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Introduction

Feature Selection (FS) is viewed as a major bottleneck of Supervised Machine Learning and Data Mining [START_REF] John | Irrelevant features and the subset selection problem[END_REF][START_REF] Guyon | An introduction to variable and feature selection[END_REF]. For the sake of the learning performance, it is highly desirable to discard irrelevant features prior to learning, especially when the number of available features significantly outnumbers the number of examples, as is the case in Bio Informatics. FS can be formalized as a combinatorial optimization problem, finding the feature set maximizing the quality of the hypothesis learned from these features. Global approaches to this optimization problem, referred to as wrapping methods, actually evaluate a feature set by running a learning algorithm [START_REF] Vafaie | Genetic algorithms as a tool for feature selection in machine learning[END_REF][START_REF] John | Irrelevant features and the subset selection problem[END_REF]; for this reason, the wrapping approaches hardly scale up to large size problems. Other approaches combine GA-based feature selection with ensemble learning [START_REF] Guerra-Salcedo | Genetic approach to feature selection for ensemble creation[END_REF].

A relaxed formalization of FS, concerned with feature ranking (FR) [START_REF] Guyon | An introduction to variable and feature selection[END_REF], is presented in section 2. In the FR setting, one selects the top ranked features, where the number of features to select is specified by the user [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF] or analytically determined [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF].

A new approach, inspired from bagging and ensemble learning [START_REF] Breiman | Arcing classifiers[END_REF] and referred to as ensemble feature ranking (EFR) is introduced in this paper. EFR aggregates several feature rankings independently extracted from the same training set; along the same lines as [START_REF] Breiman | Arcing classifiers[END_REF][START_REF] Esposito | Monte Carlo theory as an explanation of bagging and boosting[END_REF], it is shown that the robustness of ensemble feature ranking increases with the ensemble size (section 3).

In this paper, EFR is implemented using GA-based learning. Practically, we used the ROGER algorithm (ROC-based Genetic Learner) first presented in [START_REF] Sebag | Impact studies and sensitivity analysis in medical data mining with ROC-based genetic learning[END_REF], that optimizes the so-called AUC criterion. The AUC, the area under the Receiver Operating Characteristics (ROC) curve has been intensively studied in the ML literature since the late 90's [START_REF] Bradley | The use of the area under the ROC curve in the evaluation of machine learning algorithms[END_REF][START_REF] Ferri | Learning decision trees using the area under the ROC curve[END_REF][START_REF] Ling | AUC: a better measure than accuracy in comparing learning algorithms[END_REF][START_REF] Rosset | Model selection via the AUC[END_REF]. The ensemble feature ranking aggregates the feature rankings extracted from hypotheses learned along independent ROGER runs.

The approach is validated using a statistical model inspired from the now standard Constraint Satisfaction framework known as Phase Transition paradigm [START_REF]Artificial Intelligence: Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity[END_REF]; this framework was first transported to Machine Learning by [START_REF] Giordana | Phase transitions in relational learning[END_REF]. Seven order parameters are defined for FS (section 4); the main originality of the model compared to previous ones [START_REF] Guyon | An introduction to variable and feature selection[END_REF] is to account for (a limited kind of) non-linear target concepts. A principled and extensive experimental validation along this model demonstrates the good performance of Ensemble Feature Ranking when dealing with non linear concepts (section 5). The paper ends with a discussion and perspectives for further research.

State of the art

Without aiming at an exhaustive presentation (see [START_REF] Guyon | An introduction to variable and feature selection[END_REF] for a comprehensive introduction), this section introduces some Feature Ranking algorithms. ROGER is then described for the sake of completeness.

Notations used throughout the paper are first introduced. Only binary concept learning is considered in the following. The training set E includes n examples, E = {(x i , y i ), x i ∈ IR d , y i ∈ {-1, 1}, i = 1 . . . n}. The i-th example is described from d continuous feature values; label y i indicates whether the example pertains to the target concept (positive example) or not (negative example).

Univariate Feature Ranking

In univariate approaches, a score is associated to each feature independently from the others. In counterpart for this simplicity, univariate approaches are hindered by feature redundancy; indeed, features correlated to the target concept will be ranked first, no matter whether they offer little additional information.

The feature score is computed after a statistical test, quantifying how well this feature discriminates positive and negative examples. For instance the Mann-Whitney test, reported to support the identification of differentially relevant features [START_REF] Pepe | Selecting differentially expressed genes from microarray experiments[END_REF], associates to the k-th feature the score defined as P r(x i,k > x j,k | y i > y j ), i.e. the fraction of pairs of (positive, negative) examples such that feature k ranks the positive example higher than the negative one. This criterion coincides with the Wilcoxon rank sum test, which is equivalent to the AUC criterion [START_REF] Yan | Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic[END_REF].

Univariate FR + Gram Schmidt orthogonalization

A sophisticated extension of univariate approaches, based on an iterative selection process, is presented in [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF]. The score associated to each feature is proportional to its cosine with the target concept:

score(k) = n i=1 x i,k .y i n i=1 x 2 i,k
The two-step iterative process i) determines the current feature k maximizing the above score; ii) projects all remaining features and the target concept on the hyperplane perpendicular to feature k. The stopping criterion is based on an analytic study of the random variable defined as the cosine of the target concept with a random uniform feature.

Though this approach addresses the limitations of univariate approaches with respect to redundant features, it still suffers from the myopia of greedy search strategies (with no backtrack).

ML-based Approaches

As mentioned earlier on, an alternative to univariate approaches is to exploit the output of a machine learning algorithm, which assumedly takes into account every feature one by one in relation with the other ones [START_REF] John | Irrelevant features and the subset selection problem[END_REF].

When learning a linear hypothesis (h(x) =

d i=1 w i x i [+b]
), one associates a score to each feature k, namely the square of the weight w k ; the higher the score, the more relevant the feature is in combination with the other features.

A two-step iterative process, termed SVM-Recursive Feature Elimination, is proposed by [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF]. In each step, i) a linear SVM is learned, the features are ranked by decreasing absolute weight; ii) the worst features are removed.

Another approach, based on linear regression [START_REF] Bi | Dimensionality reduction via sparse support vector machines[END_REF], uses a randomized approach for better robustness. Specifically, a set of linear hypotheses are extracted from independent subsamples of the training set, and the score of the k-th feature averages the feature weight over all hypotheses learned from these subsamples. However, as subsamples must be significantly smaller than the training set in order to provide diverse hypotheses, this approach might be limited in application to domains with few available examples, e.g. DNA array mining.

Another work, more loosely related, is concerned with learning an ensemble of GA-based hypotheses extracted along independent runs [START_REF] Guerra-Salcedo | Genetic approach to feature selection for ensemble creation[END_REF], where: i) the underlying GA-inducer looks for good feature subsets; and ii) the quality of a feature subset is measured from the accuracy of a k-nearest neighbor or euclidean decision table classification process, based on these features.

ROGER (ROC-based Genetic learneR)

ROGER is an evolutionary learning algorithm first presented in [START_REF] Sebag | ROC-based evolutionary learning: Application to medical data mining[END_REF][START_REF] Sebag | Impact studies and sensitivity analysis in medical data mining with ROC-based genetic learning[END_REF]. Using elitist evolution strategies ((µ + λ)-ES), it determines hypotheses maximizing the Area Under the ROC curve (AUC) [START_REF] Bradley | The use of the area under the ROC curve in the evaluation of machine learning algorithms[END_REF][START_REF] Ling | AUC: a better measure than accuracy in comparing learning algorithms[END_REF]. As already mentioned, the AUC criterion was shown equivalent to the Wilcoxon statistics [START_REF] Yan | Optimizing classifier performance via an approximation to the Wilcoxon-Mann-Whitney statistic[END_REF].

ROGER allows for constructing a limited kind of non linear hypotheses. More precisely, a hypothesis h measures the weighted L 1 distance to some point c in the instance space IR d . Formally, to each genetic individual Z = (w 1 , . . . , w d , c 1 , . . . , c d ) is associated the hypothesis h Z defined as:

h Z : x = (x 1 , . . . , x d ) ∈ IR d → IR, h Z (x) = d i=1 w i × |x i -c i |
This way, ROGER explores search space IR 2d , with size linear in the number of features while possibly detecting some non-linearities in the data. ROGER maximizes the fitness function F, where F(Z) is computed as the Wilcoxon statistics associated to

h Z (F(Z) = P r(h Z (x i ) > h Z (x j )|y i > y j )).

Ensemble Feature Ranking

This section describes an ensemble approach to feature ranking which will be implemented using the ROGER algorithm above. The properties of ensemble feature ranking are first examined from a theoretical perspective.

Notations

Inspired from ensemble learning [START_REF] Breiman | Arcing classifiers[END_REF] and randomized algorithms [START_REF] Esposito | Monte Carlo theory as an explanation of bagging and boosting[END_REF], the idea is to combine independent feature rankings into a hopefully more robust feature ranking. Formally, let O t denote a feature ranking (permutation on {1, ..d}). With no loss of generality, we assume that features are enumerated with decreasing relevance (e.g. feature i is more relevant than feature j iff i < j).

Let O 1 , . . . , O T be T independent, identically distributed feature rankings. For each feature pair (i, j) let N i,j denote the number of O t that rank feature i before feature j and let Y i,j be true iff N i,j > T 2 . We start by showing that a feature ranking can be constructed from variables Y i,j , referred to as ensemble feature ranking (EFR); the EFR quality is then studied.

Consistent Ensemble Feature Ranking

In order to construct an ensemble feature ranking, variables Y i,j must define a transitive relation, i.e. Y i,k is true if Y i,j and Y j,k are true; when this holds for all i, j, k, feature rankings O 1 , . . . O T are said consistent.

The swapping of feature pairs (i, j) is observed from the boolean random variables X i,j (X i,j [START_REF] Rosset | Model selection via the AUC[END_REF], it is assumed that variables X ij are independent Bernoulli random variables with same probability p. Although the independence assumption is certainly not valid (see discussion in [START_REF] Rosset | Model selection via the AUC[END_REF]), it allows for an analytical study of EFR, while rigorously combining permutations raises more complex mathematical issues.

(O t ) = ((O t (i) < O t (j)) = (i < j)). Inspired from
Lemma. Let p = P r((O t (i) < O t (j)) = (i < j)) denote the swapping rate of feature rankings O t , and assume that p = 1 2ε, ε > 0, (that is, each ranking does a little better than random guessing wrt every pair of attributes). Then P r(Y i,j false | i < j) ≤ e -2ε 2 T Proof. Follows from Hoeffding's inequality. Proposition 1. Under the same assumption, O 1 , . . . O T are consistent with probability 1 as T goes to infinity. Proof. It must be noted first that from Bayes rule, P r(i < j | Y i,j true ) = P r(Y i,j true | i < j) (as P r(i < j) = P r(Y i,j true ) = 1 2 ). Assume that Y i,j and Y j,k are true. After the working assumption that the X i,j are independent,

P r(i < j, j < k | Y i,j ∧ Y j,k true ) = P r(i < j | Y i,j true) • P r(j < k | Y j,k true)
Therefore after the lemma, Y i,j and Y j,k true imply that i < k and hence that Y i,k is true, with probability going exponentially fast to 1 as T goes to infinity.

Convergence

Assuming the consistency of the feature rankings O 1 , . . . , O T , the ensemble feature ranking O * is naturally defined, counting for each feature i the number of features j that are ranked before i by over half the O t (O * (i) = #{Y j,i true, j = 1..d}, where #A is meant for the size of set A).

The convergence of ensemble feature ranking is studied with respect to the probability of misranking a feature i by at most τ indices (P r(|O * (i) -i| ≥ τ )). Again, for the simplicity of this preliminary analytical study, it is assumed that the misranking probability does not depend on the "true" rank of feature 1 i. Proposition 2. Let p * denote the probability for the ensemble feature ranking to to swap two features, p * = P r(Y ij = (i < j)), and let τ = (d -1)p * + ε, ε > 0.

Then P r(|O * (i) -i| ≥ τ ) ≤ e -2ε 2 d-1
Proof. Feature i is misranked by at least τ indices if there exists at least τ features j in the remaining d -1 features, such that Y ij = (i < j).

Let B(d-1, p * ) denote the binomial distribution of parameters d-1 and p * , then P r(|O

* (i) -i| ≥ τ ) < P r(B(d -1, p * ) ≥ τ )
, where after Hoeffding's inequality,

P r(B(d -1, p * ) -(d -1)p * > ε) ≤ e -2ε 2 d-1
1 Clearly, this assumption does not hold, as the probability of misranking top or bottom features is biased compared to other features. However, this preliminary study focuses on the probability to largely misrank features, e.g. the probability of missing a top 10 feature when discarding the 50% features ranked at the bottom.

The good asymptotic behavior of ensemble feature ranking then follows from the fact that: i) the swapping rate p * of the EFR decreases with the size T of the ensemble, exponentially amplifying the advantage of the elementary feature ranking over the random decision [START_REF] Esposito | Monte Carlo theory as an explanation of bagging and boosting[END_REF]; ii) the distribution of the EFR misranking error is centered on p * × (d -1), d being the total number of features.

Statistical Validation Model

Before proceeding to experimental validation, it must be noted that the performance of a feature selection algorithm is commonly computed from the performance of a learning algorithm based on the selected features, which makes it difficult to compare standalone FS algorithms.

To sidestep this difficulty, a statistical model is devised, enabling the direct evaluation of the proposed FR approach. This model is inspired from the statistical complexity analysis paradigm developed in the Constraint Satisfaction community [START_REF]Artificial Intelligence: Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity[END_REF], and first imported in the Machine Learning community by Giordana and Saitta [START_REF] Giordana | Phase transitions in relational learning[END_REF]. This model is then discussed wrt [START_REF] Guyon | An introduction to variable and feature selection[END_REF].

Principle

In the statistical analysis paradigm, the problem space is defined by a set of order parameters (e.g. the constraint density and tightness in CSPs [START_REF]Artificial Intelligence: Special Issue on Frontiers in Problem Solving: Phase Transitions and Complexity[END_REF]). The performance of a given algorithm is viewed as a random variable, observed in the problem space. To each point in the problem space (values of the order parameters), one associates the average behavior of the algorithm over all problem instances with same value of the order parameters.

This paradigm has proved insightful in studying the scalability of prominent learning algorithms, and detecting unexpected "failure regions" where the performance abruptly drops to that of random guessing [START_REF] Botta | Relational learning as search in a critical region[END_REF].

Order parameters

Seven order parameters are defined for Feature Selection:

-The number n of examples.

-The total number d of features.

-The number r of relevant features. A feature is said to be relevant iff it is involved in the definition of the target concept, see below. -The type l of target concept, linear (l = 1) or non-linear (l = 2), with

l = 1 : y(x) = 1 iff ( r i=1 x i > s) (1.1) l = 2 : y(x) = 1 iff ( r i=1 (x i -.5) 2 < s) (1.2)
-The redundancy (k = 0 or 1) of the relevant features. Practically, redundancy (k = 1) is implemented by replacing r of the irrelevant features, by linear random combinations of the r relevant ones2 . -The noise rate e in the class labels: the class associated to each example is flipped with probability e. -The noise rate σ in the dataset feature values: each feature value is perturbed by adding a Gaussian noise drawn after N (0, σ).

Artificial problem generator

For each point (n, d, r, l, k, e, σ) in the problem space, independent instances of learning problems are generated after the following distribution. All d features of all n examples are drawn uniformly in [0, 1]. The label of each example is computed as in equation (1.1) (for l = 1) or equation (1.2) (for l = 2)3 . In case of redundancy (k = 1), r irrelevant features are selected and replaced by linear combinations of the r relevant ones. Last, the example labels are randomly flipped with probability e, and the features are perturbed by addition of a Gaussian noise with variance σ.

The above generator differs from the generator proposed in [START_REF] Guyon | An introduction to variable and feature selection[END_REF] in several respects. [START_REF] Guyon | An introduction to variable and feature selection[END_REF] only considers linear target concepts, defined from a linear combination of the relevant features; this way, the target concept differentially depends on relevant features, while all features have the same relevance in our model. In contrast, the proposed model investigates linear as well as a (limited kind of) non-linear concepts.

Format of the results

Feature rankings are evaluated and compared using a ROC-inspired setting. To each index i ∈ {1, d} is associated the fraction of true relevant features (respectively, the fraction of irrelevant, or falsely relevant, features) with rank higher than i, denoted T R(i) (resp. F R(i)). The curve {(F R(i), T R(i)), i = 1, . . . , d} is referred to as ROC-FS curve associated to O.

The ROC-FS curve shows the trade-off achieved by the algorithm between the two objectives of setting high ranks (resp. low ranks) to relevant (resp. irrelevant) features. The ROC-FS curve associated to a perfect ranking (ranking all relevant features before irrelevant ones), reaches the global optimum (0, 1) (no irrelevant feature is selected, F R = 0, while all relevant features are selected, T R = 1).

The inspection of the ROC-FS curves shows whether a Feature Ranking algorithm consistently dominates over another one. The curve also gives a precise picture of the algorithm performance; the beginning of the curve shows whether the top ranked features are actually relevant, suggesting an iterative selection approach as in [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF]; the end of the curve shows whether the low ranked features are actually irrelevant, suggesting a recursive elimination procedure as in [START_REF] Guyon | Gene selection for cancer classification using support vector machines[END_REF].

Finally, three indicators of performance are defined on a feature ranking algorithm. The first indicator measures the probability for the best (top) ranked feature to be relevant, noted p b , reflecting the FR potential for a selection procedure. The second indicator measures the worst rank of a relevant feature, divided by d, noted p w , reflecting the FR potential for an elimination procedure. A third indicator is the area under the ROC-FS curve (AUC), taken as global indicator of performance (the optimal value 1 being obtained for a perfect ranking).

Experimental Analysis

This section reports on the experimental validation of the EFR algorithm described in section 3. The results obtained are compared to the state of the art [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF] using the cosine criterion. Both algorithms are compared using the ROC-FS curve and the performance measures introduced in section 4.4.

Experimental setting

A principled experimental validation has been conducted along the formal model defined in the previous section. The number d of features is set to 100, 200 and 500. The number r of relevant features is set to d/20, d/10 and d/5. The number n of examples is set to d/2, d and 2d. Linear and non-linear target concepts are considered (l = 1 or 2), with redundant (k = 1) and non-redundant (k = 0) feature sets. Last, the label noise e is set to 0, 5 and 10%, and the variance σ of the feature Gaussian noise is set to 0., .05 and .10.

In total 972 points (d, r, m, l, k, e, σ) of the problem space are considered. For each point, 20 datasets are independently generated. For each dataset, 15 independent ROGER runs are executed to construct an ensemble feature ranking O; the associated indicators p b , p w and the AU C are computed, and their median over all datasets with same order parameters is reported.

The reference results are obtained similarly from the cosine criterion [START_REF] Stoppiglia | Ranking a random feature for variable and feature selection[END_REF]: for each point of the problem space, 30 datasets are independently generated, the cosine-based feature ranking is evaluated from indicators p b , p w and the AU C, and the indicator median over all 30 datasets is reported.

Computational runtimes are measured on PC Pentium-IV; the algorithms are written in C++. ROGER is parameterized as a (20+200)-ES with self adaptive mutation, uniform crossover with rate .6, uniform initialization in [0, 1], and a maximum number of 50,000 fitness evaluations4 . The performance of the cosine criterion for linear and non-linear concepts is illustrated on Fig. 1, where the number d of features is 100, the number n of examples is 50, and the number of relevant features r is 10. The performance indicators are summarized in Table 1; complementary results, omitted due to space limitations, show similar trends for higher values of d.

Reference results

False

An outstanding performance is obtained for linear concepts. With twice as many features as examples, the probability p b of top ranking a relevant feature is around 90%. A graceful degradation of p b is observed as the noise rate increases, more sensitive to the label noise than to the feature noise. The relevant features are in the top p w features, where p w varies from 1/3 to roughly 1/2.

The performance steadily improves when the number of examples increases, p b reaching 100% and p w ranging from 1/5 to 1/3 for n = d.

In contrast, the cosine criterion behaves no better than random ranking for non-linear concepts; this is visible as the ROC-FS curve is close to the diagonal, and the situation does not improve by doubling the number of examples. The seemingly better performances for redundant features is explained as the true relevance rate models the probability of extracting at most r features among 2r ones. The performance of EFR is measured under the same conditions (Fig. 2, Table 2). EFR is clearly outperformed by the cosine criterion in the linear case. With twice as many features as examples, the probability p b of top ranking a relevant feature ranges between 35 and 50% (non redundant features), against 80 and 90% for the reference results. When the number of examples increases, p b increases as expected; but p b reaches 55 to 85% against 93 to 100% for the reference results.

Evolutionary Feature Ranking

In contrast, EFR does significantly better than the reference criterion in the non-linear case. Probability p b ranges around 30%, compared to 3% and 10% for the reference results with n = 50 and p b increases up to circa 55% when n increases up to 100.

With respect to computational cost, the cosine criterion is linear in the number of examples and in d log d wrt the number of features; the runtime is negligible in the experiment range.

The computational complexity of EFR is likewise linear in the number of examples. The complexity wrt the number of features d is more difficult to assess as d governs the size of the ROGER search space ([0, 1] 2d ). The total cost is less than 6 minutes (for 20 data sets × 15 ROGER runs) for n = 50, d = 100 and less than 12 minutes for n = 100, d = 100. The scalability is demonstrated in the experiment range as the cost for n = 50, d = 500 is less than 23 minutes.

Discussion and Perspectives

The contribution of this paper is based on the exploitation of the diverse hypotheses extracted along independent runs of evolutionary learning algorithms, here ROGER. This collection of hypotheses is exploited for ensemble-based feature ranking, extending the ensemble learning approach [START_REF] Breiman | Arcing classifiers[END_REF] to Feature Selection and Ranking [START_REF] Guyon | An introduction to variable and feature selection[END_REF].

As should have been expected, the performances of the Evolutionary Feature Ranker presented are not competitive with the state of the art for linear concepts. However, the flexibility of the hypothesis search space explored by ROGER allows for a breakthrough in (a limited case of) non-linear concepts, even when the number of examples is a fraction of the number of features.

These results are based on experimental validation over 9,000 datasets, conducted after a statistical model of Feature Ranking problems. Experiments on real-world data are underway to better investigate the EFR performance, and the limitations of the simple model of non-linear concepts proposed.

Further research will take advantage of multi-modal evolutionary optimization heuristics to extract diverse hypotheses from each ROGER run, hopefully reducing the overall computational cost of the approach and addressing more complex learning concepts (e.g. disjunctive concepts).

Fig. 1 .

 1 Fig. 1. Cosine criterion: Median ROC-FS curves over 30 training sets on Linear and Non-Linear concepts, with d = 100, n = d/2, r = d/10, Non redundant features.

Fig. 2 .

 2 Fig. 2. EFR performance: Median ROC-FS curves over 20 training sets on Linear and Non-Linear concepts, with d = 100, n = d/2, r = d/10, Non redundant features.

Table 1 .

 1 The cosine ranking criterion: Probability p b of top ranking a relevant feature, Median relative rank pw of the worst ranked relevant feature, Area under the ROC-FS curve.

	n d r e σ	p b pw AUC	p b pw AUC	p b pw AUC	p b pw AUC
	50 100 10 0 0	0.87 .33 0.920	0.97 .10 0.97	0.03 .93 0.49	0.17 .42 0.74
	50 100 10 0 0.1	0.9 .33 0.916	0.9 .10 0.97	0.03 .94 0.49	0.1 .45 0.74
	50 100 10 10% 0	0.87 .47 0.87	0.77 .16 0.95	0.1 .93 0.49	0.1 .44 0.73
	50 100 10 10% 0.1	0.8 .56 0.848	0.83 .17 0.95	0.03 .93 0.51	0.1 .44 0.75
	100 100 10 0 0	1 .18 0.97	1 .10 0.99	0 .91 0.53	0.23 .42 0.76
	100 100 10 0 0.1	1 .22 0.966	1 .10 0.99	0.03 .90 0.52	0.17 .41 0.75
	100 100 10 10% 0	0.93 .29 0.944	0.97 .10 0.98	0.17 .92 0.52	0.27 .47 0.76
	100 100 10 10% 0.1	0.93 .36 0.934	0.97 .10 0.97	0.1 .92 0.52	0.3 .46 0.74
		No redundancy Redundancy No redundancy Redundancy
		Linear concepts	Non Linear concepts

Table 2 .

 2 Ensemble Feature Ranking with ROGER: Probability p b of top ranking a relevant feature, Median relative rank pw of the worst ranked relevant feature, Area under the ROC-FS curve.

	n d r e σ	p b pw AUC	p b pw AUC	p b pw AUC	p b pw AUC
	50 100 10 0 0	0.5 .92 0.67	0.65 .29 0.86	0.20 .75 0.71	0.50 .26 0.88
	50 100 10 0 0.1	0.5 .80 0.63	0.75 .30 0.85	0.45 .82 0.68	0.25 .33 0.84
	50 100 10 10% 0	0.35 .94 0.61	0.45 .31 0.85	0.25 .81 0.68	0.30 .32 0.83
	50 100 10 10% 0.1	0.35 .89 0.62	0.60 .40 0.82	0.25 .88 0.61	0.35 .28 0.83
	100 100 10 0 0	0.85 .79 0.79	0.90 .23 0.92	0.55 .63 0.81	0.80 .20 0.92
	100 100 10 0 0.1	0.50 .74 0.77	0.95 .21 0.92	0.60 .72 0.78	0.50 .22 0.90
	100 100 10 10% 0	0.55 .77 0.72	0.65 .27 0.89	0.65 .78 0.77	0.50 .20 0.91
	100 100 10 10% 0.1	0.65 .82 0.75	0.45 .28 0.88	0.40 .72 0.75	0.40 .26 0.87
		No redundancy Redundancy No redundancy Redundancy
		Linear concepts	Non Linear concepts

Since any subset of r features selected among the r relevant ones plus the r redundant ones is sufficient to explain the target concept, the true relevance rate is set to 1. when at least r features have been selected among the true 2r ones.

The threshold s referred to in the target concept definition is set to r/2 in equation (1.1) (respectively r/12 in equation (1.2)), guaranteeing a balanced distribution of positive and negative examples. The additional difficulties due to skewed example distributions are not considered in this study.

All datasets and ROGER results are available at http://www.lri.fr/∼sebag/EFRDatasets and http://www.lri.fr/∼sebag/EFResults.
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