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Abstract

Insect-borne diseases are diseases carried by insects affecting humans, animals or plants. They have
the potential to generate massive outbreaks such as the Zika epidemic in 2015-2016 mostly distributed
in the Americas, the Pacific and Southeast Asia, and the multi-foci outbreak caused by the bacterium
Xylella fastidiosa in Europe in the 2010s. In this article, we propose and analyze the behavior of a
spatially-explicit compartmental model adapted to pathosystems with fixed hosts and mobile vectors
disseminating the disease. The behavior of this model based on a system of partial differential equations
is complementarily characterized via a theoretical study of its equilibrium states and a numerical study
of its transitive phase using global sensitivity analysis. The results are discussed in terms of implications
concerning the surveillance and control of the disease over a medium-to-long temporal horizon.

Keywords. Equilibrium analysis; Compartmental model; Global sensitivity analysis; Partial differential
equations; Transitive phase; Xylella fastidiosa.

1 Introduction

A large class of diseases are indirectly transmitted between hosts via insects, which play the role of vectors
transporting the pathogens causing the diseases of interest from infectious hosts to susceptible hosts. For
instance, malaria, Zika and dengue fever are transmitted by mosquitoes, Lyme disease by ticks, sharka
by aphids, and Pierce’s disease by xylem-feeding leafhoppers. For some of these examples, mathematical
dynamic models have provided insights into how to improve disease control, potentially leading to disease
eradication over large spatial territories and time periods; see e.g. [25].

In this article, we are interested in a spatially-explicit compartmental model adapted to pathosystems
with fixed hosts (typically, plants) and mobile vectors disseminating the disease. Compartmental models
describe the dynamics of population fractions in specific disease states such as susceptible, exposed, infec-
tious and recovered. They have been exploited to derive properties of idealized pathosystems [6, 13, 19], to
search for efficient surveillance, control or eradication strategies [14, 26], to infer epidemiological parame-
ters, reconstruct past dynamics and predict disease propagation [1, 3, 30].

The specification of the model considered in this article was partly driven by the case of Xylella
fastidiosa, a bacterium which is pathogenic for a large range of plants and transmitted from infectious
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plants to susceptible plants via xylem-feeding leafhoppers [23]. This plant pathogen was recently detected
in southeastern France (in July 2015) and has the potential to spread beyond its current spatial distribution
[1, 5, 10, 17]. We built a model grounded on differential equations and explicitly handling both the host
population and the vector population. This model will be used in further studies as a basis for estimating
epidemiological parameters from surveillance data and assessing diverse control strategies, which may
target the hosts, the vectors or both agents. However, to be able to properly interpret the output of these
future analyses, we investigate in this article the properties of the above-mentioned model. We specifically
aim to understand the impact of parameters on the behaviour of the model, in particular its equilibrium
states, if any, and its transitive phase.

In what follows, we present the model and derive its equilibrium states in Section 2. The theoretical
analysis of equilibrium states is made in two contexts: (i) when the vector population is considered as
permanent, and (ii) when the vector population has a cyclic annual dynamics consisting of an emergence
stage at the beginning of the year, a mortality stage at the end of the year and no adult-to-offspring
transmission of the pathogen from one year to the following one. The latter context likely corresponds to
the situation of vectors of Xylella fastidiosa in France. In Section 3, we numerically explore the impact
of parameters on the transitive phase of the model by adapting tools of sensitivity analysis [27, 28] to the
spatio-temporal framework that we deal with. Finally, we discuss implications of our results in Section 4.

2 A vector-host epidemic model and its equilibrium states

Partial differential equations are common tools for modeling biological invasions [20, 29]. Hereafter, we
focus on the invasion of a pathogen in a population of fixed hosts (plants for example) that is transmitted
by vectors (insects for example), and we propose compartmental models detailing the transmission process,
which is at the core of any epidemiological model of infectious diseases.

2.1 A model M1 with coupled partial differential equations

The following epidemic model is based on coupled partial differential equations (PDEs), describing the
interaction between the hosts and the vectors. The PDE system, denoted M1, consists of two epidemio-
logical sub-models indexed by time and space: a Susceptible-Exposed-Infected (SEI) model for the hosts
and a Susceptible-Infected (SI) model for the vectors. Let Sh(t, x), Eh(t, x) and Ih(t, x) be the numbers of
susceptible, exposed and infected hosts, respectively, at time t > 0 and location x ∈ Ω, where Ω ⊂ Rd is the
studied spatial domain (d ∈ N∗; typically d = 2). Let Sv(t, x) and Iv(t, x) be the numbers of susceptible
and infected vectors. The PDE system is specified as follows:

∂tSh(t, x) = −βv(x)Sh(t, x)Iv(t, x) (2.1)

∂tEh(t, x) = βv(x)Sh(t, x)Iv(t, x)− εEh(t, x) (2.2)

∂tIh(t, x) = εEh(t, x) (2.3)

∂tSv(t, x) = ∆(D(x)Sv(t, x))− βh(x)Sv(t, x)Ih(t, x) (2.4)

∂tIv(t, x) = ∆(D(x)Iv(t, x)) + βh(x)Sv(t, x)Ih(t, x) (2.5)
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with the following boundary and initial conditions:

∂n(D(x)Sv(t, x)) = ∂n(D(x)Iv(t, x)) = 0 for all t > 0, x ∈ ∂Ω (2.6)

(Sh(0, x), Eh(0, x), Ih(0, x), Sv(0, x), Iv(0, x)) = (S0
h(x), E0

h(x), I0
h(x), S0

v(x), I0
v (x)) for all x ∈ Ω,

(2.7)

where S0
h, E0

h, I0
h, S0

v and I0
v are spatial functions to be specified, parameter βv gives the contact rate

(number of contacts per unit of time) of a vector with hosts, βh the contact rate of a host with vectors,
D(x) is the coefficient of diffusion of vectors at location x, and ε−1 is the expected duration of the exposed
(i.e. latency) period.

Note that by construction, there exists a constant C∗ > 0 and a spatial function N such that for all
times t > 0:

Sh(t, x) + Eh(t, x) + Ih(t, x) = Sh(0, x) + Eh(0, x) + Ih(0, x) = N(x), (2.8)ˆ
Ω

(Sv(t, x) + Iv(t, x)) dx =

ˆ
Ω

(Sv(0, x) + Iv(0, x)) dx = C∗. (2.9)

Remark 1. These two invariant quantities are, respectively, the total number of hosts at x (N(x)) and
the total number of vectors in Ω (C∗).

Note also that up to a redefinition of the function Sv(t, x), Iv(t, x) and βv(x) by sv(t, x) = D(x)S(t, x), iv(t, x) =

D(x)I(t, x) and β̄v(x) = βv(x)
D(x) , for t > 0 and x ∈ Ω the system (2.1)-(2.5) can be reformulated as

∂tSh(t, x) = −β̄v(x)Sh(t, x)iv(t, x) (2.10)

∂tEh(t, x) = β̄v(x)Sh(t, x)iv(t, x)− εEh(t, x) (2.11)

∂tIh(t, x) = εEh(t, x) (2.12)

∂tsv(t, x) = D(x)∆sv(t, x)− βh(x)sv(t, x)Ih(t, x) (2.13)

∂tiv(t, x) = D(x)∆iv(t, x) + βh(x)sv(t, x)Ih(t, x) (2.14)

with the following boundary and initial conditions:

∂nsv(t, x) = ∂niv(t, x) = 0 for all t > 0, x ∈ ∂Ω (2.15)

(Sh(0, x), Eh(0, x), Ih(0, x), sv(0, x), iv(0, x)) = (S0
h(x), E0

h(x), I0
h(x),

S0
v(x)

D(x)
,
I0
v (x)

D(x)
) for all x ∈ Ω,

(2.16)

2.2 A reduced version of the model M1

By using Equation (2.8) and introducing the reduced variables sh = Sh
N and ih = Ih

N , for t > 0 and x ∈ Ω
we can rewrite the model (2.10)–(2.14) in the following way:

∂tsh(t, x) = −β̄v(x)sh(t, x)iv(t, x) (2.17)

∂tih(t, x) = ε(1− ih(t, x)− sh(t, x)) (2.18)

∂tsv(t, x) = D(x)∆sv(t, x)− βh(x)N(x)sv(t, x)ih(t, x) (2.19)

∂tiv(t, x) = D(x)∆iv(t, x) + βh(x)N(x)sv(t, x)ih(t, x) (2.20)
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Since sh satisfies (2.17), by integrating with respect to time we get:

sh(t, x) = sh(0, x) exp

(
−β̄v(x)

ˆ t

0
iv(τ, x) dτ

)
. (2.21)

Furthermore, by integrating (2.18), we also deduce that:

ih(t, x) = (1− e−εt) + ih(0, x)e−εt − ε
ˆ t

0
eε(τ−t)sh(τ, x) dτ.

Thus, plugging (2.21) in the above equation we end up with:

ih(t, x) = (1− e−εt) + ih(0, x)e−εt − εsh(0, x)

ˆ t

0
eε(τ−t) exp

(
−β̄v(x)

ˆ τ

0
iv(τ

′, x) dτ ′
)
dτ, (2.22)

which in turn leads to the following coupled system of PDE (by plugging (2.22) in (2.19) and (2.20), and
by using (2.8)):

∂tsv(t, x)−D(x)∆sv(t, x) =

−N(x)βh(x)sv(t, x)

1− sh(0, x)e−εt − εsh(0, x)

ˆ t

0
eε(τ−t) e

−β̄v(x)

ˆ τ

0
iv(τ

′, x) dτ ′

dτ

 (2.23)

∂tiv(t, x)−D(x)∆iv(t, x) =

N(x)βh(x)sv(t, x)

1− sh(0, x)e−εt − εsh(0, x)

ˆ t

0
eε(τ−t) e

−β̄v(x)

ˆ τ

0
iv(τ

′, x) dτ ′

dτ

 .

Finally, by adding the two equations we can check that sv(t, x) + iv(t, x) satisfies the following standard
diffusion equation:

∂ta(t, x)−D(x)∆a(t, x) = 0 ∀t > 0, x ∈ Ω (2.24)

∂na(t, x) = 0 ∀t > 0, x ∈ ∂Ω (2.25)

a(0, x) = sv(0, x) + iv(0, x) ∀x ∈ Ω. (2.26)

Thus, by introducing the following notation:

f(t, x, iv(t, x)) := N(x)βh(x)

1− sh(0, x)e−εt − εsh(0, x)

ˆ t

0
eε(τ−t) e

−β̄v(x)

ˆ τ

0
iv(τ

′, x) dτ ′

dτ

 ,

we can further reduce the system (2.10)–(2.14) to the following single equation:

∂tiv(t, x)−D(x)∆iv(t, x) = (a(t, x)− iv(t, x))f(t, x, iv(t, x)), (2.27)

where the function a is the solution of the diffusion-equation system (2.24)–(2.26).
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2.3 Analysis of the system M1

We first observe that for a given positive pair (N(x), C∗) (i.e. N(x) ≥ 0, C∗ > 0), the system M1 has
only two positive equilibria that satisfy the invariance conditions (2.8) and (2.9). Moreover, one solution
is globally unstable and the other one is globally stable. Namely, we have:

Proposition 2.1. Let Ω ⊂ Rd be a bounded smooth domain (at least C1) and let N ∈ C(Ω̄) be a positive
function and C∗ a positive constant, let us also denote |Ω|µ the measure of Ω with respect to the positive
measure dµ = dx

D(x) . Then (N(x), 0, 0, C∗

|Ω|µD(x) , 0) and (0, 0, N(x), 0, C∗

|Ω|µD(x)) are the only non negative

stationary solution of the system (2.1)–(2.5) satisfying the invariance conditions (2.8) and (2.9) and the
boundary condition (2.6). Moreover the stationary state (N(x), 0, 0, C∗

|Ω|µD(x) , 0) is globally unstable whereas

the state (0, 0, N(x), 0, C∗

|Ω|µD(x)) is globally stable.

The proof of this proposition uses rather standard elementary analysis, which can be found in the
appendix section. Next, we derive an important convergence property of the system. Namely, we show the
exponential convergence of the trajectories to its equilibria.

Proposition 2.2. Let Ω ⊂ Rd be a bounded smooth domain and let (Sh, Eh, Ih, Sv, Iv) be a solution of the
system (2.1)–(2.5) with boundary (2.6) and a smooth initial condition (S0

h(x), E0
h(x), I0

h(x), s0
v(x), i0v(x)).

Then there exits positive constants C and λ such that

i) Sh(t, x) ≤ Ce−λt,

ii) Eh(t, x) ≤ Ce−λt,

iii) sv(t, x) ≤ Ce−λt,

iv) ‖Ih − S0
h − E0

h − I0
h‖∞ ≤ Ce−λt,

v)

∥∥∥∥iv −
´

Ω s
0
v(x) + i0v(x) dx

|Ω|

∥∥∥∥
2

≤ Ce−λt.

Proof. Observe that thanks to (2.21), (2.22) and (2.8), we can deduce ii) and iv) from i) and v). Thus, we
only have to prove i), iii) and v). To prove such behaviour note that it is sufficient to show that iii) and v)
holds as well for the redefined function sv(t, x) and iv(t, x). We will see also that v) is a consequence of iii).
Indeed, let us look further at the properties of f and let us recall that N(x) := Sh(x)0 + Eh(x)0 + I0

h(x).
We can easily check that for all t ≥ 0 and x, we have

N(x)βh(x)i0(x) ≤ f(t, x, iv(t, x)) ≤ N(x)βh(x).

Thus going back to (2.23), we deduce from the above inequality and a straightforward application of the
parabolic maximum principle that

Sm(t, x) ≤ sv(t, x) ≤ SM (t, x),

where Sm and SM respectively satisfy:

∂tSm(t, x)−D(x)∆Sm(t, x) = Sm(t, x)N(x)βh(x) ∀t > 0, x ∈ Ω (2.28)

∂nSm(t, x) = 0 ∀t > 0, x ∈ ∂Ω (2.29)

Sm(0, x) = s0
v(x) ∀x ∈ Ω, (2.30)
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and

∂tSM (t, x)−D(x)∆SM (t, x) = SM (t, x)i0(x)N(x)βh(x) ∀t > 0, x ∈ Ω (2.31)

∂nSM (t, x) = 0 ∀t > 0, x ∈ ∂Ω (2.32)

SM (0, x) = s0
v(x) ∀x ∈ Ω. (2.33)

From standard parabolic theory, we know that

SM (t, x) ≤ C(s0
v)e
−λ1tϕ1(x),

with (λ1, ϕ1) solution of the spectral problem

D(x)∆ϕ1(x)− i0(x)N(x)βh(x)ϕ1(x) + λ1ϕ1(x) = 0 for x ∈ Ω (2.34)

∂nϕ1(x) = 0 ∀x ∈ ∂Ω. (2.35)

Note that the exponential behaviour on SM implies that iii) holds.

Remark 2. λ1 can be expressed through some various equivalent variational formula. In particular, for
the positive measure dµ(x) = dx

D(x) we have

λ1 := inf
ϕ∈H1(Ω)

ˆ
Ω
D(x)|∇ϕ(x)|2 dµ(x) +

ˆ
Ω
i0(x)N(x)βh(x)ϕ2(x) dµ(x)

ˆ
Ω
ϕ2(x) dµ(x)

.

From this variational formula, we can clearly see the monotone dependence of λ1 with respect to the
parameter i0, N(x) and βh but the dependence of λ1 with respect to the diffusion D(x) is still unclear since
the measure dµ depends on D(x). When D(x) is a constant, then the above formulation can be simplified.
Namely,

λ1 = inf
ϕ∈H1(Ω)

D

ˆ
Ω
|∇ϕ(x)|2 dx+

ˆ
Ω
i0(x)N(x)βh(x)ϕ2(x) dx

ˆ
Ω
ϕ2(x) dx

.

In this situation, we can clearly see the monotone dependence of λ1 with respect to the parameter D.

Now, on the one hand from (2.9), we deduce that

‖iv(t, x)− a(t, x)‖∞ ≤ C(s0
v)e
−λ1t.

On the other hand since a satisfies the heat equation with homogeneous Neumann boundary condition, we
can easily check that v(t, x) = a(t, x)− 1

|Ω|µ

´
Ω sv(0, x) + iv(0, x) dµ(x), satisfies

∂tv(t, x)−D(x)∆v(t, x) = 0 (2.36)

∂nv(t, x) = 0 for all t > 0, x ∈ ∂Ω (2.37)

v(0, x) = sv(0, x) + iv(0, x)− 1

|Ω|µ

ˆ
Ω
sv(0, x) + iv(0, x) dµ(x) (2.38)

ˆ
Ω
v(t, x) dµ(x) = 0, for all t > 0. (2.39)
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So by multiplying the equation (2.36) by v and integrating over Ω with respect to the measure µ, we
get, after integrating by part,

∂t

ˆ
Ω
v2(t, x) dµ(x) = −2

ˆ
Ω
D(x)|∇v(t, x)|2 dµ(x) ≤ −2 min

x∈Ω
D(x)

ˆ
Ω
|∇v(t, x)|2 dµ(x),

which by using a Poincare-Writtinger inequality yields

∂t

ˆ
Ω
v2(t, x) dµ(x) ≤ −2Dminλ2

ˆ
Ω
|v(t, x)|2 dµ(x),

which after integration in time enforces

ˆ
Ω
v2(t, x) dµ(x) ≤ C(v0)e−2Dminλ2t,

where Dmin := minx∈ΩD(x) > 0. Therefore, thanks to (2.9)∥∥∥∥iv −
´

Ω s
0
v(x) + s0

v(x) dµ(x)

|Ω|µ

∥∥∥∥
2

≤
∥∥∥∥a(t, x)−

´
Ω s

0
v(x) + i0v(x) dµ(x)

|Ω|µ

∥∥∥∥
2

+ ‖Sv(t, x)‖2

≤ ‖v‖2 + ‖Sv(t, x)‖2 ≤ Ce−λt.

At last, let us prove i). By (2.21) and using that iv(t, x) = a(t, x)− sv(t, x) with a defined by (2.24)–
(2.26), we have

Sh(t, x) = N(x)C(S0
h)e−β̄v(x)

´ t
0 iv(s,x) ds = N(x)C(S0

h)e−β̄v(x)
´ t
0 a(s,x) dseβ̄v(x)

´ t
0 sv(s,x) ds.

Let us estimate both exponential separately and for simplicity set the notation

g(t, x) := e−β̄v(x)
´ t
0 a(s,x) ds (2.40)

h(t, x) := eβ̄v(x)
´ t
0 sv(s,x) ds (2.41)

First let us observe that iii) yields a straightforward bounded estimate on h (i.e (2.41)). Indeed, thanks
to iii) we get

h(t, x) = eβ̄v(x)
´ t
0 sv(s,x) ds ≤ e

C(S0
v)β̄v(x)

λ1
[1−e−λ1t]

.

Next let us estimate the function g(t, x) (i.e (2.40)). Recalling that a is a positive solution of the heat
equation with Neumann boundary condition, we can use the Krylov-Safonov Harnack inequality up to the
boundary (see [7]) and for all τ > 0 there exists C(τ) > 0 such that for all t > 0 and x ∈ Ω

max
x∈Ω

a(t, x) ≤ C(τ) min
Ω
a(t+ τ, x).

From there, thanks to the mass invariance of a with respect to the measure dµ(x), we get

1

|Ω|µ

ˆ
Ω

[s0
v(x) + i0v(x)] dµ(x) =

1

|Ω|µ

ˆ
Ω
a(t, x) dµ(x) ≤ max

x∈Ω
a(t, x) ≤ C(τ)a(t+ τ, x),
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which thanks to the definition of g yields

g(t, x) := e−β̄v(x)
´ t
0 a(s,x) ds ≤ e−β̄v(x)

´ t−τ
0 a(s+τ,x) ds

≤ e−
β̄v(x)C∗
C(τ)|Ω|µ

(t−τ)
.

Hence, we get

Sh(t, x) ≤ N(x)C(S0
h)e

C(S0
v)β̄v(x)

λ1
[1−e−λ1t]

e
− β̄v(x)C∗
C(τ)|Ω|µ

(t−τ)
.

2.4 A multi-annual model M2 with periodic vector emergence and death

Suppose that, within the life cycle of the vector, the pathogen is not transmitted to the offspring. Then, a
more realistic model of the pathogen dynamics can be achieved by including a pulse-like component where
the vector are reset at some specific periodic time. This framework developed in [16] translates in the
above model M1 as follows:

For all n ∈ N, nT < t < (n + 1)T and x ∈ Ω, the quantity (Sh(t, x, n + 1), Eh(t, x, n + 1), Ih(t, x, n +
1), Sv(t, x, n+ 1), Iv(t, x, n+ 1)) is assumed to satisfy:

∂tSh(t, x, n+ 1) = −βv(x)Sh(t, x, n+ 1)Iv(t, x, n+ 1) (2.42)

∂tEh(t, x, n+ 1) = βv(x)Sh(t, x, n+ 1)Iv(t, x, n+ 1)− εE(t, x, n+ 1) (2.43)

∂tIh(t, x, n+ 1) = εEh(t, x, n+ 1) (2.44)

∂tSv(t, x, n+ 1) = ∆(D(x)Sv(t, x, n+ 1))− βh(x)Sv(t, x, n+ 1)Ih(t, x, n+ 1) (2.45)

∂tIv(t, x, n+ 1) = ∆(D(x)Iv(t, x, n+ 1)) + βh(x)Sv(t, x, n+ 1)Ih(t, x, n+ 1), (2.46)

with the boundary conditions

∂n(D(x)Sv(t, x, n+ 1)) = ∂n(D(x)Iv(t, x, n+ 1)) = 0 for all nT < t < (n+ 1)T, x ∈ ∂Ω. (2.47)

Next we have to describe the impulsive condition: for all x ∈ Ω,

Sh(nT, x, n+ 1) = Sh((n+ 1)T−, x, n),

Eh(nT, x, n+ 1) = Eh((n+ 1)T−, x, n),

Ih(nT, x, n+ 1) = Ih((n+ 1)T−, x, n),

Sv(nT, x, n+ 1) = S0
v(x),

Iv(nT, x, n+ 1)) = 0.

(2.48)

Note that the impulsive condition implies the time continuity of (Sh, E, Ih). Moreover, for all times t > 0
we have:

Sh(t, x) + E(t, x) + Ih(t, x) = Sh(0, x) + E(0, x) + Ih(0, x) = N(x), (2.49)ˆ
Ω

(Sv(t, x) + Iv(t, x)) dx =

ˆ
Ω

(Sv(0, x) + Iv(0, x)) dx = C∗. (2.50)

Like for model M1, we may wonder if this system admits one or more non-negative equilibria. Note
that due to the impulsive nature of the system, an equilibrium ofM2 is then a non negative time periodic
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function of period T that solves the system of equation (2.42)–(2.46) with boundary condition (2.47). We
can check that the stationary solution (N(x), 0, 0, C∗

D(x)|Ω|µ , 0) of the system M1 is also an equilibrium of

M2 which remains globally unstable. In contrast, the stationary solution (0, 0, N(x), 0, C∗

D(x)|Ω|µ ) forM1 is

not a solution forM2, since it does not include the impulsive term. We may still wonder if other equilibria
exist. In this aim, we can show:

Proposition 2.3. Let Ω ⊂ Rd be a bounded smooth domain (at least C1), let N ∈ C(Ω̄) and S0
v be two

non-negative functions, and let (S∗v(t, x), I∗v (t, x)) be the solution of

∂tS
∗
v(t, x) = ∆(D(x)S∗v(t, x))− βh(x)S∗v(t, x)N(x) for all 0 < t < T, x ∈ Ω

∂tI
∗
v (t, x) = ∆(D(x)I∗v (t, x)) + βh(x)S∗v(t, x)N(x) for all 0 < t < T, x ∈ Ω

S∗v(0, x) = S0
v(x), I∗v (0, x) = 0 for all x ∈ Ω

∂n(D(x)S∗v(t, x)) = ∂n(D(x)I∗v (t, x)) = 0 for all 0 < t < T, x ∈ ∂Ω.

Then, the state (0, 0, N(x), S∗(t, x), I∗(t, x)) is the only non-negative equilibrium of the impulsive system
(2.42)–(2.46) with the impulsive condition (2.48) satisfying the invariance conditions (2.49) and (2.50) and
the boundary condition (2.47).

Like for the analysis of the equilibrium for the system M1, this proposition is rather standard and its
proof is provided in the appendix.

2.5 Comment on the diffusion specification

In the models considered above, we have assumed that the diffusion operator that describes the dispersion
process of the vector population reflects, at the macroscopic level, an unbiased random walk in a spatial
heterogeneous medium; see for example [31] for a standard derivation. Other formulations are possible
depending on the reality of the studied phenomenon and the choice of the modeler. In general, a new
formulation impacts the equilibrium analysis. However, results presented above holds true, up to minor
changes, for one of the formulations commonly used to describe the diffusion of a population and grounded
on flux consideration combined with some conservation laws such as Fick’s law. This formulation can be
written as follows:

∂tSh(t, x) = −βv(x)Sh(t, x)Iv(t, x)

∂tEh(t, x) = βv(x)Sh(t, x)Iv(t, x)− εEh(t, x)

∂tIh(t, x) = εEh(t, x)

∂tSv(t, x) = ∇ · (D(x)∇Sv(t, x))− βh(x)Sv(t, x)Ih(t, x)

∂tIv(t, x) = ∇ · (D(x)∇Iv(t, x)) + βh(x)Sv(t, x)Ih(t, x),

with the following boundary and initial conditions:

∂n(Sv(t, x)) = ∂n(Iv(t, x)) = 0 for all t > 0, x ∈ ∂Ω

(Sh(0, x), Eh(0, x), Ih(0, x), Sv(0, x), Iv(0, x)) = (S0
h(x), E0

h(x), I0
h(x), S0

v(x), I0
v (x)) for all x ∈ Ω.

We can easily check that the above analysis does not significantly change with this model. Namely, all
the proofs can be adapted to this model with minor changes. In particular, the proof of the exponential
convergence to the equilibrium can be transposed readily since it is only based on fundamental properties
of elliptic and parabolic equations that are satisfied by the new model.
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3 Numerical study of the transitive phase

As a complement to the preceding study about equilibrium states, we implement in this section a global
sensitivity analysis (GSA) to investigate how input parameters influence the variability of the transitive
phase of the dynamics of infected hosts and infected vectors. For this analysis of the transitive phase,
we performed numerous simulations of the multi-annual model M2 of Section 2.4 with spatially constant
parameters βv, βh and D. These simulations were specified by using the dynamics of Xylella fastidosia in
southeastern mainland France as an inspiring example. Xylella fastidosia is a phytopathogenic bacterium
infecting a large class of plant species and vectored by multiple insects, including Philaenus spumarius that
is present in France. This bacterium was detected in 2015 in Corsica island, France, and in southeastern
mainland France [30]. In August 2019, a new strain in France, called pauca, was collected and identified
from an olive tree near the Italian border. Thus, inspired by the occurrence of this new strain and its
potential spread, we specified the simulations of model M2 such as (i) the initial condition corresponds
to an introduction in southeastern France near the Italian border, and (ii) the eventual spread of the
pathogen occurs in the spatial domain formed by the French departments close to the Mediterranean sea
where the conditions are relatively favorable for Xylella fastidosia expansion [10, 17]. Figure 1 shows the
study domain Ω and the introduction point used for all the simulations.

Figure 1: Map of Ω (union of shaded French departments) and location of the introduction point (black
dot) in southeastern France, near the Italian border, used for the simulation study. The borderline of Ω
was regularized for the resolution of the system of equations.

3.1 Two-stage resolution of the coupled partial differential equations

Given the non linearity of the reaction terms in the modeling of the pathogen spread, these terms were
separated from the diffusion terms in the resolution of the system of equations, using the operator splitting
method. Thus, at a given time step, the equation system was resolved in two stages. The first stage
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concerning the reaction part of the model was implemented with the Newton-Raphson method. Since
vector diffusion is not accounted for in this first stage, the partial differential equation system is simply
an ordinary differential equation system. In the second stage, the results from the first stage were used
as initial conditions and the diffusion part of the model was handled with the finite element method.
Computations have been performed with the FreeFem++ software [11].

3.2 Sensitivity analysis: methods

As explained above, we used GSA to have a better understanding of the evolution of the disease dynamics
from its introduction and before it reaches its equilibrium state, in both the host and the vector com-
partments. The objective of sensitivity analysis, in general, is to determine how variation in the model
output depends upon the input information fed into the model. This way of reasoning results from the
fact that input information, typically the values of model parameters, are generally uncertain. In GSA,
one attempts to highlight a hierarchy between the uncertainty in the input factors or parameters with
respect to the uncertainty of model outputs [27] (thereafter, the term parameters designate both factors
and parameters). The deficit of knowledge on input parameters is described by uniform probability laws
defined, without loss of generality, over [0, 1] for each parameter. Note that we assume the independence
of parameter uncertainties. Let D = [0, 1]K denote the domain of uncertainty of the parameters, where K
is the number of parameters.

We used a GSA method based on variance decomposition called ANOVA. Let φ : p = (p1, ..., pK) ∈
D → φ(p) ∈ R. The quantity φ(p) is a model output (e.g. the density of infected hosts at a given
location and a given time) when the vector of parameters takes the value p. The uncertainty of the
model output (resulting from the uncertainty of the parameters) is defined by its variance V (φ) satisfying
V (φ) =

´
D(φ(p) − φ̄)2dp, where φ̄ =

´
D φ(p) dp is the mean of φ. For u ⊆ I = {1, ...,K}, we denote uc

the complement of u in I and P(I) the power set of I (i.e., the set of all the subsets of I including the
empty set ∅). The variance decomposition of φ is defined by (see [21]):

φ(p) =
∑

u∈P(I)

φu(p), (3.1)

where φu is defined by:

φu(p) =

ˆ
φ(p)dpuc −

∑
v∈P(u),v 6=u

φv(p) (3.2)

with dpu =
∏
i∈u

dpi according to the independence hypothesis on parameter uncertainties.

It follows that φ̄ = φ∅(p). When u = {i}, one obtains the main effect of parameter pi, which is

φi(p) =

ˆ
φ(p)dpic − φ̄

that depends on pi. When u = {i, j}, one obtains the interaction of order two of pi and pj , which is

φi,j(p) =

ˆ
φ(p)dp{i,j}c − φi(p)− φj(p)− φ̄

that depends on pi and pj . Moreover, we have the properties
´
D φu(p) dp = 0 for u 6= ∅ and

´
D φu(p)φv(p) dp =

0 for u 6= v. It follows that

V (φ) =
∑

u∈P(I)

V (φu).
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Parameter Variation range

βv [5,25]
βh [5,25]
D [5,15000]

Table 1: Variation ranges of input parameters for the global sensitivity analysis of model M2.

The principal sensitivity index (PIi) of parameter pi is defined by:

PIi =
V (φi)

V (φ)
∈ [0, 1].

The total sensitivity index (TIi) of parameter pi is defined by

TIi =
( ∑
v ∩ {i}6=∅

V (φv ∩ {i})
)
/V (φ) ∈ [0, 1].

These indices satisfy the property TIi ≥ PIi. A large value of TIi with respect to PIi indicates the presence
of interaction (of any order) between xi and other parameters.

The numerical challenge of GSA is to compute these sensitivity indices (SIs) with Monte-Carlo simula-
tions. This challenge was tackled by using the latin hypercube square method for sampling parameters and
following the approach proposed by Monod et al. [18] for computing the sensitivity indices. This approach
requires M × (2K + 1) evaluations of the model with an initial sampling scheme of M different points in
the parameter domain D (of dimension K = 3), and we used M = 300 in the application. Thus, the model
was run 2100 times over a period of 100 years. In practice, the sampling method has been implemented by
using the package lhs [4] and SIs have been computed by using the function sobolEff() from the package
sensitivity [12] in the R environment programming software [24]. Variation ranges of βh, βv and D are
given in Table 1. In addition, we set ε = 0.02, S0

v ≡ 300, I0
v ≡ 0, S0

h ≡ 300, E0
h ≡ 0 and I0

h ≡ 0.

3.3 Sensitivity analysis: results about infected hosts and vectors

Figures A.1 and A.2 in Supplementary Material map the mean and standard deviation (std.) of the
numbers of infected hosts and infected vectors, respectively, computed from the 2100 simulations. Mean
and std. have been computed at 600 points in the domain Ω, and a smoothing procedure has been applied
to build maps; see figure captions. These figures illustrate the convergence to an equilibrium, in which all
hosts and vectors are infected. Equilibrium is almost achieved at t = 50 years for infected vectors, whereas
infected hosts approach equilibrium beyond t = 100 years (the value of the plateau, namely 300, is not
yet reached at t = 100; see Figure A.3). Standard deviations for infected hosts and infected vectors follow
similar evolution. In the area surrounding the site of introduction, std. is relatively large at the beginning
of the epidemic and then decreases with time. In further areas from the site of introduction, std. is low
at the beginning, then increases progressively and finally decreases. We can further note that the peak of
std. is higher for infected vectors than for infected hosts, and std. is more uniform for infected hosts than
for infected vectors, especially over the first 50 years. Thus, the propagation of the disease in the host and
vector compartments clearly differ and the results of the GSA below will highlight the main drivers of the
propagation variability.
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The GSA was performed to assess the influence across space and time of three input parameters βh, βv
and D, related to disease transmission and diffusion, on two outcome variables: the infected hosts Ih(t, x)
and the infected vectors Iv(t, x). The initial conditions and the parameter ε were not included in this
analysis. We can however point out that, based on a preliminary study not shown here, ε (related to the
latency period in the host) has a strong effect obscuring the effects of the other parameters as soon as its
range of variation is relatively large. The strong effects of ε corroborates results provided by [15] with a
stochastic epidemic model. Since βh and βv have a symmetric role in the model for Ih(t, x) and Iv(t, x)
and to avoid to distort the sensitivity analysis with respect to these parameters, their variation ranges
have been set up equal (see Table 1). In addition, for facilitating the relative interpretation of the effects
of parameters on Ih(t, x) and Iv(t, x), we considered a situation where the densities of hosts and vectors
are initially constant and both equal to 300 units across space.

Figures 2 and 3 display PIs of parameters across space and time (up to t = 50 years) for infected hosts
and infected vectors, respectively (Supplementary Figure A.4 provide PIs for infected hosts between year
70 and year 100). To complete the interpretation of these figures, we recorded the spread of epidemics
along a 40-points transect (shown by Figure 4) going through the study region from the introduction point.
Then, simulations have been grouped by class of interval of input parameters. For each parameter, four
equal-length classes have been created by dividing the interval of simulation defined in Table 1. Figures 5
and 6 give the means of Ih and Iv, respectively, for each parameter class, at different dates and along the
transect.

Parameters βv and βh broadly play similar roles in the spatio-temporal variability of the number
of infected hosts, even if βh is more influential far from the introduction site at the early stage of the
epidemics (Figure 2). In contrast, D mostly plays a minor role, except after 30-50 years in areas far from
the introduction point. This is corroborated by Figure 5 illustrating the impact of parameter variations
on infected-hosts variations along the above-mentioned transect. Thus, using as levers the reduction of
βv (e.g., by inciting vectors to feed on non-host plants via the planting of such plants or the settling
of repellents/attractors) or the reduction of βh (e.g., by protecting host plants with insect-proof nets)
should broadly have the same significant impact on the number of infected hosts across space. However,
attempting to hamper the diffusion of insects is not expected to greatly decrease the number of infected
hosts, at least at the early stage of the epidemics.

Non-intuitively, the spatio-temporal variability of the number of infected vectors has not the same
drivers than the spatio-temporal variability of the number of infected hosts: the PIs for infected hosts and
infected vectors clearly differ after year 10, with a prominent effect of βv in the variability of the number of
infected vectors, as shown by Figures 3 and 6. Once the hosts of a given area are infected at a sufficiently
large proportion, the variability in Iv mostly depends on the contact rate of a vector with hosts (i.e., βv).
This situation holds near the introduction points at years 20-30 and over the whole study region at year
50. Thus, on a long term, the decrease of the number of infected vectors requires above all a reduction of
βv (e.g., by inciting vectors to feed on non-host plants).
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Figure 2: Maps of the principal sensitivity indices (PIs) for the number of infected hosts Ih(t, x). From left
to right, columns correspond to parameters βv, βh and D. From top to bottom, rows correspond to years
10, 20, 30 and 50. Maps were obtained from the 600 PI values scattered in Ω via the linear interpolation
implemented in the interp function of the R package akima [2].

4 Discussion

We investigated the spatiotemporal dynamics of a vector-borne disease by means of equilibrium and sensi-
tivity analyses of an explicit host-vector, spatiotemporal, compartmental model. The dynamics of vector-
borne diseases are relatively complex because of interactions between host and vector compartments as
well as interactions between parameters governing fluxes between compartments. This article disentangles
a part of this complexity.

In a first approach, we identified theoretical non-negative equilibrium in two contexts: (i) when the
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Figure 3: Maps of the principal sensitivity indices (PIs) for the number of infected vectors Iv(t, x). From
left to right, columns correspond to parameters βv, βh and D. From top to bottom, rows correspond
to years 10, 20, 30 and 50. Maps were obtained from the 600 PI values scattered in Ω via the linear
interpolation implemented in the interp function of the R package akima [2].

vector population is considered as permanent, and (ii) when the vector population has a cyclic annual
dynamics consisting of an emergence stage at the beginning of the year, a mortality stage at the end of
the year and no adult-to-offspring transmission of the pathogen from one year to the following one. In
both contexts, the non-negative equilibrium implies the infection of the whole host population. We also
provided a quantitative bound of convergence to the equilibrium, giving a first estimate on the speed of
total contamination.

In a second approach, we considered the model built in context (ii) and explored the impact of pa-
rameters related to transmission and diffusion on the transitive spatiotemporal patterns of infected hosts
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Figure 4: Plot of the 40 points transect going through the study region. Points are numbered from 1 (near
the site of disease introduction) to 40 (far away from the site of introduction).

and vectors. We pointed out similar influences of the contact rates ‘of a host with vectors’ and ‘of a
vector with hosts’ (βh and βv) on the spatiotemporal variability of the number of infected hosts Ih. This
similarity indicates that one has two levers of action with similar expected efficiency for slowing down the
propagation of the disease in the host population: the lever on βv that can be activated, e.g., by inciting
vectors to feed on non-host plants via the planting of such plants or the settling of repellents/attractors;
the lever on βh that can be activated, e.g., by protecting host plants with insect-proof nets. In a case such
as the dynamics of Xylella fastidiosa in southeastern France, it would be interesting in a further study to
explicitly incorporate into the model different management measures (on both hosts and vectors) and their
individual costs, in the aim of guiding decision makers based on an economic-epidemiological analysis as
in [8, 22, 26].

The numerical and sensitivity analyses also highlighted the trend of vectors to be beyond the front line
of the epidemics in the host population. This trend is obvious since hosts are fixed whereas vectors are
mobile in our model. However, our model could be used to quantitatively design monitoring strategies of
the epidemics targeting the vectors beyond the front line, in the aim of detecting cryptic disease foci on
hosts and anticipating the future spread.

The type of model analyses that we carried out is a first step to understand the main factors driving
epidemics generated by outbreak models we are interested in. The sensitivity analysis of the model com-
bined with its analytic study provide some valuable insights on which components significantly affect the
epidemics and how they affect them. Such insights may be crucial to point out model components on which
epidemiologists should improve knowledge and whose mathematical formalization should be refined to gain
in model realism. Such model modifications are inevitably inherent to the pathogenic system considered
and may for example lead to the introduction of more accurate descriptions of some of the demographic
processes and environmental effects. Typically, for Xylella fastidiosa, one could carry out further work
using the model proposed here and enriched with recent feedback on the biology of this pathogen (e.g.
about its sensitivity to precipitation and temperature [17]).
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Figure 5: Means of Ih(t, x) for 40 points x along the transect shown in Figure 4 and for years 10, 20, 30
and 50. Classes are numerated from 1 to 4. Class 1 corresponds to low values of parameters and class 4 to
high values. X-axis gives the point number along the transect and the Y-axis gives the mean of Ih(t, x).
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Figure 6: Means of Iv(t, x) for 40 points x along the transect shown in Figure 4 and for years 10, 20, 30
and 50. Classes are numerated from 1 to 4. Class 1 corresponds to low values of parameters and class 4 to
high values. X-axis gives the point number along the transect and the Y-axis gives the mean of Iv(t, x).
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A Supplementary Material
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Figure A.1: Mean and standard deviation (Std.) of the number of infected vectors Ih(t, x). The left
column gives means at years 10, 20, 30 and 50. The right column gives standard deviations at the same
time points. The black point corresponds to the site of introduction of the disease. Maps were obtained
from the 600 values scattered in Ω via the linear interpolation implemented in the interp function of the
R package akima [2].

22



●

0

100

200

300

Mean for Iv(t, x)  −  Year  10

●

0

50

100

150

Std. for Iv(t, x)  −  Year  10

●

0

100

200

300

Mean for Iv(t, x)  −  Year  20

●

0

50

100

150

Std. for Iv(t, x)  −  Year  20

●

0

100

200

300

Mean for Iv(t, x)  −  Year  30

●

0

50

100

150

Std. for Iv(t, x)  −  Year  30

●

0

100

200

300

Mean for Iv(t, x)  −  Year  50

●

0

50

100

150

Std. for Iv(t, x)  −  Year  50

Figure A.2: Mean and standard deviation (Std.) of the number of infected vectors Iv(t, x). The left
column gives means at years 10, 20, 30 and 50. The right column gives standard deviations at the same
time points. The black point corresponds to the site of introduction of the disease. Maps were obtained
from the 600 values scattered in Ω via the linear interpolation implemented in the interp function of the
R package akima [2].
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Figure A.3: Mean and standard deviation (Std.) of the number of infected vectors Ih(t, x). The left column
gives means at years 70, 90 and 100. The right column gives standard deviations at the same time points.
The black point corresponds to the site of introduction of the disease. Maps were obtained from the 600
values scattered in Ω via the linear interpolation implemented in the interp function of the R package
akima [2].
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Figure A.4: Maps of the principal sensitivity indices (PIs) for the number of infected hosts Ih(t, x). From
left to right, columns correspond to parameters βv, βh and D. From top to bottom, rows correspond to
years 70, 90 and 100. Maps were obtained from the 600 values scattered in Ω via the linear interpolation
implemented in the interp function of the R package akima [2].
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B Proofs

In this appendix we give the proof of Proposition 2.1.

Proof. The search of positive equilibria of SystemM1 implies to look for positive solutions to the following
set of equations:

β̄v(x)S∗h(x)i∗v(x) = 0 for all x ∈ Ω. (B.1)

E∗h(x) = 0 for all x ∈ Ω. (B.2)

D(x)∆s∗v(x)− βh(x)s∗v(x)I∗h(x) = 0 for all x ∈ Ω. (B.3)

D(x)∆i∗v(x) + βh(x)s∗v(x)I∗h(x) = 0 for all x ∈ Ω. (B.4)

∂ns
∗
v(x) = ∂ni

∗
v(x) = 0 for all x ∈ ∂Ω. (B.5)

By integrating over the domain Ω the PDE (B.4) with respect to the measure dµ(x) = dx
D(x) we then see

that ˆ
Ω
βh(x)S∗v(x)I∗h(x) dµ(x) = 0,

which enforces that for almost every x ∈ Ω

βh(x)S∗v(x)I∗h(x) = 0 (B.6)

since βh, S
∗
v and I∗h are non negative quantities.

As a consequence, i∗v and s∗v satisfy the following PDE

∆u(x) = 0 for almost every x ∈ Ω, (B.7)

∂nu(x) = 0 for all x ∈ ∂Ω, (B.8)

which in turn implies that iv ≡ C0 ≥ 0 and sv ≡ C1 ≥ 0 which thanks to (2.9) must satisfy

(C0 + C1)|Ω|µ = C∗. (B.9)

Going back to Equation (B.1), we see that

C0β̄v(x)S∗h(x) = 0 for all x ∈ Ω.

Since β̄v > 0 the later induces a simple dichotomy with respect to C0:

• Either C0 = 0 and then from (B.9) D(x)Sv = s∗v ≡ C1 = C∗

|Ω|µ > 0, which in turn implies that I∗h = 0

almost everywhere thanks to (B.6). Therefore thanks to (2.8), we get S∗h(x) = N(x) for almost
every x. Thus we get (N(x), 0, 0, C∗

D(x)|Ω|µ , 0) for the first equilibrium of the system (2.1)–(2.5) with

boundary condition (2.6).

• Or C0 > 0, then in this situation from (B.1) we get S∗h(x) = 0 almost everywhere and by (2.8) and
(B.6) we get I∗h = N(x) and s∗v ≡ 0. Thus we get (0, 0, N(x), 0, C∗

D(x)|Ω|µ ) for the second equilibrium

of the system (2.1)–(2.5) with boundary condition (2.6).
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Let us now check the stability of these positive equilibrium. Note that since Sh and Ih are respectively
decreasing and increasing, we can readily claim that the stationary state (N(x), 0, 0, C∗

D(x)|Ω|µ , 0) is unstable.

Let us now check the local stability of the endemic state ES = (0, 0, N(x), 0, C∗

D(x)|Ω|µ ). To do so, we linearize

the system around ES, which gives

Jacobian(ES) :=


−β̄v C∗

|Ω|µ 0 0 0 0

β̄v
C∗

|Ω|µ −ε 0 0 0

0 ε 0 0 0
0 0 0 D(x)∆− βhN(x) 0
0 0 0 +βhN(x) D(x)∆)


and search for the sign of the largest eigenvalue. Observe that up to a change of basis we can rewrite the
Jacobian matrix Jacobian(ES) as follows:

Jacobian(ES) =


−β̄v C∗

|Ω|µ 0 0 0 0

0 −ε 0 0 0
0 0 0 0 0
0 0 0 D(x)∆− βhN(x) 0
0 0 0 +βhN(x) D(x)∆

 .

Therefore the stability of the endemic state (ES) is then only defined by the right below block, that is

Block(ES) =

(
D(x)∆− βhN(x) 0

βhN(x) D(x)∆

)
Such a block is known to induce a negative spectral bound [9, 32]. Thus, (ES) is a locally stable

equilibrium. From the monotone property of Ih and Sh we can also infer that the state (ES) is indeed
globally stable.

Below, we establish the proof of Proposition 2.3.

Proof. A positive equilibrium (S∗h(t, x), E∗(t, x), I∗h(t, x), S∗v(t, x), I∗v (t, x)) of the impulsive system will then
be a positive time periodic solution of (2.42)–(2.46) of period T . As a consequence, from the equation
(2.42)–(2.44) we deduce that I∗h(t, x) and S∗h(t, x) are respectively a time increasing and a time decreasing
periodic function. Thus I∗h(t, x) and S∗h(t, x) must be independent of time and therefore

βv(x)S∗h(x)I∗v (t, x) = 0 for all x ∈ Ω. (B.10)

E∗h(x) = 0 for all x ∈ Ω. (B.11)

∂tS
∗
v(t, x) = ∆(D(x)S∗v(t, x))− βh(x)S∗v(t, x)I∗h(x) for all x ∈ Ω. (B.12)

∂tI
∗
v (t, x) = ∆(D(x)I∗v (t, x)) + βh(x)S∗v(t, x)I∗h(x) for all x ∈ Ω. (B.13)

∂n(D(x)S∗v(t, x)) = ∂n(D(x)I∗v (t, x)) = 0 for all x ∈ ∂Ω. (B.14)

(S∗v(0, x), I∗v (0, x) = (S0(x), 0) for all x ∈ Ω. (B.15)

Note that since S0(x) is a non negative function, a straightforward application of the parabolic maximum
principle implies that for t ∈ (0, T ), the functions D(x)S∗v(t, x) and D(x)I∗v (t, x) are positive for all x ∈ Ω
and t > 0 and so are S∗v(t, x) and I∗v (t, x) since D(x) > 0.
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Thanks to (B.10) and (2.49) this implies that S∗h(x) ≡ 0 and I∗h(x) = N(x) which in turns leads to
S∗v , I

∗
v satisfying

∂tS
∗
v(t, x) = ∆(D(x)S∗v(t, x))− βh(x)S∗v(t, x)N(x) for all 0 < t < T, x ∈ Ω (B.16)

∂tI
∗
v (t, x) = ∆(D(x)I∗v (t, x)) + βh(x)S∗v(t, x)N(x) for all 0 < t < T, x ∈ Ω (B.17)

∂nS
∗
v(t, x) = ∂nI

∗
v (t, x) = 0 for all 0 < t < T, x ∈ ∂Ω (B.18)

(S∗v(0, x), I∗v (0, x) = (S0(x), 0) for all x ∈ Ω. (B.19)
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