem. We also notice that the method violates the
discrete maximum principle. To circumvent the latter point, we propose two nonlinear
corrections. The first one is defined in the same fashion of [12] by making a slight
change of variables as investigated in [37]. Therefore, the scheme takes the form

|K|
δt

(un+1
K − unK) +

∑
T∩K 6=∅

∑
σTKL∈EK∩T

un+1
KL ΛTKL

(
Un+1
K − Un+1

L

)
= 0. (6.6)

The new potential quantity includes the drift effects

Un+1
K = 2un+1

K + xK . (6.7)

The upstream value is now given by

un+1
KL =

{
un+1
K if ΛTKL(Un+1

K − Un+1
K ) ≥ 0

un+1
L otherwise

. (6.8)

The resolution of (6.6)-(6.8) gives the results exhibited in Table 5. We clearly observe
that the method is positive, but the convergence speed is very slow. This drawback
of the scheme goes back to the formulation (6.6) all together with the choice (6.8).
In order to ameliorate the accuracy we have run our positive version defined by the
system (3.1)-(3.2) and the results are presented in Table 6. It is visibly shown that
we reach a better accuracy and stability compared to the previous nonlinear approach.
This ensures that our method is efficient and can practically be adapted to problems
whose solutions are not smooth.
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hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.139 E-01 - 0.110 E-00 - -0.0679
0.125 0.622 E-02 1.158 0.658 E-01 0.746 -0.0286
0.063 0.261 E-02 1.267 0.420 E-01 0.656 -0.0117
0.031 0.112 E-02 1.187 0.220 E-01 0.909 -0.0059
0.016 0.488 E-03 1.264 0.118 E-01 0.937 -0.0029

Table 4: Test 2 : Porous medium equation with quasilinear scheme (6.5).

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.193 E-01 - 0.136 E-00 - 0
0.125 0.160 E-01 0.260 0.118 E-00 0.200 0
0.063 0.127 E-01 0.331 0.980 E-01 0.277 0
0.031 0.986 E-02 0.365 0.801 E-01 0.282 0
0.016 0.744 E-02 0.425 0.655 E-01 0.305 0

Table 5: Test 2 : Porous medium equation with scheme (6.6)-(6.8).

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.770 E-02 - 0.827 E-01 - 0
0.125 0.409 E-02 0.912 0.491 E-01 0.751 0
0.063 0.204 E-02 1.016 0.326 E-01 0.599 0
0.031 0.959 E-03 1.064 0.184 E-01 0.803 0
0.016 0.451 E-03 1.138 0.107 E-01 0.815 0

Table 6: Test 2 : Porous medium equation with scheme (3.1)-(3.2).

6.3 Test 3: Nonlinear convection-diffusion

In this test we are interested in evaluating the behavior of our method in the presence
of the nonlinear convection and diffusion together with the anisotropy of the medium.

∂tu− div(ϕ(u)Λ∇u) + div(f(u)V) = q. (6.9)

The nonlinearities of this equation are :

ϕ(u) =
u2

1 + u2
, f(u) =

u

1.5− u
.

The transport velocity is chosen as

V = (t+ 0.2) sin(
π

4
(x+ y))

(
1.5− (t+ 0.2) sin(

π

4
(x+ y))

)( 1
−1

)
.

We consider the analytical solution

u(x, y, t) = (t+ 0.2) sin(
π

4
(x+ y)).

The final time is set to T = 0.1 and the eigenvalues of the tensor Λ are assigned to :
λx = 1 and λy = 0.001. By substituting this expression in (6.9) we get a nonnegative
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source term q ≥ 0. The accuracy results for this test are displayed in Table 7. As in
the previous example, the latter reveals that the convergence rate achieves the order
one, which is conforming to our predictions. We also notice that the minimum of the
calculated solution stays nonnegative through the refinement procedure.

hT ‖ũh,δt − u‖2 rate ‖ũh,δt − u‖∞ rate umin
0.250 0.352 E-04 - 0.411 E-03 - 0
0.125 0.252 E-04 0.480 0.376 E-03 0.128 0
0.063 0.141 E-04 0.842 0.225 E-03 0.749 0
0.031 0.736 E-05 0.923 0.126 E-03 0.815 0
0.016 0.363 E-05 1.066 0.660 E-04 0.982 0

Table 7: Test 3 : Nonlinear diffusion-convection with (3.1)-(3.2).

6.4 Test 4 :

This last test consists of illustrating the behavior of our approach to approximate
a nonlinear convection-diffusion equation of type (1.1) with anisotropy in the case
where the analytical solution is unknown. For example, this kind of models describes
the transport of a contaminant that diffuses within a medium filled of water. The
purpose here is to stress the capability of our methodology to preserve the nonnegativity
of the computed density. To confirm this, let us first consider the following data
ϕ(u) = 0.01u2, f(u) = u and

V = 10

(
(x− x2)(1− 2x)
−(y − y2)(1− 2y)

)
.

The diffusion tensor Λ is described by λx = 1 and λy = 0.001. The final simulation
time is T = 0.2. This example is about a nonlinear diffusion of the quantity u within a
fully saturated medium Ω. The underlined process occurs simultaneously with a linear
advection whose velocity is expressed by a rotating vector field V. The time step reads
δt = 0.002. We here consider no source term. The boundary condition is prescribed by
u|∂Ω = 0. The initial density is given by

u(x, y, 0) =

{
1 in Ω′ := [0.3, 0.6]× [0.55, 0.75]

0 in Ω\Ω′
. (6.10)

We run our code on the fifth triangular mesh of the family illustrated in Fig. 2 which
is made of 14336 triangles. We next compare our strategy to the centered scheme
obtained by using Kirchhoff’s transformation on the diffusion term and upstreaming
the convective one.

Running the centered scheme, the plot given in Fig. 3 depicts the simulation results
for different instants. The convection effects are dominated with respect to the diffu-
sion. Traditionally, the use of first order upwind approximation on the hyperbolic term
permits to produce more artificial viscosity. This regularizes rapidly the solution as
seen on the figure in question. In addition, the solution diffuses horizontally which goes
back to the strong presence of anisotropy in the x-direction. Furthermore, noticeable
undershoots are recorded at each time step of the solver.
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On the contrary, we observe that these oscillations disappear on Figure 4 where the
same test is carried out by implementing our positive alternative. Analogous remarks
can be made as in the previous test. We notice that both solutions posses similar
patterns. However, the solution of the positive scheme is expected to diffuse a little
bit more than the solution of the centered scheme since our correction is based on
the upstreaming technique. This can not be directly viewed on the figure since the
convection is too dominated. To see this it suffices to consider the case of the pure
diffusion as done in the first example by neglecting the velocity V. We conclude that
our approach is more stable and provides satisfactory results.

Figure 3: Test 4: The approximate density for simulation times t1 = 0.004, t2 = 0.02s,
t3 = 0.1 and t4 = 0.2 using a centered scheme without correction.

Acknowledgment : The author would like to thank the referees for theirs fruitful
comments and remarks that helped improve the quality and the scope of this work.
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[14] G. Chavent and J. Jaffré. Mathematical models and finite elements for reservoir
simulation: single phase, multiphase and multicomponent flows through porous
media, volume 17. North-Holland, Amsterdam, Stud. Math. Appl. edition, 1986.

[15] Z. Chen, G. Huan, and Y. Ma. Computational methods for multiphase flows in
porous media, volume 2. SIAM, 2006.

[16] P. Ciarlet. The finite element method for elhptic problems. North-Holland, Ams-
terdam, 1978.

[17] K. Domelevo and P. Omnes. A finite volume method for the Laplace equation
on almost arbitrary two-dimensional grids. ESAIM: Mathematical Modelling and
Numerical Analysis, 39(6):1203–1249, 2005.

[18] J. Droniou. Finite volume schemes for diffusion equations: introduction to and
review of modern methods. Mathematical Models and Methods in Applied Sciences,
24(08):1575–1619, 2014.

[19] J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion
problems on any grid. Numerische Mathematik, 105(1):35–71, 2006.
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[25] R. Eymard, T. Galloüıt, R. Herbin, and A. Michel. Convergence of a finite volume
scheme for nonlinear degenerate parabolic equations. Numerische Mathematik,
92(1):41–82, 2002.

[26] R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3D schemes for diffusive
flows in porous media. ESAIM: Mathematical Modelling and Numerical Analysis,
46(2):265–290, 2012.

[27] R. Eymard, D. Hilhorst, and M. Vohraĺık. A combined finite volume–
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