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Université Paris-Sud Orsay, France
{mary,antoine,sebag}@lri.fr

Abstract. A crucial issue for Machine Learning and Data Mining is
Feature Selection, selecting the relevant features in order to focus the
learning search. A relaxed setting for Feature Selection is known as Fea-
ture Ranking, ranking the features with respect to their relevance.
This paper proposes an ensemble approach for Feature Ranking, aggre-
gating feature rankings extracted along independent runs of an evolu-
tionary learning algorithm named ROGER. The convergence of ensem-
ble feature ranking is studied in a theoretical perspective, and a sta-
tistical model is devised for the empirical validation, inspired from the
complexity framework proposed in the Constraint Satisfaction domain.
Comparative experiments demonstrate the robustness of the approach
for learning (a limited kind of) non-linear concepts, specifically when
the features significantly outnumber the examples.

1 Introduction

Feature Selection (FS) is viewed as a major bottleneck of Supervised Machine
Learning and Data Mining [13, 10]. For the sake of the learning performance,
it is highly desirable to discard irrelevant features prior to learning, especially
when the number of available features significantly outnumbers the number of
examples, as is the case in Bio Informatics. FS can be formalized as a combinato-
rial optimization problem, finding the feature set maximizing the quality of the
hypothesis learned from these features. Global approaches to this optimization
problem, referred to as wrapping methods, actually evaluate a feature set by
running a learning algorithm [20, 13]; for this reason, the wrapping approaches
hardly scale up to large size problems. Other approaches combine GA-based
feature selection with ensemble learning [9].

A relaxed formalization of FS, concerned with feature ranking (FR) [10], is
presented in section 2. In the FR setting, one selects the top ranked features,
where the number of features to select is specified by the user [11] or analytically
determined [19].

A new approach, inspired from bagging and ensemble learning [4] and re-
ferred to as ensemble feature ranking (EFR) is introduced in this paper. EFR



aggregates several feature rankings independently extracted from the same train-
ing set; along the same lines as [4, 5], it is shown that the robustness of ensemble
feature ranking increases with the ensemble size (section 3).

In this paper, EFR is implemented using GA-based learning. Practically, we
used the ROGER algorithm (ROC-based Genetic Learner) first presented in [17],
that optimizes the so-called AUC criterion. The AUC, the area under the Re-
ceiver Operating Characteristics (ROC) curve has been intensively studied in
the ML literature since the late 90’s [3, 6, 14, 16]. The ensemble feature ranking
aggregates the feature rankings extracted from hypotheses learned along inde-
pendent ROGER runs.

The approach is validated using a statistical model inspired from the now
standard Constraint Satisfaction framework known as Phase Transition paradigm
[12]; this framework was first transported to Machine Learning by [8]. Seven or-
der parameters are defined for FS (section 4); the main originality of the model
compared to previous ones [10] is to account for (a limited kind of) non-linear
target concepts. A principled and extensive experimental validation along this
model demonstrates the good performance of Ensemble Feature Ranking when
dealing with non linear concepts (section 5). The paper ends with a discussion
and perspectives for further research.

2 State of the art

Without aiming at an exhaustive presentation (see [10] for a comprehensive
introduction), this section introduces some Feature Ranking algorithms. ROGER
is then described for the sake of completeness.

Notations used throughout the paper are first introduced. Only binary con-
cept learning is considered in the following. The training set E includes n ex-
amples, E = {(xi, yi), xi ∈ IRd, yi ∈ {−1, 1}, i = 1 . . . n}. The i-th example is
described from d continuous feature values; label yi indicates whether the exam-
ple pertains to the target concept (positive example) or not (negative example).

2.1 Univariate Feature Ranking

In univariate approaches, a score is associated to each feature independently from
the others. In counterpart for this simplicity, univariate approaches are hindered
by feature redundancy; indeed, features correlated to the target concept will be
ranked first, no matter whether they offer little additional information.

The feature score is computed after a statistical test, quantifying how well this
feature discriminates positive and negative examples. For instance the Mann-
Whitney test, reported to support the identification of differentially relevant fea-
tures [15], associates to the k-th feature the score defined as Pr(xi,k > xj,k | yi >
yj), i.e. the fraction of pairs of (positive, negative) examples such that feature k
ranks the positive example higher than the negative one. This criterion coincides
with the Wilcoxon rank sum test, which is equivalent to the AUC criterion [21].



2.2 Univariate FR + Gram Schmidt orthogonalization

A sophisticated extension of univariate approaches, based on an iterative selec-
tion process, is presented in [19]. The score associated to each feature is propor-
tional to its cosine with the target concept:

score(k) =

∑n
i=1 xi,k .yi√∑n
i=1 x

2
i,k

The two-step iterative process i) determines the current feature k maximizing
the above score; ii) projects all remaining features and the target concept on
the hyperplane perpendicular to feature k. The stopping criterion is based on an
analytic study of the random variable defined as the cosine of the target concept
with a random uniform feature.

Though this approach addresses the limitations of univariate approaches with
respect to redundant features, it still suffers from the myopia of greedy search
strategies (with no backtrack).

2.3 ML-based Approaches

As mentioned earlier on, an alternative to univariate approaches is to exploit
the output of a machine learning algorithm, which assumedly takes into account
every feature one by one in relation with the other ones [13].

When learning a linear hypothesis (h(x) =
∑d
i=1 wixi [+b]), one associates

a score to each feature k, namely the square of the weight wk; the higher the
score, the more relevant the feature is in combination with the other features.

A two-step iterative process, termed SVM-Recursive Feature Elimination, is
proposed by [11]. In each step, i) a linear SVM is learned, the features are ranked
by decreasing absolute weight; ii) the worst features are removed.

Another approach, based on linear regression [1], uses a randomized approach
for better robustness. Specifically, a set of linear hypotheses are extracted from
independent subsamples of the training set, and the score of the k-th feature
averages the feature weight over all hypotheses learned from these subsamples.
However, as subsamples must be significantly smaller than the training set in or-
der to provide diverse hypotheses, this approach might be limited in application
to domains with few available examples, e.g. DNA array mining.

Another work, more loosely related, is concerned with learning an ensemble
of GA-based hypotheses extracted along independent runs [9], where: i) the
underlying GA-inducer looks for good feature subsets; and ii) the quality of a
feature subset is measured from the accuracy of a k-nearest neighbor or euclidean
decision table classification process, based on these features.

2.4 ROGER (ROC-based Genetic learneR)

ROGER is an evolutionary learning algorithm first presented in [18, 17]. Using
elitist evolution strategies ((µ + λ)-ES), it determines hypotheses maximizing



the Area Under the ROC curve (AUC) [3, 14]. As already mentioned, the AUC
criterion was shown equivalent to the Wilcoxon statistics [21].

ROGER allows for constructing a limited kind of non linear hypotheses.
More precisely, a hypothesis h measures the weighted L1 distance to some
point c in the instance space IRd. Formally, to each genetic individual Z =
(w1, . . . , wd, c1, . . . , cd) is associated the hypothesis hZ defined as:

hZ : x = (x1, . . . , xd) ∈ IRd 7→ IR, hZ(x) =

d∑

i=1

wi × |xi − ci|

This way, ROGER explores search space IR2d, with size linear in the number
of features while possibly detecting some non-linearities in the data. ROGER
maximizes the fitness function F , where F(Z) is computed as the Wilcoxon
statistics associated to hZ (F(Z) = Pr(hZ(xi) > hZ(xj)|yi > yj)).

3 Ensemble Feature Ranking

This section describes an ensemble approach to feature ranking which will be
implemented using the ROGER algorithm above. The properties of ensemble
feature ranking are first examined from a theoretical perspective.

3.1 Notations

Inspired from ensemble learning [4] and randomized algorithms [5], the idea is to
combine independent feature rankings into a hopefully more robust feature rank-
ing. Formally, let Ot denote a feature ranking (permutation on {1, ..d}). With
no loss of generality, we assume that features are enumerated with decreasing
relevance (e.g. feature i is more relevant than feature j iff i < j).

Let O1, . . . , OT be T independent, identically distributed feature rankings.
For each feature pair (i, j) let Ni,j denote the number of Ot that rank feature
i before feature j and let Yi,j be true iff Ni,j >

T
2 . We start by showing that a

feature ranking can be constructed from variables Yi,j , referred to as ensemble
feature ranking (EFR); the EFR quality is then studied.

3.2 Consistent Ensemble Feature Ranking

In order to construct an ensemble feature ranking, variables Yi,j must define a
transitive relation, i.e. Yi,k is true if Yi,j and Yj,k are true; when this holds for
all i, j, k, feature rankings O1, . . . OT are said consistent.

The swapping of feature pairs (i, j) is observed from the boolean random
variables Xi,j (Xi,j(Ot) = ((Ot(i) < Ot(j)) 6= (i < j)). Inspired from [16], it
is assumed that variables Xij are independent Bernoulli random variables with
same probability p. Although the independence assumption is certainly not valid
(see discussion in [16]), it allows for an analytical study of EFR, while rigorously
combining permutations raises more complex mathematical issues.



Lemma. Let p = Pr((Ot(i) < Ot(j)) 6= (i < j)) denote the swapping rate of
feature rankings Ot, and assume that p = 1

2 − ε, ε > 0, (that is, each ranking
does a little better than random guessing wrt every pair of attributes). Then

Pr(Yi,j false | i < j) ≤ e−2ε2T

Proof. Follows from Hoeffding’s inequality.

Proposition 1. Under the same assumption, O1, . . . OT are consistent with prob-
ability 1 as T goes to infinity.
Proof. It must be noted first that from Bayes rule, Pr(i < j | Yi,j true ) =
Pr(Yi,j true | i < j) (as Pr(i < j) = Pr(Yi,j true ) = 1

2 ).
Assume that Yi,j and Yj,k are true. After the working assumption that the Xi,j

are independent,

Pr(i < j, j < k | Yi,j ∧ Yj,k true ) = Pr(i < j | Yi,j true) · Pr(j < k | Yj,k true)

Therefore after the lemma, Yi,j and Yj,k true imply that i < k and hence that
Yi,k is true, with probability going exponentially fast to 1 as T goes to infinity.

3.3 Convergence

Assuming the consistency of the feature rankings O1, . . . , OT , the ensemble fea-
ture ranking O∗ is naturally defined, counting for each feature i the number of
features j that are ranked before i by over half the Ot (O∗(i) = #{Yj,i true, j =
1..d}, where #A is meant for the size of set A).

The convergence of ensemble feature ranking is studied with respect to the
probability of misranking a feature i by at most τ indices (Pr(|O∗(i)− i| ≥ τ)).
Again, for the simplicity of this preliminary analytical study, it is assumed that
the misranking probability does not depend on the “true” rank of feature1 i.

Proposition 2. Let p∗ denote the probability for the ensemble feature ranking to
to swap two features, p∗ = Pr(Yij 6= (i < j)), and let τ = (d− 1)p∗ + ε, ε > 0.

Then Pr(|O∗(i)− i| ≥ τ) ≤ e−
2ε2

d−1

Proof. Feature i is misranked by at least τ indices if there exists at least τ
features j in the remaining d− 1 features, such that Yij 6= (i < j).
Let B(d−1, p∗) denote the binomial distribution of parameters d−1 and p∗, then
Pr(|O∗(i)− i| ≥ τ) < Pr(B(d− 1, p∗) ≥ τ), where after Hoeffding’s inequality,

Pr(B(d− 1, p∗)− (d− 1)p∗ > ε) ≤ e−
2ε2

d−1

1 Clearly, this assumption does not hold, as the probability of misranking top or
bottom features is biased compared to other features. However, this preliminary
study focuses on the probability to largely misrank features, e.g. the probability of
missing a top 10 feature when discarding the 50% features ranked at the bottom.



The good asymptotic behavior of ensemble feature ranking then follows from
the fact that: i) the swapping rate p∗ of the EFR decreases with the size T of
the ensemble, exponentially amplifying the advantage of the elementary feature
ranking over the random decision [5]; ii) the distribution of the EFR misranking
error is centered on p∗ × (d− 1), d being the total number of features.

4 Statistical Validation Model

Before proceeding to experimental validation, it must be noted that the perfor-
mance of a feature selection algorithm is commonly computed from the perfor-
mance of a learning algorithm based on the selected features, which makes it
difficult to compare standalone FS algorithms.

To sidestep this difficulty, a statistical model is devised, enabling the di-
rect evaluation of the proposed FR approach. This model is inspired from the
statistical complexity analysis paradigm developed in the Constraint Satisfac-
tion community [12], and first imported in the Machine Learning community by
Giordana and Saitta [8]. This model is then discussed wrt [10].

4.1 Principle

In the statistical analysis paradigm, the problem space is defined by a set of
order parameters (e.g. the constraint density and tightness in CSPs [12]). The
performance of a given algorithm is viewed as a random variable, observed in
the problem space. To each point in the problem space (values of the order pa-
rameters), one associates the average behavior of the algorithm over all problem
instances with same value of the order parameters.

This paradigm has proved insightful in studying the scalability of promi-
nent learning algorithms, and detecting unexpected “failure regions” where the
performance abruptly drops to that of random guessing [2].

4.2 Order parameters

Seven order parameters are defined for Feature Selection:

– The number n of examples.

– The total number d of features.

– The number r of relevant features. A feature is said to be relevant iff it is
involved in the definition of the target concept, see below.

– The type l of target concept, linear (l = 1) or non-linear (l = 2), with

l = 1 : y(x) = 1 iff (
∑r

i=1 xi > s) (1.1)
l = 2 : y(x) = 1 iff (

∑r
i=1(xi − .5)2 < s) (1.2)



– The redundancy (k = 0 or 1) of the relevant features. Practically, redundancy
(k = 1) is implemented by replacing r of the irrelevant features, by linear
random combinations of the r relevant ones2.

– The noise rate e in the class labels: the class associated to each example is
flipped with probability e.

– The noise rate σ in the dataset feature values: each feature value is perturbed
by adding a Gaussian noise drawn after N (0, σ).

4.3 Artificial problem generator

For each point (n, d, r, l, k, e, σ) in the problem space, independent instances of
learning problems are generated after the following distribution.

All d features of all n examples are drawn uniformly in [0, 1]. The label of
each example is computed as in equation (1.1) (for l = 1) or equation (1.2)
(for l = 2)3. In case of redundancy (k = 1), r irrelevant features are selected
and replaced by linear combinations of the r relevant ones. Last, the example
labels are randomly flipped with probability e, and the features are perturbed
by addition of a Gaussian noise with variance σ.

The above generator differs from the generator proposed in [10] in several
respects. [10] only considers linear target concepts, defined from a linear combi-
nation of the relevant features; this way, the target concept differentially depends
on relevant features, while all features have the same relevance in our model. In
contrast, the proposed model investigates linear as well as a (limited kind of)
non-linear concepts.

4.4 Format of the results

Feature rankings are evaluated and compared using a ROC-inspired setting.
To each index i ∈ {1, d} is associated the fraction of true relevant features
(respectively, the fraction of irrelevant, or falsely relevant, features) with rank
higher than i, denoted TR(i) (resp. FR(i)). The curve {(FR(i), TR(i)), i =
1, . . . , d} is referred to as ROC-FS curve associated to O.

The ROC-FS curve shows the trade-off achieved by the algorithm between
the two objectives of setting high ranks (resp. low ranks) to relevant (resp.
irrelevant) features. The ROC-FS curve associated to a perfect ranking (ranking
all relevant features before irrelevant ones), reaches the global optimum (0, 1)
(no irrelevant feature is selected, FR = 0, while all relevant features are selected,
TR = 1).

2 Since any subset of r features selected among the r relevant ones plus the r redundant
ones is sufficient to explain the target concept, the true relevance rate is set to 1.
when at least r features have been selected among the true 2r ones.

3 The threshold s referred to in the target concept definition is set to r/2 in equation
(1.1) (respectively r/12 in equation (1.2)), guaranteeing a balanced distribution of
positive and negative examples. The additional difficulties due to skewed example
distributions are not considered in this study.



The inspection of the ROC-FS curves shows whether a Feature Ranking
algorithm consistently dominates over another one. The curve also gives a precise
picture of the algorithm performance; the beginning of the curve shows whether
the top ranked features are actually relevant, suggesting an iterative selection
approach as in [19]; the end of the curve shows whether the low ranked features
are actually irrelevant, suggesting a recursive elimination procedure as in [11].

Finally, three indicators of performance are defined on a feature ranking al-
gorithm. The first indicator measures the probability for the best (top) ranked
feature to be relevant, noted pb, reflecting the FR potential for a selection proce-
dure. The second indicator measures the worst rank of a relevant feature, divided
by d, noted pw, reflecting the FR potential for an elimination procedure.
A third indicator is the area under the ROC-FS curve (AUC), taken as global
indicator of performance (the optimal value 1 being obtained for a perfect rank-
ing).

5 Experimental Analysis

This section reports on the experimental validation of the EFR algorithm de-
scribed in section 3. The results obtained are compared to the state of the art
[19] using the cosine criterion. Both algorithms are compared using the ROC-FS
curve and the performance measures introduced in section 4.4.

5.1 Experimental setting

A principled experimental validation has been conducted along the formal model
defined in the previous section. The number d of features is set to 100, 200 and
500. The number r of relevant features is set to d/20, d/10 and d/5. The number
n of examples is set to d/2, d and 2d. Linear and non-linear target concepts are
considered (l = 1 or 2), with redundant (k = 1) and non-redundant (k = 0)
feature sets. Last, the label noise e is set to 0, 5 and 10%, and the variance σ of
the feature Gaussian noise is set to 0., .05 and .10.

In total 972 points (d, r,m, l, k, e, σ) of the problem space are considered.
For each point, 20 datasets are independently generated. For each dataset, 15
independent ROGER runs are executed to construct an ensemble feature ranking
O; the associated indicators pb, pw and the AUC are computed, and their median
over all datasets with same order parameters is reported.

The reference results are obtained similarly from the cosine criterion [19]: for
each point of the problem space, 30 datasets are independently generated, the
cosine-based feature ranking is evaluated from indicators pb, pw and the AUC,
and the indicator median over all 30 datasets is reported.

Computational runtimes are measured on PC Pentium-IV; the algorithms are
written in C++. ROGER is parameterized as a (20+200)-ES with self adaptive
mutation, uniform crossover with rate .6, uniform initialization in [0, 1], and a
maximum number of 50,000 fitness evaluations4.

4 All datasets and ROGER results are available at
http://www.lri.fr/∼sebag/EFRDatasets and http://www.lri.fr/∼sebag/EFResults.



5.2 Reference results
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Fig. 1. Cosine criterion: Median ROC-FS curves over 30 training sets on Linear and
Non-Linear concepts, with d = 100, n = d/2, r = d/10, Non redundant features.

Table 1. The cosine ranking criterion: Probability pb of top ranking a relevant feature,
Median relative rank pw of the worst ranked relevant feature, Area under the ROC-FS
curve.

n d r e σ

50 100 10 0 0
50 100 10 0 0.1
50 100 10 10% 0
50 100 10 10% 0.1

100 100 10 0 0
100 100 10 0 0.1
100 100 10 10% 0
100 100 10 10% 0.1

pb pw AUC

0.87 .33 0.920
0.9 .33 0.916
0.87 .47 0.87
0.8 .56 0.848

1 .18 0.97
1 .22 0.966

0.93 .29 0.944
0.93 .36 0.934

pb pw AUC

0.97 .10 0.97
0.9 .10 0.97
0.77 .16 0.95
0.83 .17 0.95

1 .10 0.99
1 .10 0.99

0.97 .10 0.98
0.97 .10 0.97

pb pw AUC

0.03 .93 0.49
0.03 .94 0.49
0.1 .93 0.49
0.03 .93 0.51

0 .91 0.53
0.03 .90 0.52
0.17 .92 0.52
0.1 .92 0.52

pb pw AUC

0.17 .42 0.74
0.1 .45 0.74
0.1 .44 0.73
0.1 .44 0.75

0.23 .42 0.76
0.17 .41 0.75
0.27 .47 0.76
0.3 .46 0.74

No redundancy Redundancy No redundancy Redundancy
Linear concepts Non Linear concepts

The performance of the cosine criterion for linear and non-linear concepts is
illustrated on Fig. 1, where the number d of features is 100, the number n of
examples is 50, and the number of relevant features r is 10. The performance
indicators are summarized in Table 1; complementary results, omitted due to
space limitations, show similar trends for higher values of d.

An outstanding performance is obtained for linear concepts. With twice as
many features as examples, the probability pb of top ranking a relevant feature is
around 90%. A graceful degradation of pb is observed as the noise rate increases,
more sensitive to the label noise than to the feature noise. The relevant features
are in the top pw features, where pw varies from 1/3 to roughly 1/2.

The performance steadily improves when the number of examples increases,
pb reaching 100% and pw ranging from 1/5 to 1/3 for n = d.



In contrast, the cosine criterion behaves no better than random ranking for
non-linear concepts; this is visible as the ROC-FS curve is close to the diagonal,
and the situation does not improve by doubling the number of examples. The
seemingly better performances for redundant features is explained as the true
relevance rate models the probability of extracting at most r features among 2r
ones.

5.3 Evolutionary Feature Ranking
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Fig. 2. EFR performance: Median ROC-FS curves over 20 training sets on Linear and
Non-Linear concepts, with d = 100, n = d/2, r = d/10, Non redundant features.

Table 2. Ensemble Feature Ranking with ROGER: Probability pb of top ranking a
relevant feature, Median relative rank pw of the worst ranked relevant feature, Area
under the ROC-FS curve.

n d r e σ

50 100 10 0 0
50 100 10 0 0.1
50 100 10 10% 0
50 100 10 10% 0.1

100 100 10 0 0
100 100 10 0 0.1
100 100 10 10% 0
100 100 10 10% 0.1

pb pw AUC

0.5 .92 0.67
0.5 .80 0.63
0.35 .94 0.61
0.35 .89 0.62

0.85 .79 0.79
0.50 .74 0.77
0.55 .77 0.72
0.65 .82 0.75

pb pw AUC

0.65 .29 0.86
0.75 .30 0.85
0.45 .31 0.85
0.60 .40 0.82

0.90 .23 0.92
0.95 .21 0.92
0.65 .27 0.89
0.45 .28 0.88

pb pw AUC

0.20 .75 0.71
0.45 .82 0.68
0.25 .81 0.68
0.25 .88 0.61

0.55 .63 0.81
0.60 .72 0.78
0.65 .78 0.77
0.40 .72 0.75

pb pw AUC

0.50 .26 0.88
0.25 .33 0.84
0.30 .32 0.83
0.35 .28 0.83

0.80 .20 0.92
0.50 .22 0.90
0.50 .20 0.91
0.40 .26 0.87

No redundancy Redundancy No redundancy Redundancy
Linear concepts Non Linear concepts

The performance of EFR is measured under the same conditions (Fig. 2,
Table 2). EFR is clearly outperformed by the cosine criterion in the linear case.
With twice as many features as examples, the probability pb of top ranking a
relevant feature ranges between 35 and 50% (non redundant features), against
80 and 90% for the reference results. When the number of examples increases,



pb increases as expected; but pb reaches 55 to 85% against 93 to 100% for the
reference results.

In contrast, EFR does significantly better than the reference criterion in the
non-linear case. Probability pb ranges around 30%, compared to 3% and 10%
for the reference results with n = 50 and pb increases up to circa 55% when n
increases up to 100.

With respect to computational cost, the cosine criterion is linear in the num-
ber of examples and in d log d wrt the number of features; the runtime is negli-
gible in the experiment range.

The computational complexity of EFR is likewise linear in the number of
examples. The complexity wrt the number of features d is more difficult to
assess as d governs the size of the ROGER search space ([0, 1]2d). The total cost
is less than 6 minutes (for 20 data sets × 15 ROGER runs) for n = 50, d = 100
and less than 12 minutes for n = 100, d = 100. The scalability is demonstrated
in the experiment range as the cost for n = 50, d = 500 is less than 23 minutes.

6 Discussion and Perspectives

The contribution of this paper is based on the exploitation of the diverse hy-
potheses extracted along independent runs of evolutionary learning algorithms,
here ROGER. This collection of hypotheses is exploited for ensemble-based fea-
ture ranking, extending the ensemble learning approach [4] to Feature Selection
and Ranking [10].

As should have been expected, the performances of the Evolutionary Fea-
ture Ranker presented are not competitive with the state of the art for linear
concepts. However, the flexibility of the hypothesis search space explored by
ROGER allows for a breakthrough in (a limited case of) non-linear concepts,
even when the number of examples is a fraction of the number of features.

These results are based on experimental validation over 9,000 datasets, con-
ducted after a statistical model of Feature Ranking problems. Experiments on
real-world data are underway to better investigate the EFR performance, and
the limitations of the simple model of non-linear concepts proposed.

Further research will take advantage of multi-modal evolutionary optimiza-
tion heuristics to extract diverse hypotheses from each ROGER run, hopefully
reducing the overall computational cost of the approach and addressing more
complex learning concepts (e.g. disjunctive concepts).
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