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In this paper, we report on numerical calculations of the spontaneous emission rates and Lamb shifts of a
87Rb atom in a Rydberg-excited state (n < 30) located close to a silica optical nanofiber. We investigate how
these quantities depend on the fiber’s radius, the distance of the atom to the fiber, the direction of the atomic
angular momentum polarization, as well as the different atomic quantum numbers. We also study the contribution
of quadrupolar transitions, which may be substantial for highly polarizable Rydberg states. Our calculations
are performed in the macroscopic quantum electrodynamics formalism, based on the dyadic Green’s function
method. This allows us to take dispersive and absorptive characteristics of silica into account; this is of major
importance since Rydberg atoms emit along many different transitions whose frequencies cover a wide range of
the electromagnetic spectrum. Our work is an important initial step toward building a Rydberg atom-nanofiber
interface for quantum optics and quantum information purposes.

DOI: 10.1103/PhysRevA.101.052508

I. INTRODUCTION

Within the past two decades, the strong dipole-dipole
interaction experienced by two neighboring Rydberg-excited
atoms [1] has become the main ingredient for many atom-
based quantum information protocol proposals [2]. This inter-
action can be so large as to forbid the simultaneous resonant
excitation of two atoms if their separation is less than a
specific distance, called the blockade radius [3], which typi-
cally depends on the intensity of the laser excitation and the
interaction between the Rydberg atoms [4]. The discovery of
this “Rydberg blockade” phenomenon [3,5-9] paved the way
for an encoding scheme using atomic ensembles as collective
quantum registers [5,10-12] and repeaters [13—15].

Scalability is one of the crucial requirements for quantum
devices [16] and interfacing atomic ensembles into a quan-
tum network is a possible way to reach this goal. Photons
naturally appear as ideal information carriers and the photon-
based protocols considered so far include free space [17]
or guided propagation through optical fibers [13]. The for-
mer has the advantage of being relatively easy to imple-
ment but presents the drawback of strong losses. The latter
requires a cavity quantum electrodynamics setup, which is
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experimentally more involved. An alternative option would
be to use optical nanofibers. Such fibers have recently received
much attention [18,19] because the coupling to the evanescent
guided modes of a nanofiber allows for easy-to-implement
atom trapping [20-22] and detection [23-25]. This coupling
increases in strength as the fiber diameter reduces and the
atoms approach the fiber surface. It has also been shown that
energy could be exchanged between two distant atoms via
the guided modes of the fiber [26]. This suggests that optical
nanofibers could play the role of a communication channel
between the nodes of an atomic quantum network consisting
of Rydberg-excited atomic ensembles.

In the perspective of building a quantum network based
on Rydberg-blockaded atomic ensembles linked via an optical
nanofiber, we recently studied the spontaneous emission of a
highly excited (Rydberg) sodium atom in the neighborhood of
an optical nanofiber made of silica [27]. To be more specific,
we investigated how the atomic emission rates into the guided
and radiative fiber modes are influenced by the radius of the
fiber, the distance of the atom to the fiber, and the symmetry
of the Rydberg state. In the spirit of Ref. [28], we used the
so-called mode function description of the nanofiber, which
does not allow one to take absorption and dispersion of the
fiber into account. This point is critical with highly excited
atoms since they can de-excite along many transitions of
different frequencies for which the fiber index is different and
potentially complex. This forced us, in Ref. [27], to restrict
ourselves to Rydberg levels of moderate principal numbers
so that the frequencies of the transitions involved remain
in a nondispersive and nonabsorptive window of the silica
spectrum. By contrast, here we resort to the framework of
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macroscopic quantum electrodynamics based on the dyadic
Green’s function [29,30]. This formalism enables us to take
the exact refractive index of silica into account and relaxes all
constraints on the transitions we can address. This framework
also offers a natural way to compute not only spontaneous
emission rates but also Lamb shifts and (resonant and nonres-
onant) electromagnetic forces the atom is subject to.

In this article, we present the numerical results we obtained
with this approach for a rubidium atom prepared in a Rydberg-
excited state |n < 30;L =S, P, D;JFMp) in the vicinity of
a multimode silica optical nanofiber. We chose %’Rb as it
is commonly used in Rydberg atom experiments, like in the
recent experimental work on Rydberg generation next to a
nanofiber [31]. In particular, we show that a non-negligible
fraction of spontaneously emitted light is guided along the
fiber and study how it depends on principal quantum number,
n, the radius of the nanofiber, a, the distance of the atom to
the nanofiber axis, R, and the direction of angular momentum
polarization. Interestingly, when the quantum and fiber axes
do not coincide, spontaneous emission becomes directional,
as already noticed for low-excited atoms [32,33] due to the
peculiar polarization structure of the field in the neighborhood
of the fiber. As shown by our calculations, this effect is
particularly strong for photons emitted into the fiber-guided
modes and persists even for high principal quantum numbers,
n. This is promising in view of potential applications in chiral
quantum information protocols [34] based on a Rydberg-
atom-nanofiber interface. We also address Lamb shifts and
associated dispersion forces that arise. In particular, we show
that, as n increases, the contribution of quadrupolar transitions
becomes more important. This contrasts with spontaneous
emission rates for which quadrupolar transitions have negli-
gible influence.

The article is organized as follows. In Sec. II, we present
the system and introduce the important formulas used in
our calculations. In Sec. IIl, we present and interpret our
numerical results for spontaneous emission rates, Lamb shifts,
and forces. We conclude in Sec. IV and give a summary of our
work. More technical details of our work can be found in the
Appendixes.

II. SYSTEM AND METHODS

In this article, we consider a rubidium atom, 3'Rb, of
nuclear spin / = 3/2, initially prepared in a highly excited
(Rydberg) level n < 30, located at a distance R from the axis
of a silica nanofiber of radius a. Our goal is to investigate how
the fiber modifies the atomic spontaneous emission rates, the
Lamb shifts, and the forces on the atom. To be more specific,
we want to study the influence of (i) the radius of the fiber, (ii)
the distance of the atom to the fiber, (iii) the different quantum
numbers of the Rydberg state |nLJFMfF), in particular the
principal quantum number n, and (iv) the direction of angular
momentum polarization on these properties. In Fig. 1, we
define the reference frame (Oxyz) and the associated unitary
basis (é, €y, ;). The origin O is chosen as the projection
of the atomic center of mass onto the fiber axis, the z axis
coincides with the fiber axis, and the x axis joins the origin O
and the center of mass of the atom. In this basis, the position
vector of the atom is R = Ré,. For future reference, we also
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FIG. 1. A ¥Rb atom located at a distance, R, from the axis of
an optical nanofiber of radius, a. The refractive index n,(w) for
silica is obtained by a numerical fit of the experimental data taken
from [35]. Outside the fiber, the refractive index is n, = 1. The
axis of the nanofiber is arbitrarily chosen as the z-axis. The cylin-
drical coordinates (p, ¢, z) and frame (€,, €4, €;) are introduced in
the inset.

introduce the cylindrical basis (&,, €, €;) in Fig. 1, defined by
€, = COS &, + sin pé,, &, = — sin pé, 4 cos ¢é,.

We shall resort to the theoretical framework of macro-
scopic quantum electrodynamics [29,30], which allows one to
consider the exact frequency-dependent form of the electric
susceptibility of silica, obtained through a fit of experimental
data given in Ref. [35]. This formalism is based on the dyadic

Green’s function G(7, 7, ), which is the solution to the
Helmholtz equation

27 __ —
[% X ¥ x —&(F, a))w—zi|6(7, Pow)=8F -, (1)
C

where (¥, w) is the relative electric permittivity of the

medium at the position 7 and frequency w while 7 is the
unit dyadic [36]. The solution of Eq. (1) in the case of a
cylindrical nanofiber is given in Appendix A. There exist two

useful decompositions of 6:_(i) G = Gy + Gy, where Eo is
the vacuum component and Gy is the scattering_ coniributii)n
due to the presence of the nanofiber and (ii) G = Eg +G,,

where G, are the respective contributions of the guided and
radiative modes.

We summarize below the main formulas we used to obtain
the results presented in the next section, the derivation of
which can be found in Refs. [30,37]. The spontaneous emis-
sion rate, I',,, from an excited state, |n), is given by the sum,
Lp=>"_, Tu, of rates

2,“0 2

Lo = =2 0ldc Im[G(R, R, wu)] - di )

relative to the different transitions |n) — |k) for k < n, where

wpr and c_i,lk = (n|3 |k) denote the bare frequency and the
dipole matrix element of the transition |k) — |n), respec-
tively. Note that black-body radiation is not included in our
calculations. For the levels considered here, transitions to
neighboring Rydberg states have indeed typical energies of
a few tens of kgT. At room temperature, i.e., around 300 K,
black-body effects play an important role, since thermal
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photons may enhance radiative decay. Here, we envision
experiments performed at a few degrees Kelvin in a cryogenic
environment, as recently described in Ref. [38]. In such con-
ditions, the effect of black-body radiation is negligible.

In the same way, the Lamb shift, §w,, of an excited state,
|n), is given by the sum, 8w, = ), Swu, of all energy shifts
induced by the different transitions |n) — |k), for arbitrary
k # n, with

+o00 2 _
ﬂp( / do —2—d - Im[G(R. R, )] - dkn),
0 @ — Wk

hm
3)

where P denotes the Cauchy principal value. Here, we shall
use the nonretarded approximation [39]

(Sa)nk =—

S ~ = 53— Tl - do @)
where To(R) = lim,_.o %26(1?, R, w). This approximation is
particularly suited for Rydberg atoms, since the main contri-
butions to the Lamb shift are due to transitions to neighboring
states, therefore of long wavelengths.

Finally, the average resonant and nonresonant forces on an
atom initially in the state |n), evaluated at t = 0, are given by
(see Appendix B)

Fr( =0) = Z [MOwyZLk%?[Jnk -G (7, R, ) - Jkn]|;:1§
k

+c.cl, &)
+00
= ' 0 Wk
Fnonres(t — 0) — _M_ ds ‘52 —2 n 5 7
T Jo a)kn + E
X [dui - Gse(F, R, 18) ;g - diknl,  (6)
where @; acts on the spatial variable, 7.
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III. NUMERICAL RESULTS AND DISCUSSION

In this section, we present and interpret the numerical
results we obtained for spontaneous emission rates and Lamb
shifts of a ¥Rb atom in the vicinity of a silica optical
nanofiber. In particular, we investigate the effect of the dis-
tance, R, from the atom to the fiber axis, the fiber radius, a,
and the atomic quantum numbers. We also study the influence
of the direction of angular momentum polarization on the
strength and directionality of spontaneous emission from a
Rydberg level, specifically toward the guided modes. Finally,
we address quadrupolar transitions, which, a priori, may have
a substantial influence on Rydberg atom emission properties
in view of their high polarizability.

A. Spontaneous emission rates

We start the discussion with the results we obtained for
spontaneous emission rates. In Secs. III A 1-III A 3, the quan-
tization axis is implicitly chosen along the fiber axis (Oz).
In contrast, in Secs. I A4 and IITAS, we investigate the
changes induced by other quantization axis choices. In some
places, for pedagogical reasons, we shall resort to the so-
called mode function approach (widely used in the works by
Le Kien; see, e.g., Ref. [21]) as it offers a simple and illustra-
tive way to physically interpret our results. However, we wish
to emphasize that our calculations were performed using the
(more general) Green’s function formalism, which allows one
to account for dispersive and absorptive characteristics of the
fiber.

1. Dependence on the distance, R, from the atom to the fiber axis

Figures 2, 3, and 4 show the variations with the distance,
R, from the atom to the nanofiber axis of (i) the ratio I'/r,
of the total spontaneous emission rate of the atom to the

STRb, [nSy,), a = 150 nm
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FIG. 2. Spontaneous emission rates of an 87Rb atom in the state [nSi/,) (with n =7, 10, 20, 30) dependent on the distance, R, from the
atom to the nanofiber. We represent the ratios I'/r, (left), I's/r (right) as functions of R. I'; and I, denote the spontaneous emission rates toward
the guided and radiative modes, respectively, I' = I', + I, is the total spontaneous emission rate, and I'y is the spontaneous emission rate in

vacuum. The radius of the nanofiber is fixed at a = 150 nm.
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FIG. 3. Spontaneous emission rates of an ’Rb atom in the state [nPy,, F =3, My = 3) (withn =7, 10, 20, 30) dependent on the distance,
R, from the atom to the nanofiber. We represent the ratios I'/ry (left) and I's/r (right) as functions of R. 'y and I, denote the spontaneous emission
rates into the guided and radiative modes, respectively, I' = I', + T', is the total spontaneous emission rate, and I'y is the spontaneous emission

rate in vacuum. The radius of the nanofiber is fixed at ¢ = 150 nm.

spontaneous emission rate in vacuum and (ii) the ratio I's/T of
the spontaneous emission rate of the atom only into the guided
modes to the total spontaneous emission rate for the states
|I’lS|/2>, |nP3/2, F = 3, MF = 3), and |nD5/2, F' = 4, MF/ = 4),
respectively, withn = 7, 10, 20, 30, and for a nanofiber radius
a = 150 nm.

In all cases, close to the nanofiber, the total spontaneous
emission is amplified when compared with its value in vac-
uum. This amplification vanishes as R increases. The small
oscillations observed are due to the properties of the Green’
s dyadic function with respect to R. These so-called Drex-
hage oscillations were first experimentally identified by Drex-

STRb, [nDsy,, F = 4, |Mp| = 4), a = 150 nm
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hage [40] while investigating the spontaneous emission of
excited molecules located in the neighborhood of an interface
between two dielectric media.

Close to the fiber, a non-negligible fraction of the spon-
taneous emission is captured by the guided modes. The
strongest effect is obtained for § and D states, as already noted
and interpreted in Ref. [27]. As R increases, the guided modes
are (quasi)exponentially damped, hence the damping of I',
itself.

The dependence with n is less easy to interpret. Let us
first note that I', 'y, and I’y substantially decrease when
the principal quantum number increases (see Table I for

STRb, [nDsy,, F = 4, |Mp| = 4), a = 150 nm
0.22

n="7
——-n=10

n =20
—= n=30

0 200 400 600 800 1000 1200

R (nm)

FIG. 4. Spontaneous emission rates of an 87Rb atom in the state [nDs;,, F =4, Mp = 4) (withn =7, 10, 20, 30) dependent on the distance,
R, from the atom to the nanofiber. We represent the ratios I'/r, (left) and Ts/r (right) as functions of R. I', and I, denote the spontaneous emission

rates into the guided and radiative modes, respectively, I' = I', + I', is the total spontaneous emission rate, and I'y is the spontaneous emission
rate in vacuum. The radius of the nanofiber is fixed at ¢ = 150 nm.
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TABLE I. Theoretical values of the spontaneous emission rate, Iy, in vacuum of an 87Rb atom in the states [nS1,2), [nPyj2) and [nDs), F =
4, My = 4) forn =17, 10, 20, 30 (in s~1).

n 7 10 20 30

[nS1) 1.132 x 10’ 2.375 x 10° 1.662 x 10° 4.120 x 10*
|nPy,) 1.624 x 10° 7.424 x 10° 6.252 x 10* 1.624 x 10*
|nDs),, F = 4, Mr = 4) 2.642 x 10° 1.092 x 10° 1.328 x 10° 3.780 x 10*

theoretical values of I'p). The ratios I'/r, and Ts/r, however,
keep the same order of magnitude and, therefore, the plots in
Figs. 2, 3, and 4 for n = 7, 10, 20, 30 remain close to each
other. In particular, for high values of n, the plots seem to tend
to an asymptotic curve. This observation can be qualitatively
understood as follows. We first note that, for high n, only
a few transitions substantially contribute to the spontaneous
emission rate. In the crude but practical two-level approxima-
tion, we assume the spontaneous emission rate is dominated
by one transition |n) — |k) whose total spontaneous emis-
sion rate, spontaneous emission rate toward guided modes,
and spontaneous emission rate in vacuum are, respectively,

given by

I'/r, and T¢/r do not (substantially) depend on the dipole and
saturate as n increases.

2. Dependence on the fiber radius, a

Figure 5 shows the dependence on the fiber radius, a,
of the ratio Ty/r for an ®Rb atom in the states [nS1),)
(left), |[nPy,) (middle), and |nDsp, F =4, [Mp| = 4) (right),
with n = (7, 10, 20, 30). The atom is located at a distance
d = 50 nm from the fiber surface, i.e., R = a + 50 nm from
the fiber axis. Note that the contributions of all guided modes
are summed.

The ratio I's/r exhibits the same qualitative behavior with
respect to a for § and D states, and (Us/T)g , &~ 10(Ts/1)p. Note
that, for the states |nSi,,) and |nPy),), the hyperfine states (recall

Ty = %wﬁ,ﬂnk -Im[G(R, R, o)) - din, 1=3 for 8.7Rb') have the same T';. This is not the case fo:
o B LnDS/ziiand t1nt F}g.;, w; cho:e At; repr:)sent the specific “edge
_“to 25 o = BB 3 erfine state [nDs;,, F = 4, Mp = 4).
Fen = i Oniclk - I [Go (R, R, )] - i, yIzl"he abrupt slopé changes observed in all plots originate
w3 a2 from the appearance of additional guided modes as a in-
Fom = nk "k3 creases. To be more explicit, the successive maxima of I's/r
37 heoc can be interpreted as follows: (i) As a function of the fiber

For increasing n, w,; saturates, i.e., Rydberg levels are closer
in energy as the principal quantum number grows, and the

terms @2, Im[G(R, R, w)] and w2 Im[G,(R, R, w,)], there-

. . - 2 .
fore, also saturate. Finally, since I', I', I'g o |d,x| , the ratios

radius, the amplitude of a specific guided mode at the location
of the atom, i.e., at a distance d from the fiber surface, exhibits
a maximum for a specific value, denoted by an.x (@, d), which
depends both on the frequency of the mode and the distance,
d. (Note that an,x actually also depends on other character-

87 87 87 y
Rb, |nSys) Rb, [nP,,) Rb, [nDs,, F = 4,| Mg| = 4)
0.12 0.045 0.24
A1 . - ’ 22 /
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0.09- PN \ ! : 0.18-
! | \ i
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| \ |
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{ \/ : \\ : N\ i 0.025 {
>~ 0.06 1 I\ ‘ . > > 0.124
= 0.05 1 PN N\ = 002 . 0.1
. ; .
| N
i iy
0.04 - i M 0.015 0.08 -
]
0.03 / 0.01] 0.06
0.02 / —en= Io 0 0.04
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/ — n=230 — n=230
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FIG. 5. Spontaneous emission of an ¥Rb atom near an optical nanofiber dependent on the fiber radius, a. We represent the ratio I's/r, for
an ¥Rb atom in the states [nS),) (left), [nPy,) (middle), and [nDs),, F = 4, [Mp| = 4) (right), with n = (7, 10, 20, 30), as a function of a. The
atom is located 50 nm from the fiber (i.e., R = a + 50 nm).
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*Rb, |30Py,) R = a + 50 nm

0.05
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FIG. 6. Spontaneous emission of an 8’ Rb atom near an optical nanofiber — dependence on the fiber radius, a. We represent the ratio I's/r for
an ¥Rb atom in the states [30Py,, F =0,2,3,|Mp| =0---F) (left) and |30Py,, F =1, [Mp| = 0--- F) (right) as a function of a. The atom

is located 50 nm from the fiber (i.e., R = a + 50 nm).

istics of the mode such as polarization and wave vector). (ii)
For a given atomic transition, of frequency, wy, the coupling
to a given mode reaches its maximum when a = apx(wo, d),
hence a peak in I'¢/T.

Figure 6 shows the dependence on the fiber radius,
a, of the ratio Tyr for an ¥Rb atom in the states
[30Py,, F =0...3,|Mp| =0...F) located at a distance d =
50nm from the fiber surface, i.e., R = a + 50 nm from the
fiber axis. As can be observed in the figure, though the
different hyperfine magnetic sublevels for a given F' show the
same qualitative behavior, the spontaneous emission toward
the guided modes is stronger for states of higher |Mp|. This
can be qualitatively understood as follows: (i) Guided modes
have a large (though not exclusive) transverse component, i.e.,
orthogonal to the fiber axis (Oz) (see Fig. 1); (ii) high coupling
to the guided modes is, therefore, obtained for transitions
corresponding to dipoles in the transverse plane (Oxy); (iii)
the quantization axis being along the fiber axis, dipoles in
the plane (Oxy) correspond to ¢ transitions and therefore
stronger weight of o transitions in the de-excitation of an
excited state is correlated to higher spontaneous emission
rate toward guided modes; and finally (iv) higher value of
|MF| is correlated to stronger weight of o transitions in the
de-excitation of the state (this can be directly checked on 3;
coefficients), and therefore, higher |MF| is correlated to higher
spontaneous emission rate toward guided modes.

The same behavior can be observed and interpreted in
Fig. 7 for the states [30Ds;,, F =1...4,|Mp|=0...F).

3. Role of quadrupolar transitions

Because of their polarizability, Rydberg atoms are very
sensitive to electric fields and electric field inhomogeneities.
It is, therefore, reasonable to expect quadrupolar transitions
to play a role in the de-excitation of a Rydberg atom in the
vicinity of an optical nanofiber where spatial variations of the

field are very rapid. Following Refs. [41-43], we calculate
the correction due to electric quadrupolar transitions on the
spontaneous emission rates of an 3’Rb atom in the state |15, /2)
located close to a silica optical nanofiber (see Appendix C for
more details).

Figure 8 (left) shows the dependence on n of the electric
quadrupolar transition correction, I'?, to the spontaneous
emission rate into the radiative modes, for two values of
the nanofiber radius, ¢ = 100 and 200 nm. To obtain the
strongest effect, we fixed R = a, corresponding to the un-
realistic situation in which the atom is located at the fiber
surface. We note that I'? is larger for the smaller value of
a. This may be explained by the fact that, in this case, the
field inhomogeneities are more pronounced, and therefore
the effect of electric quadrupolar transitions is stronger. We
also note that I'¢ exhibits instabilities for small n’s, while it
smoothly decreases for larger n’s. To explain this observation,
we resort to the simplistic but illustrative two-level approxi-
mation; i.e., we assume that the main contribution is due to
a single transition from the Rydberg state toward the ground
state. In that case, ['? is roughly proportional to the square
of a spatial derivative of the radiative field modes resonant
with the transition (see Appendix C). These fields roughly
oscillate in space along the radial direction with the wave-
length associated to the Rydberg to ground-state transition.
For small n’s, the transition frequency strongly depends on
n, while it saturates for large n’s. The spatial period of the
radiative modes resonant with the transition therefore varies
rapidly with n for small n’s, but slowly for high »’s. On the
left panel of Fig. 8, I'? is computed for given R and a, while
n varies. For small n’s, when n varies, the atomic position
corresponds to very different stages in the oscillation of the
radiative field on resonance with the transition. By contrast,
for large n’s, the spatial frequency of the radiative field satu-
rates and therefore when n varies the atom “sees” the radiative
field in almost the same stage of its oscillation. In principle,
the same phenomenon exists for allowed dipole transitions.
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FIG. 7. Spontaneous emission of an 3’Rb atom near an optical nanofiber — dependence on the fiber radius, a. We represent the ratio I's/r
for an ®Rb atom in the states [30Ds;; F =1, --- ,4;|Mp| =0---F) as a function of a. The atom is located at 50 nm from the fiber (i.e.,
R =a+ 50nm).

In that case, however, the vacuum emission component is
much larger than the scattered one in the dipole case, and
screens out the variations due to the presence of the nanofiber.
By contrast, in the case of quadrupolar transitions, the vac-
uum component is negligible and the variations at small n’s
become visible.

The same observations can be made from Fig. 8 (mid-
dle, right), which show the dependence on n of the electric

quadrupolar transition corrections Fg and FOQ to the sponta-
neous emission rate into the first guided modes and vacuum,
respectively. To obtain the strongest effect, we again fixed
R = a. We, moreover, note that '¢ > Fg ~ Fg .

Generally speaking, a comparison to the values calculated
in the previous section shows that the quadrupolar contribu-
tion is negligible. In contrast, quadrupolar transitions play an
important role in the Lamb shift, as we shall see below.
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FIG. 8. Spontaneous emission of an 8’Rb atom near an optical nanofiber: Contribution of the electric quadrupolar transitions. We represent
the contribution of the electric quadrupolar transitions to the spontaneous emission rates into the radiative modes, I'? (left), the first guided
modes, FgQ (middle), and in vacuum, I‘OQ (right), for an $7Rb atom in the state |nS i12) as a function of the principal quantum number, n. To get
the highest possible value, we assume the atom is located on the nanofiber surface, i.e., R = a. In the case of the radiative modes (left), we
considered two values for the fiber radius, @ = 100 and 200 nm, while @ = 200 nm for the other two plots.
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FIG. 9. Definition of the angles (®, ®) characterizing the quan-
tization axis directed along the unitary vector é; = sin ® cos ®é, +
sin © sin €, + cos O¢,.

4. Influence of the quantization axis

Until now, the quantization axis was implicitly fixed along
the fiber axis (Oz). Here, in the spirit of the experimental
work in Ref. [44], we study how the spontaneous emission
rate of an atom close to an optical nanofiber depends on the
direction of the quantization axis chosen to define its state, and
therefore the direction of its angular momentum polarization.
The angles (®, ®) characterizing the quantization axis are
specified in Fig. 9.

To be more specific, Figs. 10, 11, and 12 show the
variations of the spontaneous emission rates toward the
first four guided modes, I', (left), and toward the radia-
tive modes, I', (right), for an ®’Rb atom prepared in the
state [30Ds,, F =4, Mr = 4) and located at a distance R =
300 nm from the axis of a silica optical nanofiber of radius

87R.b,
2.2

30D, F = 4, Mp=4), (a, R) = (250,300) nm

HE;;
———- TEn

TMo
——— HEy

2

1.8
1.6
1.4
1.2

1

> 0.84 N /

I, (10° st

064 N / A /
0.4+ \ / \ /

0.2 \ / N /

0 T T T
0 /2 ™ 37/ 2m

o (rad), © = =

DO |

a = 250 nm when the quantization axis rotates in the planes
(Oxy), (Oxz), and (Oyz), respectively.

a. Guided modes. Before discussing our results on I', let us
make a few remarks:

(A) Owing to our choice of initial atom state,
|30Ds,, F =4, Mr =4), and the value of fiber radius
considered here, a = 250 nm, the only transitions along
which the atom can decay by emitting a photon into a guided
mode are o transitions toward P states, whose dipole is
contained in the plane orthogonal to the quantization axis.
Transitions toward F states, though obviously allowed,
do not substantially couple to guided modes because their
wavelengths are too high.

(B) A guided mode is characterized by its type (K = TE,
TM, HE, EH), its frequency w, two integers / > 0 and m > 0
called the azimuthal and radial mode orders, respectively, and
two numbers f = +1 and p = %1, which characterize the
propagation direction of the mode (f = %1 conventionally
corresponds to a mode propagating along (Oz) toward increas-
ing or decreasing z) and the counterclockwise or clockwise
phase circulation of the mode, respectively [45].

(C) Because of field confinement, a guided mode u =
(Kim, o, f, p) possesses a nonvanishing longitudinal compo-
nent, E{*) (except for K = TE) [32]. For the guided modes
considered, E/*) and Ey(“)can be chosen as real and E{* is
then purely imaginary. Moreover, the mode field components
can be written in the forms

E;ll-) — ig;](lmvw)’

(1) — e Kim,w)
E)Y = pE; ,
E;M) — ngFsz,w)’

STRb, [30Ds),, F =4, Mp = 4), (a, R) = (250, 300) nm
39

38 1

37 1

36 1

35

34+

I, (10° st

331

32

31 T
0 ﬁ/f) ™ 37r/2 2m

@@M%@zg

T T

FIG. 10. Spontaneous emission of an ®’Rb atom near an optical nanofiber with quantization axis in the (Oxy) plane. We plot the
spontaneous emission rates, I', (left) and T, (right), into the first guided and radiative modes, respectively, for an 87Rb atom in the state
[30Ds),, F = 4, Mp = 4) as functions of the angle ® (cf. Fig. 9), with ® = 7/2. The contributions to I', of the first four guided modes,
HE,,, TEy;, TMy;, and HE,,, are displayed separately. The radius of the fiber is a = 250 nm and the atom is located 50 nm from the fiber (i.e.,

R =a+ 50nm).
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FIG. 11. Spontaneous emission of an 8’Rb atom near an optical nanofiber with quantization axis in the (Oxz) plane. We represent the
spontaneous emission rates, T, (left) and T, (right), into the first guided and radiative modes, respectively, for an ’Rb atom in the state
[30Ds),, F = 4, My = 4) as functions of the angle ® (cf. Fig. 9), with ® = 7/2. The contributions to I', of the first four guided modes,
HE,;, TEy;, TMy,, and HE,, are displayed separately. The radius of the fiber is @ = 250 nm and the atom is located 50 nm from the fiber (i.e.,

R = a+ 50nm).

where EXm) are real functions of space and time, indepen-
dent of f and p.

(D) Finally, note that &™) = gTEme) =0 and
£Mm0) — 0

Figure 10 corresponds to the configuration © = 7,
i.e., the quantization axis is chosen in the plane (Oxy)

and directed along the vector é; = cos ®é, + sin Pé,.
The dipole, c?k,,, associated with the o' de-excitation,
|[n) — |k), of frequency w,;, can, therefore, be written

in the form c?kn = %[i(sin ®é, — cos Pé,) + ¢€;]. Accord-

STRb, 30Dy, F =4, Mp=4), (a, R) = (250,300) nm

0.5 \ //I HE;,
——- TEn
\ ,/ TMo
N e e HEy
0 = T
0 /2 ™

O (rad), ® = g

ing to the remarks above, the coupling factor dw - E™
of a given transition |n) — |k) to the (resonant) guided
mode 1 = (Kj, wu, f, p) is proportional to fEKm @) —
EKim-@) sin @ — jpEKimn) cos @ and the associated con-
tribution to the spontaneous emission rate is, there-
fore, itself proportional to (fEXKm@m) — &Ko) gin D) +
(é'}(,Kl"h‘””k))2 cos?> ®. Summing over f = £1, p = #£1, and all
possible final states, |k), we conclude that the spontaneous
emission rate, F;,K"”), into the first four guided modes Kj,, =

STRb, (30D, F = 4, Mp = 4), (a, R) = (250,300) nm
38.6

38.4 1
38.2 1

~—~ 38
—

36.6 T
0 7\'/2
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E

FIG. 12. Spontaneous emission of an 8’Rb atom near an optical nanofiber with quantization axis in the (Oyz) plane. We represent the
spontaneous emission rates, I', (left) and I, (right), into the first guided and radiative modes, respectively, for an %7Rb atom in the state
[30Ds),, F = 4, My = 4) as functions of the angle ® (cf. Fig. 9), with ® = 7/2. The contributions to I', of the first three guided modes,
HE,;, TEy;, and TMy,, are displayed separately. The radius of the fiber is ¢ = 250 nm (i.e., R = a + 50 nm).
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FIG. 13. Spontaneous emission of an ¥ Rb atom near an optical nanofiber. We represent the proportion of spontaneous emission into the
guided modes, Ts/r, for an ¥Rb atom in the state [30Ds,», F =4, Mp = 4) as a function of the angles (©, ®) (cf. Fig. 9).

HE;;, TE¢;, TMy;, and HE;; is proportional to

Z {(SZ(K’”"“)"“)2 + (S;K’”’""”k))z sin® ® + (S}(,K”"“*’”k))2 cos® ®}.
k

(Note that cross terms between E, and E, compensate each
other when summing over f). In agreement with Fig. 10,
we conclude that (i) T is a m-periodic function of ®
and reaches its extrema when & = O[%], (i1) for the modes
TEy,, since &, = &, = 0, I‘;TE‘“)(CD) o cos? @ is maximal for
® = 0[x], minimal for & = %[n], and its minimum is zero,
and (iii) for the modes TMyy, since & =0, T{™(®) o

>y ((E ™o o) )’ + (EM™oow)y? 5in? @} is maximal for & =
%[7‘[], minimal for ® = O[] and its minimum is different
from zero. For other modes (Kj,, = HE;;, HE;;), Fig. 10
shows that minima and maxima of FéKlm)(CD) are also reached
for ® =0[x] and ® = %[n], respectively. This can be ex-
plained by the inequality |£,| > |£,| valid for these modes and
the values (a, R) considered.

Figures 11 and 12 address the cases of a quantization axis
in the (Oxz) and (Oyz) planes, respectively. They can be
interpreted using similar arguments as presented above. For
a detailed discussion, see Appendix D.

b. Radiative modes. Our results on the spontaneous emis-
sion rate into the radiative modes are displayed in the right-
hand panels of Figs. 10, 11, and 12. In the three different con-
figurations, one observes a r periodicity in ($, ®). Moreover,
the three figures seem to indicate that, for the values of (a, R)
considered, radiative modes contributing to I', are mainly
radial, i.e., their component along (Ox) dominates. Because of
the variety and complexity of the structure of radiative modes,
it is, however, difficult to go further into the interpretation of
our results.

c. Proportion of spontaneously emitted light toward the
guided modes. Figure 13 displays a three-dimensional (3D)
“summary” of Figs. 10, 11, and 12. To be more explicit, it
shows the ratio I's/r characterizing the proportion of sponta-
neous emitted light captured by guided modes. Note that the
contribution of HE;; to I', dominates. Besides 7 periodicity

in ® and ©, one observes maxima for I'y/r for é; = €. and
saddle points for &; = €,.

5. Anisotropic spontaneous emission

Throughout this section, the quantization axis is chosen
along (Oy). Using the same notations as in the previous
section, this corresponds to €4 = é,. In this configuration,
the atomic dipole associated with, e.g., a o™ transition
|[n) — |k) lies in the plane (Oxz) and, more explicitly, din =
‘\%[ié’,C + ¢€.]. Using, as in the previous section, the simplistic
mode function approach, we conclude that the contribution
of this transition to the spontaneous emission rate into a
specific guided mode u = (Kj, Wk, f, p) is proportional to
(fEKm @) — <€')£K”"""”k))2 and clearly depends on the propaga-
tion direction, f. This heuristic argument cannot be straight-
forwardly transposed to radiative modes, but the same phe-
nomenon is observed. The anisotropic spontaneous emission
leads to a nonvanishing average lateral force on the atom
whose order of magnitude is 0.5 zN (5 zN) for a rubidium
atom in a 5D (5P) state located at a distance d = 50nm
from a fiber of radius a = 200 nm. This force corresponds
to the resonant part of the average Lorentz force, [F™],
Eq. (5) [30], and can be calculated in the Green’s function
approach. In particular, for an atom initially in a state |n),
one can decompose [F"*]; as the sum of contributions [, ]
relative to the transition |n) — |k) coupled to the (guided or
radiative) mode, v.

In order to quantitatively characterize the anisotropy of
emission, we introduce the factor

_ 1—‘nk,v hkv,z
o= Y Dl
r, hk,

v,k<n

where the sum runs over all (radiative and guided) modes,
v, and final states, k. In this expression, 'y, represents
the spontaneous emission rate for the transition |n) — |k) into
the mode v, I, is the total spontaneous emission rate from the
state |n), k. is the projection onto (Oz) of the wave vector
for the (guided or radiative) mode (v), and k, = @v/c is its
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FIG. 14. Directionality of the spontaneous emission of an ’Rb atom near an optical nanofiber. We represent the coefficient, o, (see main
text for definition), characterizing the directionality of the spontaneous emission with respect to the z axis, of an ¥Rb atom in the states
[nSi)2, F =2, Mp = 2) (left panel) and |nS, », F = (2, 1), M = 1) (right panel) for n = 6, 10, 20, 30, close to an optical nanofiber of radius
a = 200 nm as a function of the distance, R, from the atom to the fiber axis.

norm. With these definitions, (I'«»/T,) can be interpreted as
the probability for a photon to be emitted from the state |n)
via the transition |n) — |k) and into the mode v, while 7./,
characterizes the inclination of the momentum of the photon
emitted into the mode v with respect to the fiber axis.
Identifying —hk, Iy v, i.e., the atomic recoil along (Oz)
induced by the emission of a photon into the mode, v, via
the transition |n) — |k), with the force [F,f,ffv ,» one can
write o, = — Y, IFiL1/r ik, (see Ref. [33] and Appendix B).
Figures 14 and 15 show the coefficient a, for an ¥’Rb atom
prepared in an excited S, P, or D state decaying via ot
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transitions located close to an optical nanofiber of radius
a =200nm as a function of the distance R from the atom
to the fiber axis, Oz. The observed Drexhage-like oscillations
are due to radiative modes [40]. Remarkably, though very
weak, the spontaneous emission anisotropy for the § states is
nonzero, at around 0.4% at most (see Fig. 14). For § states,
o decreases for increasing n and vanishes when R — 400
as expected (equivalent to the free-space configuration). As
seen in Fig. 15, for P and D states, the spontaneous emission
anisotropy, at around 20% on the surface of the nanofiber, is
much stronger than for S states. When R — +o00, «, tends

8TRb, [nDsp, F' = 4, Mp = 4), a = 200 nm
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FIG. 15. Directionality of the spontaneous emission of an ’Rb atom near an optical nanofiber. We represent the coefficient, o, (see main
text for definition), characterizing the directionality with respect to the z axis, of the spontaneous emission of an ¥Rb atom in the states
[nP3p, F =3, Mp = 3) (left panel) and |nDs;,, FF = 4, Mp = 4) (right panel) for n =5, 6, 10, 30, close to an optical nanofiber of radius
a = 200 nm as a function of the distance, R, from the atom to the fiber axis.
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FIG. 16. Directionality of the spontaneous emission of an ¥’Rb atom near an optical nanofiber into the guided modes — We represent the

(+)

ratio, s~ ~T¢)/r, (see main text for definitions), characterizing the directionality with respect to the z axis, of the spontaneous emission into
the guided modes of an 87Rb atom in the state [nDs)», F =4, My = 4) forn =7, 10, 20, 30, close to an optical nanofiber of radius a = 200 nm

as a function of the distance, R, from the atom to the fiber axis.

to zero as expected. For P states, o, decreases with n, while
it only slightly varies for D states. Anisotropic emission is,
therefore, observable for D states even at high values of 7.

a. Anisotropic spontaneous emission into the guided modes
of the nanofiber. For guided modes, the anisotropy can be
further characterized by the ratio, (Ce”-Ti™)/r,, where '}
Ty) denotes the spontaneous emission rate into the forward-
(backward-) propagating guided modes and I'y = F; +I,.
Using the same arguments as above, one can write this factor
in the following form: — Zk’ u (Ficul /T hlk, .|, where now the
sum runs over the guided modes, u, only (see Ref. [32]
and Appendix B). Figure 16 shows the ratio ('{"-T{)/r,
calculated for an 8’Rb atom prepared in the state [nDs 0, F =
4, Mr = 4), with n =7, 10, 20, 30, and located near an op-
tical nanofiber of radius ¢ = 200nm, as a function of the
distance, R, from the atom to the fiber axis. The directionality
of the guided emitted light remains strong even for high values
of n and R. Note, however, that for large R > 300nm the
absolute value of I'y itself is so small that the directionality
has little practical meaning.

B. Lamb shift and Casimir-Polder force

Figure 17 displays the energy difference, E(nSy,) —
E(5Sy,), of the states [nSy,) (n=27...30) and |5S,) for
an 8’Rb atom near an optical nanofiber of radius a = 200 nm
as a function of the distance, R, from the fiber axis. The
Lamb shift of the ground state is assumed to be negligible
with respect to that of the excited levels. When R decreases,
[E(nSy,) — E(5S81,)] itself decreases, though more rapidly for
higher n. At shorter distances from the fiber, energy curves
cross (not shown on Fig. 17) and the perturbative approach
fails. The treatment of this area requires the diagonalization

of the full Hamiltonian in the relevant degenerate Hilbert
subspace. This will be investigated in future work.

Figure 18 shows the same quantity
for states |nDspF' =4, mp = —F ... F) and
[nPy,FF =3, mp = —F ...F) for n=29,30. Though the
order of magnitude is comparable to that obtained for states
|nSi,), one observes a degeneracy lift of the hyperfine
components of different |Mp| very close to the fiber; to
be more explicit, the Lamb shift is stronger for states of
higher |[MFr|. This can be qualitatively justified as follows:
(i) Radiative and guided modes have a strong—though not
exclusive—transverse component, i.e., orthogonal to the
fiber axis (Oz) (see Fig. 1). (ii) High coupling to the guided
modes is, therefore, obtained for transitions corresponding to
dipoles in the transverse plane, (Oxy). (iii) The quantization
axis being along the fiber axis, dipoles in the plane (Oxy)
correspond to o transitions: therefore, the stronger the weights
of o transitions in the de-excitation of an excited state, the
higher the spontaneous emission rate into guided modes; iv)
The higher M|, the stronger the weight of ¢ transitions in
the de-excitation of the state (this can be directly checked on
3 j-coefficients): therefore, the higher |Mp|, the higher the
spontaneous emission rate into guided modes.

The R dependence of the Lamb shift results in a radial
Casimir-Polder force, —dgU,(R), represented in Fig. 19 for
the state |30S1,) as a function of R. Note the negative sign
and, therefore, the attractive character of the force, as well
as its order of magnitude of 10~!* N, much larger than spon-
taneous emission recoil induced forces. Aside from the total
force, we represented the contributions of the electric dipole
and quadrupole couplings. Though the dipole contribution
dominates, the quadrupolar component is far from negligible,
especially close to the nanofiber when field inhomogeneities
are magnified.
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FIG. 17. Lamb shift of an *’Rb atom in the state |nSy), forn =27, ..., 30 near an optical nanofiber. We represent the energy difference,

E(nS,) — E(5S,), of the states |nS,) (n =27...30) and |5S,,) of an $7Rb atom near an optical nanofiber of radius, @ = 200nm as a

function of the distance, R, from the fiber. Energies are given in eV.

We note that, for a constant force of 2 x 10~ N, which is
a typical value according to Fig. 19, an atom moves more than
1 um within only 5 ns. For the typical states and atom-fiber
distances considered here, an atom will therefore crash into
the fiber surface in a fraction of the Rydberg state’s lifetime.
Atoms sticking onto the fiber would result in huge electric
fields [46,47], potentially harmful to quantum operations
which might be performed on the atom-nanofiber platform.
A crucial ingredient of an atom-nanofiber-based quantum
platform is (among others) therefore efficient atom trapping.
An atomic trap was already implemented in a nanofiber setup

for atomic ground states, in the evanescent field of a guided
mode excited by a laser beam [22]. In our case, the problem
is trickier since the trap must be designed in such a way that
it is efficient for both ground and Rydberg states. Such a trap
does not exist yet and might be very challenging to build; in
particular, it is not known to us whether so-called magic wave-
lengths can be found for these states. Alternative solutions
may also be sought, such as trapping the ground-state atoms
and then, on release, turning on the Rydberg excitation pulse
so that the Rydberg state is never substantially populated [48]
or only briefly populated. Combining fiber-based atom trap

8TRb, a = 200nm
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FIG. 18. Lamb shift of an ¥’Rb atom in the states |nPy,F =3, Mp = —F ...F)and |[nDs,F =4, My = —F ... F),forn =29, 30 near an
optical nanofiber. We represent the energy difference, E — E(5S)),), of the states of interest with respect to |5S1,) as a function of the distance,
R, from the fiber. The radius of the nanofiber is @ = 200 nm. Energies are given in eV.
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FIG. 19. Casimir-Polder force felt by an ’Rb atom in the state |30S, ,») near an optical nanofiber. We represent the radial Casimir-Polder
force, Fygw = —drU (R), felt by an 8Rb atom in the state [30S,,) close to an optical nanofiber of radius @ = 200nm as a function of the
distance, R, from the fiber. The total force, electric dipole, and quadrupole coupling contributions are represented by (blue) full, (red) dashed,

and (green) dash-dotted lines, respectively.

with a Rydberg ponderomotive trap, as recently developed
in Browaeys’s group in Palaiseau [49], may be a promising
though challenging option.

Figure 20 displays the electric dipole and quadrupole com-
ponents of the Lamb shift calculated for an ’Rb atom in the
state |nSi,) located at a distance, R = 250 nm from an optical
nanofiber of radius @ = 200 nm. One observes that the higher
the principal quantum number, 7, the stronger the quadrupole

component. For n > 35, it even dominates the Lamb
shift.

One observes the same trend with n in Fig. 21, which
displays the relative contributions of the electric dipole and
quadrupole couplings to the Lamb shift calculated for an ’Rb
atom in the state |nS/,) located at four different distances R =
250, 300, 350, and 400 nm from the optical nanofiber axis,

as functions of n. As expected, the influence of quadrupolar

STRD, InSy,), a =200nm, R = 250 nm

R Xk
L) x x
-1 000+ X e
x 0 e
X LI
-2 000+ « . .
X
" -3 000
m X
O -40004 «
~
2 -5000] x
-6 000
X
-70007 . e Dipole contribution
X X x  Quadrupole contribution
-8 000 T T T T T T T T T T T T T T T T T T T T T T T T
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

n (principal quantum number)

FIG. 20. Electric dipole and quadrupole contributions to the Lamb shift of an *’Rb atom in the state |nSi/,) near an optical nanofiber.
Electric dipole and quadrupole components are represented as functions of the principal quantum number, n, by (blue) dots and (red) crosses,
respectively. The radius of the optical nanofiber is @ = 200 nm and the atom is located at R = 250 nm from the fiber axis.
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FIG. 21. Relative contributions to the Lamb shift of electric dipole and quadrupole couplings for an ’Rb atom in the state |nS, /2) close to
an optical nanofiber. Electric dipole and quadrupole components are represented as functions of the principal quantum number, n, by (blue)
dots and (red) crosses, respectively, for an atom located at R = 250 (top left), 300 (top right), 350 (bottom left), and 400 nm (bottom right)

from the fiber axis. The radius of the optical nanofiber is ¢ = 200 nm.

transitions is lowered when the distance, R, increases, since
the effect of the fiber on the electromagnetic field is less
pronounced.

IV. CONCLUSION

The influence of a nanofiber near an 8’Rb atom prepared in
a Rydberg-excited state, |[n < 30; L = S, P, D; JF MF), on the
spontaneous emission rates and Lamb shift was investigated
numerically in detail. In particular, the dependence of the
spontaneous emission rates on the fiber radius, the distance
of the atom to the fiber, the principal quantum number,
n, orbital momentum, fine and hyperfine structures of the
state considered, and the direction of angular momentum
polarization were addressed. Close to the nanofiber, a non-
negligible fraction of the emitted light can be captured by
guided modes. This fraction is higher for larger |Mp| but
saturates for high n. When the quantum and fiber axes do not
coincide, spontaneous emission into guided modes becomes
strongly directional. This directionality persists even for high
n. The contribution of quadrupolar transitions was shown to
be negligible for spontaneous emission rates, while they may
dominate Lamb shifts and Casimir-Polder associated forces
for high n. Our calculations were performed in the multimode
fiber case, including all atomic transitions, using the general
framework of macroscopic quantum electrodynamics and this

allowed us to account for the dispersive and absorptive char-
acteristics of silica.

Our work is a preliminary step toward the building
of a Rydberg-atom-optical-nanofiber platform. In particular,
the collection and guidance of a substantial part of the
spontaneous emitted light along the nanofiber suggests the
possibility of constructing a network of Rydberg atomic
ensembles in the same spirit as described in Ref. [13].
The strong directionality of spontaneous emission observed
for specific Rydberg states and quantization axis is also
very promising in view of potential applications in chi-
ral quantum information protocols [34]. In future works,
we will address the case of several Rydberg atoms in the
neighborhood of an optical nanofiber. In particular, we shall
be interested in studying how the nanofiber modifies the
Rydberg blockade phenomenon and whether the geometric
arrangement of atoms can be used to enhance the coupling to
guided modes.
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APPENDIX A: DYADIC GREEN’S FUNCTION FOR A CYLINDRICAL NANOFIBER

The dyadic Green’s function G used throughout the main text is the solution of the Helmholtz equation
- - w? = =
[V; x Vi x —¢&(7, w)—2i|G(7, 7, w)=8F—7), (A1)
C
where the operator, V,, acts on the position vector, 7, I is the unit dyadic, and ¢ = ¢;(w) (s1hca relative electric permittivity)

inside the nanofiber and ¢ = 1 outside. As shown in Ref. [36], G splits into a vacuum term, Gy, which is the solution of Eq. (A1)
with ¢ = 1 in all space, and a scattering term, GSC, due to the presence of the nanofiber, i.e.,

G =G + G
The scattering term, ESC, can be decomposed as follows:
= 1ot XL N
GulP. 7. ) = o / dB Y 3.7 0. pre ()P, (A2)
e n=-—00

where we introduced the cylindrical coordinates (p, ¢, z) and (o', ¢’, z') of the vectors 7 and 7, respectively, p = 0, p' =
mp’, nj=12(8) = ,/k_,-(a))z — B2, and kj; 2(w) = 2/¢j(w). In the cylindrical bases (¢,, &4, €;) and (¢, €y, €;) associated
to 7 and 7, defined by 7 = pé, + z&, and ¥ = p’é, + 7'é., respectively (see Fig. 1), the components of the dyadic function,
2,(p, P, o, B), take the forms

5. 7. Bl =i[rMM”H'5;(ﬁ )”H'i;),@ )y NN’,f OH,(7)0H, (p)+rMNk%{”H”(” Do)+ ) a5 )”
G570 Py = r” <,10>( )aH )+ NNﬂj#aflm(p”rmkﬁ[aHu)(p)aHm( )+nH,§i>(i>)nH,§;/(i)’)],
[8,(B. B . B)p: = —rNM%Z‘N’)H;”(m - kf HM(3)oH"M (B).
[§n<f),b’,w,ﬂ>]¢¢/=i[rMMaH,i”(maH,5‘>(b’>+r ’Zj H(i)(p )”H(:/(p )

(1 (1)
+rMNkﬁ{ "By Py o gy 4 P )aH;”(ﬁ)”,
2 P

[En(b,p’,w,ﬁ>]¢z=_l[rMN H"(0)9H" (B) + ryy ’3 H, (p)H,El)(i)’)},
k2 kz kzp

(3,(0, 0, , B)]. erNk—H<“(p)H“><p ),

dH" (x)
dx

where we introduced 8H,£1)(x) = and the reflection coefficients, ryy, rvn, and ryy = ryy, defined by

. 1 Ju(na) (ﬂn> (__ 1 )2_(8Jn(ma) ~ 8Jn(77261)>(31n(77161) 2 OHna) k2>
= DH(I)(nza) n 0 mdu(ma) — mdu(ma) )\ md,(ma)"" mH" (n2a) 20
_1 Jn(n2a) ﬂn 11y u(ma) ,  AIu(ma) 5\ ([ 0u(ma)  IHL (n2a)
NN = (1) ) - kl - k2 N (1) ’

D H" (in2a) n; oM mJn(n1a) n2Jn(102a) mh(ma)  npHY (na)
. 1 &y (ﬂn> Ju(m2a) (i B _)(fﬂ w(20) 8H,§”(nza))
"= D, HY (n20) \ 03 Juma)  H (mpa) )

: — (B 12 dJu(ma) _ 9H, 1) y o 81,(ma) g2 OHV(na) 42 : :
with D = —(57) (n% '112) + (mln(ma) nzH,‘,”(nza))(mf (ma) p H(])(nz )k ). Note that D and the reflection coefficients, r4p,

depend on n, w, a, and B, i.e., D = D,(w, a, B) and ryp = rAB,n(a) a, B). For the sake of legibility, we omitted the index n and
arguments (w, a, B) in the expressions above.
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The contributions [Esc]q, o' [Gscl 20> and [Esc]w/ can be deduced from the previous expressions via the relation GH, 7, w)=

=T
G (7,7, ). We, moreover, note the following useful symmetry properties

~ ~/

(2,0, 7, w, —B)ir = [8,(p, B> @, B)lii'»

-~/

(2,3, 0, 0, B)ir = [8,(p, P, @, B)livs

~ ~/

(8,7, P . Blpy = —[8,(P. P 0. B)lpys
(8,(B. B 0. —B)py = [8,(B. B @, By
[8_u(P, B, @, By = [2,(B, D', @, B)] e
[8,(B. B 0, —B)p: = —[8,(P. P, . B)]pz.
(8, (B, P, 0, B)lge = —[8,(D, D', @, B)]pe
[8,(P, D' @, =B)lge = =18, (D, ', @, B)lge-

In particular, these relations imply the scattering component, Gs.(7, ¥, @)|z_;, is diagonal in the (¢,, &, €,) basis.

The poles of the integrand in Eq. (A2) are found through solving the equation D,[w, a, 8] = 0 for . The pole equation
coincides with the so-called characteristic equation for the guided modes of a circular fiber. Such modes are fully determined by
aset u = (Kjy, o, f, p) where K = TE, TM (for n = 0), HE, or EH (for n # 0) denotes the mode type, p = sign(n), f = %1,
and the integers / = |n| and m are the azimuthal and radial mode orders, respectively. The introduction of f allows one to consider
only positive values for 8. Indeed, by symmetry of the characteristic equation, if D,[w, a, 8] = 0, then D,[w, a, —B] = 0. By
convention, the value of 8 for the mode u = (Kj,, w, f = +1, p), denoted by B, (a), is chosen positive, while the value of 8 for

the mode i = (Ki, o, f = —1, p)is —B,(a) < 0. With these definitions, we apply the residue theorem to Eq. (A2) and get the
following decomposition [50,51]:

“‘:l
::l
S
N’
Il
Qll
~~
'\l
'\l
e
N
+
Qll
g
~~
::l
::l
S
bad

7,7’,0))=£ 33 S Res[5(p. 5. . fBra)]

K=TE,TM f=+1 m

. +o0
5SS YRl el

I=1 K=HE,EH f,p=+1 m
where G, and Eg are interpreted as the contributions of radiative modes
o= (w,pel-9e,fl,n=...—1,0,1,...,p==%£1)

and guided modes u = (K}, @, f, p), respectively. Following the analogy with the electromagnetic wave theory of fiber modes,
we identify 8 with the propagation constant, i.e., the projection k, of the mode wave vector onto the fiber axis, (Oz). To be more
explicit, for radiative modes (o) k, ; = B, while for guided modes (u) k., = fB,.

APPENDIX B: FORCE AND ANISOTROPY

The Lorentz force on an atom located at a position, I_é, in an electromagnetic field (E , E) takes the form

F(t)=(d-EF.0)._z +
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Assuming the atom is initially in a statistical mixture of states {|n)}, the general expression of this force is [30]

Ft) =" pa(t)F,
n (Bl)

o too Vﬂd Im[G. R, dinll
Fnzz:@/ do [dn - Im[G (7, R, )] - k]|_R+H.C.’

0= — 5Ty +Ty)

where I, is the spontaneous emission from the excited state |n) and p,(7) is the population of state |n) at time 7, dy = (n|c? k).
We neglect broadening in the denominator of the integrand in Eq. (B1), i.e., g, + 5(I'; + I'x) & wy,. Then, by application of

the residue theorem, we split this force into a resonant and a nonresonant part, i.e., F, = F,* 4 F,™, with

Fre =Y " 2p00yRe(Vildu - Goe (7, R, 0nt) - dinll;_g),

k<n
+00
= <) W,
B = —— 55> — " Vildy - Goe (P, R AE) g - dn].
T Jo wkn E

We emphasize that the nonresonant part is summed over all transitions, while the resonant part takes into account only
radiative transitions toward states |k) of lower energy than |n). From the symmetry properties of g,, one deduces

0= 1
|:_Gsc(7» R) i| = sc ] =0,
9z r=kdi LR 8¢) F=RJii
3 = L 0= i a = L o=
|:a_Gsc(rv R) :| = | =G (#,R) :| =0,
< 3 PP =Rz
8 = o 2 i a = L o=
|:_Gsc(r, R) :| = | =G« (# R) :| =0.
¢ F=Rd pz L 9¢ F=Rdz¢p

-

Setting [ESC(F, R, w)];; = Gj; and [dy]; = d; for shortness, one gets

- = o o= - 3 RS - R I N
Vildu - Goe(7, R, o) - dinll,_ig = —[|dp|2Gpp<r, R) + |dy|* Gy (F, R + |d,|*G o (F, R)]|._zéx

d B,
+2ilm(d,, d¢) Gy (F, R)|,_gy + 2iIm(d,, 475 GpelF, R

d
R3¢
Finally, using %;G,-j(?, ﬁ)|;=1§ = %%Gij(?, 7)|;_z and noticing that 2Re[i0;G;;] = —2Im[0;G;;], we can get the resonant force
projection in the (€, é,, €;) basis (which corresponds to the cylindrical basis (é,, é;, €;) at the location of the atom, see Fig. 1)

d I R
[Fre], =) %Re[uowﬁkdnk -G (7, 7y o) - drn | g

k<n
[F], = =3 dpuod, Im(d.d)im B Gy P)
-], = e Rag | gl
k<n =
‘ 0 N
(2], = = D 4moe, Im(d, d*)lm[az Gel 1| J’
k<n a

and the nonresonant projection

a Mo too Eza)kn = = . =
FMe = — df§ ———du - G (F, T, - din ,
[n ]x Zap( / gwkn_i_gz (}’ r 15) k o
nres 4”“0 * oe Ezwkn d N
(=] ZI () | dE T +nga<¢) Gy (P F,i6)|
F=R
4/1*0 +oo E a)kn 0
Fnres — I dxd* o
A== ;m[ z]/o A T MR W

The radial component (i.e., along x) can be expressed as the derivative of the energy displacement, i.e., F, = F™ + F/* =
—%[ﬁBw“res(p) + héw™ (p)]|;_g- This result justifies the Casimir-Polder approach in which the radial force derives from the
potential U (p) = hdw(p) related to the energy displacement.
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The resonant forces along y and z can be interpreted as resulting from average recoil forces due to the preferential emission
of photons of a given polarization ([F,;**] ) or toward a given direction ([F,**]). Using the results of the previous Appendix,
one can moreover decompose these forces as sums of the contributions of the different modes and atomic transitions, e.g.,

[F1, = 20 ken [Fyiu],» where [F*] is the force relative to the transition |n) — [k) coupled to the (guided or radiative)

mode v.

APPENDIX C: ELECTRIC DIPOLE AND QUADRUPOLE TRANSITIONS

The electric dipole and quadrupole contributions to the interaction Hamiltonian of an atom located at position R with the
electromagnetic field can be written as

where e denotes the Frobenius inner product explicitly defined by AeB = D ;jAijBji, {Ai;} being the components of the tensor

X in an orthonormal basis [30], and

d=
5 —}" el®er

In the dipole and quadrupole operators above, ré, (approximately) corresponds to the position of the active valence electron with
respect to the nucleus of the atom. The matrix elements du = (n|d|k) and 0, = (n|Qlk) comprise radial and angular parts. The
radial parts (n'l'j'|#|nlj) and (n'l’j'|#*|nl j) can be computed thanks to the Alkali Rydberg Calculator [52]. To get the angular
parts, we express €, and €, ® €, in the basis (€, €, é;) in terms of spherical harmonics Y} ,

Yi.1—Y,
27 [ . > ’
e = 3 iV +Y.0)),
V2Yi
2 10
2,2+ Ya0) - \@Yz,o +./ 300
iV, 2 —Y25)

T Y, 1 -1, i(Y2, 2 —Y22) Lo -1,
30 .
—(2, 2+ 1) — \/ng,o +/ $Yoo i(Y2,-1+Y21)

i(Y2-1+Y21) @Y2,o+\/%Yo.o

and use the following formula [53]:

- 1
(I, j, E MY |l j' F' M) = (1) +'+S+I‘M\'/4—(2k + D@+ D@+ D(2J + DRI+ DEF + DQ2F + 1)
T

1k N[ sV F O I(F ok F
o 0 o))/ U k[\F j k[\m ¢ —-Mm)

Finally, we can compute the spontaneous emission rates along the transition |n) — |k) with dipole and quadrupole terms,
respectively, given by

i 2M —= =
P = 22075 Y7 [dulaldialyIm(Gog (R, R w,0))

a,B=x,y,2

v . 210
reO = fim =202 > [OulaslOulysded), Im[Gps(R, R, 0],

—__)/
IR—R'—0 oyt
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and the Casimir-Polder potential in the nonretarded approximation is given by

NN 1 =
UP Ry === 3 Y ldulaldinlslTo(R)lag,

a,f=x,y.z k

S S 10 Qunlysad [ToR)1gs.

a.B,y.0=x.y.z k

, 1
paad gy — _
w O (R) 5

where we introduced ?0 (R) = lim,_¢ ‘:’—ZE(E R, w).

APPENDIX D: DISCUSSION OF FIGS. 11 and 12

In this Appendix, we interpret Figs. 11 and 12 in detail, using the same arguments as in Sec. IIl A 4 a.
In Fig. 11, the quantization axis is chosen in the plane (Oxz), ie., ® =0, and &, = sin ©, + cos ®¢_; hence dj, =
%[i(sin ®é, — cos ©¢,) 4 ¢,]. The contribution to the spontaneous emission rate into the resonant guided mode u =

(Kim, @k, f, p) of a given transition |n) — |k) is proportional to (cos @& Kim@m) pz‘)y(,K’"““’”k))2 + (<"Z'Z(Kl"“‘“"k))2 sin’> ®. Summing
over f = £1, p = %1, and k, we conclude that the spontaneous emission rate FéK"") into guided modes K}, = HE 1, TEq;, TMy,
or HE,,, is proportional to

Z { COS2 6(5;7(/%&)”1())2 + (S;KIm»Wnk))2 + (E/’Z(Klmywnk))z Sinz @}

k<n
(Note that cross terms between E, and E, now compensate each other when summing over p). In agreement with Fig. 11,
we conclude that (i) F[g’(’m) is a w-periodic function of ® which reaches its extrema for ® = 0[Z]. (ii) For the modes TEy,
since & =&, =0, FéTEO‘)(@)) is constant. (iii) For other modes (K;,, = HE;;, TMy;, HE;), Fig. 11 shows that maxima and

minima are achieved for ® = 0[] and ® = Z[r], respectively, i.e., [gmax X Y, {(rS’,EK’m“""k))2 + (5§K’””“’”k))2} and I'g min

D {(5y(K"""""“)2 + (€Z(K’M’“’"k ))2}. This can be explained by the inequality |E,| > |, ]| valid for these modes and the values (a, R)
considered.

In Fig. 12, the quantization axis is chosen in the plane (Oyz), i.e., ® = 7/2, and €, = sin ©¢, + cos O¢;; hence Jkn =
%[i(cos ©é, — sin ®¢;) + é,]. The contribution to the spontaneous emission rate into the resonant guided mode u =

(Kim» ok, f, p) of a given transition |n) — |k) is proportional to [S;K"""""“ + cos @pé'}(,K’”““’““ —sin ® fEZ(K""*“’"“]z. Summing
over f = %1, p = +£1, and k, we conclude that the spontaneous emission rate, FE,KI'“), into guided modes of type Kj,, = HE,
TEo;, TMy1, and HE,; is proportional to

Z {( 5;K1m,wnk>)2 + cos? @(E;K,m,wnk))z + sin? @(ngzm,wnk))Z}_

k<n
(Note that cross terms between E,, E, and E, now compensate each other when summing over p and f). In agreement with
Fig. 12, we conclude the following: (i) Fé(,Klm) is a r-periodic function of ® which reaches its extrema in ® = 0[7]. (ii) For
the modes TEy,, since &, = &, = 0, FgEUl)(®) o cos” © is maximal for © = O[r], minimal for ® = Z[], and its minimum is
zero. According to Fig. 12, FéHE”)(@) also reaches its maxima and minima in ® = O[r] and ® = Z[r], respectively. This can
be explained by the inequality |5yHE“ | > |EFE1| valid for the values (a, R) considered. (iii) For the modes TMy,, since &, = 0,
M@)o 3y, {(EJETM‘”'“’“))2 + sin® @(é'szM“"“’"k))z} is maximal for © = % [] and minimal for ® = O[]. According to
Fig. 12, T{!F20(©) also reaches its maxima and minima in ® = Z[r] and ® = 0[], respectively. This can be explained by the
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