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Abstract: 

The leaf economics spectrum (LES) is based on a suite of leaf traits related to plant 

functioning and ranges from resource-conservative to resource-acquisitive strategies. 

However, the relationships with root traits, and the associated belowground plant 

functioning such as N uptake, including nitrate (NO3
-
) and ammonium (NH4

+
), is still 

poorly known. Additionally, environmental variations occurring both in time and in space 

could uncouple LES from root traits. We explored, in subalpine grasslands, the 

relationships between leaf and root morphological traits for 3 dominant perennial grass 

species, and to what extent they contribute to the whole-plant economics spectrum. We 

also investigated the link between this spectrum and NO3
-
 and NH4

+
 uptake rates, as well 

as the variations of uptake across four grasslands differing by the land-use history at peak 

biomass and in autumn. Although poorly correlated with leaf traits, root traits contributed 

to an economic spectrum at the whole plant level. Higher NH4
+
 and NO3

-
 uptake abilities 

were associated with the resource-acquisitive strategy. Nonetheless, NH4
+
 and NO3

-
uptake 

within species varied between land-uses and with sampling time, suggesting that LES and 

plant traits are good, but still incomplete, descriptors of plant functioning. Although the 

NH4
-
:NO3

+
 uptake ratio was different between plant species in our study, they all showed 

a preference for NH4
+
, and particularly the most conservative species. Soil environmental 

variations between grasslands and sampling times may also drive to some extent the NH4
+
 

and NO3
- 
uptake ability of species. Our results support the current efforts to build a more 

general framework including above- and below-ground processes when studying plant 

community functioning. 

Keywords: Leaf and root traits, Nitrate and ammonium uptake, plant assimilation, Resource 

use strategy, Subalpine grasslands  
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Introduction 

Functional traits have been widely used to describe different plant strategies. One major axis 

of specialisation involves a trade-off between conservation of resources in well protected and 

long lived tissues, and acquisition of resources by tissue with high use-efficiency and turn-

over, and commonly referred as the leaf economic spectrum (LES, Wright et al. 2004). More 

specifically, species with an exploitative strategy share similar leaf attributes such as high 

specific leaf area (SLA) and nitrogen concentrations (LNC) that have been associated with 

short leaf life-span, high photosynthetic capacity as well as high decomposability (Reich 

2014, Cornwell et al. 2008), and dominate in nutrient rich environments, while slow-growing 

conservative species carry opposite trait values and are more common in poor or harsh 

conditions (Chapin 1980, Ordonez et al. 2009). Despite some evidences of a similar 

contribution of root traits to the plant strategy (Roumet et al. 2006, Freschet et al. 2010, Fort 

et al. 2013), the significance of root traits is less understood than the one for leaf traits, mainly 

because weak correlations between analogous leaf and root traits have been reported (Craine 

et al 2005, Tjoelker et al. 2005, Freschet et al. 2010), and also because root functioning is 

often overlooked compared to leaves in field conditions. 

Nutrient uptake ability, one of the main functions provided by roots (Hodge 2004, James et al. 

2009), is both influenced by anatomical and physiological adjustments such as specific root 

length or maximal uptake rate (Vmax, but see Bassirirad 2000). Among nutrients, nitrogen is 

one of the best studied mineral nutrients and its uptake by plants under both the ammonium 

(NH4
+
) and nitrate (NO3

-
) forms is influential for plant and ecosystem functioning. However, 

rarely have morphological and physiological properties of root been assessed simultaneously 

in field conditions, whereas some information come from species grown in standardized 

conditions (Maire et al. 2009, Grassein et al. 2015). NH4
+
 and NO3

- 
uptake can indeed be 

influenced by several environmental factors justifying the use of controlled conditions to 

estimate uptake parameters in a comparative purpose. For example, NH4
+
 and NO3

- 
uptake has 
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been reported to vary in response to temperature or pH (Garnett and Smethurst 1999). 

Nevertheless, NH4
+
 and NO3

- 
uptake ability also differs between species, and is partially 

related to plant strategy and their functional traits (Grassein et al. 2015), but these results need 

to be validated for plant grown in natural conditions. Finally, NH4
+
 and NO3

- 
transporters have 

two components: a constitutive component and a component induced by the presence of NH4
+
 

and NO3
-
in the soil solution. Thus, it is important to study interspecific differences for NH4

+
 

and NO3
-
uptake at a given site. Otherwise, it is difficult to interpret differences as resulting 

from species differences. 

Subalpine grasslands are subject to the combined effects of climate and anthropogenic factors, 

both influencing N cycling and thus N availability for organisms (Bardgett et al. 2005, Legay 

et al. 2013). Decreased management intensity favours plant species with resource 

conservative traits (Quétier et al. 2007), which are usually associated with fungal-dominated 

belowground communities (de Vries et al. 2012, Grigulis et al. 2013). Concomitantly, it slows 

down N cycling (Zeller et al. 2000, Robson et al. 2010), favouring the accumulation of soil 

ammonium (NH4
+
) rather than soil nitrate (NO3

-
) (Robson et al. 2007). Plants growing in such 

variable conditions are likely to adjust their N uptake ability, as it has been shown for 

functional traits (Quétier et al. 2007, Grassein et al. 2015).  

In this study, we investigated the relationships between functional traits and inorganic N 

(NH4
+
 and NO3

-
) uptake for three perennial grass species with contrasted leaf economic 

strategies. Because soil inorganic NH4
+
 and NO3

-
availability and plant NH4

+
 and NO3

- 
uptake 

ability are likely to vary across seasons and in response to management (Jaeger et al. 1999, 

Miller et al. 2009), we examined these relationships for individuals occurring in four 

subalpine grasslands with different management and throughout the growing season, thereby 

testing their temporal consistency. Estimating root NH4
+
 and NO3

-
 uptake, and measuring 

functional traits for leaves and roots, we tested the following hypotheses: (1) similar to leaf 

traits, root traits are also contributing to the plant economics spectrum with root traits 
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reflecting nutrient acquisition (e.g. high specific root length and root nitrogen content) 

expected to be more associated to the exploitative syndrome, (2) and with more exploitative 

species being more efficient to take up both NH4
+
 and NO3

-
. (3) As functional traits are 

influenced by environmental conditions, we hypothesised that NH4
+
 and NO3

-
 uptake will be 

influenced by environmental variations between grasslands, as well as during the growing 

season, probably following NH4
+
 and NO3

- 
availability depending on the most abundant form. 

 

Material and methods  

Study site and species 

The study site is located in the upper Romanche valley of the central French Alps between the 

village of Villar d’Arêne and the Lautaret Pass (Table 1). The climate is subalpine with a 

strong continental influence. Winters are cold and snowy, with monthly average minimum 

temperatures of -15.9°C in February, maximum monthly average temperature of 23.8°C in 

July, and mean annual precipitation of 956mm (unpublished data, sajf.ujf-grenoble.fr). The 

growing season starts following snow melt in late April - early May and continues until late 

September or October depending on the date of the first snow in autumn. 

Given the hypothesis that NH4
+
 and NO3

-
 uptake could be an important hard plant trait related 

to resource use strategy (as suggested by soft structural and morphological traits) and to field 

dominance, and due to the degree of precision chosen for NH4
+
 and NO3

- 
uptake estimations 

(see 2.2), a compromise was necessary regarding the number of species, grasslands and 

replicates to be investigated. This sampling adjustment was required to conduct N uptake 

estimations for all individuals in a brief enough time period so that most abiotic factors 

remained as comparable as possible (soil moisture, temperature, radiation). 

We chose three common and dominant grass species, Dactylis glomerata L., Bromopsis 

erecta (Huds.) Fourr. (formerly Bromus erectus (Huds.)) and Patzkea paniculata (L.) 

G.H.Loos (formerly Festuca paniculata (L.) Schinz & Thell.). All species are perennial, 
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arbuscular mycorrhizal non-dependent species and span a gradient from more exploitative (D. 

glomerata) to more conservative (F. paniculata) resource use strategies (Grassein et al. 2015). 

Four grasslands (Table 1), described in Quétier et al. (2007), were chosen for their contrasting 

past and current managements, and were similar to the grasslands studied by Robson et al. 

(2007, 2010) : (i) Terraced Mown and Fertilized (TMF), (ii) Terraced Unmown not fertilized 

but lightly grazed (TU), (iii) Un-terraced Mown grassland (UM) and (iv) Un-terraced 

Unmown but lightly grazed grassland (UU), representing a gradient of decreasing 

management intensity. To reflect field dominance patterns, D. glomerata was sampled in 

TMF, B. erectus in TU, F. paniculata in UM, and all three species were sampled in UU where 

they coexist, although F. paniculata was dominant (Table 1). 

To assess NH4
+
 and NO3

- 
uptake patterns over the growing season, the same sampling design 

was repeated twice during 2010. At each date for each species and grassland, we sampled the 

roots and soil (approximately: 25x25x25 cm) of five individuals (genetically distinct 

individuals at least 2m apart). The first sampling corresponded to the peak biomass and 

targeted flowering onset (just before anthesis), and the second sampling corresponded to 

autumn after last management activities occurred. For D. glomerata in TMF and B. erectus in 

TU, the two sampling dates were mid-June and mid-September. For F. paniculata in UM and 

the three species in UU, the sampling dates were: early July and early September. These two 

dates are called "Summer" and "Autumn" hereafter. As much as possible, species were 

sampled at the same time during the day to avoid any diurnal variation in N uptake (Gessler et 

al. 1998). In total, we have sampled 12 points (3 species*2 seasons*2 habitats per species). 

 

Soil nitrogen pools 

At each date and for each grassland, soil nitrogen concentrations were measured from six soil 

cores (dimensions 4.5 cm Ø, 10 cm deep) kept on ice in the field and maintained at 4°C upon 

return to the laboratory (within 2h). Soils were sieved through a 5.6 mm mesh to remove roots 
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and stones. A subsample of 10g fresh sieved soil was prepared for extraction of inorganic N in 

0.5M K2SO4, and analysed using a colorimetric analyser (FS-IV autoanalyser (OI-Analytical, 

College Station, TX, USA) (following Bowman et al. 2003) to measure soil concentrations of 

ammonium (NH4
+
), nitrate (NO3

-
) and Total Dissolved Nitrogen (TDN). Soil aliquots were 

used to determine soil water (7 days at 70°C) and soil organic matter contents (550°C during 

4 hours). Finally, soil subsamples were air-dried to measure soil pH, or ground to a fine 

powder for measurements of total carbon (C) and N contents using an elemental analyser 

(FlashEA 1112, Thermo Fisher Scientific Inc., Waltham, MA, USA). 

At each date, five individuals of each species, with roots and soil, were excavated from each 

field, transferred within half an hour to the laboratory located at the Lautaret Pass (Station 

Alpine Joseph Fourier) and kept at 4°C until the NO3
-
 and NH4

+
 uptake rate measurements to 

maintain the functional integrity of the roots. Living young fine roots were washed with 

deionised water, cut to 2-cm length and then, rinsed in 1mM CaSO4 at 4°C for 3 min. The 

NO3
-
 and NH4

+
 uptake rates were measured during the first hour following plant harvest as 

described by Louahlia et al. (2000). The optimal conditions for uptake measurements by 

excised root determined by Lainé et al. (1993) were used in the present study. 

 

Functional traits  

Functional traits were measured for roots and leaves using standardised protocols (Perez-

Harguindeguy et al. 2013). Two of the individual root sub-samples were used to estimate root 

dry matter content (RDMC), specific root length (SRL, Winrhizo® software, fresh length per 

unit of dry mass), and were further analysed to obtain root 
15

N natural abundance and root 

nitrogen concentration (RNC, N mass per unit of dry mass). Specific leaf area (SLA, fresh 

area per unit of dry mass), leaf and root dry matter contents (LDMC and RDMC, dry mass per 

unit of fresh mass), leaf nitrogen concentration (LNC, N mass per unit of dry mass) were also 

measured. 
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Nitrogen uptake estimation: the “excised” roots method 

Although measuring only a net N uptake, which is the result of influx and efflux, the direct 

measurement of N uptake using excised roots allows characterising the plant uptake kinetics 

for NO3
-
 and NH4

+
 while controlling for the environmental variations. This makes it possible 

to compare different species at the cost of losing relevant ecological information (Lucash et 

al. 2007). This method was thus applied to plants collected in the field.  Root N uptake 

kinetics started within 60 min after excision, thereby avoiding the potential decline in N 

uptake ability reported to start after 3h (Louahlia et al. 2000). Nitrate and ammonium uptake 

by plants involved mainly the transport system called HATS (High Affinity Transport 

System). It contributes to N uptake at low to moderate concentrations of external N (<1mM) 

and saturates at 0.2-0.5 mM (Kronzucker et al. 1999, Min et al. 2000), which makes it the 

more likely system used by plants growing in natural and semi-natural ecosystems limited by 

N (Bassirirad 2000, Maire et al. 2009). The estimation of the maximum NH4
+
 and NO3

-
 

uptake rates by HATS requires a range of N concentrations below 1mM at which the Vmax 

can be reached depending on species (Grassein et al. 2015). Consequently, uptake was 

estimated from the accumulation of 
15

N in root sub-samples incubated for one hour in a buffer 

solution (pH = 5.5- following Leon et al. (1995)), containing a range of N concentrations (20, 

50, 100, 250, 500 and 1000 µM). Six sub-samples were incubated in K
15

NO3 and the other six 

in (
15

NH4)2SO4 with a 
15

N excess of 99% atom. The two N forms were tested individually in 

order to avoid possible interactions (Kronzucker et al. 1999). Solution volumes and fresh 

weights were selected to avoid N depletion during the experiment. After 1h incubation, roots 

were washed twice for one minute with a 1mM CaSO4 at 4°C to stop any metabolic 

processes. Roots were then dried at 60°C for 72h, ground to a fine powder and analysed by 

IRMS at the University of Caen (Isoprime GV instruments, Stockport, UK) to obtain 
15

N 

Atom% and N concentrations. 
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Data analysis 

Nitrogen Uptake Rate (NUR) was calculated for each concentration and each inorganic N 

form (NH4
+
 and NO3

-
) using the 

15
N increase in the root incubated compared to the non-

incubated control, and expressed by unit of time and dry mass (nmolN.h
-1

.g
-1

 of dry roots, see 

Leon et al. 1995). The dependence of NUR on substrate concentration was fitted for each 

individual and Hanes’s relation (Michaelis transformation) was used to estimate the maximum 

uptake rate (Vmax) defined as the maximum NUR for NH4
+
 and NO3

- 
(Leon et al. 1995). 

Finally, the NH4
+
:NO3

-
 uptake ratio was calculated as the ratio between NH4

+ 
Vmax and NO3

- 

Vmax. 

A principal component analysis (PCA) was performed using all plant functional traits at the 

individual level to describe their functional strategy based on leaf and root traits. To 

investigate the relationships between functional traits of leaves and roots, and NH4
+
 and NO3

-

uptake ability (hypothesis 1), we used Pearson correlation coefficients. Relationships between 

the functional strategy and uptake of NH4
+
 and NO3

- 
at the root level were tested using 

regression analyses between the N uptake rates (Vmax) and the first PCA. 

Comparisons of NH4
+
 and NO3

-
 uptake rates for species (hypothesis 2), fields and date 

(hypothesis 3) were conducted with ANOVA followed by Tukey tests to compare species and 

grasslands. In details, the effects of sampling time and fields on plant traits within each 

species were tested using two-ways ANOVA. Similarly, the effects of sampling time and 

fields on maximal NH4
+
 and NO3

- 
uptake rates within each species were tested using two-

ways ANOVA. The effects of fields and sampling time on NH4
+
:NO3

-
 ratio within each 

species were tested using two-ways ANOVA. Then, we tested only in UU grasslands, the 

species effect using one-way ANOVA. Finally, we used a two-ways ANOVA and Tukey post 

hoc test to test soil parameters differences between fields and dates. Data were log-

transformed when necessary to achieve normality and heteroscedasticity. All statistical 
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analyses were performed using the software R 3.4.4, with multivariate analyses (PCA) being 

performed using the package Ade4 (Dray & Dufour 2007).  

 

Results 

We observed large variations for leaf and root functional traits in spite of a restricted number 

of species in our study (Table 2). The range of variation was similar to, and sometimes even 

higher than the variability reported in Fort et al. (2013) for a larger set of species occurring in 

a similar ecosystem, including D. glomerata and B. erectus. The PCA of functional traits 

highlighted a first axis explaining 62.1% of the total variance (Fig. 1). The three species 

differed significantly for their mean position along this axis (p=0.012), with positive values 

for D. glomerata and negative values for F. paniculata. Positive values along this axis were 

characterised by high SLA, LNC and SRL, and low LDMC. Among these, SLA and LNC 

have been reported as major contributors to a resource economic spectrum establishing the 

existence of a fundamental trade-off between plant features allowing resource capture and 

those allowing resource conservation. 

This functional axis was positively correlated to NH4
+
 and NO3

-
 Vmax (Fig 2a and 2b) and 

negatively to NH4
+
:NO3

-
 uptake ratio (Fig 2c) indicating a more pronounced preference for 

NH4
+ at lower values of axis 1. Except RDMC, all traits taken separately were poorer 

predictors of the NO3
-
 and NH4

+
 maximum uptake rates than this functional axis, although the 

first PCA axis was significantly correlated with all functional traits (Table 3). 

In UU grassland, NH4
+
Vmax in summer was similar for the three species (Fig. 3a) but greater 

for D. glomerata for NO3
-
 Vmax (p <0.001, Fig. 3b). Vmax in autumn for both N forms was 

lower for F. paniculata compared to the two other species (NH4
+
 p<0.05, NO3

-
 p< 0.001). 

Comparing the different grasslands within species, we observed reduced NO3
-
 and NH4

+ 

Vmax values in the UU grassland for D. glomerata (in summer and in autumn) and B. erectus 

(summer) compared to the other grasslands. On the other hand, highest NH4
+
 Vmax for B. 
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erectus and F. paniculata were found in UU during the autumn. Illustrating the seasonal 

variability, all species in the UU grassland had higher NH4
+
 maximum uptake rates in the 

autumn than in the summer, as well as higher NO3
-
 uptake for B. erectus. NH4

+
:NO3

-
 uptake 

ratio did not vary in time, but always showed higher values in the UU for the three species 

compared to the other grasslands, and overall greater values for F. paniculata (Fig. 4). 

Within species, a limited number of traits were significantly different between grasslands 

(Table 2). We only observed significant differences in autumn, with highest LDMC in TU for 

B. erectus, highest LDMC and RDMC in UU for D. glomerata, and highest LDMC but lowest 

SRL for F. paniculata in UM. However, changes in response to the season were more 

consistent among species and grasslands, with an increase of LDMC and a decrease of SLA in 

autumn compared to the summer. We also observed higher LNC for D. glomerata and F. 

paniculata during the summer than during the autumn in TMF and UM respectively, and 

higher RDMC during the autumn for D. glomerata in UU.  

Since all species occurred in the UU grasslands, we choose to focus on soil parameters from 

these grasslands. UU and UM only differ for SWC in autumn (Table 4), all other soil 

variables were similar between these two grasslands, which had similar past land-use history 

(Table1). UU had consistently higher SWC and SOM, and lower soil pH and CN ratio than 

TMF and TU. All grasslands had similar soil NH4
+
 concentrations. During the summer, we 

observed higher TDN and NH4
+
:NO3

-
 soil ratio, and lower soil NO3

-
 concentration in UU 

compared to TMF and TU, but we did not find these differences in autumn. 

 

Discussion: 

Relationships between leaf and root traits 

In the aim to find parallels between above and below-ground organs (e.g. Roumet et al. 2006), 

several studies have investigated the relationships between analogous traits measured for 

leaves and roots. While positive relationships have been reported for SLA vs SRL (Craine & 
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Lee 2003, Craine et al. 2005, Freschet et al. 2010), other studies have reported a lack of 

relationships between SLA vs SRL (Craine et al. 2001, Tjoelker et al. 2005). In our study, we 

did not find any relationships between SRL/SLA, LDMC/RDMC and LNC/RNC, and this 

could be related to our limited number of species/replicates. Nevertheless, we observed trade-

offs at the leaf and root levels between traits, namely N concentration and dry matter content. 

Such traits correlations between the leaf and root levels have already been reported (Freschet 

et al. 2010), though relatively weak relationships were found here between analogous traits 

belowground and aboveground. Different selective pressures for leaf and root traits as well as 

specialisations for the acquisition of different resources (e.g. light vs nutrient) could explain 

this absence of association between belowground and aboveground traits (Craine et al. 2005, 

Liu et al. 2010), while the global strategy at the plant level could remain the same since high 

efficiency for light or for nutrients could be related to the same physiological adaptation, as 

pointed out previously for stress tolerance (Chapin 1980). Although we found that leaf 

functional traits (LNC) can be correlated with root NH4
+
 and NO3

- 
maximal uptake rate as 

previously shown (Osone et al. 2008; Maire et al. 2009), here root traits (RDMC, SRL) 

appeared to be more related to NH4
+
 and NO3

-
 uptake rates (Rewald et al. 2014), even if 

deeper understanding of the relationship between root traits and nutrient acquisition remains 

needed (Roumet et al. 2016). The interpretation is however limited here by the fact that only 

three subalpine herbaceous species were studied. 

 

Relationship between N maximum uptake rate (Vmax) and plant strategy 

Our results showed that a stronger exploitative syndrome (higher SRL, SLA, LNC and lower 

RDMC) was associated with higher Vmax for both inorganic N forms, rejecting the 

hypothesis of a trade-off between maximum uptake rate of each N forms. Ammonium toxicity 

has been reported for some plant species (review in Britto & Kronzucker 2002), as well as 

negative interactions between the uptake of NH4
+
 and NO3

-
 (Kronzucker et al. 1999), and this 
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could promote a trade-off in the acquisition of NH4
+
 and NO3

-
 between species (Maire et al. 

2009). Here, we estimated NH4
+
 and NO3

-
 uptake independently to avoid such interactions 

during measurements, and our results did not support a trade-off but rather suggest a 

synergistic uptake of both N forms. Provision of NO3
-
 has been demonstrated to alleviate the 

NH4
+
 toxicity (Britto & Kronzucker 2002), and even to favour NH4

+
 uptake. We indeed 

observed higher uptakes for NH4
+
 than for NO3

-
, indicating a preference of all species for 

NH4
+
, especially for individuals with a more conservative syndrome of traits. This is likely to 

be related to the lower energetic cost for plant species to uptake and assimilate NH4
+ 

compared to NO3
-
 (Salsac et al. 1987). Besides, more exploitative plants have a lower 

preference for NH4
+
 compared to more conservative individuals, but expressed higher 

maximal uptake rates than more conservative individuals for both N forms. At the grassland 

plant community scale, this NH4
+ 

vs. NO3
-
 preference is likely to have consequences on 

ecosystem functioning and N balance ; for instance because NO3
-
is more prone to leaching 

whereas NH4
+
is better retained in soil (Boudsocq et al. 2012). Overall, our results suggest that 

changes in functional leaf traits related to a higher potential photosynthesis efficiency and 

light capture appeared to be associated at the root level with higher maximal uptake rates for 

both N forms.  

Nitrogen uptake variations in response to management and sampling dates  

Nitrogen uptake rate is usually considered as a property of plant species, but little is 

known about variation in within-species N uptake rates in grasslands with different land-use 

history and at different times during the growing season. In our study, we observed that 

nitrogen uptake rates could differ strongly for the same species in different grasslands (e.g. B. 

erectus and D. glomerata in the UU grassland). On the other hand, the time of the year also 

influenced the N uptake rates of all species, with for example a higher NH4
+
 uptake in the 

autumn than in summer in UU grasslands, whereas no difference was detected in UU 

grasslands for B. erectus. Overall, grasslands were weakly discriminated by functional traits, 
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suggesting that other factors such as soil parameters may explain the within species N uptake 

differences between grasslands. 

Nitrogen uptake can vary depending on the amount of N available in the soil (Gavito 

et al. 2001). Soil NH4
+
 concentration, the main N source taken up by plants in our study, was 

similar in the four investigated grasslands, whereas a higher soil total dissolved N (TDN) was 

measured in the UU grassland. Consequently, the lower N uptake rates observed in this UU 

grassland cannot be explained by a lower N availability. As reported by previous studies, 

subalpine grasslands can show the legacy effects of former management activities, leading to 

slower N cycling (Zeller et al. 2000, Robson et al. 2007). Indeed, we observed lower pH and 

higher soil water and organic matter contents in the UU grassland suggesting variations in N 

cycling and in the quality of the available N, not only in its quantity (Garnett & Smethurst 

1999, Robson et al. 2010). Supporting this hypothesis, we observed variations in soil NO3
-
 

concentrations, and consequently soil NH4
+
:NO3

-
 ratio, between the studied grasslands. 

Although we could not directly relate in situ soil parameters to N plant uptake estimated under 

“controlled” conditions, we interestingly observed parallel changes for NH4
+
 uptake rates and 

soil NH4
+
: NO3

-
 ratio in grasslands where individuals have been sampled. For example, both 

B. erectus NH4
+
 uptake and soil NO3

-
 concentration were lower during the summer and higher 

during the autumn in TU than in UU.  

Rarely investigated in natural ecosystems, experimental evidences on cultivated plants 

have demonstrated the effects of soil NH4
+
: NO3

-
 concentration ratio on plant N uptake 

(Errebhi & Wilcox 1990, Bar-Tal et al. 2001). Yet, the effects were largely species-dependent 

and trade off were sometime reported between NH4
+
 and NO3

-
 uptakes (Warncke & Barber 

1973, Kronzucker et al. 1999, Maire et al. 2009). The preferential uptake for an inorganic N 

form could also be influenced by environmental and physiological factors (Britto & 

Kronzucker 2013). Our results did not support any trade-off in the intrinsic ability of plant 

species to take up both N forms, even after removing possible environmental conditions or 
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interactions between inorganic N forms. Although we could not directly test for the 

relationship between soil parameters and plant N uptake rates, differences between grasslands 

in the N uptake within species highlight that management practices may have important 

effects on plant N uptake, likely through N cycling changes and the quality of the N pool 

available as already pointed out by previous studies (Zeller et al. 2000, Robson et al. 2007). 

Other studies have suggested that N preference could be dependent on the soil availability of 

the different N forms (Näsholm et al. 2009, Stoelken et al. 2010). While our results partially 

supported this hypothesis, with variation within species between different grassland, the 

different species sampled in the same grassland showed differences in their NH4
+
:NO3

-
 uptake 

ratio, supporting the hypothesis that this “preference” is partially related to the strategy of 

species, or at least to species identity. But overall, more exploitative species with higher 

maximum uptake rates for one inorganic N form are also likely to have high uptake rates for 

other N forms as previously found (Kastovska & Santruckova 2011). 

 Nevertheless, the plant preference for N forms is a complex topic (Britto & 

Kronzucker 2013), and careful considerations should be given to the environmental 

conditions where the species occur. Since N cycling is controlled by a large set of parameters 

including pH, soil moisture, land-use, short and long-term variations in the predominant N 

forms available for plants are to be expected. Under harsh conditions, plants can also take up 

organic N (amino acids) directly and/or through fungi (Näsholm et al. 2000). While we 

assumed that this source of N is of limited importance for our species in our relatively fertile 

grasslands (Kahmen et al. 2009), a full understanding of the N preference, and discussion 

about species coexistence through N forms sharing, would require careful investigations, 

beyond the possibility in our study. Nonetheless, the variability we observed in the ratio of 

uptake between the inorganic N forms suggested that, to some extent, plant physiology was 

adjusted to match the soil conditions where species occurred. Yet, differences between 

species with different strategies remain, with higher uptake rate for both N forms associated 
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with a more exploitative strategy, and we hypothesised that this should be also the case for 

organic N sources (Kastovska and Santruckova 2011). Nevertheless, we acknowledge that this 

question could be more important in harsh environments where soil organic N is relatively 

more abundant as a N source for plants (Mozdzer et al 2014). Further investigations remain 

needed on the variations of plant N uptake under field conditions, in link with potential 

variations in N cycling in response to land-use or during the season (Robson et al. 2010, 

Legay et al. 2013). 

 

Variations of N uptake ability during the growing season 

Plant N uptake ability also varies during the growing season, with N uptake increasing 

(Stahl et al. 2011) or decreasing (Jaeger et al. 1999) depending on the ecosystems 

investigated. In the UU grassland, NH4
+
 uptake was higher for all species during the autumn 

than during the summer, and the same was found for NO3
-
 uptake by B. erectus. Plant activity 

is usually considered to slow down during the autumn compared to the peak biomass in 

summer, an assumption supported by higher LDMC and lower SLA for all species related to 

the senescence of leaves. However, we did not observe any changes for root traits, suggesting 

that roots could remain active during this time of the growing season, especially in the process 

of resource storage, an important feature for subalpine/alpine plants (Kleijn et al. 2005). 

Additionally, studies have reported an increase of grassland N cycling rate in the autumn that 

could be explained by more favourable soil conditions (first rains and mild temperature), and 

associated with still active N uptake by plants as observed in our study (Miller et al. 2009, 

Larsen et al. 2012). This could also be related to the better retention of NH4
+ 

vs.NO3
-
 in wet 

soils during autumn, making NH4
+ 

more available for plant uptake (Brady and Weil 2001). 

Despite the fact that only few soil parameters differed between the two investigated seasons in 

the UU grassland, the N uptake increase in autumn was more likely a site-dependent effect 

related to soil conditions (Miller et al. 2009, Stahl et al. 2011, Legay et al. 2013), rather than a 
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species response since all species did show the same pattern in the other grasslands. Yet, a 

multiple-year study remains necessary to better conclude on these seasonal patterns. 

 

Conclusions 

By estimating inorganic root N uptake under controlled conditions from plants grown up 

under field conditions, our results support the assumption that root and leaf functional traits 

are associated with the ability of plants to acquire soil inorganic N. In particular, the observed 

pattern for roots characteristics appeared similar to the one observed in the leaf economic 

spectrum, with higher inorganic N uptake rates associated with more exploitative syndrome of 

traits. However, a weak relationship between leaf and root traits suggests that leaf traits alone 

were insufficient to predict inorganic N uptake. Additionally, inorganic N uptake varied 

within species during the growing season and in response to local conditions, making root 

traits and soil parameters important features of the relationships between plant functioning 

and grasslands N cycling. Nevertheless, these results based on excised root study need to be 

confirmed at the whole plant level using, for instance, 
15

N labelling. 
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Figure 1. Principal components analysis (PCA) of functional traits measured for the leaves and roots of three grass species (Be: Bromus erectus, 187 

Dg: Dactylis glomerata and Fp: Festuca paniculata), in each grassland with different management (UU: unterraced unmown, UM: unterraced 188 

mown, TMF: terraced mown and fertilized, TU: terraced unmown).  SLA: Specific leaf area, LDMC: Leaf dry matter content, LNC: Leaf 189 

nitrogen content, SRL: Specific root length, RDMC: Root dry matter content, RNC: Root nitrogen content. 190 

 191 
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Figure 2: Relationships between the first axes of the PCA (fig 1) and Vmax for NH4
+
 (a), NO3

-
 (b) and NH4

+
: NO3

- 
uptake ratio (c). The three 192 

relationships were significant (p-values<0.05) assuming a polynomial relationship of order=2, and the resulting R² are indicated on each graph. 193 

 194 
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Figure 3. Vmax (Maximal uptake rate) for NH4
+
 (a) and NO3

-
 (b) of D. glomerata, B. erectus and 195 

F. paniculata. Within each combination of site and species, dates with the same letter had similar 196 

uptake parameters (Tukey post hoc test at 5%level, after an Anova with date as main effect). For 197 

each species, the significance of the differences between the two sites for uptake parameters 198 

were tested using a Student test, and stars indicate the dates at which the two sites differ 199 

significantly with a p-value<0.05. 200 

 201 

 202 

 203 
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Figure 4: NH4
+
: NO3

-
 uptake ratio for the three species, in each site and at the two sampling 204 

times. The uptake ratio is unitless (ratio between NH4
+ 

Vmax and NO3
- 
Vmax). Within each 205 

species, *or *** indicate significant site effects (p value < 0.05 and 0.001 respectively) within 206 

each species (two-ways ANOVA with site, date and the interaction as main effect). In the 207 

grassland (UU) where all species occurred, the differences between species and sampling time 208 

were tested using two-ways ANOVA. Similar letters connect species with similar values in the 209 

UU grassland at both sampling dates. 210 

211 
  212 
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Table 1: Description of the studied grasslands. Past and current land uses describe the former 213 

and current management of these grasslands (see Quetier et al. 2006 for more information). 214 

TMF: Terraced Mown and Fertilized, TU: Terraced Unmown not fertilized but lightly grazed, 215 

TM: Unterraced Mown, UU: Unterraced Unmown but lightly grazed. 216 

 217 

Field 

label GPS coordinates Sampled species Past Land Use Current Land Use Elevation 

TMF  45° 2'42.77"N Dactylis glomerata Arable rotation fertilized hay meadow 1800m 

 

  6°20'35.29"E 

    

      TU  45° 2'24.74"N Bromus erectus Arable rotation grazed pasture (sheep) 1840m 

 

  6°21'38.15"E 

    

      UM  45° 1'58.59"N Festuca paniculata Hay meadow unfertilized hay meadow 1980m 

 

  6°23'0.80"E 

    

      UU  45° 1'55.76"N Festuca paniculata Hay meadow grazed pasture (sheep) 1960m 

 

  6°23'1.57"E Bromus erectus 

       Dactylis glomerata       

 218 

 219 
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Table 2: Mean values ± standard errors of leaf and root traits for each species, site and sampling time (n=5). For a given trait and species, 

statistically similar values have the same letter (Tukey post-hoc test). Bold values indicate the season with the highest trait values for a given 

species in a given grassland. 

Species Site Season SLA ( mm².g
-1

) LDMC (mg.g
-1

) LNC (mg.g
-1

) SRL (m.g
-1

) RDMC (mg.g
-1

) RNC (mg.g
-1

) 

B. erectus TU Summer 30.07 ± 0.8 
a
 277.6 ± 2.1 

c
 21.46 ± 0.2 249.86 ± 72.0 307.77 ± 22.4 6.06 ± 0.1 

 

 

Autumn 15.43 ± 1.1 
c
 444.06 ± 16.8 

a
 12.09 ± 0.9 253.58 ± 34.3 303.5 ± 6.3 7.68 ± 0.4 

 UU Summer 22.58 ± 0.7 
b
 305.06 ± 4.2 

c
 15.57 ± 0.8 328 ± 74.2 290.82 ± 21.7 7.17 ± 0.1 

 

 

Autumn 16.37 ± 1 
c
 385.1 ± 11.5 

b
 19.28 ± 2.7 222.12 ± 75.4 288.32 ± 21.6 7.87 ± 0.5 

D. glomerata TMF Summer 34.06 ± 1.6 
a
 248.79 ± 17.7 

c
 32.6 ± 3.4 

a
 426.22 ± 60.5 232.49 ± 20.5 

b
 7.28 ± 0.4 

  Autumn 20.15 ± 2 
b
 298.51 ± 2.5 

b
 19.41 ± 2.2 

b
 290 ± 48.6 249.09 ± 8 

b
 7.99 ± 0.3 

 UU Summer 26.17 ± 0.3 
ab

 265.78 ± 9.1 
bc

 24.2 ± 1.4 
ab

 318.69 ± 63.8 254.08 ± 5.6 
b
 6.91 ± 0.5 

 

 

Autumn 24.34 ± 1.7 
b
 389.69 ± 10.5 

a
 21.81 ± 2.5 

ab
 216.87 ± 44.7 304.99 ± 8.8 

a
 7.16 ± 0.2 

F. paniculata UM Summer 23.26 ± 0.4 
a
 232.06 ± 0.6 

c
 20.22 ± 1.9 

a
 195.85 ± 21.3 

ab
 300.1 ± 21.5 5.15 ± 0.4 

 

 

Autumn 8.78 ± 0.5 
b
 433.87 ± 18.8 

a
 10.61 ± 1.4 

b
 153.37 ± 20.5 

b
 369.12 ± 21.7 4.32 ± 0.5 

 UU Summer 21.36 ± 0.9 
a
 261.06 ± 15.6 

c
 14.52 ± 1.8 

ab
 166.21 ± 20.7 

ab
 380.91 ± 6.4 4.16 ± 0.1 

 

 

Autumn 11.76 ± 1.4 
b
 369.71 ± 7.2 

b
 15.53 ± 3.6 

ab
 293.71 ± 54.5 

a
 366.84 ± 23.3 4.31 ± 0.1 
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Table 3. Pearson correlations between NH4
+
 and NO3

-
 maximum uptake rates (Vmax), PCA axes, leaf and root traits. Significant values (p-value 

<0.05) are indicated in bold. 

 

VmaxNH4
+ VmaxNO3

- axe1 axe2 ratio SLA LDMC SRL RDMC LNC 

VmaxNO3
- 0.93 

         axe1 0.65 0.76 
        axe2 -0.28 -0.24 0.00 

       ratio -0.46 -0.68 -0.64 0.43 
      SLA 0.37 0.53 0.84 0.38 -0.54 

     LDMC -0.17 -0.26 -0.60 -0.74 0.09 -0.74 
    SRL 0.55 0.70 0.81 -0.14 -0.51 0.54 -0.34 

   RDMC -0.68 -0.77 -0.91 0.31 0.75 -0.63 0.37 -0.71 
  LNC 0.64 0.65 0.87 0.10 -0.32 0.69 -0.51 0.66 -0.74 

 RNC 0.58 0.62 0.65 -0.70 -0.80 0.34 0.08 0.50 -0.83 0.42 
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Table 4. Soil properties (mean values ± SE) for each grassland and at each sampling time. No 

significant difference values between sites at a given date are shown by the same letter (Tukey 

post-hoc test). Values in bold indicate the highest values when the considered soil parameter was 

significantly different between dates in a grassland. na: not available because of a sampling 

issue. nd: not detectable: under the level of sensitivity of the method; TDN: total dissolved 

nitrogen). 

    TMF  TU UM UU 

       

Soil Water 

Content  (%) 

Summer 22.33 ± 0.71
 b

  18.33 ± 1.12
 c
 na 34.89 ± 1.20

 a
 

Autumn 11.44 ± 0.33
 b
  7.25 ± 0.88

 c
 13.58 ± 1.18

 b
 17.74 ± 1.54

 a
 

pH Summer 8.01 ± 0.04
 a
  8.03 ± 0.04

 a
 n.a. 6.31 ± 0.05

 b
 

Autumn 7.98 ± 0.02
 a
  8.05 ± 0.04

 a
 5.85 ± 0.05

 b
 6.02 ± 0.08

 b
 

Soil Organic 

Matter (%) 

Summer 13.16 ± 0.48
 c
  14.39 ± 0.93

 b
 n.a. 18.42 ± 0.64

 a
 

Autumn 12.47 ± 0.65 
b
  11.38 ± 0.93

 b
 14.02 ± 0.43

 ab
 16.98 ± 1.29

 a
 

C:N ratio Summer 14.91 ± 0.35
 a
  14.02 ± 0.64

 a
 n.a. 12.10 ± 0.15

 b
 

Autumn 13.46 ± 0.39
 a
  13.43 ± 0.64

 ab
 11.63 ± 0.14

 b
 11.74 ± 0.43

 b
 

TDN (µgN.g
-1

 

soil) 

Summer 20.83 ± 2.95
 b
  16.85 ± 1.33

 b
 n.a. 55.59 ± 12.15

 a
 

Autumn 46.12 ± 4.44
 a
  46.13 ± 4.74

 a
 34.54 ± 1.21

 ab
 46.65 ± 6.04

 a
 

NO3
- 
content 

(µgN.g-1 soil) 

Summer 3.87 ± 0.48
 ab

  5.63 ± 0.64
 a
 n.a. 2.31 ± 0.53

 b
 

Autumn 2.99 ± 0.54
 a
  0.54 ± 0.10

 b
 n.d. 1.39 ± 0.66

 ab
 

NH4
+
 content 

(µgN.g-1 soil) 

Summer 11.19 ± 0.47
 a
  15.43 ± 1.82

 a
 n.a. 12.23 ± 1.77

 a
 

Autumn 10.07 ± 1.37
 a
  11.54 ± 1.55

 a
 6.97 ± 0.94

 a
 10.17 ± 1.92

 a
 

NH4
+
:NO3

-
 ratio Summer 3.56 ± 0.65

 b
  2.97 ± 0.30

 b
 n.a. 7.85 ± 1.62

 a
 

Autumn 3.53 ± 0.36
 b
  28.68 ± 10.7

 a
 n.d. 12.9 ± 6.4

ab
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