
HAL Id: hal-02481725
https://hal.science/hal-02481725v1

Preprint submitted on 17 Feb 2020 (v1), last revised 2 Feb 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

BV EXPONENTIAL STABILITY FOR NETWORKS
OF SCALAR CONSERVATION LAWS USING

LINEAR OR SATURATED CONTROLS
Mathias Dus

To cite this version:
Mathias Dus. BV EXPONENTIAL STABILITY FOR NETWORKS OF SCALAR CONSERVATION
LAWS USING LINEAR OR SATURATED CONTROLS. 2020. �hal-02481725v1�

https://hal.science/hal-02481725v1
https://hal.archives-ouvertes.fr


BV EXPONENTIAL STABILITY FOR NETWORKS OF SCALAR CONSERVATION LAWS USING1

LINEAR OR SATURATED CONTROLS2

MATHIAS DUS∗3

Abstract. In this paper, we investigate the BV exponential stability of general networks of scalar conservation laws with positive velocities4
and under dissipative boundary conditions. The paper is divided in two parts, the first one focusing on linear controls while the last one deals5
with saturated laws. For the linear case, the global exponential BV stability is proven. For the saturated case, we argue that we cannot expect6
to have a basin of attraction larger than the region of linearity in a BV context. We rather prove an L∞ local stability result. An explicit7
estimate of the basin of attraction is given. The Lyapunov functional is inspired from Glimm’s seminal work [13] reconsidered in [7].8

Key words. Bounded variations, stabilization, feedback, saturation, wavefront tracking method.9

AMS subject classifications. 93D05, 93D15, 93D2010

1. Introduction. In this paper, we are interested in the exponential stabilization of 1D hyperbolic systems using11

linear or saturated feedback control laws. The system we consider is of the form:12

(1.1)

 Rt + [f(R)]x = 0
R(t, 0) = g(R(t, 1))
R(0, x) = R0(x)

13

where R : R+ × [0, 1] 7→ Rd (d ∈ N∗) and f, g : Rd 7→ Rd.14

15

For coherence, we impose that all characteristic velocities are positive and consequently, the boundary condition in16

(1.1) is adapted.17

18

In [3, Chapter 1], typical examples of systems modeled by hyperbolic PDEs with feedback boundary conditions are19

cited; the telegrapher equations for electrical lines, the shallow water (Saint-Venant) equations for open channels, the20

isothermal Euler equations for gas flow in pipelines or even the Aw-Rascle equations for road traffic.21

22

More specifically, we are interested in the stabilization of (1.1) using feedback control laws at the boundary. The23

problem is equivalent to find sufficient conditions on g such that for any R0 initial data, the solution to (1.1) converges24

exponentially fast toward zero in the sense that25

∀t ≥ 0, ||R(t, .)||X ≤ Ce−γt||R0||X
where C, γ > 0 are constants independent on t and || · ||X is a norm on a Banach space X.26

27

Two types of feedback laws are analyzed in this article: the linear law and the saturated one.28

1.1. Linear feedback. For the case where g = H ∈Md(R) is a linear operator, the literature is quite rich.29

30

When the flux is linear; f(R) = Λ = diag(λ1, · · · , λd) with λ1, · · · , λd > 0, the problem of stabilization can be31

treated for the following classical functional spaces X:32

a. Sobolev spaces Wm,p([0, 1]) for m ∈ N and p ∈ [1,+∞].33

b. Spaces Cm([0, 1]) with (m ∈ N).34

c. BV ([0, 1]).35

Indeed, in [14, Theorem 3.5 p. 275], the authors prove that 0 is globally exponentially stable in spaces X defined36

above if and only if there exists δ > 0 such that37

(1.2)
{
z ∈ C | det(Id − diag(e−z/λ1 , · · · , e−z/λd)H) = 0

}
⊂ {z ∈ C | Re(z) < −δ} .38

However, the criteria (1.2) is not stable with respect to Λ. Indeed, when we take a H,Λ verifying (1.2), we cannot39

guaranty that the same holds for Λ̃ with Λ̃ diagonal and arbitrarily close to Λ [14, p. 285].40

41

In the same book, Silkowski [14, Theorem 6.1 p. 286] proves that for all Banach spaces X listed above, 0 is globally42

exponentially stable and that this stability is robust with respect to Λ if and only if43
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2 M. DUS

(1.3) ρ0(H) := max
{
ρ(diag(eiθ1 , · · · , eiθn)H) | θi ∈ R)

}
< 144

where ρ designates the usual spectral radius.45

46

Condition (1.3) is stronger than (1.2). For some years, many results came out generalizing to nonlinear fluxes.47

48

When the flux is not linear, only sufficient conditions of stability are given and most of the time this stability is49

only proven to be local:50

a. For X = Cm([0, 1]) with m ∈ N∗, a sufficient condition [10, 19, 21] is:51

(1.4) ρ∞(H) := inf∆∈D+
d (R)|∆H∆−1|∞ < 152

where | · |∞ is the canonical infinity norm of matrices and D+
d (R) is the set of diagonal positive matrices.53

54

It should be mentioned that in [10, 19, 21], the stability was proven for m = 1 but the argument can be adapted55

for any integer m > 0.56

b. For Sobolev space Wm,p([0, 1]) a sufficient condition for stability writes:57

ρp(H) := inf∆∈D+
d (R)|∆H∆−1|p < 1

where | · |p is the canonical p norm of matrices.58

59

The case p = 2 was treated in [6] and the general case p ≥ 1 was treated in [8]. Also, it should be mentioned that60

in [6, 8], the stability was proven for m = 2 but the argument can be adapted for any integer m > 0.61

c. For BV ([0, 1]), few results are known. To the authors’ knowledge only [7] deals with this case. They take a 2× 262

system of conservation laws and give a sufficient condition on H to ensure the local BV stability.63

64

In this article, we also place ourselves in a BV context and find a sufficient condition on H to ensure a global BV65

stability. Contrary to [7], we will not consider vectorial fluxes. In this case, solutions are only proven to exist for small66

initial data. This is why, we will rather consider scalar decentralized fluxes (see section 1.3) for which solutions exist for67

whatever initial data in BV . This hypothesis on the flux is all the more important that when we will study saturated68

feedback laws, we will also estimate the basin of attraction. This would not be possible with solutions defined only for69

small initial data.70

1.2. Saturated control law. We take a matrix H ∈Md(R) potentially unstable in the sense that ρ∞(H) > 1 (see71

(1.4)). Then we assume that there exist matrices B,K ∈ Md(R) such that ρ∞(H + BK) < 1. Finally, we consider the72

following system:73

(1.5)

 Rt + [f(R)]x = 0
R(t, 0) = HR(t, 1) +Bσ(KR(t, 1))
R(0, x) = R0(x)

74

with σ defined as a saturation by component ie there exists a σs > 0 such that:75

∀i ∈ J1, dK, x ∈ R,
{
σi(x) = x if |x| ≤ σs
σi(x) = sign(x)σs otherwise.

From criterion (1.4), the system without saturation is locally stable in Cm([0, 1]) with m ∈ N∗. It is natural to ask76

ourselves if this property of stability is conserved through the saturation. Apart from this theoretical interest, this problem77

has gained attention in the last few years because of the increasing need of precision for modeling real actuators. Physical78

controllers cannot provide infinite energy and sometimes, they saturate rendering classical unsaturated models restrictive.79

To avoid such situations, engineers choose controllers powerful enough to avoid saturation when the system operates in80

standard conditions. However, over-dimensioning actuators is not optimal in term of mass and cost of operation for many81

sophisticated systems as satellites for example. Moreover, in some exceptional configurations, actuators could saturate82

and lead to very dangerous situations; unpredictable via linear theory.83

84

Very few papers consider the effect of saturation on hyperbolic systems. To our knowledge, only [18] deals with85

this question in an H1 context and for the wave equation. Fortunately, the theory is much more developed for finite86

dimensional systems where polytopic and deadzone techniques were designed [22].87

88
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In this paper, we will argue that in a BV context, it is not possible to get a basin of attraction bigger than the region89

of linearity. We rather prove an L∞ local stability result with an estimation of the basin of attraction. Then, we deduce90

the exponential decay of the BV norm for solutions whose initial data belongs to the L∞ basin of attraction.91

1.3. Scalar conservation laws. The feedback laws being presented, we can now focus on the partial differential92

equation in itself. In fact, we consider a particular form of systems of conservation laws (1.1). More precisely, we take a93

flux f verifying Hypothesis 1.1.94

Hypothesis 1.1. The flux f is in C1(Rd) and there exist scalar fluxes fi ∈ C1(R) such that:

∀R ∈ Rd, ∀i ∈ J1, dK, [f(R)]i = fi(Ri).

Moreover, fi is such that there exist αi, βi > 0;95

∀i ∈ J1, dK, αi ≤ f ′i ≤ βi.

96

Such hypothesis allows to define the maximal and the minimal velocity:97

(1.6)

{
cmax := maxi∈J1,dK βi
cmin := mini∈J1,dK αi.

98

The aim of this section is to give a very short introduction to scalar conservation laws without giving any proof (see99

[4] for more details).100

1.3.1. The set of functions with bounded variations. It is well-known that the space BV is well-adapted for101

conservation laws (see [4] for instance). This is why, we give the definition and main properties of such a space here:102

Definition 1.2. Let R : [0, 1] 7→ Rd be a vector valued function. We say that R has bounded variations if103

∀n ∈ N, ∀ x1 < ... < xn ∈ [0, 1],

n−1∑
i=1

|R(xi+1)−R(xi)| <∞.

We denote TV[0,1](R) = sup
n, (x1,...,xn)

{∑n−1
i=1 |R(xi+1)−R(xi)|

}
the total variation of R. BV ([0, 1]) is the space of104

vector valued functions with bounded variations and it is a Banach space when BV ([0, 1]) is embedded with the norm105

||.||BV ([0,1]) defined as106

(1.7) ∀R ∈ BV ([0, 1]), ||R||BV ([0,1]) = TV[0,1](R) + ||R||L1([0,1]).107

The reason why we consider this space is because any function with bounded variations has a left and a right limit at108

each point x of [0, 1]. Hence, it is easy to define the trace operator and impose a boundary condition. Moreover, BV ([0, 1])109

has a very interesting property of compactness which will be very useful when we will pass to the limit in the Lyapunov110

analysis of approximating solutions. These properties are summed up in a lemma and a theorem:111

Lemma 1.3. Let R : [0, 1] 7→ Rd with bounded variations. Then for all x ∈ (0, 1), the left and right limit112

R(x−) = lim
y→x−

R(y), R(x+) = lim
y→x+

R(y)

exist.113

114

Moreover, R(0+) and R(1−) are also well defined and R has at most countably many point of discontinuities.115

Proof. This is an adaptation of [4, Lemma 2.1].116

Defining the value of R at each jump by R(x) = R(x+), we can say that R is right continuous in the L1 equivalence117

class. The following theorem is from Helly and states the compactness of BV ([0, 1]) in L1
loc(R+, L1([0, 1])).118

Theorem 1.4. [4, Theorem 2.4] Let (Rν)ν be a sequence of functions from R+ × [0, 1] into Rd such that there exist119

constants C, M and L satisfying120

(1.8) ∀ν > 1, ∀x ∈ [0, 1], ∀t ≥ 0, TV[0,1](Rν(t, .)) ≤ C, |Rν(t, x)| ≤M,121
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and122

(1.9) ∀0 ≤ t, s ≤ T, ||Rν(t, .)−Rν(s, .)||L1([0,1]) ≤ L|t− s|.123

Then there exists a subsequence (Rµ)µ converging strongly toward a certain R in L1
loc(R+, L1([0, 1])) and this limit124

satisfies (1.8)-(1.9) with Rν replaced by R.125

1.3.2. Entropy. The concept of entropy is primordial in order to guaranty uniqueness of solutions to conservation126

laws. This is why we recall some basic definitions in this section.127

128

If one considers the conservation law Rt + [f(R)]x = 0 in the usual weak sense:129

∀φ ∈ C1
c ((0, T )× (0, 1);Rd),

∫ T

0

∫ 1

0

(φtR+ φxf(R)) = 0,

it is commonly known that this PDE (associated with fixed boundary and initial conditions) can have several weak130

solutions (see Example 4.3 from [4]). In order to restrain the set of solutions, an entropy functional was introduced ([4],131

[9], [16]) and is defined as follows:132

Definition 1.5. A continuously differentiable convex function η : Rd 7→ R is called an entropy for the conservation133

law Rt + [f(R)]x = 0 with entropy flux q : Rd 7→ R, if134

∀R ∈ Rd, Dη(R) ·Df(R) = Dq(R).

For scalar conservation laws of the form ut + [f1(u)]x = 0, the usual choice of entropy is η(u) := |u − k| with flux135

q(u) := (f1(u)− f1(k))sign(u− k) where k is an arbitrary real. Knowing this, we introduce the notion of entropy solution136

to (1.1).137

Definition 1.6. Under Hypothesis 1.1, we say that R ∈ L∞loc(R+, BV ([0, 1])) is an entropy solution on [0, T ] to the138

system139

(1.10)

 Rt + [f(R)]x=0
R(., 0) =g(R(., 1))
R(0, .) =R0 ∈ BV ([0, 1]),

140

if:141

•

(1.11) ∀k ∈ Rd,
d∑
i=1

∫ T

0

∫ 1

0

{
|Ri − ki|φt + (fi(Ri)− fi(ki))sign(Ri − ki)φx

}
dxdt ≥ 0142

for all φ ≥ 0 and φ ∈ C1
c ((0, T )× (0, 1);R).143

• R(0, .) = R0 in the almost everywhere sense.144

• R(., 0+) = g(R(., 1−)) in the almost everywhere sense.145

Remark 1.7. Here the entropy functional and its flux are defined for all k in Rd by146

(1.12) ∀R ∈ Rd, ηk(R) =

d∑
i=1

|Ri − ki|, qk(R) =

d∑
i=1

(fi(Ri)− fi(ki))sign(Ri − ki).147

Moreover, equation (1.11) can be rewritten as148

ηk(R)t + qk(R)x ≤ 0

in a weak sense. Hence entropy solutions are the solutions of (1.1) which make the entropy η decrease.149

Remark 1.8. Equation (1.11) is stronger than the usual definition of weak solutions. Indeed, if one takes k such that150

ki < ess inf(Ri) and kj > ess sup(Rj) for j 6= i, then151 ∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt−
∑
j 6=i

∫ T

0

∫ 1

0

{
Rjφt + fj(Rj)φx

}
dxdt ≥ 0.

Also, taking kj < ess inf(Rj) for j 6= i, one gets:152
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∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt+
∑
j 6=i

∫ T

0

∫ 1

0

{
Rjφt + fj(Rj)φx

}
dxdt ≥ 0.

Summing the last two inequalities, one gets:153

∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt ≥ 0

Similarly, one can obtain:154

∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt ≤ 0.

Hence, for all φ ∈ C1
c ((0, T )× (0, 1)) with φ ≥ 0:155

∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt = 0.

Replacing φ with −φ, it is also true for φ ∈ C1
c ((0, T ) × (0, 1)) with φ ≤ 0. Now take a φ ∈ C1

c ((0, T ) × (0, 1)),156

φ = φ+ + φ− where φ+, φ− are respectively the positive and negative parts of φ. As φ+, φ− ∈ C1
c ((0, T )× (0, 1)), we get:157

∫ T

0

∫ 1

0

Riφt + fi(Ri)φxdxdt = 0.

As a consequence, each entropy solution is also a weak one.158

159

1.4. The contribution. Now that all the notions have been introduced, we can be more specific concerning the160

main contributions of this paper:161

• State and prove a well-posedness result of (1.1) in a BV context.162

To help us in the task, we will use front tracking techniques from DiPerna [15] and Bressan [4] to get an entropy163

solution in the domain considered. To deal with the boundary condition, the article [7] will be the reference work.164

• State and prove a global exponential stability result for linear feedback laws.165

This is the first key result. To our knowledge, no global stabilization result holds for feedback laws of the166

form R(t, 0) = HR(t, 1) in a BV entropy context. The article [17] proposes also a feedback law of the form167

R(t, 0) = g(||R(t, .)||L1). However, in physical systems the L1 norm of the solution is not always accessible by168

observations. Additionally, the article [7] which considers a 2 × 2 system of conservation laws gives only a local169

stabilization result for an entropy solution.170

• State and prove a local exponential stability result for saturated feedback laws. We will see that this is not possible171

in a BV context.172

To our knowledge, only [12] has studied this kind of saturated feedback laws in an L∞ context and for the case173

of constant characteristic velocities.174

1.5. Outline. In Section 2, we will present and prove an approximation and a well-posedness result for the entropy175

BV solution to (1.1). The technique of front tracking will be mainly used. Then in Section 3, a sufficient condition for176

global BV stability will be given in the case of a linear feedback. Additionally, we give a sufficient condition for the local177

L∞ stability in the case of a saturated feedback with an estimation of the basin of attraction. Finally, Section 4 is devoted178

to concluding remarks and perspectives.179

180

Notation: For all R ∈ Rd, |R| designates the canonical euclidean norm of R. For matrices M ∈ Md(R), |M | =181

sup |MR|
|R|=1, R∈Rd

. For all matrices M ∈ Md(R), |M |∞ := maxi=1..d

∑d
j=1 |Mi,j |. D+

d (R) is the set of diagonal strictly positive182

matrices. The value ρ∞(M) for matrices M ∈ Md(R) is defined by ρ∞(M) := inf∆∈D+
d (R) |∆M∆−1|∞. Lp spaces183

on [0, 1] (1 ≤ p ≤ ∞, p ∈ N) are embedded with their canonical norms ||.||Lp . For all matrices P ∈ D+
d (R) and184

R ∈ L∞([0, 1]), ||R||∞,P := ||PR||L∞ . The function E : R 7→ N is the integer part function and the function sign is the185

usual sign function with sign(0) = 0.186

2. Well-posedness and approximation results. This section is devoted to the well-posedness of (1.10). Addi-187

tionally, we prove the existence of an approximation by piecewise constant functions of the solution to (1.10).188
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2.1. Piecewise constant entropy solutions. Piecewise constant functions play an important role in the theory of189

BV solutions to conservation laws. Let us recall the definition of what a piecewise constant function is in our context.190

Definition 2.1. An element R of L∞loc(R+, BV ([0, 1])) is piecewise constant if for all T > 0, R viewed as a function191

defined on [0, T ] × [0, 1] is constant on a finite number of polyhedra. The edges of such polyhedra are called the fronts of192

R. Additionally, the absolute value of the jump across the front is called the intensity of the front.193

In this paper, we use the concept of approximating sequence of piecewise constant functions (PCF).194

Definition 2.2. (Rν)ν is an approximating sequence of PCFs of an entropy solution R to (1.10) if:195

• For ν > 1 fixed, Rν is piecewise constant in the sense of Definition 2.1 and takes its values in 2−(n+1)νZ on196

strips {(x, t) | 0 ≤ x ≤ 1, max{(x+ n− 1)/cmax, 0} ≤ t ≤ (x+ n)/cmax} for n ∈ N. The velocities of fronts are197

all bounded from below by cmin and from above by cmax (see (1.6) for the definition of cmin and cmax).198

• For ν > 1 fixed, no more than one front at a time can interact with the right boundary.199

• For ν > 1 fixed, if at a time t ≥ 0 several fronts interact, the sum of intensities of outgoing fronts is inferior to200

the sum of intensities of ingoing fronts.201

• The sequence (Rν(0, .))ν converges toward R0 in BV ([0, 1]).202

• The approximated boundary condition is verified:203

(2.1) ∀n ∈ N, ∀t s.t
n

cmax
≤ t ≤ n+ 1

cmax
, Rν(t, 0+) = g(n+2)ν(Rν(t, 1−))204

where:205

(2.2) ∀R ∈ Rd, ∀ν > 1, gν(R) = 2−ν
(
E(2νg(R))

)
.206

• ∀t ≥ 0, ∆t > 0,207

TV[0,1](R(t, .)) ≤ lim sup
ν→+∞

sup
s∈[t,t+∆t]

TV[0,1](Rν(s, .))

and208

(2.3) ||R(t, .)||L∞([0,1]) ≤ lim sup
ν→+∞

sup
s∈[t,t+∆t]

||Rν(s, .)||L∞([0,1]).209

2.2. The result of well-posedness and approximation. Now we give the first result of this paper:210

Theorem 2.3. Under Hypothesis 1.1 and for all R0 ∈ BV ([0, 1]), g ∈ Lip(Rd,Rd) there exists a unique entropy211

solution R ∈ L∞loc(R+, BV ([0, 1])) to (1.10). Moreover, there exists an approximating sequence of PCF (Rν)ν of the212

entropy solution R.213

Proof. This theorem is proven in Appendix A for the existence and Appendix B for the uniqueness.214

3. Lyapunov analysis. Before going into the stability analysis, we introduce the functional TVH on the space BV.215

For all matrices H in Md(R), it is defined as follows:216

(3.1) ∀R ∈ BV ([0, 1]), TVH(R) = TV[0,1](R) + |HR(1−)−R(0+)|,217

where R(1−) and R(0+) has to be understood as the left and right limits of the function R at x = 1 and x = 0.218

219

Moreover, we introduce Hypothesis 3.1:220

Hypothesis 3.1. The feedback matrix H verifies:

ρ∞(H) < 1.

221

The following lemma ensures the equivalence between TVH and || · ||BV ([0,1]).222

Lemma 3.2. Assume Hypothesis 3.1. The functional TVH defined in (3.1) is a norm on BV ([0, 1]) equivalent to the223

norm || · ||BV ([0,1]) defined in (1.7). Moreover, there exists a constant C > 0 such that224

(3.2) ∀R ∈ BV ([0, 1]), ||R||L∞([0,1]) ≤ C TVH(R).225
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Proof. We first prove the following claim:226

(3.3) ∀R ∈ Rd, |R| ≤ C|R−HR|.227

Let P ∈ D+
d (R) such that228

|PHP−1|∞ < 1.

The map || · ||∞:

{
Md(R) → R+

M 7→ |PMP−1|∞
defines an algebra norm on Md(R) and ||H||∞ < 1. Hence, Id −H is229

invertible, which gives (3.3) with C := |(I −H)−1|.230

TVH(R) = TV[0,1](R) + |HR(1−)−R(0+)|

≤ TV[0,1](R) + |HR(1−)−HR(0+)|+ |HR(0+)−R(0+)|

≤ TV[0,1](R) + |H||R(1−)−R(0+)|+ |H − Id||R(0+)|

≤ (1 + |H|)TV[0,1](R) + |H − Id||R(0+)|.

.

Take x ∈ [0, 1], by the triangle inequality,231

TVH(R) ≤ (1 + |H|)TV[0,1](R) + |H − Id||R(0+)−R(x)|+ |H − Id||R(x)|

≤ (1 + |H|+ |H − Id|)TV[0,1](R) + |H − Id||R(x)|.
.

Integrating with respect to x on [0, 1], one obtains:232

TVH(R) ≤ (1 + |H|+ |H − Id|)TV (R) + |H − Id|||R||L1([0,1])

= C||R||BV ([0,1]).
.

where C = 1 + |H|+ |H − Id|.233

234

To get the converse inequality, we remark that by (3.3),235

|R(1−)| ≤ C|HR(1−)−R(1−)|.

As a consequence,236

||R||BV ([0,1]) = TV[0,1](R) + ||R||L1([0,1])

≤ TV[0,1](R) + |R(1−)|+ ||R−R(1−)||L1([0,1])

≤ 2TV[0,1](R) + C|HR(1−)−R(1−)|

≤ 2TV[0,1](R) + C|HR(1−)−R(0+)|+ C|R(0+)−R(1−)|

≤ (2 + C)TV[0,1](R) + C|HR(1−)−R(0+)|

.

and both norms are equivalent. Concerning the L∞ estimate (3.2), take a couple (x, y) ∈ [0, 1]2 and using again the237

triangle inequality238

|R(x)| ≤ |R(x)−R(y)|+ |R(y)| ≤ TV[0,1](R) + |R(y)|.

Integrating with respect to y on [0, 1], one gets239

|R(x)| ≤ TV[0,1](R) + ||R||L1([0,1]) = ||R||BV ([0,1]).

And as this is true for all x in [0, 1],240

||R||L∞([0,1]) ≤ ||R||BV ([0,1]).

The equivalence between the norms || · ||BV ([0,1]) and TVH proven earlier allows to get (3.2).241
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3.1. Lyapunov analysis for the unsaturated system. In this section, we consider the following system242

(3.4)

 Rt + [f(R)]x = 0
R(., 0) = HR(., 1)
R(0, .) = R0 ∈ BV ([0, 1])

243

where the feedback operator g presented in the introduction is replaced by a matrix H ∈Md(R).244

245

The main theorem of this section is presented here:246

Theorem 3.3. Under Hypothesis 3.1 and if 0 < γ < − log(ρ∞(H)), then the unique entropy solution of (3.4) satisfies247

∀t ≥ 0, ||R||BV ([0,1]) ≤ Ce−γcmint||R0||BV ([0,1])

where C > 0 is a constant which does not depend on R0 and t.248

A candidate Lyapunov functional first introduced by Glimm [13] and then by Coron et al [7] applies well to piecewise249

constant functions and is defined by:250

Definition 3.4. Let R be a piecewise constant function on [0, 1] and taking its values in Rd. Take i ∈ J1, dK:251

• We denote xi,1 < xi,2 < · · · < xi,ni the discontinuities of Ri (ni being the number of discontinuities).252

• For all j ∈ J1, niK, rli,j, r
r
i,j designate the respective left and right state of Ri around xi,j.253

The Lyapunov functional L evaluated at R writes254

(3.5) L(R) =

d∑
i=1

Pi

ni∑
j=1

|rri,j − rli,j |e−γxi,j +

d∑
i=1

Pi|[HR]i(1
−)−Ri(0+)|255

where γ > 0 and P = diag {Pi, i ∈ J1, dK} ∈ D+
d (R) will be selected later.256

Remark 3.5. Obviously, there exists a constant C(H,P, γ) > 1 such that for all R piecewise constant, we have:257

(3.6)
L(R)

C(H,P, γ)
≤ TVH(R) ≤ C(H,P, γ)L(R).258

Theorem 3.3 will be proven using a piecewise approximation of the solution for which the exponential decay of the259

Lyapunov functional L will be proven. As a last step, we will pass to the limit.260

Proof. We consider (Rν)ν an approximating sequence of PCFs of the entropy solution R in the sense of Definition261

2.2. Such a sequence exists by Theorem 2.3. The following lemma asserts the exponential stability of the approximation:262

Lemma 3.6. If 0 < γ < − log(ρ∞(H)). Then, for all P ∈ D+
d (Rd) such that |PHP−1|∞ < e−γ , there exists ν̃(P,H, γ)263

such that264

(3.7) ∀ν > ν̃, ∀t ≥ 0, L(Rν) ≤ e−γcmintL(R0,ν) +
1

2ν

d∑
i=1

Pi.265

Proof. Fix ν > 1, P ∈ D+
d (Rd) such that |PHP−1|∞ < e−γ and time 0 ≤ t ≤ 1/cmax.266

267

Three cases are to be considered:268

• (Case 1) If at time t there is no interaction between two fronts nor between a front and the boundary, then L(Rν)269

is differentiable and270

dL(Rν(t, .))

dt
= −γ

d∑
i=1

Pi

ni∑
j=1

dxi,j
dt
|rri,j − rli,j |e−γxi,j

≤ −γcmin

d∑
i=1

Pi

ni∑
j=1

|rri,j − rli,j |e−γxi,j .

Here, we used the fact that for all integers i ∈ J1, dK, characteristic velocities
dxi,j
dt are bounded from below by271

cmin > 0. Finally, by the definition of L(Rν(t, .)))272
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(3.8)

dL(Rν(t, .))

dt
≤ −γcminL(Rν(t, .))) + γcmin

d∑
i=1

Pi|[HRν ]i(t, 1
−)−Rν,i(t, 0+)|

≤ −γcminL(Rν(t, .))) +
γcmin

2ν

d∑
i=1

Pi

273

where we used (2.1) with g replaced by H to get last equation.274

• (Case 2) When a front interaction happens, the total variation is non increasing by construction and as a conse-275

quence276

L(Rν(t+, .))− L(Rν(t−, .)) ≤ 0.

Here we used the third point of Definition 2.2.277

• (Case 3) When an interaction of a front with the boundary happens, computations are a bit more difficult. Suppose278

that such a front is of type i ∈ J1, dK and has (Ri,l, Ri,r) as respective left and right state (see Figure 1). We note its279

intensity by Ii := |Ri,l −Ri,r|. Note that as Rν takes its values in 2−νZ on the triangle {(x, t) | 0 < t < x/cmax},280

we have:281

(3.9) Ii ≥ 2−ν .282

Moreover, recall that simultaneous interactions of fronts with the boundary are forbidden by construction. Using283

the approximate boundary condition (2.1) with g replaced by the linear operator H, we get284

(3.10) L(Rν(t+, .))− L(Rν(t−, .)) ≤
d∑
j=1

Pj |Hj,i(Ri,r −Ri,l)| − e−γIiPi + 2−2ν+2
d∑
j=1

Pj .285

The second term on the right-hand side of (3.10) corresponds to the leaving front (which is of type i). The first286

term results from the entering fronts at the left boundary. Note that an entering front of type j ∈ J1, dK may287

rather be a fan of fronts (see Figure 1). This is not problematic because the sum of the intensities of the fronts288

composing the fan is equal to the difference of extremal states of the fan by construction (see Appendix A.2 for289

details). The last term in (3.10) corresponds to the approximation of the boundary condition (2.1).290

Ri,l

Ri,r

HRl

HRr
t

xx = 1x = 0

Figure 1: Case 3

Then, using the definition of | · |∞ and (3.9), one gets:291

L(Rν(t+, .))− L(Rν(t−, .)) ≤
( d∑
j=1

Pj
Pi
|Hj,i| − e−γ

)
PiIi + 2−ν+2

d∑
j=1

PjIi

≤
(
|PHTP−1|∞ + 2−ν+2

d∑
j=1

Pj/Pi − e−γ
)
PiIi.
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Remark 3.7. Here we see why the approximated boundary condition (2.1) is essential. Thanks to it, the error292

term 2−2ν+2
∑d
j=1 Pj coming from the approximation of g by gν can be bounded by the intensity Ii ≥ 2−ν of the293

front hitting the right boundary.294

As |PHTP−1|∞ − e−γ < 0 by assumption, we can take ν sufficiently large say ν ≥ ν̃(P,H, γ) such that295

L(Rν(t+, .))− L(Rν(t−, .)) ≤ 0

(Case 2) and (Case 3) can occur only a finite number of times on finite time intervals because Rν is piecewise constant296

in the sense of Definition 2.1. Consequently, one can integrate (3.8) with respect to time to get:297

∀0 ≤ t ≤ 1/cmax, L(Rν(t, .)) ≤ e−γcmintL(R0,ν) +
1

2ν

d∑
i=1

Pi.

The proof for time n/cmax ≤ t ≤ (n+ 1)/cmax where n is an integer can be dealt in a similar way. This ends the proof298

of Lemma 3.6.299

Now, we conclude on the proof of Theorem 3.3 taking t ≥ 0 fixed. By (3.7) and (3.6), there exists a constant C > 0300

such that301

∀ν > 0, TVH(Rν(t, .)) ≤ C
(
e−γcmintTVH(R0,ν) +

1

2ν

d∑
i=1

Pi

)
.

Using the equivalence between the norm TVH and the norm || · ||BV ([0,1]),302

(3.11) ∀ν > 0, ||Rν(t, .)||BV ([0,1]) ≤ C
(
e−γcmint||R0,ν ||BV ([0,1]) +

1

2ν

d∑
i=1

Pi

)
303

where we may have changed the constant C > 0.304

305

As (Rν)ν is an approximating sequence of PCFs of R, one has:306  lim
ν→∞

Rν(0, .) = R0 ∈ BV ([0, 1])

∀τ ≥ 0, dτ > 0, TV[0,1](R(τ, .)) ≤ lim sup
ν→∞

sup
s∈[τ,τ+dτ ]

TV[0,1](Rν(s, .)).

Moreover, by Remark A.4,307

∀τ ≥ 0, lim
ν→∞

||Rν(τ, .)−R(τ, .)||L1([0,1]) = 0.

We have for all dt > 0,308

||R(t, .)||BV ([0,1]) ≤ lim sup
ν→∞

(
sup

s∈[t,t+dt]

TV[0,1](Rν(s, .)) + ||Rν(t, .)||L1([0,1])

)
≤ lim sup

ν→∞
sup

s∈[t,t+dt]

(
TV[0,1](Rν(s, .)) + ||Rν(s, .)||L1([0,1])

)
= lim sup

ν→∞
sup

s∈[t,t+dt]

||Rν(s, .)||BV ([0,1])

≤ Clim sup
ν→∞

(
e−γcmint||R0,ν ||BV ([0,1]) + 1

2ν

∑d
i=1 Pi

)
= Ce−γcmint||R0||BV ([0,1])

where we have used (3.11) to get the fourth equation.309

310

This finishes the proof of Theorem 3.3.311

3.2. Stability analysis for the saturated system. In this section, we consider the following system312

(3.12)

 Rt + [f(R)]x = 0
R(., 0) = [H ·+Bσ(K·)]R(., 1)
R(0, .) = R0 ∈ BV ([0, 1]).

313

We introduce the deadzone function defined by314
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(3.13) ∀R ∈ Rd, φ(R) = σ(R)−R315

and Hypothesis 3.8:316

Hypothesis 3.8. The matrices H,B,K are chosen such that:317

ρ∞(H +BK) < 1.

318

Here the main result is different since we prove local exponential stability (Proposition 3.10). We cannot directly319

study the problem of BV stability because of the lack of contractivity of the saturation σ.320

R(0)

R(1)
σs

−σs

Figure 2: The feedback operator (black line) compared with the graph of the function R(0) = R(1) (red line)

Motivating example 3.9. In Figure 2, we represent the boundary operator H · +Bσ(K·) for d = 1, H = 2, B = 1,321

K = −1.5 and σs = 2. Except for the zone of linearity, the boundary operator is only 2-Lipschitz. As a consequence,322

it is possible to construct a front whose left/right states are arbitrary close to the zone of linearity and whose intensity323

increases after a passage through the feedback operator. This is why it is not possible to get a basin of attraction in BV324

norm larger than the zone of linearity. We will rather prove the L∞ local stability with a basin of attraction in L∞.325

This section is devoted to the proof of the following proposition and theorem (the definition of || · ||∞,P is given in the326

section notation):327

Proposition 3.10. Under Hypothesis 3.8, if 0 < γ < − log(ρ∞(H + BK)). Then, for all P ∈ D+
d (Rd) such that328

|P (H +BK)P−1|∞ ≤ e−γ , there exists a constant C depending on (H,B,K, P, γ) such that if329

(3.14) ||R0||∞,P <
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .330

Then, the unique entropy solution R ∈ L∞loc(R+, BV ([0, 1])) of (3.12) satisfies,331

(3.15) ∀t ≥ 0, ||R(t, .)||L∞([0,1]) ≤ Ce−γcmint||R0||L∞([0,1])332

where C depends on the parameters of the problem but not R0.333

For cases where ρ∞(H) > 1, the denominator in (3.14) is not zero:334

Remark 3.11. If ρ∞(H) > e−γ , then we claim that for all P ∈ D+
d (R):335

|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ > 0.

Proof of the claim of Remark 3.11336

337
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Let P be in D+
d (R). As ρ∞(H) > e−γ ,338

|PHP−1|∞ > e−γ .

This gives by the triangle inequality:339

|P (H +BK)P−1|∞ + |PBKP−1|∞ > e−γ .

Finally, by the fact that

∀A,B ∈Md(R), |PABP−1|∞ ≤ |PAP−1|∞|PBP−1|∞,

we have:
|P (H +BK)P−1|∞ + |PBP−1|∞|PBP−1|∞ > e−γ

and the claim is proven.340

The following theorem is a consequence of Proposition 3.10.341

Theorem 3.12. Under the conditions of Proposition 3.10,342

∀t ≥ 0, ||R(t, .)||BV ([0,1]) ≤ Ce−γcmint||R0||BV ([0,1])

where C depends on the parameters of the problem but not R0.343

Let us assume for the time being Proposition 3.10 and prove Theorem 3.12:344

Proof of Theorem 3.12. Equation (3.15) implies that at a certain time denoted t? depending on ||R0||L∞([0,1]), the345

solution enters in the zone of linearity and stays in it. Then, Theorem 3.3 implies:346

(3.16) ∀t ≥ t?, ||R(t, .)||BV ([0,1]) ≤ Ce−γcmin(t−t?)||R(t?, .)||BV ([0,1])347

where C depends on H,B,K, P, γ, σs.348

349

Then, for t ≤ t?, one can prove using the same techniques from Section 3.1 that:350

(3.17) ∀0 ≤ t ≤ t?, ||R(t, .)||BV ([0,1]) ≤ eνt||R0||BV ([0,1])351

where ν > 0 is a constant depending on cmax, γ and a Lipschitz constant of the feedback operator H +Bσ(K).352

353

From (3.17) and (3.16), one gets:354

∀t ≥ 0, ||R(t, .)||BV ([0,1]) ≤ Ce−γcmint||R0||BV ([0,1])

where C depends on the parameters of the problem and on ||R0||L∞([0,1]).355

356

As we have the bound (3.14), we can conclude that C does not depend on ||R0||L∞([0,1]) and the corollary is proven.357

The following lemma will be useful for the proof of Proposition 3.10.358

Lemma 3.13. Let R ∈ Rd be such that:359

(3.18) |PR|∞ ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .360

Then,361

|P (HR+Bσ(KR))|∞ ≤ e−γ |PR|∞.

Proof. Let i be in J1, dK. If sati(R) := {j ∈ J1, dK, | |[KR]j | > σs and Bi,j 6= 0} is empty, then:362

Pi|HR+Bσ(KR)|i = Pi|(H +BK)R)|i
≤ |P (H +BK)P−1|∞|PR|∞
≤ e−γ |PR|∞.
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If the set sati(R) is not empty, then:

Pi|HR+Bσ(KR)|i = Pi|(H +BK)R+Bφ(KR))|i

≤
∑d
j=1 Pi|(H +BK)i,jRj |+

∑d
j∈sati(R) Pi|Bi,j |(|[KR]j | − σs)

≤
∑d
j=1 Pi|(H +BK)i,j

1
Pj
PjRj |+

∑d
j∈sati(R) Pi|Bi,j |

Pj
Pj

(|[KR]j | − σs)

≤ |P (H +BK)P−1|∞|PR|∞ + |PBP−1|∞(|PKP−1|∞|PR|∞ − Pminσs)

≤ e−γ |PR|∞

where we have used the hypothesis (3.18) to get the last inequality.363

Now we can focus on the proof of Proposition 3.10.364

Proof of Proposition 3.10. We take P ∈ D+
d (R) such that |P (H + BK)P−1|∞ < e−γ and R0 ∈ BV ([0, 1]) satisfying365

(3.14). We consider (Rν)ν an approximating sequence of PCFs of the entropy solution R in the sense of Definition 2.2.366

Such a sequence exists because of Theorem 2.3. Then, we analyze the exponential damping of Rν for a fixed ν > 1. As367

(R0,ν)ν converges towards R0 in BV ([0, 1]), we have for ν sufficiently large:368

(3.19) ||R0,ν ||∞,P ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣369

We first recall the definition of cmin, cmax the respective minimum and maximum velocity, in (1.6). Let t ≤ 1/cmin370

and x > Lt be in [0, 1]. Constructing the light cone enclosed by line with slopes 1/cmin and 1/cmax and passing through371

(t, x), we get that:372

(3.20) |PRν(t, x)|∞ ≤ ||R0,ν ||∞,P373

The argument of the light cone can be justified by the fact that the L∞ norm does not increase by fronts interaction (see374

Appendix A.2.3) and because fronts velocities belongs to [cmin, cmax].375

376

When x ≤ Lt, constructing the light cone enclosed by line with slopes 1/cmin and 1/cmax and passing through (t, x),377

one gets:378

|PRν(t, x)|∞ ≤ max{||R0,ν ||∞,P , sup
t∈[0,1/cmin]

|PRν(t, 0)|}.

The boundary condition gives:379

|PRν(t, x)|∞ ≤ max{||R0,ν ||∞,P , sup
t∈[0,1/cmin]

|P [H ·+Bσ(K·)]Rν(t, 1)|}.

By (3.20) applied to x = 1 and (3.19), hypothesis of Lemma 3.13 are verified and we have:380

|PRν(t, x)|∞ ≤ max{||R0,ν ||∞,P , e−γ ||R0,ν ||∞,P } ≤ ||R0,ν ||∞,P .

Next we proceed by induction on intervals of the form t ∈ [n/cmin, (n+ 1)/cmin] with n ∈ N. Suppose that:381

∀t ∈ [n/cmin, (n+ 1)/cmin], ||Rν(t, ·)||∞,P ≤ e−γn||R0,ν ||∞,P .

Let (n+ 1)/cmin ≤ t ≤ (n+ 2)/cmin and x be in [0, 1]. Constructing the light cone enclosed by lines with slopes 1/cmin382

and 1/cmax and passing through (t, x), one gets the existence of a t? ∈ [n/cmin, (n+ 2)/cmin] such that:383

(3.21) |PRν(t, x)|∞ ≤ |PRν(t?, 0)|∞ ≤ |P [H ·+Bσ(K·)]Rν(t?, 1)|.384

Using same reasoning as in the case n = 0, one proves that:385

||Rν(t?, ·)||∞,P ≤ ||Rν(n/cmin, ·)||∞,P .

Hence, by the hypothesis of induction:

|PRν(t?, 1)|∞ ≤ ||Rν(t?, ·)||∞,P ≤ e−γn||R0,ν ||∞,P ≤ ||R0,ν ||∞,P .
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As a consequence, by (3.19):386

|PRν(t?, 1)|∞ ≤
|PBP−1|∞Pminσs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣
Thus, we can use Lemma 3.13 in (3.21) to get:387

|PRν(t, x)|∞ ≤ e−γ |PRν(t?, 1)|∞
≤ e−γ ||Rν(t?, ·)||∞,P .

Hence,388

||Rν(t, ·)||∞,P ≤ e−γ ||Rν(t?, ·)||∞,P ≤ e−γ(n+1)||R0,ν ||∞,P

where we have used the induction hypothesis.389

390

To conclude, we have:391

∀t ≥ 0, ||Rν(t, ·)||∞,P ≤ max{1, e−γ(cmint−1)}||R0,ν ||∞,P .

It remains to prove the exponential decay for the solution R. It suffices to use property (2.3) and to take a sequence392

of initial data piecewise constant such that:393

∀ν > 1, ||R0,ν ||∞,P ≤ ||R0||∞,P .

Owing this, we can pass to the limit as ν goes to infinity to get:394

∀t ≥ 0, ||R(t, ·)||∞,P ≤ max{1, e−γ(cmint−1)}||R0||∞,P .

This ends the proof of Proposition 3.10.395

3.3. Numerical results. Here, we study a numerical example with saturation and show the relevance of the esti-396

mation of the region of attraction (3.14).397

3.3.1. Relevance of the estimation of the basin of attraction. In this section, we analyze an example of398

network of scalar conservation laws for d = 2 with saturated feedback control law. Matrices are defined as follows.399

H =

(
0 1.1
1 0

)
, B = I2, K =

(
0 −0.1050

−0.1045 0

)
.

We take a linear flux f(R) = ΛR+ 0.2(arctan(R1), arctan(R2)) with400

Λ =

(
1 0

0
√

2

)
.

We recall the estimation of the basin of attraction for γ > 0 and P ∈ D+
d (R):401

(3.22) ||R0||∞,P ≤
|PBP−1|∞σs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − e−γ

∣∣ .402

We calculate P ∈ D+
d (R) such that |P (H +BK)P−1|∞ is minimal. We obtain:403

P =

(
0.974 0

0 1.026

)
.

To estimate the largest region of attraction, we take γ = 0 in (3.22) which gives the following criteria of stability:404

(3.23) ||R0||∞,P ≤
|PBP−1|∞σs∣∣|P (H +BK)P−1|∞ + |PBP−1|∞|PKP−1|∞ − 1

∣∣ .405
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3.3.2. Numerical simulations. Still keeping the matrices from previous section, we take a certain range of initial406

data R0 constant on [0, 1] belonging to the estimated region of attraction and simulate the behavior of the solution. For407

example, one can take R0 constant with value in (−40, 40)2 and look if the solution does not blow up at infinite time in408

BV norm. For information, we have used the classical superbee limiter scheme for our simulations. In the same graph,409

we plot the estimated region of attraction given by (3.23) and the region where the solution saturates at t = 0.410

In Figure 3, contours correspond to the rate of exponential decay of the numerical solution. If it is negative, the411

solution decays exponetially in norm. If it is positive, we have exponential divergence. The largest square is the estimated412

region of attraction while the smallest one is the zone where saturation does not occur at t = 0. We also pick a initial413

data R0 in the estimated region of attraction and observe the dynamic of the solution. For example, one can take414

R0(x) = (15,−15) on [0, 1]. The black dot in Figure 3 corresponds to this initial data. The value of the control is plotted415

in Figure 5 while the BV norm of the solution is given in Figure 4. We see that there is indeed saturation from t = 0416

until time t ≈ 13, then we enter in the zone of linearity.417

The initial jump of the BV norm is due to boundary condition which immediately creates a jump at x = 0 when418

t = 0+. Here the BV norm behaves well in the zone of saturation i.e it does not exponentially blow and even decay quite419

fast. Then, in the zone of linearity we recover the exponential decay pattern.420
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4. Conclusion. The well-posedness for a wide class of systems of scalar conservation laws with boundary unsaturated421

and saturated feedback laws was established. The ρ∞ criteria was established in the BV context for linear feedback laws.422
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Then, for saturated feedback laws, we proved with an example that estimating a basin of attraction in BV was not423

relevant. We rather gave an estimation of the basin of attraction in L∞ and deduce the exponential decay of the BV424

norm of solutions whose initial data belongs to this basin of attraction. Some questions remain open. The estimation425

(3.14) may not be optimal. Moreover, a method of maximizing the basin of attraction where the matrix K is the variable426

of optimization is not given in this article. This is not an easy task since criterion (3.14) is not convex with respect to427

K. Finally, the other big gap to bridge is the stabilization of general systems of conservation laws the main difficulty428

coming from the well-posedness. The initial-boundary value problem for hyperbolic systems of conservation laws is indeed429

a very delicate matter, even when no characteristic speed vanishes. We refer to [20], [1], [5], [2], [11], [7] and the references430

therein.431
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Appendix A. Existence of a solution. All this section is dedicated to the proof of the existence result of Theorem432

2.3.433

434

A.1. The approximated problem. Let ν ≥ 1, i in J1, dK and define fν,i the piecewise affine approximation of fi
coinciding with fi at all 2−νj nodes (j ∈ Z) by:

fν,i(s) =
s− 2−νj

2−ν
fi(2

−ν(j + 1)) +
2−ν(j + 1)− s

2−ν
fi(2

−νj) for s ∈ [2−νj, 2−ν(j + 1)].

The sequence (fν)ν is introduced in order to construct a piecewise constant entropy solution. The following lemma435

gives its main properties:436

Lemma A.1. For all T > 0, there exists a constant C(g, T ) such that for all ν > 1 and R0,ν piecewise constant taking437

its values in 2−νZ, there exists Rν piecewise constant in the sense of Definition 2.1 verifying the following assertions:438

• The approximated boundary condition (2.1) is verified.439

• Two fronts cannot interact simultaneously with the right boundary.440

• ∀k ∈ Rd, φ ∈ C1
c ((0, T )× (0, 1);R):441

(A.1)

∫ T

0

∫ 1

0

ηk(Rν)φt + qk(Rν)φxdxdt ≥ −C(g, T )
TV (R0,ν)

ν
||φ||L∞(R+×[0,1]).442

where :443

(A.2)


ηk(Rν(t, x)) =

d∑
i=1

|Rν,i(t, x)− ki|

qk(Rν(t, x)) =

d∑
i=1

|fi(Rν,i(t, x))− fi(ki)|.
444

• The following bounds hold:445

∀t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν).

(A.3) ∀t ≤ T, ||Rν(t, .)||L∞([0,1]) ≤ C(g, T )||R0,ν(t, .)||L∞([0,1]).446

Proof. See Appendix A.2447

It is relatively easy to construct piecewise constant functions that make the entropy decrease. The main rules of448

construction are presented in the following lemma.449

Lemma A.2 (Characterization of entropy piecewise constant functions).450

A piecewise constant R in the sense of Definition 2.1 verifies the condition of entropy decay (1.11) if and only if for451

all integers i in J1, dK and all fronts γ(t) of Ri,452

• The Rankine-Hugoniot condition holds for Rli the left state and Rri the right state:453

(A.4) γ̇(t)[Rri (t)−Rli(t)] = fi(R
r
i (t))− fi(Rli(t)).454

• If Rli(t) < Rri (t) then:455

(A.5) ∀α ∈ [0, 1], fi(αR
r
i (t) + (1− α)Rli(t)) ≥ αfi(Rri (t)) + (1− α)fi(R

l
i(t)).456

• If Rli(t) > Rri (t) then:457

(A.6) ∀α ∈ [0, 1], fi(αR
r
i (t) + (1− α)Rli(t)) ≤ αfi(Rri (t)) + (1− α)fi(R

l
i(t)).458

Proof. This corresponds to [4, Theorem 4.4].459

We call conditions (A.5)-(A.6), the entropy decay conditions of fronts; it selects values before and after the front such460

that the entropy of the solution decreases with time. If a front verifies such conditions, we say that the front is entropic.461

462
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A.2. Proof of Lemma A.1. Now we prove Lemma A.1 constructing step by step a piecewise constant solution. We463

begin by solving a Riemann problem to get a solution near t = 0.464

A.2.1. The Riemann problem. Let i be an integer of J1, dK, ν > 1 and Rli, R
r
i ∈ R be two states. We recall465

techniques from [4, pp .108-113] to solve the Riemann problem associated to (Rli, R
r
i ) when taking fν as flux. There are466

two cases to consider:467

• If Rli < Rri . Then, we consider f∗i the largest convex function inferior to fν,i on [Rri , R
l
i]. Denote also w0 := Rli <468

w1 < w2 < · · · < wn := Rri the states where f∗,′i jumps. We give an example for n = 2 on Figure 6:469

fν,i

f∗i

w0 w1 w2

Figure 6: The case Rli < Rri

Introducing the speeds470

(A.7) λl =
fν,i(wl)− fν,i(wl−1)

wl − wl−1
, l ∈ J1, nK,471

we define the solution to the Riemann problem as:472

(A.8) Rν,i(t, x) =

 w0 if x < tλ1

wl if tλl < x < tλl+1, l ∈ J1, n− 1K
wn if x > tλn.

473

This solution is entropic because it is piecewise constant, all fronts are entropic (A.5) and satisfy the Rankine-474

Hugoniot condition (A.4).475

• If Rli > Rri . Then, we consider f∗i the smallest concave function larger than fν,i. Denote also w0 := Rli > w1 >476

w2 > · · · > wn := Rri the states where f∗,′i jumps. We give an example for n = 2 on the Figure 7.477

Defining velocities (λl)l∈J1,qK as in (A.7), we define the local solution also as:478

(A.9) Rν,i(t, x) =

 w0 if x < tλ1

wl if tλl < x < tλl+1, l ∈ J1, n− 1K
wn if x > tλn.

479
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fν,i

f∗i

w3 w1w2 w0

Figure 7: The case Rli > Rri

A.2.2. Local in time solution. Take a fixed ν > 1. Let us define what we will call the limit line t 7→ cmaxt with480

maximal speed. Thanks to the Riemann solver defined in the previous section, we can find an entropy solution until a481

front interaction happens. The corresponding picture is given in Figure 8.482

xx = 1

t

Fronts
Limit line

Figure 8: The local in time solution

A.2.3. Dealing with shock interactions. We recall the method described in [4, pp. 111-112]. Two cases have to483

be considered:484

• (Case 1) All the incoming jumps have the same sign. Suppose they are all positive and let us denote w0 < w1 <485

... < wn (n ∈ N) the consecutive “incoming” states. As all incoming fronts are entropic, we have:486

(A.10) ∀α ∈ [0, 1], f(αwi + (1− α)wi+1) ≥ αf(wi) + (1− α)f(wi+1).487

The fact that we have converging fronts gives that the function h built from lines passing through points488

(wi, f(wi))i∈J0,nK is concave. Moreover, by (A.10):489

(A.11) ∀w ∈ [w0, wn], h(w) ≤ f(w).490

Hence, by the concavity of h and (A.11):491

∀α ∈ [0, 1], f(αw0 + (1− α)wn) ≥ h(αw0 + (1− α)wn) ≥ αf(w0) + (1− α)f(wn).
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Thus, it is possible to link the extremal (w0 and wn) states by a unique entropic front whose jump intensity is492

strictly equal to the sum of the intensities of incoming jumps. Hence, in this case the total variation is conserved493

and so is the L∞ norm.494

x

t

Ri

w0

w1

w2

w2w1w0

Figure 9: All jumps have the same sign

• (Case 2) Not all jumps have the same sign. Let us denote w0, w1, ..., wn (n ∈ N) the consecutive “incoming”495

states. It is possible to link the extremal (w0 and wn) states using fronts whose jumps have the same sign. To do496

so, it suffices to solve a Riemann problem between extremal states w0 and wn as in Section A.2.1. Moreover, by497

the triangle inequality, the total variation decreases at least by 2×2−ν . Concerning the L∞ norm, it is conserved.498

This is because the fν,is are non decreasing.499

x

t

Ri

w0

w1

w2

w3

w4

w0 w2 w1w3 w4

Figure 10: Not all jumps have the same sign

(Case 1) creates a unique front and let the total variation unchanged whereas (Case 2) can create several fronts but500

the total variation decreases by at least by 2× 2−ν . Consequently, (Case 2) can happen only a finite number of times and501

the number of fronts remains bounded as time evolves. As a consequence, it is possible to construct an entropy piecewise502

constant approximate solution under the limit line verifying503

(A.12)

{
∀0 ≤ t ≤ 1/cmax, TV[cmaxt,1](Rν,i(t, .)) ≤ TV[0,1](R0,ν,i)

∀x ∈ [0, 1], TV[0,x/cmax](Rν,i(., x)) ≤ TV[0,1](R0,ν,i)
504

The corresponding picture is given in Figure 11:505
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xx = 1

t

Fronts
Limit line

Figure 11: The solution under the limit line

Remark A.3. If n ≥ 2 (n ∈ N) fronts interacts exactly at x = 1 for some time t > 0. Then, we modify a bit the506

velocity of n− 1 fronts to prevent this situation. Taking one of such fronts, we denote λ and λ̃ the respective former and507

new velocities. We can choose them such that |λ− λ̃| ≤ 1
ν .508

A.2.4. Finishing the construction. To construct locally the solution above the limit line, we impose the boundary509

condition510

∀0 ≤ t ≤ 1/cmax, Rν(t, 0+) = g2ν(Rν(t, 1−))

where we recall that:511

∀R ∈ Rd, ν > 1, i ∈ J1, dK, gν,i(R) = 2−ν
(
E(2νgi(R))

)
.

Then, to construct a local solution, we solve the different Riemann problems as in section A.2.2 this time using512

the approximated flux f2ν . More precisely if at a time t, Ri(t
−, 0+) 6= Ri(t

+, 0+), we solve the Riemann problem with513

Ri(t
+, 0+) as left state and Ri(t

−, 0+) as right state. Hence we are able to get a solution locally above the limit line taking514

its values in 2−2νZ.515

xx = 1

t

Fronts
Limit line

1/cmax

Figure 12: The local solution above the limit line
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Finally, we extend fronts coming from the zone under the limit line and deal with front interactions as in section A.2.3516

this time using the approximated flux f2ν . The final picture is given in Figure 13. This is very important to remark that517

the picture under the limit line cannot be modified by fronts coming from the left boundary. This is because the limit518

line has maximal velocity.519

520

xx = 1

t

Fronts
Limit line

1/cmax

Figure 13: The final solution

Concerning the total variation, the way we dealt with front interactions prevents the total variation from increasing521

when we compare the total strength of ongoing fronts with the one of outgoing fronts. As a consequence,522

(A.13)

{
∀0 ≤ t ≤ 1/cmax, TV[0,cmaxt](Rν,i(t, .)) ≤ TV[0,1](R0,ν,i) + TV[0,1/cmax](Rν,i(., 0

+))

∀x ∈ [0, 1], TV[x/cmax,1/cmax](Rν,i(., x)) ≤ TV[0,1](R0,ν,i) + TV[0,1/cmax](Rν,i(., 0
+))

523

A.2.5. Conclusion. All previous steps can be repeated on intervals [k/cmax, (k+ 1)/cmax] and a solution defined for524

all time is built. Now let T > 0. There are several points to verify:525

• (Boundary condition) The approximated boundary condition (2.1) is satisfied by construction.526

• (Boundary interactions) Two fronts cannot interact simultaneously at the right boundary by construction.527

• (Estimate on the total variation). Using (A.12), (A.13) and the fact that Rν satisfies the approximated boundary528

condition (2.1), one can deduce that there exists a constant C(g, T ) (depending on the Lipschitz constant of g529

and T ) such that530

(A.14) ∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν(t, .)).531

• (Estimate on the entropy) Take a positive test function φ ∈ C1
c ((0, T ) × (0, 1)), T > 0 and k ∈ Rd. Then, by532

integration by parts, one obtains:533 ∫ T

0

∫ 1

0

[ηk(Rν)φt + qk(Rν)φxdxdt =
∑
α

[γ̇α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

where α runs over the discontinuities t→ (t, γα(t)) of Rν .534

We denote P the set of physical fronts ie the fronts for which the velocity has not been modified. NP designates535

the complement of P . As fronts of P are entropic by construction, we have:536

∫ T

0

∫ 1

0

ηk(Rν)φi,t + qk(Rν)φi,xdxdt ≥ 0 +
∑
α∈NP

[γ̇α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

=
∑
α∈NP

[λ̃α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]φ(t, γα)

where we replaced the notation γ̇ by λ̃ to emphasize the fact that it corresponds to a modified velocity (see537

Remark A.3); the unmodified ”entropic” velocity being denoted λ. Hence,538
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∫ T

0

∫ 1

0

ηk(Rν)φt + qk(Rν)φxdxdt

≥
∑
α∈NP

[λ̃α(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α))]]φ(t, γα)

=
∑
α∈NP

[λα(ηk(Rrν,α)− ηk(Rlν,α))− (qk(Rrν,α)− qk(Rlν,α)) + (λ̃α − λα)(ηk(Rrν,α)− ηk(Rlν,α))]φ(t, γα)

≥ 0− TV (Rν(t,.))
ν ||φ||L∞(R+×[0,1])

≥ −C(g, T )
TV (R0,ν)

ν |φ||L∞(R+×[0,1])

where we have used chronologically:539

– The fact that an unmodified velocity corresponds to an entropy front540

– The equation |λ− λ̃| ≤ 1
ν from Remark A.3541

– The fact that ηk is 1-Lipschitz542

– The estimate (A.14) proven before.543

• (L∞ estimate). Remark that when we solved Riemann problem, the L∞ norm did not increase. This is mainly544

because we are dealing with non decreasing fluxes. The only way for the L∞ norm to increase is through the545

boundary condition. As a consequence, the estimate (A.3) holds.546

This finishes the proof of Lemma A.1.547

A.3. End of the proof of the existence result. To conclude on the existence, we will use Lemma A.1 and Helly’s548

Theorem 1.4. There are several points to prove:549

• (Entropy decay) Take T > 0, R0 ∈ BV ([0, 1]) and a sequence (R0,ν)ν of piecewise constant functions converging550

to R0 in BV (such a sequence exists by [4, Lemma 2.2]). For all ν > 1, we denote (Rν)ν the sequence of piecewise551

constant functions of Lemma A.1.552

553

By Lemma A.1, there exists a C(g, T ) > 0 such that554

∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T )TV[0,1](R0,ν).

As lim
ν→∞

R0,ν = R0 ∈ BV ([0, 1]),555

(A.15) ∀0 ≤ t ≤ T, TV[0,1](Rν(t, .)) ≤ C(g, T,R0).556

Next by (A.3) and the fact that the L∞ norm of the elements of (R0,ν)ν are bounded, we have557

(A.16) ∀0 ≤ t ≤ T, ||Rν(t, .)||L∞([0,1]) ≤ C(g, T,R0).558

Finally for all 0 ≤ s, t ≤ T and by the finiteness of the speed of propagation:559

(A.17)
||Rν(t, .)−Rν(s, .)||L1([0,1]) ≤ cmax(t− s) maxu∈[s,t] TV[0,1](Rν(u, .))

≤ cmax(t− s)C(g, T,R0)
560

where we have used (A.15).561

562

By Helly’s Theorem (Theorem 1.4), there exists a subsequence of (Rν)ν still denoted (Rν)ν converging in563

L1
loc(R+, L1([0, 1])) to an element R ∈ L∞loc(R+, BV ([0, 1])). Moreover,564

(A.18) ∀0 ≤ s, t ≤ T, ||R(t, .)−R(s, .)||L1([0,1]) ≤ cmax(t− s)C(g, T,R0).565

As (fν)ν converges uniformly towards f on bounded intervals, we can pass to the limit in (A.1) to get (1.11).566

• (Initial condition). Let ε > 0 and s > 0567

||R(0, .)−Rν(0, .)||L1([0,1]) ≤ ||R(0, .)−R(s, .)||L1([0,1]) + ||R(s, .)−Rν(s, .)||L1([0,1])

+||Rν(s, .)−Rν(0, .)||L1([0,1])

≤ 2C(g,R0)s+ ||R(s, .)−Rν(s, .)||L1([0,1]).

where we have used (A.18).568
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Integrating with respect to s on an interval [0, t] for 0 ≤ t ≤ 1/cmax, one gets569

||R(0, .)−Rν(0, .)||L1([0,1]) ≤ C(g,R0)t+
1

t

∫ t

0

||R(s, .)−Rν(s, .)||L1([0,1])ds

≤ C(g,R0)t+
1

t

∫ 1/cmax

0

||R(s, .)−Rν(s, .)||L1([0,1])ds

Taking t = ε
2C(g,R0) and ν sufficiently large such that

∫ 1/cmax

0
||R(s, .)−Rν(s, .)||L1([0,1])ds ≤ ε2

4C(g,R0) , one finally570

obtains:571

||R(0, .)−Rν(0, .)||L1([0,1]) ≤ ε.
By the fact that (R0,ν)ν converges towards R0 in L1([0, 1]), we deduce that R(0, .) = R0 in a L1 sense and572

R(0, .) = R0 almost everywhere.573

Remark A.4. We can repeat the same procedure for any t ≥ 0 and574

∀t ≥ 0, lim
ν→∞

||Rν(t, .)−R(t, .)||L1([0,1]) = 0.

575

• (Boundary condition). For the boundary condition, it suffices to consider the variable x as a time variable.576

577

Using (A.12), (A.13) and the approximated boundary condition (2.1), one can easily prove that578

∀x ∈ [0, 1], TV[0,1/cmax](Rν(., x)) ≤ C(g)TV[0,1](R0,ν(.)).

As (R0,ν)ν is bounded in BV ,579

(A.19) ∀x ∈ [0, 1], TV[0,1/cmax](R(., x)) ≤ C(g,R0).580

Additionally, with (A.16) we get the L∞ estimate581

(A.20) ∀ν > 1, ∀x ∈ [0, 1], ||Rν(., x)||L∞([0,1/cmax]) ≤ C(g,R0).582

Finally, using (A.19) and recalling the definition cmin := mini αi of front velocities, we have for 0 ≤ x, y ≤ 1:583

(A.21) ∀ν > 1, ||Rν(., x)−Rν(., y)||L1([0,1/cmax]) ≤
|x− y|
cmin

C(g,R0).584

By Helly’s Theorem (Theorem 1.4), (Rν)ν tends towards R in L∞loc([0, 1], L1([0, 1/cmax])). Using a similar argu-585

ment as in the previous item of the proof, one shows that R(., 0+) = g(R(., 1−)) in the almost everywhere sense586

on [0, 1/cmax]. We repeat the argument to get the same conclusion for all time.587

588

Hence, R is a solution of (1.10) in the sense of Definition 1.6. It remains to prove that (Rν)ν is an approximating589

sequence of PCFs of the entropy solution R in the sense of Definition 2.2. By construction, (Rν)ν satisfies the first five590

points of Definition 2.2. It remains only to prove the bound591

(A.22) ∀t ≥ 0, δt > 0, TV[0,1](R(t, .)) ≤ lim sup
ν→∞

sup
s∈[t,t+∆t]

TV[0,1](Rν(s, .)).592

This is a consequence of Helly’s Theorem. Indeed, take t ≥ 0, ∆t > 0 and n ∈ N∗. Instead of applying Helly’s Theo-593

rem on an interval of the form [0, T ] for the sequence (Rν)ν>1, we apply it on the interval [t, t+∆t] for the sequence (Rν)ν>n.594

595

As596

∀s ∈ [t, t+ ∆t], ∀ν > n, TV[0,1](Rν(s, .)) ≤ sup
u∈[t,t+∆t]

υ>n

TV[0,1](Rυ(u, .)),

we deduce by Helly’s Theorem that597

∀s ∈ [t, t+ ∆t], TV[0,1](R(s, .)) ≤ sup
u∈[t,t+∆t]

υ>n

TV[0,1](Rυ(u, .)).
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Passing to the limit as n goes to infinity gives (A.22). To get the estimate (2.3), the proof is similar. The existence598

part of Theorem 2.3 is proven.599

Appendix B. Uniqueness. We will adapt the method of doubling variables of Kruzhkov to our boundary value600

problem. Let u, v be two entropy solutions of (1.10) with their respective initial data u0, v0.601

602

We will first show the uniqueness on the triangle T1:603

T1 := {(t, x) | Lt ≤ x ≤ 1, 0 ≤ t ≤ 1/cmax}

To do so, let 0 < t ≤ 1/cmax and define the domain Ωt by:604

Ωt := {(s, x); 0 ≤ s ≤ t, Ls ≤ x ≤ 1} .

We give a graphical representation of Ωt in Figure 14:605

xx = 1

t

Ωt

Figure 14: The domain Ωt

Formally, as u in entropy on Ωt, we have for all k ∈ Rd606

0 ≥
∫ ∫

Ωt

ηk(u)t + qk(u)xdxdt

=

∫ 1

1−Lt
ηk(u)dx−

∫ 1

0

ηk(u0)dx

+

∫ t

0

cmaxηk(u(τ, cmaxτ))− qk(u(τ, cmaxτ))dτ +

∫ t

0

qk(u(1, s))ds.

The third term is positive because cmax is superior to all the Lipschitz constants of the fis. The last term is positive607

since all the fis are non decreasing. Hence,608

(B.1)

∫ 1

1−Lt
ηk(u)dx ≤

∫ 1

0

ηk(u0)dx.609

It is equivalent to:610

∀k ∈ Rd,
d∑
i=1

∫ 1

1−Lt
|ui(t, x)− ki|dx ≤

d∑
i=1

∫ 1

0

|u0,i(x)− ki|dx.

Kruzhkov’s doubling variable method allows to replace the ki by the vi to give:611

d∑
i=1

∫ 1

1−Lt
|ui(t, x)− vi(t, x)|dx ≤

d∑
i=1

∫ 1

0

|u0,i(x)− v0,i(x)|dx.
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Remark B.1. Rigorous justifications of previous computations can be found in the proof of [4, Theorem 6.2].612

As a consequence, the solution is unique on the triangle T1.613

xx = 1

t

Ωt

t = 1/cmax

Ωx

Figure 15: The domain Ωx

Now let x be in ]0, 1[, we apply the same strategy to the set614

Ωx := {(s, y); 0 ≤ y ≤ x, y/cmax ≤ s ≤ 1/cmax}
represented in Figure 15.615

616

Integrating ηk(u)t + qk(u)x ≤ 0 in Ωx, one obtains:617

∀x ∈ [0, 1], k ∈ Rd
∫ 1/cmax

1/cmax−x/cmax

qk(u(t, x))dt ≤
∫ 1/cmax

0

qk(u(t, 0))dt+

∫ x/cmax

0

cmaxηk(u(t, cmaxt))− qk(u(t, cmaxt))dt.

This is equivalent to: ∀x ∈ [0, 1], k ∈ Rd,618

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

(fi(ui)− fi(ki))sign(ui − ki)dt ≤
d∑
i=1

∫ 1/cmax

0

(fi(ui(t, 0))− fi(ki))sign(ui(t, 0)− ki)dt

+

∫ x/cmax

0

cmaxηk(u(t, cmaxt))− qk(u(t, cmaxt))dt.

As all the fi are non decreasing (qk ≥ 0) and all cmax Lipschitz: ∀x ∈ [0, 1], k ∈ Rd,619

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(ki)|dt ≤ cmax

d∑
i=1

∫ 1/cmax

0

|ui(t, 0)− ki|dt

+ cmax

∫ x/cmax

0

ηk(u(t, cmaxt))dt.

Following Kruzhkov’s method, the kis can be replaced by the vis and for all x in [0, 1]:620

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt ≤ cmax

d∑
i=1

∫ 1/cmax

0

|ui(t, 0)− vi(t, 0)|dt

+ cmax

∫ x/cmax

0

|u(t, cmaxt)− v(t, cmaxt)|dt.

As u, v satisfy the boundary condition on [0, 1/cmax], there exists a constant C(g, cmax) depending on the Lipschitz621

constant of g such that for all x in [0, 1]:622
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d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt ≤ C(g, cmax)
∑d
i=1

∫ 1/cmax

0
|ui(t, 1)− vi(t, 1)|dt

+ cmax

∫ x/cmax

0

|u(t, cmaxt)− v(t, cmaxt)|dt.

If u0 = v0, we have seen that u and v coincide on T1. This implies that if u0 = v0, u and v coincide on the segment623

[0, 1/cmax]× {1} and on the line (x = cmaxt, t) for t ≤ 1/cmax. As a consequence,624

∀x ∈ [0, 1],

d∑
i=1

∫ 1/cmax

1/cmax−x/cmax

|fi(ui)− fi(vi)|dt = 0.

By the monoticity of the fis, u and v coincide on the triangle T2 defined by625

T2 := {(t, x) |0 ≤ x ≤ 1, x/cmax ≤ t ≤ 1/cmax} .
To conclude, u and v coincide for t ≤ 1/cmax and repeating this argument, we can prove the uniqueness for all time.626

This finishes the proof of the uniqueness.627
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