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BV EXPONENTIAL STABILITY FOR SYSTEMS OF SCALAR
CONSERVATION LAWS USING SATURATED CONTROLS

MATHIAS DUS∗

Abstract. In this paper, we investigate the BV exponential stability of general systems of scalar
conservation laws with positive velocities and under dissipative boundary conditions. The paper is
divided in two parts, the first one focusing on linear controls while the last one deals with saturated
laws. For the linear case, the global exponential BV stability is proved. For the saturated case, it
is discussed that we cannot expect to have a basin of attraction larger than the region of linearity
in a BV context. We rather prove an L∞ local stability result. An explicit estimate of the basin of
attraction is given. The Lyapunov functional is inspired from Glimm’s seminal work [18] reconsidered
in [9].
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1. Introduction. In this work, the focus is on the exponential stabilization of
some 1D hyperbolic systems using saturated feedback control laws. More precisely,
we are interested in systems of d ∈ N scalar conservation laws with strictly positive
characteristic velocities. The system under consideration is of the form:

(1.1) ∀i ∈ J1, dK,

 Ri,t + [fi(Ri)]x = 0
Ri(t, 0) = gi(R(t, 1))
Ri(0, x) = R0,i(x)

where Ri : R+ × [0, 1] 7→ R, fi : R 7→ R and gi : Rd 7→ R. For coherence, all
characteristic velocities are positive and consequently, the boundary condition in (1.1)
is adapted. More specifically, we are interested in the stabilization of (1.1) using
feedback control laws at the boundary. The problem is equivalent to find sufficient
conditions on g such that for any initial data R0, the solution to (1.1) converges
exponentially fast towards zero in the sense that

(1.2) ∀t ≥ 0, ‖R(t, .)‖X ≤ Ce−γt‖R0‖X
where C, γ > 0 are constants independent on t and ‖ ·‖X is a norm on a Banach space
X.

1.1. An example. One can consider the basic scalar model for open channel [3,
p.44]:

(1.3) ∂tR+ ∂x

(
kR
√
R
)

= 0

where R > 0 is the height of water in the channel, k is a coefficient calculated from
the viscous friction, the vertical slope of the channel and the gravity. This simplified
model corresponds to a regime where the friction is compensated by the gravity.
Written in the flow rate variable Q = kR3/2 > 01, (1.3) writes:

∗Univ. Paul Sabatier, Institut de Mathématiques de Toulouse, 118 route de Narbonne, 31062
Toulouse Cedex 9 (mathias.dus@math.univ-toulouse.fr).

1Here the change of variable is done when the solution is regular. With discontinuous solutions,
equations (1.3) and (1.4) may not be equivalent.
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(1.4) ∂tQ+
9

8
k2/3∂x

(
Q4/3

)
= 0.

Now imagine that seven channels are linked as depicted in Figure 1 ;
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Figure 1: An example of system

Flow rates (Q1, · · · , Q7) are functions of space x ∈ [0, 1] and time t ≥ 0 and
are all subject (1.4). To hope for a well-posed problem, it is necessary to define
(Q1(t, 0), · · · , Q7(t, 0)). In this paper, it is given by transfer operators associated to
nodes A,B,C,D,E. For example, at node B, it is physically relevant to impose that
the flow rate in channel 2 is the sum of flow rates from channels 6 and 7:

Q2(t, 0) = Q6(t, 1) +Q7(t, 1) := gB(Q6(t, 1), Q7(t, 1)).

For completeness, paragraph [3, Section 4.2] presents another example of such scalar
models coupled by the boundary.

More generally, the family of systems we study constitutes a simplified model for
more realistic systems. In [3, Chapter 1], typical examples of hyperbolic PDEs with
feedback boundary conditions are cited; the telegrapher equations for electrical lines,
the shallow water (Saint-Venant) equations for open channels [21], the isothermal
Euler equations for gas flow in pipelines or even the Aw-Rascle equations [2] for road
traffic. It should be noted that in previous examples, there is often an in-domain
coupling which is not present in our model. Moreover, fluxes are not scalar which
render the analysis far more complicated. In fact, this paper focuses on a simplified
version of those systems in order to introduce techniques helping in the complex study
of general systems of conservation and balance laws from [3, Chapter 1].

Additionally, the stabilization of similar systems with non-local terms receive
more and more attention. We can cite [5] where the authors add a nonlocal zeroth
order term to be stabilized. In this article, uncertainties on parameters and on the
state of the system are allowed and an adaptive command built from an observer
is designed. In [11], authors propose a spectral analysis to stabilize a scalar linear
transport equation with a non-local velocity. The control is localized at the boundary.
Then, by a Lyapunov analysis they prove a local stability result for the nonlinear
version of the system.

1.2. Linear feedback. For the case where g = H ∈Md(R) is a linear operator,
the literature is quite rich.
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1.2.1. When the flux is linear. It can be written as f(R) = Λ
= diag(λ1, · · · , λd) with λ1, · · · , λd > 0 and the problem of stabilization can be treated
for the following classical functional spaces X:

a. Sobolev spaces Wm,p([0, 1]) for m ∈ N and p ∈ [1,+∞].
b. Spaces Cm([0, 1]) with (m ∈ N).
c. BV ([0, 1]).

Indeed, in [19, Theorem 3.5 p. 275], the authors prove that 0 is globally ex-
ponentially stable in spaces X defined above if and only if there exists δ > 0 such
that

(1.5)
{
z ∈ C | det(Id − diag(e−z/λ1 , · · · , e−z/λd)H) = 0

}
⊂ {z ∈ C | Re(z) < −δ} .

However, the criteria (1.5) is not stable with respect to Λ. Indeed, when we take
a H,Λ verifying (1.5), it is not guarantied that the same holds for Λ̃ with Λ̃ diagonal
and arbitrarily close to Λ [19, p. 285].

In the same book, Silkowski [19, Theorem 6.1 p. 286] proves that for all Banach
spaces X listed above, 0 is globally exponentially stable and that this stability is
robust with respect to Λ if and only if

(1.6) ρ0(H) := max
{
ρ(diag(eiθ1 , · · · , eiθn)H) | θi ∈ R)

}
< 1

where ρ designates the usual spectral radius.
Condition (1.6) is stronger than (1.5). Some works are also available when there is

an additional source term coupling the equations in the domain. One can cite papers
[20, 21, 13, 4, 14] where Lyapunov methods allow to prove exponential stability for
the linearized Saint-Venant system.

1.2.2. When the flux is nonlinear for general hyperbolic systems. For
some years, many results came out in the case of nonlinear and non scalar fluxes.
Only sufficient conditions of stability are given and most of the time this stability is
only proved to be local:

a. For X = Cm([0, 1]) with m ∈ N∗, a sufficient condition [13, 28, 25] is:

(1.7) ρ∞(H) := inf∆∈D+
d (R)|∆H∆−1|∞ < 1

where | · |∞ is the canonical infinity norm of matrices and D+
d (R) is the set

of diagonal positive matrices.
It should be mentioned that in [13, 28, 25], the stability was proved for m = 1
but the argument can be adapted for any integer m > 0.

b. For Sobolev space Wm,p([0, 1]) a sufficient condition for stability writes:

ρp(H) := inf∆∈D+
d (R)|∆H∆−1|p < 1

where | · |p is the canonical p norm of matrices.
The case p = 2 was treated in [8] and the general case p ≥ 1 was treated in
[10]. Also, it should be mentioned that in [8, 10], the stability was proved for
m = 2 but the argument can be adapted for any integer m > 0.

c. For BV ([0, 1]), few results are known. To the authors’ knowledge only [9]
deals with this case. They take a 2× 2 system of conservation laws and give
a sufficient condition on H to ensure the local BV stability.
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In this article, we also place ourselves in a BV context and find a sufficient
condition on H to ensure a global BV stability. Contrary to [9], non scalar fluxes are
discarded here. In this case, solutions are only proved to exist for small initial data.
This is why, we rather consider scalar decentralized fluxes (see section 1.3) for which
solutions exist for any initial data in BV . This hypothesis on the flux is all the more
important that when we will study saturated feedback laws, the basin of attraction
will be estimated. This would not be possible with solutions defined only for small
initial data.

1.3. Saturated control law. Let us introduce a matrix H ∈Md(R) potentially
unstable in the sense that ρ∞(H) > 1 (see (1.7)). Then, it is assumed that there
exist matrices B,K ∈ Md(R) such that ρ∞(H + BK) < 1. Finally, the following
stabilization problem is considered:

(1.8)

 Rt + [f(R)]x = 0
R(t, 0) = HR(t, 1) +Bu(t)
R(0, x) = R0(x).

If u(t) := KR(t, 1), the control is a linear feedback and as ρ∞(H + BK) < 1, the
solution to (1.8) converges exponentially fast towards zero.

Now suppose that the control is saturated imposing u(t) := σ(KR(t, 1)) with σ
defined as a saturation by component ie there exists a σs > 0 such that:

∀i ∈ J1, dK, x ∈ R,
{
σi(x) = x if |x| ≤ σs
σi(x) = sign(x)σs otherwise.

From criterion (1.7), the system without saturation is locally stable in Cm([0, 1]) with
m ∈ N∗. It is natural to ask ourselves if this property of stability is conserved through
the saturation. Apart from this theoretical interest, this problem has gained attention
in the last few years because of the increasing need of precision for modeling real
actuators. Physical controllers cannot provide infinite energy and sometimes, they
saturate rendering classical unsaturated models restrictive. To avoid such situations,
engineers choose controllers powerful enough to avoid saturation when the system
operates in standard conditions. However, over-dimensioning actuators is not optimal
in term of mass and cost of operation for many sophisticated systems as satellites for
example. Moreover, in some exceptional configurations, actuators could saturate and
lead to very dangerous situations; unpredictable via linear theory.

Very few papers consider the effect of saturation on hyperbolic systems. To our
knowledge, only [27] deals with this question in an H1 context and for the wave
equation. Fortunately, the theory is much more developed for finite dimensional
systems where polytopic and deadzone techniques were designed [30].

In this paper, we argue that in a BV context, it is not possible to get a basin of
attraction bigger than the region of linearity. We rather prove an L∞ local stability
result with an estimation of the basin of attraction. Then, the exponential decay of
the BV norm is shown, for solutions whose initial data belongs to the L∞ basin of
attraction.

1.4. Scalar conservation laws. The feedback laws being presented, we can
now focus on the partial differential equation in itself. The flux f verifies the following
Hypothesis 1.1 of regularity:

Hypothesis 1.1. For all i ∈ J1, dK, fi ∈ C1(R) and there exist αi, βi > 0;
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∀i ∈ J1, dK, αi ≤ f ′i ≤ βi.

Such hypothesis allows to define the maximal and the minimal velocity:

(1.9)

{
cmax := maxi∈J1,dK βi
cmin := mini∈J1,dK αi.

The aim of this section is to give a very short introduction to scalar conservation
laws without giving any proof (see [6] for more details).

1.4.1. The set of functions with bounded variations. It is well-known that
the space BV is well-adapted for conservation laws (see [6] for instance). This is why,
we give the definition and main properties of such a space here:

Definition 1.2. Let R : [0, 1] 7→ Rd be a vector valued function. We say that R
has bounded variations if

∀n ∈ N, ∀ x1 < ... < xn ∈ [0, 1],

n−1∑
i=1

|R(xi+1)−R(xi)| <∞

where | · | is the canonical euclidean norm.

We denote TV[0,1](R) = sup
n, (x1,...,xn)

{∑n−1
i=1 |R(xi+1)−R(xi)|

}
the total variation

of R. BV ([0, 1]) is the space of vector valued functions with bounded variations and it
is a Banach space when BV ([0, 1]) is embedded with the norm ‖.‖BV ([0,1]) defined as

(1.10) ∀R ∈ BV ([0, 1]), ‖R‖BV ([0,1]) = TV[0,1](R) + ‖R‖L1([0,1]).

The reason why we consider this space is because any function with bounded
variations has a left and a right limit at each point x of [0, 1]. Hence, it is easy to
define the trace operator and impose a boundary condition. Moreover, BV ([0, 1]) has
a very interesting property of compactness which will be very useful when we will pass
to the limit in the Lyapunov analysis of approximating solutions. These properties
are summed up in a lemma and a theorem:

Lemma 1.3. Let R : [0, 1] 7→ Rd with bounded variations. Then for all x ∈ (0, 1),
the left and right limit

R(x−) = lim
y→x−

R(y), R(x+) = lim
y→x+

R(y)

exist.
Moreover, R(0+) and R(1−) are also well defined and R has at most countably

many point of discontinuities.

Proof. This is an adaptation of [6, Lemma 2.1].

Defining the value of R at each jump by R(x) = R(x+), we can say that R is
right continuous in the L1 equivalence class. The following theorem is from Helly and
states the compactness of BV ([0, 1]) in L1

loc(R+, L1([0, 1])).
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Theorem 1.4. [6, Theorem 2.4] Let (Rν)ν be a sequence of functions from R+×
[0, 1] into Rd such that there exist constants C, M and L satisfying

(1.11) ∀ν > 1, ∀x ∈ [0, 1], ∀t ≥ 0, TV[0,1](Rν(t, .)) ≤ C, |Rν(t, x)| ≤M,

and

(1.12) ∀0 ≤ t, s ≤ T, ‖Rν(t, .)−Rν(s, .)‖L1([0,1]) ≤ L|t− s|.

Then there exists a subsequence (Rµ)µ converging strongly toward a certain R in
L1
loc(R+, L1([0, 1])) and this limit satisfies (1.11)-(1.12) with Rν replaced by R.

1.4.2. Entropy. The concept of entropy is primordial in order to guaranty
uniqueness of solutions to conservation laws. This is why we recall some basic defini-
tions in this section.

If one considers the conservation law Rt + [f(R)]x = 0 in the usual weak sense:

∀φ ∈ C1
c ((0, T )× (0, 1);Rd),

∫ T

0

∫ 1

0

(φtR+ φxf(R)) = 0,

it is commonly known that this PDE (associated with fixed boundary and initial
conditions) can have several weak solutions (see Example 4.3 from [6]). In order to
restrain the set of solutions, an entropy functional was introduced ( [12], [23]) and is
defined as follows:

Definition 1.5. A continuously differentiable convex function η : Rd 7→ R is
called an entropy for the conservation law Rt + [f(R)]x = 0 with entropy flux q :
Rd 7→ R, if

∀R ∈ Rd, Dη(R) ·Df(R) = Dq(R).

For scalar conservation laws of the form ut + [f1(u)]x = 0, every convex function
is an entropy and the usual choice is η(u) := |u − k| with flux q(u) := (f1(u) −
f1(k))sign(u− k) where k is an arbitrary real. Knowing this, we introduce the notion
of entropy solution to (1.1).

Definition 1.6. Under Hypothesis 1.1, we say that R ∈ L∞loc(R+, BV ([0, 1])) is
an entropy solution on [0, T ] to the system

(1.13)

 Rt + [f(R)]x=0
R(., 0) =g(R(., 1))
R(0, .) =R0 ∈ BV ([0, 1]),

if:
•

(1.14)

∀k ∈ Rd,
d∑
i=1

∫ T

0

∫ 1

0

{
|Ri−ki|φt+(fi(Ri)−fi(ki))sign(Ri−ki)φx

}
dxdt ≥ 0

for all φ ≥ 0 and φ ∈ C1
c ((0, T )× (0, 1);R).

• R(0, .) = R0 in the almost everywhere sense.
• R(., 0+) = g(R(., 1−)) in the almost everywhere sense.
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Remark 1.7. Here the entropy functional and its flux are defined for all k in Rd
by

(1.15) ∀R ∈ Rd, ηk(R) =

d∑
i=1

|Ri − ki|, qk(R) =

d∑
i=1

(fi(Ri)− fi(ki))sign(Ri − ki).

Moreover, equation (1.14) can be rewritten as

ηk(R)t + qk(R)x ≤ 0

in a weak sense. Hence entropy solutions are the solutions of (1.1) which make the
entropy η decrease.

1.5. The contribution. Now that all the notions have been introduced, we can
be more specific concerning the main contributions of this paper:

• State and prove a well-posedness result of (1.1) in a BV context.
To help us in the task, we use front tracking techniques from DiPerna [22]
and Bressan [6] to get an entropy solution in the domain considered. To deal
with the boundary condition, the article [9] is the reference work. One could
use results from [9] for which well-posedness is proven for system of 2 × 2
equations. Here, the proof is simpler and adapted to the context of scalar
equations.

• State and prove a global exponential stability result for linear feedback laws.
To our knowledge, no global stabilization result holds for feedback laws of the
form R(t, 0) = HR(t, 1) in a BV entropy context. The article [26] proposes
also a feedback law of the form R(t, 0) = g(‖R(t, .)‖L1). However, in physical
systems the L1 norm of the solution is not always accessible by observations.
Additionally, the article [9] which considers a 2 × 2 system of conservation
laws gives only a local stabilization result for an entropy solution.

• The key result of this paper is the statement and the proof of a local expo-
nential stability result for saturated feedback laws. We will see that this is
not possible in a BV context. To our knowledge, only [17] has studied this
kind of saturated feedback laws in an L∞ context and for the case of constant
characteristic velocities.

1.6. Outline. In Section 2, we present and prove an approximation and a well-
posedness result for the entropy BV solution to (1.1). The technique of front tracking
are mainly used. Then in Section 3, a sufficient condition for global BV stability
is given in the case of a linear feedback. Additionally, we give a sufficient condition
for the local L∞ stability in the case of a saturated feedback with an estimation
of the basin of attraction. Finally, Section 4 is devoted to concluding remarks and
perspectives.

Notation: For all R ∈ Rd, |R| designates the canonical euclidean norm of R.
For matrices M ∈Md(R), |M | = sup |MR|

|R|=1, R∈Rd
. For all matrices M ∈Md(R), |M |∞ :=

maxi=1..d

∑d
j=1 |Mi,j |. D+

d (R) is the set of diagonal strictly positive matrices. The
value ρ∞(M) for matrices M ∈Md(R) is defined by

ρ∞(M) := inf∆∈D+
d (R) |∆M∆−1|∞. Lp spaces on [0, 1] (1 ≤ p ≤ ∞, p ∈ N)

are embedded with their canonical norms ‖.‖Lp . For all matrices P ∈ D+
d (R) and

R ∈ L∞([0, 1]), ‖R‖∞,P := ‖PR‖L∞ . The function E : R 7→ N is the integer part
function and the function sign is the usual sign function with sign(0) = 0.
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2. Well-posedness and approximation results. This section is devoted to
the well-posedness of (1.13). Additionally, we prove the existence of a suitable ap-
proximation by piecewise constant functions of the solution to (1.13). This sequence
of approximation is crucial for the stability analysis.

2.1. Piecewise constant entropy solutions. Piecewise constant functions
play an important role in the theory of BV solutions to conservation laws. Let us
recall the definition of what a piecewise constant function is in our context.

Definition 2.1. An element R of L∞loc(R+, BV ([0, 1])) is piecewise constant if
for all T > 0, R viewed as a function defined on [0, T ] × [0, 1] is constant on a
finite number of polyhedra. The edges of such polyhedra are called the fronts of R.
Additionally, the absolute value of the jump across the front is called the intensity of
the front.

In this paper, the concept of approximating sequence of piecewise constant func-
tions (PCF) is used in the proof of stability and well-posedness.

Definition 2.2. (Rν)ν is an approximating sequence of PCFs of an entropy so-
lution R to (1.13) if:

• For ν > 1 fixed, Rν is piecewise constant in the sense of Definition 2.1 and
takes its values in 2−(n+1)νZ on strips

{(x, t) | 0 ≤ x ≤ 1, max{(x+ n− 1)/cmax, 0} ≤ t ≤ (x+ n)/cmax}

for n ∈ N. The velocities of fronts are all bounded from below by cmin and
from above by cmax (see (1.9) for the definition of cmin and cmax).

• For ν > 1 fixed, no more than one front at a time can interact with the right
boundary.

• For ν > 1 fixed, if at a time t ≥ 0 several fronts interact, the sum of intensities
of outgoing fronts is inferior to the sum of intensities of ingoing fronts.

• The sequence (Rν(0, .))ν converges toward R0 in BV ([0, 1]).
• The approximated boundary condition is verified:

(2.1) ∀n ∈ N, ∀t s.t
n

cmax
≤ t ≤ n+ 1

cmax
, Rν(t, 0+) = g(n+2)ν(Rν(t, 1−))

where:

(2.2) ∀R ∈ Rd, ∀ν > 1, gν(R) = 2−ν
(
E(2νg(R))

)
.

• ∀t ≥ 0, ∆t > 0,

TV[0,1](R(t, .)) ≤ lim sup
ν→+∞

sup
s∈[t,t+∆t]

TV[0,1](Rν(s, .))

and

(2.3) ‖R(t, .)‖L∞([0,1]) ≤ lim sup
ν→+∞

sup
s∈[t,t+∆t]

‖Rν(s, .)‖L∞([0,1]).
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2.2. The result of well-posedness and approximation. Now we give the
first result of this paper:

Theorem 2.3. Under Hypothesis 1.1 and for all R0 ∈ BV ([0, 1]), g ∈ Lip(Rd,Rd),
there exists a unique entropy solution R ∈ L∞loc(R+, BV ([0, 1])) to (1.13). Moreover,
there exists an approximating sequence of PCF (Rν)ν of the entropy solution R.

Proof. A proof is given in Appendix A for the existence and Appendix B for the
uniqueness.

3. Lyapunov analysis. Before going into the stability analysis, the functional
TVH defined on the space BV, is intoduced. For all matrices H in Md(R), it is defined
as follows:

(3.1) ∀R ∈ BV ([0, 1]), TVH(R) = TV[0,1](R) + |HR(1−)−R(0+)|,

where R(1−) and R(0+) has to be understood as the left and right limits of the
function R at x = 1 and x = 0.

Moreover, the Hypothesis 3.1 is imposed:

Hypothesis 3.1. The feedback matrix H verifies:

ρ∞(H) < 1.

Remark 3.2. By [9, Remark 1.4],

∀M ∈Md(R), ρ∞(M) = ρ1(MT ) = ρ1(M) = ρ∞(MT ).

The following lemma ensures the equivalence between TVH and ‖ · ‖BV ([0,1]).

Lemma 3.3. Assume Hypothesis 3.1. The functional TVH defined in (3.1) is a
norm on BV ([0, 1]) equivalent to the norm ‖ · ‖BV ([0,1]) defined in (1.10). Moreover,
there exists a constant C > 0 such that

(3.2) ∀R ∈ BV ([0, 1]), ‖R‖L∞([0,1]) ≤ C TVH(R).

Proof. We first prove the following claim:

(3.3) ∀R ∈ Rd, |R| ≤ C|R−HR|.

Let P ∈ D+
d (R) such that

|PHP−1|∞ < 1.

The map ‖·‖∞:

{
Md(R) → R+

M 7→ |PMP−1|∞
defines an algebra norm on Md(R) and

‖H‖∞ < 1. Hence, Id −H is invertible, which gives (3.3) with C := |(I −H)−1|.

TVH(R) = TV[0,1](R) + |HR(1−)−R(0+)|

≤ TV[0,1](R) + |HR(1−)−HR(0+)|+ |HR(0+)−R(0+)|

≤ TV[0,1](R) + |H‖R(1−)−R(0+)|+ |H − Id||R(0+)|

≤ (1 + |H|)TV[0,1](R) + |H − Id||R(0+)|.
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Take x ∈ [0, 1], by the triangle inequality,

TVH(R) ≤ (1 + |H|)TV[0,1](R) + |H − Id||R(0+)−R(x)|+ |H − Id||R(x)|

≤ (1 + |H|+ |H − Id|)TV[0,1](R) + |H − Id||R(x)|.

Integrating with respect to x on [0, 1], one obtains:

TVH(R) ≤ (1 + |H|+ |H − Id|)TV (R) + |H − Id|‖R‖L1([0,1])

= C‖R‖BV ([0,1]).

where C = 1 + |H|+ |H − Id|.
To get the converse inequality, we remark that by (3.3),

|R(1−)| ≤ C|HR(1−)−R(1−)|.

As a consequence,

‖R‖BV ([0,1]) = TV[0,1](R) + ‖R‖L1([0,1])

≤ TV[0,1](R) + |R(1−)|+ ‖R−R(1−)‖L1([0,1])

≤ 2TV[0,1](R) + C|HR(1−)−R(1−)|

≤ 2TV[0,1](R) + C|HR(1−)−R(0+)|+ C|R(0+)−R(1−)|

≤ (2 + C)TV[0,1](R) + C|HR(1−)−R(0+)|

and both norms are equivalent. Concerning the L∞ estimate (3.2), take a couple
(x, y) ∈ [0, 1]2 and using again the triangle inequality

|R(x)| ≤ |R(x)−R(y)|+ |R(y)| ≤ TV[0,1](R) + |R(y)|.

Integrating with respect to y on [0, 1], one gets

|R(x)| ≤ TV[0,1](R) + ‖R‖L1([0,1]) = ‖R‖BV ([0,1]).

And as this is true for all x in [0, 1],

‖R‖L∞([0,1]) ≤ ‖R‖BV ([0,1]).

The equivalence between the norms ‖ · ‖BV ([0,1]) and TVH proved earlier allows to
deduce (3.2).

3.1. Lyapunov analysis for the unsaturated system. In this section, we
consider the following system

(3.4)

 Rt + [f(R)]x = 0
R(., 0) = HR(., 1)
R(0, .) = R0 ∈ BV ([0, 1])

where the feedback operator g presented in the introduction is replaced by a matrix
H ∈Md(R).

The main theorem of this section is presented here:
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Theorem 3.4. Under Hypothesis 3.1 and if 0 < γ < − log(ρ∞(H)), then the
unique entropy solution of (3.4) satisfies

∀t ≥ 0, ‖R‖BV ([0,1]) ≤ Ce−γcmint‖R0‖BV ([0,1])

where C > 0 is a constant which does not depend on R0 and t.

A candidate Lyapunov functional first introduced by Glimm [18] and then by
Coron et al [9] applies well to piecewise constant functions and is defined by:

Definition 3.5. Let R be a piecewise constant function on [0, 1] and taking its
values in Rd. Take i ∈ J1, dK:

• We denote xi,1 < xi,2 < · · · < xi,ni the discontinuities of Ri (ni being the
number of discontinuities).

• For all j ∈ J1, niK, rli,j, r
r
i,j designate the respective left and right state of Ri

around xi,j.
The Lyapunov functional L evaluated at R writes

(3.5) L(R) =

d∑
i=1

Pi

ni∑
j=1

|rri,j − rli,j |e−γxi,j +

d∑
i=1

Pi|[HR]i(1
−)−Ri(0+)|

where γ > 0 and P = diag {Pi, i ∈ J1, dK} ∈ D+
d (R) will be selected later.

Remark 3.6. Obviously, there exists a constant C(H,P, γ) > 1 such that for all
R piecewise constant:

(3.6)
L(R)

C(H,P, γ)
≤ TVH(R) ≤ C(H,P, γ)L(R).

Remark 3.7. In our case, the boundary terms in (3.5) are not zero since the
boundary condition is approximated by (2.1).

Theorem 3.4 is proved using a piecewise approximation of the solution for which
the exponential decay of the Lyapunov functional L is established. As a last step, we
pass to the limit.

Proof. We consider (Rν)ν an approximating sequence of PCFs of the entropy
solution R in the sense of Definition 2.2. Such a sequence exists by Theorem 2.3. The
following lemma asserts the exponential stability of the approximation:

Lemma 3.8. If 0 < γ < − log(ρ∞(H)). Then, for all P ∈ D+
d (Rd) such that

|P−1HTP |∞ < e−γ , there exists ν̃(P,H, γ) such that

(3.7) ∀ν > ν̃, ∀t ≥ 0, L(Rν) ≤ e−γcmintL(R0,ν) +
E(cmaxt) + 1

2ν

d∑
i=1

Pi.

Proof. Fix ν > 1, P ∈ D+
d (Rd) such that |P−1HTP |∞ < e−γ and time 0 ≤ t ≤

1/cmax.
Three cases are to be considered:
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• (Case 1) If at time t there is no interaction between two fronts nor between a
front and the boundary, then L(Rν) is differentiable and because the bound-
ary term is constant locally around t one gets:

dL(Rν(t, .))

dt
= −γ

d∑
i=1

Pi

ni∑
j=1

dxi,j
dt
|rri,j − rli,j |e−γxi,j

≤ −γcmin

d∑
i=1

Pi

ni∑
j=1

|rri,j − rli,j |e−γxi,j .

Here, we used the fact that for all integers i ∈ J1, dK, characteristic velocities
dxi,j
dt are bounded from below by cmin > 0. Finally, by the definition of
L(Rν(t, .))),

(3.8)

dL(Rν(t, .))

dt
≤ −γcminL(Rν(t, .)))

+γcmin

∑d
i=1 Pi|[HRν ]i(t, 1

−)−Rν,i(t, 0+)|

≤ −γcminL(Rν(t, .))) +
γcmin

2ν

d∑
i=1

Pi

where we used (2.1) with g replaced by H to get last equation.
• (Case 2) When a front interaction happens, the total variation is non increas-

ing by construction and as a consequence

L(Rν(t+, .))− L(Rν(t−, .)) ≤ 0.

Here we used the third point of Definition 2.2.
• (Case 3) When an interaction of a front with the boundary happens, compu-

tations are a bit more difficult. Suppose that such a front is of type i ∈ J1, dK
and has (Ri,l, Ri,r) as respective left and right state (see Figure 2). We note
its intensity by Ii := |Ri,l − Ri,r|. Note that as Rν takes its values in 2−νZ
on the triangle {(x, t) | 0 < t < x/cmax}:

(3.9) Ii ≥ 2−ν .

Moreover, recall that simultaneous interactions of fronts with the boundary
are forbidden by construction. Using the approximate boundary condition
(2.1) with g replaced by the linear operator H, it holds

(3.10)
L(Rν(t+, .))− L(Rν(t−, .)) ≤

d∑
j=1

Pj |Hj,i(Ri,r −Ri,l)| − e−γIiPi

+2−2ν+2
∑d
j=1 Pj .

The second term on the right-hand side of (3.10) corresponds to the leaving
front (which is of type i). The first term results from the entering fronts at
the left boundary. Note that an entering front of type j ∈ J1, dK may rather
be a fan of fronts (see Figure 2). This is not problematic because the sum
of the intensities of the fronts composing the fan is equal to the difference
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of extremal states of the fan by construction (see Appendix A for details).
The last term in (3.10) corresponds to the approximation of the boundary
condition (2.1).

Ri,l

Ri,r

HRl

HRr
t

xx = 1x = 0

Figure 2: Case 3

Then, using the definition of | · |∞ and (3.9), one gets:

L(Rν(t+, .))− L(Rν(t−, .)) ≤
( d∑
j=1

Pj
Pi
|Hj,i| − e−γ

)
PiIi

+2−ν+2
∑d
j=1 PjIi

≤
(
|P−1HTP |∞ + 2−ν+2

d∑
j=1

Pj/Pi

−e−γ
)
PiIi.

Remark 3.9. Here we see why the approximated boundary condition (2.1)

is essential. Thanks to it, the error term 2−2ν+2
∑d
j=1 Pj coming from the

approximation of g by gν can be bounded by the intensity Ii ≥ 2−ν of the
front hitting the right boundary.

As |P−1HTP |∞ − e−γ < 0 by assumption, we can take ν sufficiently large
say ν ≥ ν̃(P,H, γ) such that

L(Rν(t+, .))− L(Rν(t−, .)) ≤ 0

(Case 2) and (Case 3) can occur only a finite number of times on finite time
intervals because Rν is piecewise constant in the sense of Definition 2.1. Consequently,
one can integrate (3.8) with respect to time to get:

∀0 ≤ t ≤ 1/cmax, L(Rν(t, .)) ≤ e−γcmintL(R0,ν) +
1

2ν

d∑
i=1

Pi.

For time n/cmax ≤ t ≤ (n + 1)/cmax where n is an integer, one easily proves by
induction that:
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∀n/cmax ≤ t ≤ (n+ 1)/cmax L(Rν(t, .)) ≤ e−γcmintL(R0,ν) +
n+ 1

2ν

d∑
i=1

Pi.

This ends the proof of Lemma 3.8.

Now, we conclude on the proof of Theorem 3.4 taking t ≥ 0 fixed. By (3.7) and
(3.6), there exists a constant C > 0 such that

∀ν > 0, TVH(Rν(t, .)) ≤ C
(
e−γcmintTVH(R0,ν) +

E(cmaxt) + 1

2ν

d∑
i=1

Pi

)
.

Using the equivalence between the norm TVH and the norm ‖ · ‖BV ([0,1]),

(3.11)

∀ν > 0, ‖Rν(t, .)‖BV ([0,1]) ≤ C
(
e−γcmint‖R0,ν‖BV ([0,1]) +

E(cmaxt) + 1

2ν

d∑
i=1

Pi

)
where the constant C > 0 may have changed.

As (Rν)ν is an approximating sequence of PCFs of R, one has:

 lim
ν→∞

Rν(0, .) = R0 ∈ BV ([0, 1])

∀τ ≥ 0, dτ > 0, TV[0,1](R(τ, .)) ≤ lim sup
ν→∞

sup
s∈[τ,τ+dτ ]

TV[0,1](Rν(s, .)).

Moreover, by Remark A.4,

∀τ ≥ 0, lim
ν→∞

‖Rν(τ, .)−R(τ, .)‖L1([0,1]) = 0.

We have for all dt > 0,

‖R(t, .)‖BV ([0,1]) ≤ lim sup
ν→∞

(
sup

s∈[t,t+dt]

TV[0,1](Rν(s, .)) + ‖Rν(t, .)‖L1([0,1])

)
≤ lim sup

ν→∞
sup

s∈[t,t+dt]

(
TV[0,1](Rν(s, .)) + ‖Rν(s, .)‖L1([0,1])

)
= lim sup

ν→∞
sup

s∈[t,t+dt]

‖Rν(s, .)‖BV ([0,1])

≤ Clim sup
ν→∞

(
e−γcmint‖R0,ν‖BV ([0,1]) + E(cmaxt)+1

2ν

∑d
i=1 Pi

)
= Ce−γcmint‖R0‖BV ([0,1])

where (3.11) has been used to get the fourth equation.
This finishes the proof of Theorem 3.4.

3.2. Stability analysis for the saturated system. In this section, we con-
sider the following system:

(3.12)

 Rt + [f(R)]x = 0
R(., 0) = [H ·+Bσ(K·)]R(., 1)
R(0, .) = R0 ∈ BV ([0, 1]).
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The deadzone function is defined by:

(3.13) ∀R ∈ Rd, φ(R) = σ(R)−R

and Hypothesis 3.10:

Hypothesis 3.10. The matrices H,B,K are chosen such that:

ρ∞(H +BK) < 1.

Here the main result is different since we prove local exponential stability (Propo-
sition 3.12). It is not possible to study directly the problem of BV stability because
of the lack of contractivity of the saturation σ.

R(0)

R(1)
σs

−σs

Figure 3: The feedback operator (black line) compared with the graph of the function
R(0) = R(1) (red line)

Motivating example 3.11. In Figure 3, we represent the boundary operator H ·
+Bσ(K·) for d = 1, H = 2, B = 1, K = −1.5 and σs = 2. Except for the zone of
linearity, the boundary operator is only 2-Lipschitz. As a consequence, it is possible
to construct a front whose left/right states are arbitrary close to the zone of linearity
and whose intensity increases after a passage through the feedback operator. This is
why it is not possible to get a basin of attraction in BV norm larger than the zone of
linearity. We rather prove the L∞ local stability with a basin of attraction in L∞.

This section is devoted to the proof of the following proposition and theorem (the
definition of ‖ · ‖∞,P is given in the section notation):

Proposition 3.12. Under Hypothesis 3.10, if 0 < γ < − log(ρ∞(H + BK)).
Then, for all P ∈ D+

d (Rd) such that |P (H+BK)P−1|∞ ≤ e−γ , there exists a constant
C depending on (H,B,K, P, γ) such that if R0 ∈ BV ([0, 1]) and if:
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(3.14) ‖R0‖∞,P <
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .
Then, the unique entropy solution R ∈ L∞loc(R+, BV ([0, 1])) of (3.12) satisfies,

(3.15) ∀t ≥ 0, ‖R(t, .)‖L∞([0,1]) ≤ Ce−γcmint‖R0‖L∞([0,1])

where C depends on the parameters of the problem but not R0.

For cases where ρ∞(H) > 1, the denominator in (3.14) is not zero:

Remark 3.13. If ρ∞(H) > e−γ , then we claim that for all P ∈ D+
d (R):

|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ > 0.

Proof of the claim of Remark 3.13. Let P be in D+
d (R). As ρ∞(H) > e−γ ,

|PHP−1|∞ > e−γ .

This gives by the triangle inequality:

|P (H +BK)P−1|∞ + |PBKP−1|∞ > e−γ .

Finally, by the fact that

∀A,B ∈Md(R), |PABP−1|∞ ≤ |PAP−1|∞|PBP−1|∞,

we have:
|P (H +BK)P−1|∞ + |PBP−1|∞|PBP−1|∞ > e−γ

and the claim is proved.

The following theorem is a consequence of Proposition 3.12 and constitutes a BV
exponential stability result.

Theorem 3.14. Under the conditions of Proposition 3.12,

∀t ≥ 0, ‖R(t, .)‖BV ([0,1]) ≤ Ce−γcmint‖R0‖BV ([0,1])

where C depends on the parameters of the problem but not R0.

Let us assume for the time being Proposition 3.12 and prove Theorem 3.14:

Proof of Theorem 3.14. Equation (3.15) implies that at a certain time denoted t?

depending on ‖R0‖L∞([0,1]), the solution enters in the zone of linearity and stays in
it. Then, Theorem 3.4 implies:

(3.16) ∀t ≥ t?, ‖R(t, .)‖BV ([0,1]) ≤ Ce−γcmin(t−t?)‖R(t?, .)‖BV ([0,1])

where C depends on H,B,K, P, γ, σs.
Then, for t ≤ t?, one can prove using the same techniques from Section 3.1 that:

(3.17) ∀0 ≤ t ≤ t?, ‖R(t, .)‖BV ([0,1]) ≤ eνt‖R0‖BV ([0,1])
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where ν > 0 is a constant depending on cmax, γ and a Lipschitz constant of the
feedback operator H +Bσ(K). From (3.17) and (3.16), one gets:

∀t ≥ 0, ‖R(t, .)‖BV ([0,1]) ≤ Ce−γcmint‖R0‖BV ([0,1])

where C depends on the parameters of the problem and on ‖R0‖L∞([0,1]). As the
bound (3.14) holds, we can conclude that C does not depend on ‖R0‖L∞([0,1]) and
the corollary is proved.

The following lemma is useful for the proof of Proposition 3.12.

Lemma 3.15. Let R ∈ Rd be such that:

(3.18) |PR|∞ ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .
Then,

|P (HR+Bσ(KR))|∞ ≤ e−γ |PR|∞.

Proof. Let i be in J1, dK. If sati(R) := {j ∈ J1, dK, | |[KR]j | > σs and Bi,j 6= 0}
is empty, then:

Pi|HR+Bσ(KR)|i = Pi|(H +BK)R)|i
≤ |P (H +BK)P−1|∞|PR|∞
≤ e−γ |PR|∞.

If the set sati(R) is not empty, then:

Pi|HR+Bσ(KR)|i = Pi|(H +BK)R+Bφ(KR))|i
≤

∑d
j=1 Pi|(H +BK)i,jRj |

+
∑d
j∈sati(R) Pi|Bi,j |(|[KR]j | − σs)

≤
∑d
j=1 Pi|(H +BK)i,j

1
Pj
PjRj |

+
∑d
j∈sati(R) Pi|Bi,j |

Pj
Pj

(|[KR]j | − σs)
≤ |P (H +BK)P−1|∞|PR|∞

+|PBP−1|∞(|PKP−1|∞|PR|∞ − Pminσs)
≤ e−γ |PR|∞

where we have used the hypothesis (3.18) to get the last inequality.

Now the focus is on the proof of Proposition 3.12.

Proof of Proposition 3.12. Take P ∈ D+
d (R) such that |P (H+BK)P−1|∞ < e−γ

and R0 ∈ BV ([0, 1]) satisfying (3.14). We consider (Rν)ν an approximating sequence
of PCFs of the entropy solution R in the sense of Definition 2.2. Such a sequence
exists because of Theorem 2.3. Then, we analyze the exponential damping of Rν for a
fixed ν > 1. As (R0,ν)ν converges towards R0 in BV ([0, 1]), it holds for ν sufficiently
large:

(3.19) ‖R0,ν‖∞,P ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣



18 M. DUS

We first recall the definition of cmin, cmax the respective minimum and maximum
velocity, in (1.9). Let t ≤ 1/cmin and x > cmaxt be in [0, 1]. Constructing the light
cone enclosed by line with slopes 1/cmin and 1/cmax and passing through (t, x), the
following estimate is obtained:

(3.20) |PRν(t, x)|∞ ≤ ‖R0,ν‖∞,P

The argument of the light cone can be justified by the fact that the L∞ norm does
not increase by fronts interaction (see Appendix Appendix A.2.3) and because fronts
velocities belongs to [cmin, cmax].

When x ≤ cmaxt, constructing the light cone enclosed by lines with slopes 1/cmin

and 1/cmax and passing through (t, x), one gets:

|PRν(t, x)|∞ ≤ max{‖R0,ν‖∞,P , sup
t∈[0,1/cmin]

|PRν(t, 0)|}.

The boundary condition gives:

|PRν(t, x)|∞ ≤ max{‖R0,ν‖∞,P , sup
t∈[0,1/cmin]

|P [H ·+Bσ(K·)]Rν(t, 1)|}.

By (3.20) applied to x = 1 and (3.19), hypothesis of Lemma 3.15 are verified and
consequently:

|PRν(t, x)|∞ ≤ max{‖R0,ν‖∞,P , e−γ‖R0,ν‖∞,P } ≤ ‖R0,ν‖∞,P .

Next we proceed by induction on intervals of the form t ∈ [n/cmin, (n + 1)/cmin]
with n ∈ N. Suppose that:

∀t ∈ [n/cmin, (n+ 1)/cmin], ‖Rν(t, ·)‖∞,P ≤ e−γn‖R0,ν‖∞,P .

Let (n + 1)/cmin ≤ t ≤ (n + 2)/cmin and x be in [0, 1]. Constructing the light cone
enclosed by lines with slopes 1/cmin and 1/cmax and passing through (t, x), one gets
the existence of a t? ∈ [n/cmin, (n+ 2)/cmin] such that:

(3.21) |PRν(t, x)|∞ ≤ |PRν(t?, 0)|∞ ≤ |P [H ·+Bσ(K·)]Rν(t?, 1)|.

Using same reasoning as in the case n = 0, it can be proved that:

‖Rν(t?, ·)‖∞,P ≤ ‖Rν(n/cmin, ·)‖∞,P .

Hence, by the hypothesis of induction:

(3.22) |PRν(t?, 1)|∞ ≤ ‖Rν(t?, ·)‖∞,P ≤ e−γn‖R0,ν‖∞,P ≤ ‖R0,ν‖∞,P .

As a consequence, by (3.19):

|PRν(t?, 1)|∞ ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣
Thus, we can use Lemma 3.15 in (3.21) to get:
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|PRν(t, x)|∞ ≤ e−γ |PRν(t?, 1)|∞
≤ e−γ‖Rν(t?, ·)‖∞,P .

Hence by the induction hypothesis,

‖Rν(t, ·)‖∞,P ≤ e−γ‖Rν(t?, ·)‖∞,P ≤ e−γ(n+1)‖R0,ν‖∞,P
where (3.22) has been used. To conclude, we have:

∀t ≥ 0, ‖Rν(t, ·)‖∞,P ≤ max{1, e−γ(cmint−1)}‖R0,ν‖∞,P .

It remains to prove the exponential decay for the solution R. It suffices to use
property (2.3) and to take a sequence of initial data piecewise constant such that:

∀ν > 1, ‖R0,ν‖∞,P ≤ ‖R0‖∞,P .

Owing this, one passes to the limit as ν goes to infinity to get:

∀t ≥ 0, ‖R(t, ·)‖∞,P ≤ max{1, e−γ(cmint−1)}‖R0‖∞,P .

This ends the proof of Proposition 3.12.

4. Numerical results. Here, we study a numerical example with saturation
and show the relevance of the estimation of the region of attraction (3.14).

4.1. Relevance of the estimation of the basin of attraction. In this sec-
tion, an example of system of scalar conservation laws is analyzed for d = 2 with
saturated feedback control law with σs = 1. Matrices are defined as follows.

H =

(
0 1.1
1 0

)
, B = I2, K =

(
0 −0.1050

−0.1045 0

)
.

We take a nonlinear flux f(R) = ΛR+ 0.2(arctan(R1), arctan(R2)) with

Λ =

(
1 0

0
√

2

)
.

The open-loop system can be represented by the graph given in Figure 4:

1.1 1

R1

R2

Figure 4: The open-loop system

We recall the estimation of the basin of attraction for γ > 0 and P ∈ D+
d (R):

(4.1) ‖R0‖∞,P ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .
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Using an optimization routine from python, we calculate P ∈ D+
d (R) such that |P (H+

BK)P−1|∞ is minimal. The code gives:

P =

(
0.974 0

0 1.026

)
.

To estimate the largest region of attraction, we take γ = 0 in (4.1) which gives the
following criteria of stability:

(4.2) ‖R0‖∞,P ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − 1

∣∣ .
4.2. Numerical simulations. Still keeping the matrices from previous section,

we take a certain range of initial data R0 constant on [0, 1] belonging to the estimated
region of attraction and simulate the behavior of the solution. For example, one can
take R0 constant with value in (−40, 40)2 and look if the solution does not blow up
at infinite time in L∞ norm. We briefly describe the scheme used. The space step is
dx = 1/N (N ∈ N∗) and the time step dt > 0 such that the following CFL condition
holds:

(4.3) cmax
dt

dx
≤ 1− ξ

with

0 < ξ < 1.

For computation, we take dt = 10−2 and dt
dx = 0.4. Doing so, the space-time mesh is

given by:

∀n ∈ N, 1 ≤ j ≤ N,
{
xj := (j − 1/2)dx
tn := ndt.

− − − − − − − − −x1 x2 · · · · · · xN

Figure 5: The space grid

The scheme is a finite volume one given by the minmod slope limiter method [24].
It is of the form:

Rn+1
j −Rnj
dt

+
fnj+1/2 − f

n
j−1/2

dx
= 0

where for all n ≥ 0, 1 ≤ i ≤ 2:

∀2 ≤ j ≤ N − 1, fni,j+1/2 = fi

(
Rni,j +minmod(

Rni,j−R
n
i,j−1

dx ,
Rni,j+1−R

n
i,j

dx )dx2

)
fni,N+1/2 = fi

(
Rni,N

)
fni,N−1/2 = fi

(
Rni,N−1

)
fni,3/2 = fi

(
Rni,1

)
fni,1/2 = fi

([
(H +Bσ(·))RnN

]
i

)
.



21

The minmod function is defined below for all a, b ∈ R:

minmod(a, b) :=

 0 if ab ≤ 0
a if ab ≥ 0 and |a| ≤ |b|
b otherwise.

One can cite [16] for the study of stability of such numerical system subject to linear
boundary conditions.

In Figure 6, contours correspond to the rate of exponential decay wrt L∞ norm of
the numerical solution for a time window of 50 seconds. If it is negative, the solution
decays exponentially in norm. If it is positive, we have exponential divergence. The
orange square is the estimated region of attraction while the blue one encloses the
zone where saturation does not occur at t = 0.

−40 −30 −20 −10 0 10 20 30 40
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Figure 6: The basin of attraction

We also pick three initial data R0 in different regions of Figure 6 and observe
the dynamic of the solution. For example, one can take R0(x) = (15,−15) on [0, 1].
The black dots in Figure 6 correspond to these initial data. The values of controls
are plotted in Figure 7-9 where u1(t) = σ(KR(t, 1))1 and u2(t) = σ(KR(t, 1))2.
Concerning Figure 7, we observe that some saturation occurs from t = 0 until time
t ≈ 13, then the solution enters in the zone of linearity. The figure 8 represents a case
where the system stays in the zone of linearity whereas in figure 9, the initial data is
out of the basin of attraction.
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(a) The control u1(t) (b) The control u2(t)

Figure 7: The case R0(x) = (15,−15)

(a) The control u1(t) (b) The control u2(t)

Figure 8: The case R0(x) = (6, 6)

(a) The control u1(t) (b) The control u2(t)

Figure 9: The case R0(x) = (0, 35)
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5. Conclusion. The well-posedness for a wide class of systems of scalar conser-
vation laws with boundary unsaturated and saturated feedback laws was established.
The ρ∞ criteria was established in the BV context for linear feedback laws. Then,
for saturated feedback laws, we proved with an example that estimating a basin of
attraction in BV was not relevant. We rather gave an estimation of the basin of at-
traction in L∞ and deduce the exponential decay of the BV norm of solutions whose
initial data belongs to this basin of attraction.

Some questions remain open. The estimation (3.14) may not be optimal. More-
over, a method of maximizing the basin of attraction where the matrix K is the
variable of optimization is not given in this article. This is not an easy task since
criterion (3.14) is not convex with respect to K. Finally, the other big gap to bridge
is the stabilization of general systems of conservation laws the main difficulty coming
from the well-posedness. The initial-boundary value problem for hyperbolic systems
of conservation laws is indeed a very delicate matter, even when no characteristic
speed vanishes. We refer to [29, 1, 7, 15, 9] and the references therein.

Appendix A. Existence of a solution. All this section is dedicated to the
proof of the existence result of Theorem 2.3.

A.1. The approximated problem. Let ν ≥ 1, i in J1, dK and define fν,i the
piecewise affine approximation of fi coinciding with fi at all 2−νj nodes (j ∈ Z) by:

fν,i(s) =
s− 2−νj

2−ν
fi(2

−ν(j + 1)) +
2−ν(j + 1)− s

2−ν
fi(2

−νj) for s ∈ [2−νj, 2−ν(j + 1)].

The sequence (fν)ν is introduced in order to construct a piecewise constant en-
tropy solution. The following lemma gives its main properties:

Lemma A.1. For all T > 0, there exists a constant C(g, T ) such that for all
ν > 1 and R0,ν piecewise constant taking its values in 2−νZ, there exists Rν piecewise
constant in the sense of Definition 2.1 verifying the following assertions:

• The approximated boundary condition (2.1) is verified.
• Two fronts cannot interact simultaneously with the right boundary.
• ∀k ∈ Rd, φ ∈ C1

c ((0, T )× (0, 1);R):

(A.1)∫ T

0

∫ 1

0

ηk(Rν)φt + qk(Rν)φxdxdt ≥ −C(g, T )
TV (R0,ν)

ν
‖φ‖L∞(R+×[0,1]).

where :

(A.2)


ηk(Rν(t, x)) =

d∑
i=1

|Rν,i(t, x)− ki|

qk(Rν(t, x)) =

d∑
i=1

|fi(Rν,i(t, x))− fi(ki)|.

• The following bounds hold:

∀t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν).
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(A.3) ∀t ≤ T, ‖Rν(t, .)‖L∞([0,1]) ≤ C(g, T )‖R0,ν(t, .)‖L∞([0,1]).

Proof. See Appendix A.2

It is relatively easy to construct piecewise constant functions that make the en-
tropy decrease. The main rules of construction are presented in the following lemma.

Lemma A.2 (Characterization of entropy piecewise constant functions).
A piecewise constant R in the sense of Definition 2.1 verifies the condition of

entropy decay (1.14) if and only if for all integers i in J1, dK and all fronts γ(t) of Ri,
• The Rankine-Hugoniot condition holds for Rli the left state and Rri the right

state:

(A.4) γ̇(t)[Rri (t)−Rli(t)] = fi(R
r
i (t))− fi(Rli(t)).

• If Rli(t) < Rri (t) then:

(A.5) ∀α ∈ [0, 1], fi(αR
r
i (t) + (1−α)Rli(t)) ≥ αfi(Rri (t)) + (1−α)fi(R

l
i(t)).

• If Rli(t) > Rri (t) then:

(A.6) ∀α ∈ [0, 1], fi(αR
r
i (t) + (1−α)Rli(t)) ≤ αfi(Rri (t)) + (1−α)fi(R

l
i(t)).

Proof. This corresponds to [6, Theorem 4.4].

We call conditions (A.5)-(A.6), the entropy decay conditions of fronts; it selects
values before and after the front such that the entropy of the solution decreases with
time. If a front verifies such conditions, we say that the front is entropic.

A.2. Proof of Lemma A.1. Now we prove Lemma A.1 constructing step by
step a piecewise constant solution. We begin by solving a Riemann problem to get a
solution near t = 0.

A.2.1. The Riemann problem. Let i be an integer of J1, dK, ν > 1 and
Rli, R

r
i ∈ R be two states. We recall techniques from [6, pp .108-113] to solve the

Riemann problem associated to (Rli, R
r
i ) when taking fν as flux. There are two cases

to consider:
• If Rli < Rri . Then, we consider f∗i the largest convex function inferior to fν,i

on [Rri , R
l
i]. Denote also w0 := Rli < w1 < w2 < · · · < wn := Rri the states

where f∗,′i jumps. We give an example for n = 2 on Figure 10:
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fν,i

f∗i

w0 w1 w2

Ri

Figure 10: The case Rli < Rri

Introducing the speeds

(A.7) λl =
fν,i(wl)− fν,i(wl−1)

wl − wl−1
, l ∈ J1, nK,

we define the solution to the Riemann problem as:

(A.8) Rν,i(t, x) =

 w0 if x < tλ1

wl if tλl < x < tλl+1, l ∈ J1, n− 1K
wn if x > tλn.

This solution is entropic because it is piecewise constant, all fronts are entropic
(A.5) and satisfy the Rankine-Hugoniot condition (A.4).

• If Rli > Rri . Then, we consider f∗i the smallest concave function larger than
fν,i. Denote also w0 := Rli > w1 > w2 > · · · > wn := Rri the states where
f∗,′i jumps. We give an example for n = 2 on the Figure 11.

fν,i

f∗i

w3 w1w2 w0

Ri

Figure 11: The case Rli > Rri
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Defining velocities (λl)l∈J1,qK as in (A.7), we define the local solution also as:

(A.9) Rν,i(t, x) =

 w0 if x < tλ1

wl if tλl < x < tλl+1, l ∈ J1, n− 1K
wn if x > tλn.

A.2.2. Local in time solution. Take a fixed ν > 1. Let us define what we
will call the limit line t 7→ cmaxt with maximal speed. Thanks to the Riemann solver
defined in the previous section, we can find an entropy solution until a front interaction
happens. The corresponding picture is given in Figure 12.

xx = 1

t
Fronts
Limit line

Figure 12: The local in time solution

A.2.3. Dealing with shock interactions. We recall the method described in
[6, pp. 111-112]. Two cases have to be considered:

• (Case 1) All the incoming jumps have the same sign. Suppose they are all
positive and let us denote w0 < w1 < ... < wn (n ∈ N) the consecutive
“incoming” states. As all incoming fronts are entropic, we have:

(A.10) ∀α ∈ [0, 1], f(αwi + (1− α)wi+1) ≥ αf(wi) + (1− α)f(wi+1).

The fact that we have converging fronts gives that the function h built
from lines passing through points (wi, f(wi))i∈J0,nK is concave. Moreover,
by (A.10):

(A.11) ∀w ∈ [w0, wn], h(w) ≤ f(w).

Hence, by the concavity of h and (A.11):

∀α ∈ [0, 1], f(αw0+(1−α)wn) ≥ h(αw0+(1−α)wn) ≥ αf(w0)+(1−α)f(wn).

Thus, it is possible to link the extremal (w0 and wn) states by a unique en-
tropic front whose jump intensity is strictly equal to the sum of the intensities
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of incoming jumps. Hence, in this case the total variation is conserved and
so is the L∞ norm.

x

t

Ri

w0

w1

w2

w2w1w0

Figure 13: All jumps have the same sign

• (Case 2) Not all jumps have the same sign. Let us denote w0, w1, ..., wn
(n ∈ N) the consecutive “incoming” states. It is possible to link the extremal
(w0 and wn) states using fronts whose jumps have the same sign. To do so,
it suffices to solve a Riemann problem between extremal states w0 and wn
as in Section A.2.1. Moreover, by the triangle inequality, the total variation
decreases at least by 2×2−ν . Concerning the L∞ norm, it is conserved. This
is because the fν,is are non decreasing.

x

t

Ri

w0

w1

w2

w3
w4

w0 w2 w1w3 w4

Figure 14: Not all jumps have the same sign

(Case 1) creates a unique front and let the total variation unchanged whereas
(Case 2) can create several fronts but the total variation decreases by at least by
2 × 2−ν . Consequently, (Case 2) can happen only a finite number of times and the
number of fronts remains bounded as time evolves. As a consequence, it is possible
to construct an entropy piecewise constant approximate solution under the limit line
verifying

(A.12)

{
∀0 ≤ t ≤ 1/cmax, TV[cmaxt,1](Rν,i(t, .)) ≤ TV[0,1](R0,ν,i)

∀x ∈ [0, 1], TV[0,x/cmax](Rν,i(., x)) ≤ TV[0,1](R0,ν,i)
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The corresponding picture is given in Figure 15:

xx = 1

t
Fronts
Limit line

Figure 15: The solution under the limit line

Remark A.3. If n ≥ 2 (n ∈ N) fronts interacts exactly at x = 1 for some time
t > 0. Then, we modify a bit the velocity of n − 1 fronts to prevent this situation.
Taking one of such fronts, we denote λ and λ̃ the respective former and new velocities.
We can choose them such that |λ− λ̃| ≤ 1

ν .

A.2.4. Finishing the construction. To construct locally the solution above
the limit line, we impose the boundary condition

∀0 ≤ t ≤ 1/cmax, Rν(t, 0+) = g2ν(Rν(t, 1−))

where we recall that:

∀R ∈ Rd, ν > 1, i ∈ J1, dK, gν,i(R) = 2−ν
(
E(2νgi(R))

)
.

Then, to construct a local solution, we solve the different Riemann problems as in
section A.2.2 this time using the approximated flux f2ν . More precisely if at a time t,
Ri(t

−, 0+) 6= Ri(t
+, 0+), we solve the Riemann problem with Ri(t

+, 0+) as left state
and Ri(t

−, 0+) as right state. Hence we are able to get a solution locally above the
limit line taking its values in 2−2νZ.
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xx = 1

t

Fronts
Limit line

1/cmax

Figure 16: The local solution above the limit line

Finally, we extend fronts coming from the zone under the limit line and deal with
front interactions as in section A.2.3 this time using the approximated flux f2ν . The
final picture is given in Figure 17. This is very important to remark that the picture
under the limit line cannot be modified by fronts coming from the left boundary. This
is because the limit line has maximal velocity.

xx = 1

t

Fronts
Limit line

1/cmax

Figure 17: The solution

Concerning the total variation, the way we dealt with front interactions prevents
the total variation from increasing when we compare the total strength of ongoing
fronts with the one of outgoing fronts. As a consequence,

(A.13)


∀0 ≤ t ≤ 1/cmax, TV[0,cmaxt](Rν,i(t, .)) ≤ TV[0,1](R0,ν,i)

+TV[0,1/cmax](Rν,i(., 0
+))

∀x ∈ [0, 1], TV[x/cmax,1/cmax](Rν,i(., x)) ≤ TV[0,1](R0,ν,i)
+TV[0,1/cmax](Rν,i(., 0

+))
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A.2.5. Conclusion. All previous steps can be repeated on intervals
[k/cmax, (k + 1)/cmax] and a solution defined for all time is built. Now let T > 0.
There are several points to verify:

• (Boundary condition) The approximated boundary condition (2.1) is satisfied
by construction.

• (Boundary interactions) Two fronts cannot interact simultaneously at the
right boundary by construction.

• (Estimate on the total variation). Using (A.12), (A.13) and the fact that
Rν satisfies the approximated boundary condition (2.1), one can deduce that
there exists a constant C(g, T ) (depending on the Lipschitz constant of g and
T ) such that

(A.14) ∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν(t, .)).

• (Estimate on the entropy) Take a positive test function φ ∈ C1
c ((0, T )×(0, 1)),

T > 0 and k ∈ Rd. Then, by integration by parts, one obtains:

∫ T

0

∫ 1

0

[ηk(Rν)φt + qk(Rν)φxdxdt =
∑
α

[γ̇α(ηk(Rrν,α)− ηk(Rlν,α))−

(qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

where α runs over the discontinuities t→ (t, γα(t)) of Rν .
We denote P the set of physical fronts ie the fronts for which the velocity has
not been modified. NP designates the complement of P . As fronts of P are
entropic by construction, we have:

∫ T

0

∫ 1

0

ηk(Rν)φi,t + qk(Rν)φi,xdxdt

≥ 0 +
∑
α∈NP

[γ̇α(ηk(Rrν,α)ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

=
∑
α∈NP

[λ̃α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

where we replaced the notation γ̇ by λ̃ to emphasize the fact that it corre-
sponds to a modified velocity (see Remark A.3); the unmodified ”entropic”
velocity being denoted λ. Hence,

∫ T

0

∫ 1

0

ηk(Rν)φt + qk(Rν)φxdxdt

≥
∑
α∈NP

[λ̃α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

=
∑
α∈NP

[λα(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))

+(λ̃α − λα)(ηk(Rrν,α)− ηk(Rlν,α))]φ(t, γα)

≥ 0− TV (Rν(t,.))
ν ‖φ‖L∞(R+×[0,1])

≥ −C(g, T )
TV (R0,ν)

ν |φ‖L∞(R+×[0,1])

where we have used chronologically:
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– The fact that an unmodified velocity corresponds to an entropy front
– The equation |λ− λ̃| ≤ 1

ν from Remark A.3
– The fact that ηk is 1-Lipschitz
– The estimate (A.14) proven before.

• (L∞ estimate). Remark that when we solved Riemann problem, the L∞ norm
did not increase. This is mainly because we are dealing with non decreasing
fluxes. The only way for the L∞ norm to increase is through the boundary
condition. As a consequence, the estimate (A.3) holds.

This finishes the proof of Lemma A.1.

A.3. End of the proof of the existence result. To conclude on the existence,
we will use Lemma A.1 and Helly’s Theorem 1.4. There are several points to prove:

• (Entropy decay) Take T > 0, R0 ∈ BV ([0, 1]) and a sequence (R0,ν)ν of
piecewise constant functions converging to R0 in BV (such a sequence exists
by [6, Lemma 2.2]). For all ν > 1, we denote (Rν)ν the sequence of piecewise
constant functions of Lemma A.1.

By Lemma A.1, there exists a C(g, T ) > 0 such that

∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν).

As lim
ν→∞

R0,ν = R0 ∈ BV ([0, 1]),

(A.15) ∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T,R0).

Next by (A.3) and the fact that the L∞ norm of the elements of (R0,ν)ν are
bounded, we have

(A.16) ∀0 ≤ t ≤ T, ‖Rν(t, .)‖L∞([0,1]) ≤ C(g, T,R0).

Finally for all 0 ≤ s, t ≤ T and by the finiteness of the speed of propagation:

(A.17)
‖Rν(t, .)−Rν(s, .)‖L1([0,1]) ≤ cmax(t− s) maxu∈[s,t] TV[0,1](Rν(u, .))

≤ cmax(t− s)C(g, T,R0)

where we have used (A.15).

By Helly’s Theorem (Theorem 1.4), there exists a subsequence of (Rν)ν
still denoted (Rν)ν converging in L1

loc(R+, L1([0, 1])) to an element R ∈
L∞loc(R+, BV ([0, 1])). Moreover,

(A.18) ∀0 ≤ s, t ≤ T, ‖R(t, .)−R(s, .)‖L1([0,1]) ≤ cmax(t− s)C(g, T,R0).

As (fν)ν converges uniformly towards f on bounded intervals, we can pass to
the limit in (A.1) to get (1.14).

• (Initial condition). Let ε > 0 and s > 0
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‖R(0, .)−Rν(0, .)‖L1([0,1]) ≤ ‖R(0, .)−R(s, .)‖L1([0,1])

+‖R(s, .)−Rν(s, .)‖L1([0,1])

+‖Rν(s, .)−Rν(0, .)‖L1([0,1])

≤ 2C(g,R0)s+ ‖R(s, .)−Rν(s, .)‖L1([0,1]).

where we have used (A.18).
Integrating with respect to s on an interval [0, t] for 0 ≤ t ≤ 1/cmax, one gets

‖R(0, .)−Rν(0, .)‖L1([0,1]) ≤ C(g,R0)t

+ 1
t

∫ t
0
‖R(s, .)−Rν(s, .)‖L1([0,1])ds

≤ C(g,R0)t

+ 1
t

∫ 1/cmax

0
‖R(s, .)−Rν(s, .)‖L1([0,1])ds

Taking t = ε
2C(g,R0) and ν sufficiently large such that

∫ 1/cmax

0
‖R(s, .) −

Rν(s, .)‖L1([0,1])ds ≤ ε2

4C(g,R0) , one finally obtains:

‖R(0, .)−Rν(0, .)‖L1([0,1]) ≤ ε.
By the fact that (R0,ν)ν converges towards R0 in L1([0, 1]), we deduce that
R(0, .) = R0 in a L1 sense and R(0, .) = R0 almost everywhere.

Remark A.4. We can repeat the same procedure for any t ≥ 0 and

∀t ≥ 0, lim
ν→∞

‖Rν(t, .)−R(t, .)‖L1([0,1]) = 0.

• (Boundary condition). For the boundary condition, it suffices to consider the
variable x as a time variable.

Using (A.12), (A.13) and the approximated boundary condition (2.1), one
can easily prove that

∀x ∈ [0, 1], TV[0,1/cmax](Rν(., x)) ≤ C(g)TV[0,1](R0,ν(.)).

As (R0,ν)ν is bounded in BV ,

(A.19) ∀x ∈ [0, 1], TV[0,1/cmax](R(., x)) ≤ C(g,R0).

Additionally, with (A.16) we get the L∞ estimate

(A.20) ∀ν > 1, ∀x ∈ [0, 1], ‖Rν(., x)‖L∞([0,1/cmax]) ≤ C(g,R0).

Finally, using (A.19) and recalling the definition cmin := mini αi of front
velocities, we have for 0 ≤ x, y ≤ 1:

(A.21) ∀ν > 1, ‖Rν(., x)−Rν(., y)‖L1([0,1/cmax]) ≤
|x− y|
cmin

C(g,R0).

By Helly’s Theorem (Theorem 1.4), (Rν)ν tends towards R in
L∞loc([0, 1], L1([0, 1/cmax])). Using a similar argument as in the previous item
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of the proof, one shows that R(., 0+) = g(R(., 1−)) in the almost everywhere
sense on [0, 1/cmax]. We repeat the argument to get the same conclusion for
all time.

Hence, R is a solution of (1.13) in the sense of Definition 1.6. It remains to
prove that (Rν)ν is an approximating sequence of PCFs of the entropy solution R
in the sense of Definition 2.2. By construction, (Rν)ν satisfies the first five points of
Definition 2.2. It remains only to prove the bound

(A.22) ∀t ≥ 0, δt > 0, TV[0,1](R(t, .)) ≤ lim sup
ν→∞

sup
s∈[t,t+∆t]

TV[0,1](Rν(s, .)).

This is a consequence of Helly’s Theorem. Indeed, take t ≥ 0, ∆t > 0 and n ∈ N∗.
Instead of applying Helly’s Theorem on an interval of the form [0, T ] for the sequence
(Rν)ν>1, we apply it on the interval [t, t+ ∆t] for the sequence (Rν)ν>n.

As

∀s ∈ [t, t+ ∆t], ∀ν > n, TV[0,1](Rν(s, .)) ≤ sup
u∈[t,t+∆t]

υ>n

TV[0,1](Rυ(u, .)),

we deduce by Helly’s Theorem that

∀s ∈ [t, t+ ∆t], TV[0,1](R(s, .)) ≤ sup
u∈[t,t+∆t]

υ>n

TV[0,1](Rυ(u, .)).

Passing to the limit as n goes to infinity gives (A.22). To get the estimate (2.3),
the proof is similar. The existence part of Theorem 2.3 is proven.

Appendix B. Uniqueness. We will adapt the method of doubling variables of
Kruzhkov to our boundary value problem. Let u, v be two entropy solutions of (1.13)
with their respective initial data u0, v0.

We will first show the uniqueness on the triangle T1:

T1 := {(t, x) | cmaxt ≤ x ≤ 1, 0 ≤ t ≤ 1/cmax}

To do so, let 0 < t ≤ 1/cmax and define the domain Ωt by:

Ωt := {(s, x); 0 ≤ s ≤ t, cmaxs ≤ x ≤ 1} .

We give a graphical representation of Ωt in Figure 18.
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xx = 1

t

Ωt

Figure 18: The domain Ωt

Formally, as u in entropy on Ωt, we have for all k ∈ Rd

0 ≥
∫ ∫

Ωt

ηk(u)t + qk(u)xdxdt

=

∫ 1

1−cmaxt

ηk(u)dx−
∫ 1

0

ηk(u0)dx

+

∫ t

0

cmaxηk(u(τ, cmaxτ))− qk(u(τ, cmaxτ))dτ +

∫ t

0

qk(u(1, s))ds.

The third term is positive because cmax is superior to all the Lipschitz constants of
the fis. The last term is positive since all the fis are non decreasing. Hence,

(B.1)

∫ 1

1−cmaxt

ηk(u)dx ≤
∫ 1

0

ηk(u0)dx.

It is equivalent to:

∀k ∈ Rd,
d∑
i=1

∫ 1

1−cmaxt

|ui(t, x)− ki|dx ≤
d∑
i=1

∫ 1

0

|u0,i(x)− ki|dx.

Kruzhkov’s doubling variable method allows to replace the ki by the vi to give:

d∑
i=1

∫ 1

1−cmaxt

|ui(t, x)− vi(t, x)|dx ≤
d∑
i=1

∫ 1

0

|u0,i(x)− v0,i(x)|dx.

Remark B.1. Rigorous justifications of previous computations can be found in
the proof of [6, Theorem 6.2].

As a consequence, the solution is unique on the triangle T1.
Now let x be in ]0, 1[, we apply the same strategy to the set

Ωx := {(s, y); 0 ≤ y ≤ x, y/cmax ≤ s ≤ 1/cmax}

represented in Figure 19.



35

x
x = 1

t

Ωt

t = 1/cmax

Ωx

Figure 19: The domain Ωx

Integrating ηk(u)t + qk(u)x ≤ 0 in Ωx, one obtains: ∀x ∈ [0, 1], k ∈ Rd,

∫ 1/cmax

1/cmax−x/cmax
qk(u(t, x))dt ≤

∫ 1/cmax

0
qk(u(t, 0))dt

+
∫ x/cmax

0
cmaxηk(u(t, cmaxt))− qk(u(t, cmaxt))dt.

This is equivalent to: ∀x ∈ [0, 1], k ∈ Rd,

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

(fi(ui)− fi(ki))sign(ui − ki)dt

≤
d∑
i=1

∫ 1/cmax

0

(fi(ui(t, 0))− fi(ki))sign(ui(t, 0)− ki)dt

+

∫ x/cmax

0

cmaxηk(u(t, cmaxt))− qk(u(t, cmaxt))dt.

As all the fi are non decreasing (qk ≥ 0) and all cmax Lipschitz: ∀x ∈ [0, 1], k ∈ Rd,

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(ki)|dt ≤ cmax

d∑
i=1

∫ 1/cmax

0

|ui(t, 0)− ki|dt

+cmax

∫ x/cmax

0

ηk(u(t, cmaxt))dt.

Following Kruzhkov’s method, the kis can be replaced by the vis and for all x in [0, 1]:

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt ≤ cmax

d∑
i=1

∫ 1/cmax

0

|ui(t, 0)− vi(t, 0)|dt

+ cmax

∫ x/cmax

0

|u(t, cmaxt)− v(t, cmaxt)|dt.
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As u, v satisfy the boundary condition on [0, 1/cmax], there exists a constant C(g, cmax)
depending on the Lipschitz constant of g such that for all x in [0, 1]:

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt

≤ C(g, cmax)
∑d
i=1

∫ 1/cmax

0
|ui(t, 1)− vi(t, 1)|dt

+cmax

∫ x/cmax

0

|u(t, cmaxt)− v(t, cmaxt)|dt.

If u0 = v0, we have seen that u and v coincide on T1. This implies that if u0 = v0,
u and v coincide on the segment {1} × [0, 1/cmax] and on the line (x = cmaxt, t) for
t ≤ 1/cmax. As a consequence,

∀x ∈ [0, 1],

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt = 0.

By the monoticity of the fis, u and v coincide on the triangle T2 defined by

T2 := {(t, x) |0 ≤ x ≤ 1, x/cmax ≤ t ≤ 1/cmax} .

To conclude, u and v coincide for t ≤ 1/cmax and repeating this argument, we can
prove the uniqueness for all time. This finishes the proof of the uniqueness.
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