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BV EXPONENTIAL STABILITY FOR NETWORKS OF SCALAR CONSERVATION LAWS USING
LINEAR OR SATURATED CONTROLS

MATHIAS DUS*

Abstract. In this paper, we investigate the BV exponential stability of general networks of scalar conservation laws with positive velocities
and under dissipative boundary conditions. The paper is divided in two parts, the first one focusing on linear controls while the last one deals
with saturated laws. For the linear case, the global exponential BV stability is proven. For the saturated case, we argue that we cannot expect
to have a basin of attraction larger than the region of linearity in a BV context. We rather prove an L°° local stability result. An explicit
estimate of the basin of attraction is given. The Lyapunov functional is inspired from Glimm’s seminal work [13] reconsidered in [7].

Key words. Bounded variations, stabilization, feedback, saturation, wavefront tracking method.

AMS subject classifications. 93D05, 93D15, 93D20

1. Introduction. In this paper, we are interested in the exponential stabilization of 1D hyperbolic systems using
linear or saturated feedback control laws. The system we consider is of the form:

(1.1) R(t,0) = g(R(t,1))
R(0,z) = Ro(x)

where R : R x [0,1] — R? (d € N*) and f,g: R? — R%.

For coherence, we impose that all characteristic velocities are positive and consequently, the boundary condition in
(1.1) is adapted.

In [3, Chapter 1], typical examples of systems modeled by hyperbolic PDEs with feedback boundary conditions are
cited; the telegrapher equations for electrical lines, the shallow water (Saint-Venant) equations for open channels, the
isothermal Euler equations for gas flow in pipelines or even the Aw-Rascle equations for road traffic.

More specifically, we are interested in the stabilization of (1.1) using feedback control laws at the boundary. The
problem is equivalent to find sufficient conditions on g such that for any Ry initial data, the solution to (1.1) converges
exponentially fast toward zero in the sense that

vt >0, |[R(t,)|lx < Ce || Ro|lx

where C,~ > 0 are constants independent on ¢ and || - ||x is a norm on a Banach space X.

Two types of feedback laws are analyzed in this article: the linear law and the saturated one.

1.1. Linear feedback. For the case where g = H € M4(R) is a linear operator, the literature is quite rich.

When the flux is linear; f(R) = A = diag(A1, -+ ,Ag) with Ay,--- ,Ag > 0, the problem of stabilization can be
treated for the following classical functional spaces X:
a. Sobolev spaces W™P([0,1]) for m € N and p € [1, +00].
b. Spaces C™([0,1]) with (m € N).
c. BV([0,1]).
Indeed, in [14, Theorem 3.5 p. 275], the authors prove that 0 is globally exponentially stable in spaces X defined
above if and only if there exists § > 0 such that

(1.2) {z € C | det(Iy — diag(e >/, ,e=*/ ) H) = o} C {2 €C | Re(z) < —4}.

However, the criteria (1.2) is not stable with respect to A. Indeed, when we take a H, A verifying (1.2), we cannot
guaranty that the same holds for A with A diagonal and arbitrarily close to A [14, p. 285].

In the same book, Silkowski [14, Theorem 6.1 p. 286] proves that for all Banach spaces X listed above, 0 is globally
exponentially stable and that this stability is robust with respect to A if and only if
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2 M. DUS

(1.3) po(H) = max {p(diag(e’”", - e )H) | §; e R)} < 1

where p designates the usual spectral radius.
Condition (1.3) is stronger than (1.2). For some years, many results came out generalizing to nonlinear fluxes.

When the flux is not linear, only sufficient conditions of stability are given and most of the time this stability is
only proven to be local:
a. For X = C"™([0,1]) with m € N*, a sufficient condition [10, 19, 21] is:

U -1
(1.4) Poo(H) := 1an€D;(R)|AHA loo <1
where | - |o is the canonical infinity norm of matrices and D} (R) is the set of diagonal positive matrices.

It should be mentioned that in [10, 19, 21], the stability was proven for m = 1 but the argument can be adapted
for any integer m > 0.
b. For Sobolev space W™P?([0,1]) a sufficient condition for stability writes:

pp(H) = ianeDI(R)|AHA71‘p <1

where | - |, is the canonical p norm of matrices.

The case p = 2 was treated in [6] and the general case p > 1 was treated in [8]. Also, it should be mentioned that
in [6, 8], the stability was proven for m = 2 but the argument can be adapted for any integer m > 0.

c. For BV([0,1]), few results are known. To the authors’ knowledge only [7] deals with this case. They take a 2 x 2
system of conservation laws and give a sufficient condition on H to ensure the local BV stability.

In this article, we also place ourselves in a BV context and find a sufficient condition on H to ensure a global BV
stability. Contrary to [7], we will not consider vectorial fluxes. In this case, solutions are only proven to exist for small
initial data. This is why, we will rather consider scalar decentralized fluxes (see section 1.3) for which solutions exist for
whatever initial data in BV. This hypothesis on the flux is all the more important that when we will study saturated
feedback laws, we will also estimate the basin of attraction. This would not be possible with solutions defined only for
small initial data.

1.2. Saturated control law. We take a matrix H € M(R) potentially unstable in the sense that p.(H) > 1 (see
(1.4)). Then we assume that there exist matrices B, K € My(R) such that p.(H + BK) < 1. Finally, we consider the
following system:

Ri+[f(R). = 0
(1.5) R(t,0) = HR(t,1)+ Bo(KR(t,1))
R(0,z) = Ro(x)

with o defined as a saturation by component ie there exists a o5 > 0 such that:

az(x)::c if |5L'| <o,
oi(x) =sign(z)os otherwise.

Vi€ [1,d], x € R, {

From criterion (1.4), the system without saturation is locally stable in C™([0,1]) with m € N*. It is natural to ask
ourselves if this property of stability is conserved through the saturation. Apart from this theoretical interest, this problem
has gained attention in the last few years because of the increasing need of precision for modeling real actuators. Physical
controllers cannot provide infinite energy and sometimes, they saturate rendering classical unsaturated models restrictive.
To avoid such situations, engineers choose controllers powerful enough to avoid saturation when the system operates in
standard conditions. However, over-dimensioning actuators is not optimal in term of mass and cost of operation for many
sophisticated systems as satellites for example. Moreover, in some exceptional configurations, actuators could saturate
and lead to very dangerous situations; unpredictable via linear theory.

Very few papers consider the effect of saturation on hyperbolic systems. To our knowledge, only [18] deals with
this question in an H' context and for the wave equation. Fortunately, the theory is much more developed for finite
dimensional systems where polytopic and deadzone techniques were designed [22].
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In this paper, we will argue that in a BV context, it is not possible to get a basin of attraction bigger than the region
of linearity. We rather prove an L local stability result with an estimation of the basin of attraction. Then, we deduce
the exponential decay of the BV norm for solutions whose initial data belongs to the L*° basin of attraction.

1.3. Scalar conservation laws. The feedback laws being presented, we can now focus on the partial differential
equation in itself. In fact, we consider a particular form of systems of conservation laws (1.1). More precisely, we take a
flux f verifying Hypothesis 1.1.

Hypothesis 1.1. The flux f is in C*(R?) and there exist scalar fluxes f; € C*(R) such that:
VR eRY, Vie [Ld], [f(R)]; = fi(R:).
Moreover, f; is such that there exist «;, 3; > 0;

Vi€ [1,d], a; < f] < Bi.
Such hypothesis allows to define the maximal and the minimal velocity:

(1.6) {Cmax = maxeqi,qp Bi

Cmin = mlnie[[l,dﬂ (67

The aim of this section is to give a very short introduction to scalar conservation laws without giving any proof (see
[4] for more details).

1.3.1. The set of functions with bounded variations. It is well-known that the space BV is well-adapted for
conservation laws (see [4] for instance). This is why, we give the definition and main properties of such a space here:

DEFINITION 1.2, Let R: [0,1] = R? be a vector valued function. We say that R has bounded variations if
n—1
VneN, Va <..<z, €]0,1], Z |R(zit1) — R(x;)] < o0.
i=1

We denote TVip1(R) = sup {2?2—11 |R(xiy1) — R(xz)|} the total variation of R. BV ([0,1]) is the space of
n, (T1,..., Tn)

vector valued functions with bounded variations and it is a Banach space when BV ([0,1]) is embedded with the norm
[1lBv(j0,1)) defined as

(1.7) VR € BV([0,1]), ||Rl|Bv (0,1 = TVjoa)(R) + |IRI| £ (j0,1))-

The reason why we consider this space is because any function with bounded variations has a left and a right limit at
each point z of [0, 1]. Hence, it is easy to define the trace operator and impose a boundary condition. Moreover, BV ([0, 1])
has a very interesting property of compactness which will be very useful when we will pass to the limit in the Lyapunov
analysis of approximating solutions. These properties are summed up in a lemma and a theorem:

LEMMA 1.3. Let R: [0,1] = R? with bounded variations. Then for all x € (0,1), the left and right limit
R(z7)= lim R(y), R(z")= lim R(y)
y—r— y—at

exist.

Moreover, R(0T) and R(17) are also well defined and R has at most countably many point of discontinuities.
Proof. This is an adaptation of [4, Lemma 2.1]. d

Defining the value of R at each jump by R(x) = R(z"), we can say that R is right continuous in the L! equivalence
class. The following theorem is from Helly and states the compactness of BV ([0,1]) in L}, .(RT, L'(]0,1])).

loc

THEOREM 1.4. [/, Theorem 2.4] Let (R,), be a sequence of functions from Rt x [0,1] into R? such that there exist
constants C, M and L satisfying

(1.8) V> 1, Va € [0,1), V>0, TViy(Ru(t,.) < C, |Ry(t,2)] < M,



126
127
128
129

130
131
132

133
134

135
136
137
138
139

140

141

142

143
144
145

146

147

148

4 M. DUS
and
(1.9) VO <t,s<T, ||R,(t.)— R,(s, .)HLI([OJ]) < L|t—s|.

Then there exists a subsequence (R,), converging strongly toward a certain R in L}, (RT,L'([0,1])) and this limit

satisfies (1.8)-(1.9) with R, replaced by R.

loc

1.3.2. Entropy. The concept of entropy is primordial in order to guaranty uniqueness of solutions to conservation

laws. This is why we recall some basic definitions in this section.

If one considers the conservation law R; + [f(R)], = 0 in the usual weak sense:

T 1
v € CL((0,T) x (0,1);R9), / / (6B + 62 f(R)) =0,

it is commonly known that this PDE (associated with fixed boundary and initial conditions) can have several weak
solutions (see Example 4.3 from [4]). In order to restrain the set of solutions, an entropy functional was introduced ([4],

[9], [16]) and is defined as follows:

DEFINITION 1.5. A continuously differentiable convex function n : R? — R is called an entropy for the conservation

law Ry + [f(R)]. = 0 with entropy fluz q : R? — R, if
VR € R?, Dn(R)- Df(R) = Dq(R).

For scalar conservation laws of the form w¢ + [f1(u)], = 0, the usual choice of entropy is n(u) := |u — k| with flux
q(u) := (f1(u) — f1(k))sign(u — k) where k is an arbitrary real. Knowing this, we introduce the notion of entropy solution
to (1.1).

DEFINITION 1.6. Under Hypothesis 1.1, we say that R € LS. (R*, BV ([0,1])) is an entropy solution on [0,T] to the
system
(1.10) R(.,0)  =g(R(.,1))

R(0,.) =Ry € BV([0,1]),
if:
[
d T 1
(1.11) Vk € ]Rd7 Z/ / {|Rz — k7,|¢t + (fl(Rz) — fl(k:l))szgn(Rl — kl)¢m}d$dt >0
i=1/0 J0
for all $ >0 and ¢ € CL((0,T) x (0,1); R).
e R(0,.) = Ry in the almost everywhere sense.
o R(.,07)=g(R(.,17)) in the almost everywhere sense.
Remark 1.7. Here the entropy functional and its flux are defined for all k in R? by
d d
(1.12) VR eRY, n(R) = |Ri —kil, ak(R) =Y (fi(Ri) — fi(k:))sign(R; — ky).
i=1 i=1
Moreover, equation (1.11) can be rewritten as
Ne(R)e + qr(R)z <0
in a weak sense. Hence entropy solutions are the solutions of (1.1) which make the entropy 7 decrease.

Remark 1.8. Equation (1.11) is stronger than the usual definition of weak solutions. Indeed, if one takes k such that

k; < essinf(R;) and k; > esssup(R;) for j # ¢, then

T 1 T 1

Also, taking k; < essinf(R;) for j # ¢, one gets:

J#i
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// Rig + fi(R ¢xdzdt+2//{R]¢t+fj )b pdadt > 0.

J#i

Summing the last two inequalities, one gets:

T 1
/ / Ribe + fi(R)dudadt > 0
0 0

Similarly, one can obtain:

T 1
0 0

Hence, for all ¢ € C1((0,T) x (0,1)) with ¢ > 0:

T 1
0 0

Replacing ¢ with —¢, it is also true for ¢ € C}((0,T) x (0,1)) with ¢ < 0. Now take a ¢ € CL(
¢ = ¢t + ¢~ where ¢, ¢~ are respectively the positive and negative parts of ¢. As ¢, ¢~ € CL((0, ) X

(? T) x (0,1)),

1)), we get:

T 1
/ / R;¢: + fl(Rl)d)de?dt =0.
0 0

As a consequence, each entropy solution is also a weak one.

1.4. The contribution. Now that all the notions have been introduced, we can be more specific concerning the
main contributions of this paper:

e State and prove a well-posedness result of (1.1) in a BV context.
To help us in the task, we will use front tracking techniques from DiPerna [15] and Bressan [4] to get an entropy
solution in the domain considered. To deal with the boundary condition, the article [7] will be the reference work.

e State and prove a global exponential stability result for linear feedback laws.
This is the first key result. To our knowledge, no global stabilization result holds for feedback laws of the
form R(t,0) = HR(t,1) in a BV entropy context. The article [17] proposes also a feedback law of the form
R(t,0) = g(||R(t,.)||r1). However, in physical systems the L' norm of the solution is not always accessible by
observations. Additionally, the article [7] which considers a 2 x 2 system of conservation laws gives only a local
stabilization result for an entropy solution.

e State and prove a local exponential stability result for saturated feedback laws. We will see that this is not possible
in a BV context.
To our knowledge, only [12] has studied this kind of saturated feedback laws in an L> context and for the case
of constant characteristic velocities.

1.5. Outline. In Section 2, we will present and prove an approximation and a well-posedness result for the entropy
BV solution to (1.1). The technique of front tracking will be mainly used. Then in Section 3, a sufficient condition for
global BV stability will be given in the case of a linear feedback. Additionally, we give a sufficient condition for the local
L stability in the case of a saturated feedback with an estimation of the basin of attraction. Finally, Section 4 is devoted
to concluding remarks and perspectives.

Notation: For all R € R, |R| designates the canonical euclidean norm of R. For matrices M € My(R), |M| =
sup |MR)| . For all matrices M € My(R), |M|s := max;—1. 4 ijl |M; j|. DI (R) is the set of diagonal strictly positive
|R|=1, RER4
matrices. The value poo(M) for matrices M € My(R) is defined by poo(M) := ianeDj(R) |AMA=Y|. LP spaces
n [0,1] (1 < p < oo, p € N) are embedded with their canonical norms ||.|[z». For all matrices P € D} (R) and
R € L*>([0,1)),||Rl|co,p := ||PR||ro=. The function E : R — N is the integer part function and the function sign is the
usual sign function with sign(0) = 0.

2. Well-posedness and approximation results. This section is devoted to the well-posedness of (1.10). Addi-
tionally, we prove the existence of an approximation by piecewise constant functions of the solution to (1.10).
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2.1. Piecewise constant entropy solutions. Piecewise constant functions play an important role in the theory of
BV solutions to conservation laws. Let us recall the definition of what a piecewise constant function is in our context.

DEFINITION 2.1. An element R of Li2 (R, BV ([0,1])) is piecewise constant if for all T > 0, R viewed as a function

defined on [0,T] x [0,1] is constant on a finite number of polyhedra. The edges of such polyhedra are called the fronts of
R. Additionally, the absolute value of the jump across the front is called the intensity of the front.

In this paper, we use the concept of approximating sequence of piecewise constant functions (PCF).

DEFINITION 2.2. (R,), is an approzimating sequence of PCFs of an entropy solution R to (1.10) if:

e For v > 1 fized, R, is piecewise constant in the sense of Definition 2.1 and takes its values in 2~ ("tVVZ on
strips {(z,t) | 0 <2 <1, max{(z+n—1)/Cmax, 0} <t < (x4 n)/cmax} for n € N. The velocities of fronts are
all bounded from below by cmin and from above by cmax (see (1.6) for the definition of cmin and cmax)-

e Forv > 1 fized, no more than one front at a time can interact with the right boundary.

o Forv > 1 fized, if at a time t > 0 several fronts interact, the sum of intensities of outgoing fronts is inferior to
the sum of intensities of ingoing fronts.

e The sequence (R,(0,.)), converges toward Ry in BV (]0,1]).

o The approzximated boundary condition is verified:

1
(2.1) Vn N, V¢ s.t C” <t< Z+ L Ry(t,0%) = glurayn (R (t,17))
where:
(2.2) VReRY, Vv >1, g,(R)=2""(E(2"9(R))).

oVt >0, At >0,
TVip)(R(t,.)) <limsup sup  TVjo11(R.(s,.))
v—+00 se(t,t+At]

and

(2.3) [[R(t, )||L=(01]) <limsup  sup |[|R,(s,.)||Lo([0,1])-
v—+400 se(t,t+At]
2.2. The result of well-posedness and approximation. Now we give the first result of this paper:
THEOREM 2.3. Under Hypothesis 1.1 and for all Ry € BV ([0,1]), g € Lip(R% R?) there exists a unique entropy
solution R € L{ (R*T,BV([0,1])) to (1.10). Moreover, there exists an approximating sequence of PCF (R,), of the

loc
entropy solution R.

Proof. This theorem is proven in Appendix A for the existence and Appendix B for the uniqueness. ]

3. Lyapunov analysis. Before going into the stability analysis, we introduce the functional TV on the space BV.
For all matrices H in M4(R), it is defined as follows:

(3.1) VR € BV([0,1]), TVu(R) = TVjp1j(R) + |HR(17) — R(0T)],
where R(17) and R(0") has to be understood as the left and right limits of the function R at 2 = 1 and z = 0.
Moreover, we introduce Hypothesis 3.1:
Hypothesis 3.1. The feedback matrix H verifies:
poc(H) < 1.

The following lemma ensures the equivalence between T'Vy and || - || gy (jo,1))-

LEMMA 3.2. Assume Hypothesis 3.1. The functional TVy defined in (3.1) is a norm on BV ([0,1]) equivalent to the
norm || - || gy (jo,1)) defined in (1.7). Moreover, there erists a constant C > 0 such that

(3:2) VR € BV((0,1), ||Rllz~(ou < C TVar(R).
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Proof. We first prove the following claim:

(3.3) VR eR?, |R| < C|R - HR).

Let P € D} (R) such that

|PHP™!|, < 1.

Md(R) — RT
M = [PMP Yy
invertible, which gives (3.3) with C := |(I — H)™!|.

The map || - ||oo: defines an algebra norm on My(R) and ||H||s < 1. Hence, I; — H is

TVg(R) = TVjq(R)+|HR(1™)— R(0T)|
< TViu(R) + [HR(1™) = HR(0T)[ + [HR(0T) — R(0F)|
< TVioy(R) +[H||R(17) = R(0F)| + [H — L4||R(07))
< (14 [H)TVio,uy(R) + [H — 1a]|R(0)].

Take x € [0,1], by the triangle inequality,

TVu(R) < (1+[H)TVpy(R)+|H — 1| R(0F) — R(x)| + [H — Ia[| R(z)]
< (L [H[+[H = 1a])TVio,1y(R) + |H — La||R(z)|. .

Integrating with respect to  on [0, 1], one obtains:

TVy(R)

IN

(L4 [H|+[H = 1a)TV(R) + [H — La|||R[L1((0,1))
ClIRl|Bv((0.1))-
where C =1+ |H|+ |H — 1.

To get the converse inequality, we remark that by (3.3),

[R(17)| < CIHR(1™) — R(17)|.

As a consequence,

IRllBv(o1) = TVou(R)+ IRl o)

TVioy(R) + [R(17)| + [[R — R(17)|[1 o,1))
2TVjp)(R) + CIHR(17) — R(17)|

2TVio1(R) + C|HR(17) — R(0M)| + C|R(0T) — R(17)|
(2+C)TVip1)(R) + CIHR(1~) — R(07)]

IN N IA

IN

and both norms are equivalent. Concerning the L estimate (3.2), take a couple (z,y) € [0,1]? and using again the
triangle inequality

[R(z)] < [R(x) = R(y)| + |R(y)| < TVjo,u(R) + |R(y)]-

Integrating with respect to y on [0, 1], one gets

|R(z)| < TVjo,1)(R) + ||R|L1(0,1)) = [BllBV([0.1))-

And as this is true for all z in [0, 1],

[IR|| o101y < 1Rl BV (j0,1))-

The equivalence between the norms || - || gy ([0,1]) and TVx proven earlier allows to get (3.2). d
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3.1. Lyapunov analysis for the unsaturated system. In this section, we consider the following system

Ri+[f(R)]. = 0
(3.4) R(.,0) = HR(,1)

where the feedback operator g presented in the introduction is replaced by a matrix H € My(R).

The main theorem of this section is presented here:

THEOREM 3.3. Under Hypothesis 3.1 and if 0 < v < —log(peo(H)), then the unique entropy solution of (3.4) satisfies

Yt > 0’ HRHBV([O,I]) < C’e*vﬂmant

Rol|Bv (0,1))
where C > 0 is a constant which does not depend on Ry and t.

A candidate Lyapunov functional first introduced by Glimm [13] and then by Coron et al [7] applies well to piecewise
constant functions and is defined by:

DEFINITION 3.4. Let R be a piecewise constant function on [0,1] and taking its values in RY. Take i € [1,d]:
o We denote x;1 < ;2 < -+ < Tjn, the discontinuities of R; (n; being the number of discontinuities).
e Forall j € [1,n], rﬁvj, r; ; designate the respective left and right state of R; around ; ;.

The Lyapunov functional L evaluated at R writes

d Uz d

(3.5) LR)=> Py |rf;—rile ™+ PI[HR](17) — Ri(0")]

i=1  j=1 i=1

where v > 0 and P = diag {P;,i € [1,d]} € D} (R) will be selected later.
Remark 3.5. Obviously, there exists a constant C(H, P,~y) > 1 such that for all R piecewise constant, we have:

ER) < 1v,(r) < 0. PA)L(R).

(3.6) P =

Theorem 3.3 will be proven using a piecewise approximation of the solution for which the exponential decay of the
Lyapunov functional £ will be proven. As a last step, we will pass to the limit.

Proof. We consider (R,), an approximating sequence of PCFs of the entropy solution R in the sense of Definition
2.2. Such a sequence exists by Theorem 2.3. The following lemma asserts the exponential stability of the approximation:

LEMMA 3.6. If0 < v < —log(poo(H)). Then, for all P € D} (RY) such that |PHP™Y|s < €7, there exists U(P, H, )
such that

1
(3.7) Vv >, Yt >0, L(R,) < e YmntL(Ry ) + T > P
i=1

Proof. Fix v > 1, P € D} (R%) such that |[PHP™!| < e and time 0 < ¢ < 1/¢pax.
Three cases are to be considered:

e (Case 1) If at time ¢ there is no interaction between two fronts nor between a front and the boundary, then £L(R,)
is differentiable and

d n;
dL(R,(1,.)) 3 ~ dai [P
a _71:1 Pi] o iy i gleT

—
d ng

r l —YTi 5

< —YCmin E P; E |ri ;=i le 7 0.
=1 j=1

Here, we used the fact that for all integers i € [1,d], characteristic velocities dgf;t‘j

Cmin > 0. Finally, by the definition of L(R,(t,.)))

are bounded from below by



274
275
276

277
278
279
280
281

[\
oo
no

283
284

285

286
287
288
289

290

291

d
% —YeminL(Ry(t,.))) + YCmin Z P|[HR,)i(t,17) — R,,;(t,0™)]

(3.8) y i=1
< _ ) ) min P
< —remnL(Ro(t, ) + Lo ; Z

IN

where we used (2.1) with g replaced by H to get last equation.
(Case 2) When a front interaction happens, the total variation is non increasing by construction and as a conse-
quence

[’(Ru(t+7 )) - ‘C(Rl/(t77 )) < 0.

Here we used the third point of Definition 2.2.

(Case 3) When an interaction of a front with the boundary happens, computations are a bit more difficult. Suppose
that such a front is of type i € [1,d] and has (R, ;, R; ) as respective left and right state (see Figure 1). We note its
intensity by I; := |R;; — R; |- Note that as R, takes its values in 27Z on the triangle {(x,t) | 0 < t < /cmax},
we have:

(3.9) IL>27".

Moreover, recall that simultaneous interactions of fronts with the boundary are forbidden by construction. Using
the approximate boundary condition (2.1) with g replaced by the linear operator H, we get

d d
(3.10) L(R,(t7,.)) = L(Ry(t7,.)) < PjlH;i(Riy — Rig)| — e "LP + 27242 " Py
j=1

Jj=1

The second term on the right-hand side of (3.10) corresponds to the leaving front (which is of type ). The first
term results from the entering fronts at the left boundary. Note that an entering front of type j € [1,d] may
rather be a fan of fronts (see Figure 1). This is not problematic because the sum of the intensities of the fronts
composing the fan is equal to the difference of extremal states of the fan by construction (see Appendix A.2 for
details). The last term in (3.10) corresponds to the approximation of the boundary condition (2.1).

A

Ri,r
z=0 x=1 =
Figure 1: Case 3
Then, using the definition of |- |, and (3.9), one gets:
d p d
LR,(0) = £(R,(7,)) < (D FlHual =) P+ 2723 B,
j=1"" j=1
<

d
(|PHTP*1|OO +27723 " Py/P - e*V)PJi.
j=1
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Remark 3.7. Here we see why the approximated boundary condition (2.1) is essential. Thanks to it, the error

term 272V +2 Z?Zl P; coming from the approximation of g by g, can be bounded by the intensity I; > 27" of the

front hitting the right boundary.

As |PHTP~1|, — e~ < 0 by assumption, we can take v sufficiently large say v > (P, H,) such that

LR, (t,.) = L(Ry(t",.)) <0

(Case 2) and (Case 3) can occur only a finite number of times on finite time intervals because R, is piecewise constant
in the sense of Definition 2.1. Consequently, one can integrate (3.8) with respect to time to get:

d

1
VO <t < 1/Cmax, L(Ry(t,.)) < e 7™ L(Ro,) + = Y P

21/

i=1

The proof for time n/cpmax <t < (n+41)/cmax where n is an integer can be dealt in a similar way. This ends the proof

of Lemma 3.6.

|

Now, we conclude on the proof of Theorem 3.3 taking ¢ > 0 fixed. By (3.7) and (3.6), there exists a constant C' > 0

such that
d
—7YCminl 1
V>0, TVi(Ry(t,.)) < C(e Y TV (Rou) + 5 ZPZ).
i=1
Using the equivalence between the norm T'Vy and the norm || - ||gy(jo,1)),
d
—7YCmint 1
(3.11) Vv >0, |[Ru(t,)llBv (o) < C<€ [Rov|lBV(j0,1) + o ZPZ)
i=1

where we may have changed the constant C' > 0.

As (R,), is an approximating sequence of PCFs of R, one has:

lim R,(0,.)

| Zde el

V7 >0, dr >0, TV (R(r,.)

Moreover, by Remark A .4,

Ry € BV ([0,1)])
limsup sup TVjoq(Ru(s,.)).

v—00 s€[T,T+dT]

IN

VT Z 0, Vli_{ng”R,,(T, ) — }%(T7 ')||L1([0,1]) =0.

We have for all dt > 0,

sup TViou(Ru(s,.) + || Ru(t, ~)||L1([0,1])>
sE[t,t+dt]

sup (TVio, (Ruls,) + 1o (5. )l o1y )

v—00 s€[t,t+dt]

sup ||Ru (s, )lBv(0.1))

v—00 s€[t,t+dt]

IR B0y < limsup(
vV—00
< limsup
= limsup
< Climsup
V—r00

= 0677Crx)ixxt

where we have used (3.11) to get the fourth equation.

This finishes the proof of Theorem 3.3.

(e—’YCmint

RO,I/

d
vy + 3 Xy Pi)

RollBv(j0.1))

3.2. Stability analysis for the saturated system. In this section, we consider the following system

Ry + [f(R)]2

(3.12) R(.,0)
R(0,.)

We introduce the deadzone function defined by

= 0
= [H -+Bo(K-

IR(,1)
Ry € BV([0,1

-
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315 (3.13) VReRY, ¢(R)=0(R) - R

316 and Hypothesis 3.8:
317 Hypothesis 3.8. The matrices H, B, K are chosen such that:

poo(H + BK) < 1.

319 Here the main result is different since we prove local exponential stability (Proposition 3.10). We cannot directly
320 study the problem of BV stability because of the lack of contractivity of the saturation o.

R(0) A

—0y

\

=
=
=
=

Figure 2: The feedback operator (black line) compared with the graph of the function R(0) = R(1) (red line)

21 Motivating example 3.9. In Figure 2, we represent the boundary operator H - +Bo(K-) for d =1, H = 2, B =1,
22 K = —1.5 and o4 = 2. Except for the zone of linearity, the boundary operator is only 2-Lipschitz. As a consequence,
23 it is possible to construct a front whose left/right states are arbitrary close to the zone of linearity and whose intensity
24 increases after a passage through the feedback operator. This is why it is not possible to get a basin of attraction in BV
25 norm larger than the zone of linearity. We will rather prove the L> local stability with a basin of attraction in L*°.

326 This section is devoted to the proof of the following proposition and theorem (the definition of || ||eo, p is given in the
327 section notation):
328 PROPOSITION 3.10. Under Hypothesis 3.8, if 0 < v < —log(peo(H + BK)). Then, for all P € D} (R?) such that

320 |P(H + BK)P71| < €77, there exists a constant C depending on (H, B, K, P,v) such that if

|PBP_1‘ooPminUs

330 (3.14 Rollo,p < .
(3.14) [1Folloe.r |\P(H+BK)P*1|OO+\PBP*1|OO|PKP*1|OO—e*’Y|

331 Then, the unique entropy solution R € LS (RY, BV([0,1])) of (3.12) satisfies,

332 (3.15) vt >0, || R(t, ~)||L°€([0,1]) < Cle™YCmint |R0‘|Loo([071])

333 where C' depends on the parameters of the problem but not Ry.

334 For cases where poo(H) > 1, the denominator in (3.14) is not zero:

335 Remark 3.11. If poo(H) > €7, then we claim that for all P € D} (R):

|P(H + BK)P™ | + |PBP | |PKP ! —e77 > 0.
336  Proof of the claim of Remark 3.11
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338 Let P be in D} (R). As poo(H) > €77,

|[PHP™| >e.
339 This gives by the triangle inequality:

|P(H + BK)P™ | +|PBKP ™| >e7.
Finally, by the fact that

VA, B € My(R), |PABP™ !, < |PAP™}||PBP |,

we have:
|P(H + BK)P™|o + |PBP7 | |PBP7 | > e
340 and the claim is proven.
341 The following theorem is a consequence of Proposition 3.10.

342 THEOREM 3.12. Under the conditions of Proposition 3.10),

Ve >0, [|R( )l Bvo1) < Ce | Rollgv(jo,1)

2/
O

~

3 where C depends on the parameters of the problem but not Ry.
344 Let us assume for the time being Proposition 3.10 and prove Theorem 3.12:

345 Proof of Theorem 3.12. Equation (3.15) implies that at a certain time denoted t* depending on ||Rol|ze([0,1]), the
346  solution enters in the zone of linearity and stays in it. Then, Theorem 3.3 implies:

347 (3.16) Vi > t¥, ||R(t, -)||BV([O,1]) < Ce_’yc’“i"(t_t*)HR(t*, -)||BV([O,1])

348  where C depends on H, B, K, P, v, 0.

350 Then, for ¢ < t*, one can prove using the same techniques from Section 3.1 that:

351 (3.17) YO <t <t ||R(t, )llBv 0. < € I[RollBv o)
where v > 0 is a constant depending on ¢payx,y and a Lipschitz constant of the feedback operator H + Bo(K).

From (3.17) and (3.16), one gets:

vt >0, [[R(t, )] v(oa)) < Ce™ 7| Rol|pv(o,1))

355  where C' depends on the parameters of the problem and on || Ro|| e~ (o,1])-
356
357 As we have the bound (3.14), we can conclude that C' does not depend on || Rol|r([o,1)) and the corollary is proven.O
358 The following lemma will be useful for the proof of Proposition 3.10.
359 LEMMA 3.13. Let R € R? be such that:

PBP_l ooPmin s
360 (3.18) |PR|s < | | 7 .

||[P(H + BK)P~'s + |PBP~ o |PKP~ 1| — ™
361 Then,
|P(HR + Bo(KR))|oo < e 7|PR|s-

362 Proof. Let i be in [1,d]. If sat;(R) := {j € [1,d], | |[KR];| > 05 and B; ; # 0} is empty, then:

(P(H + BK)P~"|| PRl

e 7 PR|wo-

IN

IN
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If the set sat;(R) is not empty, then:

PJ|HR+ Bo(KR)|; = PJ|(H+ BK)R+ B¢(KR))|;
< Y9 PI(H+ BE)i jRy| + Y 5c sar,(ny Pil Bi gl (K R);| = 04)
< 5oy Pl(H + BE)iy 5 PRl + Xecar, iy PBis| 5 (KR | = o)
< |P(H 4+ BK)P | «|PR|s + |PBP7 Yoo (|[PK P} oo| PR|oc — Pain0s)
< e 7|PR|x
where we have used the hypothesis (3.18) to get the last inequality. ]

Now we can focus on the proof of Proposition 3.10.

Proof of Proposition 3.10. We take P € D (R) such that |P(H + BK)P~1| < e™7 and Ry € BV([0,1]) satisfying
(3.14). We cousider (R,), an approximating sequence of PCFs of the entropy solution R in the sense of Definition 2.2.
Such a sequence exists because of Theorem 2.3. Then, we analyze the exponential damping of R, for a fixed v > 1. As
(Ro,v), converges towards Ry in BV ([0, 1]), we have for v sufficiently large:

| < |PBP71‘ooPminUs
P = 1|P(H + BK)P~|o + [PBP~|oo|[PKP~ 1|y, — e

(3.19) [|Ro,v

We first recall the definition of ¢pin, Cmax the respective minimum and maximum velocity, in (1.6). Let ¢t < 1/cmin
and z > Lt be in [0, 1]. Constructing the light cone enclosed by line with slopes 1/¢min and 1/¢max and passing through
(t, ), we get that:

(3.20) |PRy(t, 2)|oo < [|Ro,u|loo,p

The argument of the light cone can be justified by the fact that the L norm does not increase by fronts interaction (see
Appendix A.2.3) and because fronts velocities belongs to [¢min, Cmax]-

When x < Lt, constructing the light cone enclosed by line with slopes 1/¢min and 1/cmax and passing through (¢, x),
one gets:

|PR,(t, )]0 <max{||Rou|locc,p, sup |PR,(t,0)]}.
t€[0,1/cmin)

The boundary condition gives:

|PR,(t,2)|c0 < max{||Ro.u||co,Ps [ su/p | |P[H - +Bo(K-)]R,(t,1)|}.
te 0,1 Cmin

By (3.20) applied to = 1 and (3.19), hypothesis of Lemma 3.13 are verified and we have:

[PRy (L, 2)|oc < max{|[Ro,u[loc, P e [[Roylloo,p} < [[Roulloc,p-

Next we proceed by induction on intervals of the form ¢ € [n/cmin, (7 + 1)/¢min] With n € N. Suppose that:

Vit € [n/cmirn (n + 1)/cmin]7 HRV(t7 ')Hoo7P < e_’ynHROJ/Hoo,P-
Let (n+1)/cmin <t < (n+2)/cmin and z be in [0,1]. Constructing the light cone enclosed by lines with slopes 1/c¢min

and 1/cpax and passing through (¢, x), one gets the existence of a t* € [n/cmin, (N + 2)/¢min] such that:
(3.21) |PR,(t,x)|c0 < |PR,(t*,0)|0o < |P[H - +Bo(K-)|R,(t*,1)].
Using same reasoning as in the case n = 0, one proves that:
Ry (8, )loo,p < ||y (12/ Cimin; )||oo, p-
Hence, by the hypothesis of induction:

[PR, (", Voo <[IRy(t, )loo.p < e7"[|Ropllco.p < |[Roulloo,p-
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386 As a consequence, by (3.19):
PBP71 oopmin s
PR 1) < PBP -l B0
|[P(H + BK)P~ | + |PBP~ o |PKP~ 1| oo — e
387 Thus, we can use Lemma 3.13 in (3.21) to get:
|IPR,(t,2)|c < e 7|PR,(t",1)[
< e IR (E ) oo,
388 Hence,

1Ry (t, ) oo, < € IRy (8, loo,p < €7D Ro oo,

389  where we have used the induction hypothesis.
390
391 To conclude, we have:

Wt 2 0, ||Ry(t,)loo,p < max{L, e mn DY Ry [ o, p.

392 It remains to prove the exponential decay for the solution R. It suffices to use property (2.3) and to take a sequence
393 of initial data piecewise constant such that:

Vv > 1, [|[Rouy|loc,p < [|Rollco,p-

394 Owing this, we can pass to the limit as v goes to infinity to get:

Vt >0, ||R(t,)loo,p < max{1,e” 7 mnt DY Ry | p.
395 This ends the proof of Proposition 3.10. ]

396 3.3. Numerical results. Here, we study a numerical example with saturation and show the relevance of the esti-
397 mation of the region of attraction (3.14).

398 3.3.1. Relevance of the estimation of the basin of attraction. In this section, we analyze an example of
399 mnetwork of scalar conservation laws for d = 2 with saturated feedback control law. Matrices are defined as follows.

0 1.1 0 —0.1050
H(l 0)’312’K<—0.1045 0 >

400 We take a linear flux f(R) = AR + 0.2(arctan(R;), arctan(Rz)) with
1 0
A=y g
101 We recall the estimation of the basin of attraction for v > 0 and P € D;(R):

|PBP~| 0,
H + BK)P~Yo + |PBP~V|o [PKP~ o — e

102 (3.22) [[Ro|oo,p < A

403 We calculate P € D (R) such that |P(H + BK)P~!|, is minimal. We obtain:

0974 0
F ( 0 1.026>'

104 To estimate the largest region of attraction, we take v = 0 in (3.22) which gives the following criteria of stability:

o p < |PBP~!| 0, .
7 7 ||P(H + BK)P~| + |PBP~ || PK P~ 1| — 1

105 (3.23) | Ro
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3.3.2. Numerical simulations. Still keeping the matrices from previous section, we take a certain range of initial
data Ry constant on [0, 1] belonging to the estimated region of attraction and simulate the behavior of the solution. For
example, one can take Ry constant with value in (—40,40)? and look if the solution does not blow up at infinite time in
BV norm. For information, we have used the classical superbee limiter scheme for our simulations. In the same graph,
we plot the estimated region of attraction given by (3.23) and the region where the solution saturates at ¢ = 0.

In Figure 3, contours correspond to the rate of exponential decay of the numerical solution. If it is negative, the
solution decays exponetially in norm. If it is positive, we have exponential divergence. The largest square is the estimated
region of attraction while the smallest one is the zone where saturation does not occur at ¢ = 0. We also pick a initial
data Ry in the estimated region of attraction and observe the dynamic of the solution. For example, one can take
Ry(z) = (15,—15) on [0, 1]. The black dot in Figure 3 corresponds to this initial data. The value of the control is plotted
in Figure 5 while the BV norm of the solution is given in Figure 4. We see that there is indeed saturation from ¢ = 0
until time ¢ ~ 13, then we enter in the zone of linearity.

The initial jump of the BV norm is due to boundary condition which immediately creates a jump at £ = 0 when
t = 0%. Here the BV norm behaves well in the zone of saturation i.e it does not exponentially blow and even decay quite
fast. Then, in the zone of linearity we recover the exponential decay pattern.

40 0.06
30
0.00
20
10 -0.06
0
-0.12
-10
-20 -0.18
—-30 -0.24

-40
-40 -30 -20 -10 0O 10 20 30 40

Figure 3: The basin of attraction

1001 —— 04([KR1,)

—— 0s([KR]2)

0.75 1
0.50 -
10t 0.25 1

0.00 A

BV norm
control

—0.25 1

10° 4 —0.50 1
—0.75 1
—1.00 4
0 10 20 30 40 50 6 70 80 0o 10 20 30 40 50 6 70 80
time time
Figure 4: The BV norm of the solution Figure 5: The control

4. Conclusion. The well-posedness for a wide class of systems of scalar conservation laws with boundary unsaturated
and saturated feedback laws was established. The poo criteria was established in the BV context for linear feedback laws.
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Then, for saturated feedback laws, we proved with an example that estimating a basin of attraction in BV was not
relevant. We rather gave an estimation of the basin of attraction in L*° and deduce the exponential decay of the BV
norm of solutions whose initial data belongs to this basin of attraction. Some questions remain open. The estimation
(3.14) may not be optimal. Moreover, a method of maximizing the basin of attraction where the matrix K is the variable
of optimization is not given in this article. This is not an easy task since criterion (3.14) is not convex with respect to
K. Finally, the other big gap to bridge is the stabilization of general systems of conservation laws the main difficulty
coming from the well-posedness. The initial-boundary value problem for hyperbolic systems of conservation laws is indeed
a very delicate matter, even when no characteristic speed vanishes. We refer to [20], [1], [5], [2], [11], [7] and the references
therein.
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Appendix A. Existence of a solution. All this section is dedicated to the proof of the existence result of Theorem
2.3.

A.1. The approximated problem. Let v > 1, 7 in [1,d] and define f,; the piecewise affine approximation of f;
coinciding with f; at all 2775 nodes (j € Z) by:
§s—27Yj
2711

27 (j+1) — s

fu,i(s) - 9—v

i7"+ 1)+ fi(27vg) for s € [2775,27V (5 + 1)].
The sequence (f,,), is introduced in order to construct a piecewise constant entropy solution. The following lemma

gives its main properties:

LEMMA A.1l. For oll T > 0, there exists a constant C(g,T) such that for allv > 1 and Ry, piecewise constant taking
its values in 27V7Z, there exists R, piecewise constant in the sense of Definition 2.1 verifying the following assertions:
e The approzimated boundary condition (2.1) is verified.

e Two fronts cannot interact simultaneously with the right boundary.
e Vk e R4 ¢ € CL(0,T) x (0,1);R):

ot TV(Ro.,
(A1) | [ o+ aRosadode = o0 ol oy,
0 0
where :
d
nk(Ru(taz)) = Z |Rv,i(tax) - kz|
(A.2) i=1

d
(R (t, 7)) = Zlfi(Ru,i(tw))—fi(ki)l-

e The following bounds hold:

vt < T, TVjoa(Ru(t,.)) < C(g,T)TVjo 1 (Ro,v)-

(A:3) Vi< T, |[Ry(t, )=o) < Clg, D[ Row(t; )L o,1)-

Proof. See Appendix A.2 d

It is relatively easy to construct piecewise constant functions that make the entropy decrease. The main rules of
construction are presented in the following lemma.

LEMMA A.2 (Characterization of entropy piecewise constant functions).
A piecewise constant R in the sense of Definition 2.1 verifies the condition of entropy decay (1.11) if and only if for
all integers i in [1,d] and all fronts v(t) of R,
e The Rankine-Hugoniot condition holds for R the left state and RY the right state:

(A.4) FOLR] (1) — Ri(1)] = fi(R (1)) — fi(Ri(1)).
o If R{(t) < RY(t) then:

(A.5) Va € [0, 1], fi(@R{ (t) + (1 — @) Ri(t)) > afi( R} (1)) + (1 — @) fi( Ri(t))-
e If RL(t) > RI(t) then:

(A.6) Va € [0,1], fi(aR](t) + (1 = )Ri(1)) < afi(R{ (1)) + (1 — @) fi( R{(t)).

Proof. This corresponds to [4, Theorem 4.4]. O

We call conditions (A.5)-(A.6), the entropy decay conditions of fronts; it selects values before and after the front such
that the entropy of the solution decreases with time. If a front verifies such conditions, we say that the front is entropic.
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A.2. Proof of Lemma A.1. Now we prove Lemma A.l constructing step by step a piecewise constant solution. We
begin by solving a Riemann problem to get a solution near ¢ = 0.

A.2.1. The Riemann problem. Let ¢ be an integer of [1,d], v > 1 and RLR; € R be two states. We recall
techniques from [4, pp .108-113] to solve the Riemann problem associated to (Rﬁ, R!) when taking f, as flux. There are
two cases to consider:

e If R < R. Then, we consider f; the largest convex function inferior to f,; on [R}, R!]. Denote also wq := R! <
wy < wp < -+ < wy 1= R} the states where fi*" jumps. We give an example for n = 2 on Figure 6:

A
fu,i
I
I
feo
I
|
|
| |
| |
: | |
| |
Lo g o >
Figure 6: The case Rl < R"
Introducing the speeds
(A7) y = L) = hvilw) oy oy
w; — Wi—1
we define the solution to the Riemann problem as:
wo if x <t
(A.8) R,i(t,x) =< w ifth <z <thgr, L €[l,n—1]

wy, if £ > tA,.

This solution is entropic because it is piecewise constant, all fronts are entropic (A.5) and satisfy the Rankine-
Hugoniot condition (A.4).

e If Rl > RI'. Then, we consider f; the smallest concave function larger than f, ;. Denote also wg := R > w; >
wg > -+ > wy, 1= R} the states where fi*” jumps. We give an example for n = 2 on the Figure 7.
Defining velocities (A;)e[1,q) @s in (A.7), we define the local solution also as:

wo if x < t\
(AQ) Ry’i(t,l‘) = wp ifth <z < t>\l+1, le [[1,77, — 1H
wy, if x> tA,.
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\

Figure 7: The case Rl > R"

480 A.2.2. Local in time solution. Take a fixed v > 1. Let us define what we will call the limit line ¢t — cpaxt with
481 maximal speed. Thanks to the Riemann solver defined in the previous section, we can find an entropy solution until a
482 front interaction happens. The corresponding picture is given in Figure 8.

t A Limit line
—— Fronts
r=1 Tx

Figure 8: The local in time solution
483 A.2.3. Dealing with shock interactions. We recall the method described in [4, pp. 111-112]. Two cases have to
484 be considered:
185 e (Case 1) All the incoming jumps have the same sign. Suppose they are all positive and let us denote wy < wy <
486 ... <wyp (n € N) the consecutive “incoming” states. As all incoming fronts are entropic, we have:
487 (A.10) Va € 10,1], floaw; + (1 — a)wit1) > af(w;) + (1 — &) f(witq1).
188 The fact that we have converging fronts gives that the function h built from lines passing through points
489 (wi, f(w;))ieqo,n] is concave. Moreover, by (A.10):
490 (A.11) Yw € [wo, wy], h(w) < f(w).
191 Hence, by the concavity of h and (A.11):

Va € [0,1], flawy+ (1 —a)wy) > h(awe + (1 — a)wy,) > af(w) + (1 — a) f(wy).
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492 Thus, it is possible to link the extremal (wp and w,) states by a unique entropic front whose jump intensity is
493 strictly equal to the sum of the intensities of incoming jumps. Hence, in this case the total variation is conserved
494 and so is the L* norm.
t
A A
Wo
w2
|
|
\ |
\ | w1
wo w1y wo
R; x

Figure 9: All jumps have the same sign

495 e (Case 2) Not all jumps have the same sign. Let us denote wq,ws,...,w, (n € N) the consecutive “incoming”
496 states. It is possible to link the extremal (wq and w,) states using fronts whose jumps have the same sign. To do
197 so, it suffices to solve a Riemann problem between extremal states wy and w, as in Section A.2.1. Moreover, by
498 the triangle inequality, the total variation decreases at least by 2 x 27%. Concerning the L* norm, it is conserved.
199 This is because the f, ;s are non decreasing.
t
A A
w3
Wy
Wo
w2
I |
| l I
| | l |
! | l | wy
wo ‘ w3 wq w2 w1

S 4

R;

Figure 10: Not all jumps have the same sign

)0 (Case 1) creates a unique front and let the total variation unchanged whereas (Case 2) can create several fronts but
)1 the total variation decreases by at least by 2 x 27¥. Consequently, (Case 2) can happen only a finite number of times and
)2 the number of fronts remains bounded as time evolves. As a consequence, it is possible to construct an entropy piecewise
)3 constant approximate solution under the limit line verifying

IA

TVio,11(Ro,v,i)

VO < t < ]- Cma)(7 1 i Cmaxt ]EV,’L t} .
1 0,1 (l {O,L,i)

Vz € [07 1]a T‘/[O,a:/cmax] (RV,i('v QZ‘))

A

505 The corresponding picture is given in Figure 11:
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A ~ Limit line
— Fronts

Figure 11: The solution under the limit line

Remark A.3. If n > 2 (n € N) fronts interacts exactly at x = 1 for some time ¢ > 0. Then, we modify a bit the
velocity of n — 1 fronts to prevent this situation. Taking one of such fronts, we denote A and A the respective former and
new velocities. We can choose them such that [A — A] < 1.

A.2.4. Finishing the construction. To construct locally the solution above the limit line, we impose the boundary
condition

YO0 <t< 1/CmaX7 Ru<t70+) = g2u(Ru(ta 1_))

where we recall that:

VRe Ry > 1i€ [Ld], g.i(R) =27 (B2 gi(R))).

Then, to construct a local solution, we solve the different Riemann problems as in section A.2.2 this time using
the approximated flux fs,. More precisely if at a time ¢, R;(t7,07) # R;(¢tT,07), we solve the Riemann problem with
R;(t*,07) as left state and R;(t~,07) as right state. Hence we are able to get a solution locally above the limit line taking
its values in 272" Z.

A ~ Limit line
—— Fronts
1/Cma)<
rz=1 i

Figure 12: The local solution above the limit line
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Finally, we extend fronts coming from the zone under the limit line and deal with front interactions as in section A.2.3
this time using the approximated flux f3,. The final picture is given in Figure 13. This is very important to remark that
the picture under the limit line cannot be modified by fronts coming from the left boundary. This is because the limit
line has maximal velocity.

A Limit line
—— Fronts

.

r=1

Figure 13: The final solution

Concerning the total variation, the way we dealt with front interactions prevents the total variation from increasing
when we compare the total strength of ongoing fronts with the one of outgoing fronts. As a consequence,

IA

T‘/[OJ] (RO,V,i) + T‘/[Oxl/cmax] (RV i(" O+))

s

VO < t < 1 Cma X [ 0,Cmaxt ZRANEN
1 i [O7 ](]EO,V,i) 1 [0,1/Cmax]( Vsi('7 ))

Vo € [07 1]7 TVv[r/cmax,l/cmax] (Ru,i(w‘r))

IN

A.2.5. Conclusion. All previous steps can be repeated on intervals [k/cmax, (k+1)/cmax] and a solution defined for
all time is built. Now let 7" > 0. There are several points to verify:
e (Boundary condition) The approximated boundary condition (2.1) is satisfied by construction.
e (Boundary interactions) Two fronts cannot interact simultaneously at the right boundary by construction.
e (Estimate on the total variation). Using (A.12), (A.13) and the fact that R, satisfies the approximated boundary
condition (2.1), one can deduce that there exists a constant C(g,T) (depending on the Lipschitz constant of g
and T') such that

(A14) V0 <t< T, T‘/[O,l] (Ru(tv )) < C(Q,T)T‘/v[O,l] (RO,u(ta ))

o (Estimate on the entropy) Take a positive test function ¢ € CL((0,7) x (0,1)), T > 0 and k € R%. Then, by
integration by parts, one obtains:

/0 / [ (Rt + k(B baddrdt = S ame(RE o) — mi(RL ) — (ax (L) — ax(BL )]0 (E 7a)

where « runs over the discontinuities ¢t — (¢,74,(t)) of R,.
We denote P the set of physical fronts ie the fronts for which the velocity has not been modified. NP designates
the complement of P. As fronts of P are entropic by construction, we have:

T 1
/O / (R)Gis + ae(B)biadedt > 0+ S Falme(RE) — me(RY0) — (ae(R]0) — ae(RL ) 6(t7)
aENP
=Y Palm(RL) — m(B0) — (ae(Re) — k(R ()
a€ENP

where we replaced the notation ¥ by X to emphasize the fact that it corresponds to a modified velocity (see
Remark A.3); the unmodified ”entropic” velocity being denoted A. Hence,
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T 1
/ nk ¢t + qk( u)¢rdxdt
0

0
> D Paln = me(Ry,0)) = (a(R) o) = ar (R, 0))]16(t )
aeENP
= > A —e(Ry0)) = (@ (R o) = ak(R),0)) + (Ao = Aa) (MR 0) — (R, )]t 7a)

OceNTV R
(¢,
>0 - TR ,,( D 16| oo R+ x[0,1])

> 70(97T)W‘¢||L°°(R+x[0,1])

where we have used chronologically:
— The fact that an unmodified velocity corresponds to an entropy front
— The equation |\ — A| < 1 from Remark A.3

The fact that 7y is 1-Lipschitz

— The estimate (A.14) proven before.

e (L estimate). Remark that when we solved Riemann problem, the L* norm did not increase. This is mainly

because we are dealing with non decreasing fluxes. The only way for the L*° norm to increase is through the
boundary condition. As a consequence, the estimate (A.3) holds.

This finishes the proof of Lemma A.1.

A.3. End of the proof of the existence result. To conclude on the existence, we will use Lemma A.1 and Helly’s
Theorem 1.4. There are several points to prove:
o (Entropy decay) Take T > 0, Ry € BV ([0,1]) and a sequence (Ry, ), of piecewise constant functions converging

1
to Ry in BV (such a sequence exists by [4, Lemma 2.2]). For all v > 1, we denote (R, ), the sequence of piecewise
constant functions of Lemma A.1.

By Lemma A.1, there exists a C(g,T) > 0 such that
VO<t<T, TV (R(,.)) < C(g, T)TV]o,1)(Ro,v)-

As 11{11 RO,]} =Ry € BV([O, ID,

(A15) V0 <t< T, T‘/[O,l] (Ru(t7 )) < C(g7T7 RO)

Next by (A.3) and the fact that the L norm of the elements of (R, ), are bounded, we have

(A.16) YO <t<T, ||R.(t, .)HLOO([O’I]) < C(g,T, Ro).

Finally for all 0 < s,¢ < T and by the finiteness of the speed of propagation:

[[R,(t,.) = Ru(s, )21 (0,1))

IN

Cmax (t — 8) Maxyes.4 TVio,1)(Ru (u, .))

(A17)
>~ Cmax(t - S)C(g, T7 RO)

N

where we have used (A.15).

By Helly’s Theorem (Theorem 1.4), there exists a subsequence of (R,), still denoted (R,), converging in
Li (Rt L([0,1])) to an element R € L (R, BV([0,1])). Moreover,

loc loc

(A.18) V0 <s,t < T, [|R(t,.) = R(s,.)||£1(j0,1]) < Cmax(t —5)C(g,T, Ro).

As (f,), converges uniformly towards f on bounded intervals, we can pass to the limit in (A.1) to get (1.11).
(Initial condition). Let € > 0 and s > 0

IR0, ) = R (0, )l[Lrqoapy < [IR(0,.) = B(s, )l oy + [[B(s, ) = Bu(s, |10

+|Ry(s,.) = R (0, )L o,1))
2C(g, Ro)s + ||R(S, ) — R (s, ')||L1([0,1])-

IN

where we have used (A.18).



569

584

585
586
587
588
589
590
591

ot
E

593
594
595

596

24 M. DUS

Integrating with respect to s on an interval [0,¢] for 0 < ¢ < 1/¢max, One gets

t

1
1R(0,.) = R (0, )L oy < C(g,Ro)tJr;/o 1B(s, ) = Bu(s; )l oy ds

1 1/Cmax
< C(g,Ro)t + ;/ 1R(s,.) = Ru (s, )l o,y ds
0

Taking ¢ = =75y and v sufficiently large such that fol/c‘“"“‘ [[R(s,.) = Ru(s,)||z1(j0,1)ds < WQRO), one finally
obtains:

IR(0,.) = Ru(0, )| £1(jo,1)) < &

By the fact that (Ro,), converges towards Ry in L'([0,1]), we deduce that R(0,.) = Rp in a L' sense and
R(0,.) = Ry almost everywhere.

Remark A.4. We can repeat the same procedure for any ¢ > 0 and

vt >0, lim ||R,(t,.) = R(t, )l (0.1 = 0.

e (Boundary condition). For the boundary condition, it suffices to consider the variable x as a time variable.
Using (A.12), (A.13) and the approximated boundary condition (2.1), one can easily prove that

Vo € [07 1]7 T‘/[O,l/cmax](RV(ﬂz)) < C(g)T‘/[O,I] (RO,I/('))'
As (Ro,,), is bounded in BV,

(A.19) Ve € [0,1], TVio,1/cpu (B(:, 2)) < C(g, Ro)-
Additionally, with (A.16) we get the L* estimate

(A2O) Vv > 17 Vz € [07 1}7 ||RV('7x)HLOO([OJ/Cmax]) < C(Q,Ro)

Finally, using (A.19) and recalling the definition ¢y, := min; a; of front velocities, we have for 0 < z,y < 1:

r—y
(A.21) Yo > 1, (|R(2) = Rl t)l| oo jenn) < %0(9,30).
By Helly’s Theorem (Theorem 1.4), (R,), tends towards R in L{°.([0,1], L*([0,1/cmax])). Using a similar argu-
ment as in the previous item of the proof, one shows that R(.,07) = g(R(.,17)) in the almost everywhere sense

on [0,1/cmax]. We repeat the argument to get the same conclusion for all time.

Hence, R is a solution of (1.10) in the sense of Definition 1.6. It remains to prove that (R, ), is an approximating
sequence of PCFs of the entropy solution R in the sense of Definition 2.2. By construction, (R, ), satisfies the first five
points of Definition 2.2. It remains only to prove the bound

(A.22) Vt >0, 6t >0, TVjp1(R(t,.)) < limsup sup TVjo1(R.(s,.)).

v—00 se(t,t+At]

This is a consequence of Helly’s Theorem. Indeed, take ¢t > 0, At > 0 and n € N*. Instead of applying Helly’s Theo-
rem on an interval of the form [0, T for the sequence (R,),~1, we apply it on the interval [t, t4+At] for the sequence (R,)y>n.

As

Vs € [tat + At}, Vv >, T‘/[O,l] (Ru(s, )) < sSup T‘/[O,l] (Rv(u7 ))a
€[t t+At]
v>n

we deduce by Helly’s Theorem that

Vs € [t,t + At], TVjp1)(R(s,.)) < sup TV 1)(Ro(u,.)).
uelt,t+At]
v>n
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Passing to the limit as n goes to infinity gives (A.22). To get the estimate (2.3), the proof is similar. The existence

part of Theorem 2.3 is proven.

Appendix B. Uniqueness.

We will first show the uniqueness on the triangle 7T7:

T := {(t,x) | Lt<zx<1, 0<t< l/cmax}
To do so, let 0 < ¢ < 1/c¢max and define the domain €, by:

Q={(s,z); 0<s<t Ls<zxz<1}.

We give a graphical representation of €2; in Figure 14:

Formally, as u in entropy

0 >

Figure 14: The domain €2

on €, we have for all k € R?

//ﬂt () + g (u) dedt
/11Lt e (u)dr — /01 Nk (uo)dz

+/0 Cmax Tk (U(T, emaxT)) — qi (u(T, CmaXT))dT+/O qr(u(1, s))ds.

The third term is positive because cyax is superior to all the Lipschitz constants of the f;s.

since all the f;s are non decreasing. Hence,

(B.1)

It is equivalent to:

vk € RY, Z/ lu;(t, ) — k;|dax < Z/ luo,i(x) — k;|da.
Kruzhkov’s doubling variable method allows to replace the k; by the v; to give:
d 1 d 1
Z/ [ui(t, ) —v;(t, z)|de < Z/ [uo,i(x) — vo i (x)|dx.
= J1-Lt = Jo

1 1
/ M (u)de < / Nk (uo)dz.
1-Lt 0

We will adapt the method of doubling variables of Kruzhkov to our boundary value
problem. Let u,v be two entropy solutions of (1.10) with their respective initial data ug, vg.

The last term is positive
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612 Remark B.1. Rigorous justifications of previous computations can be found in the proof of [4, Theorem 6.2].
613 As a consequence, the solution is unique on the triangle 77.
t
A I
|
|
t =1/cmax ]
|
I
Q. :
|
Q
r=1 Y

Figure 15: The domain €,

614 Now let x be in ]0, 1], we apply the same strategy to the set

6

5 represented in Figure 15.

616
617 Integrating g (u): + ¢k (u), < 0 in £, one obtains:
1/Cmax 1/('nnx £/('max
vz € [0,1], k € RY / g (ult, 2))dt < / g (u(t, 0))dt + / Conanc (U(Es Conact)) — Qo (Wt Conact) ).
1/Cmax —Z/Cmax 0 0
618 This is equivalent to: Vo € [0,1], k € R4,
1/Cmax d 1/Cmax
Z // ) (fi(us) — fi(ki))sign(u; — ki)dt < Z/ (fi(ui(t,0)) — fi(ki))sign(ui(t, 0) — k;)dt
Cmax —Z/Cmax i=1 0
w/cmax
+ / CmaxMk (U(t, cmaxt)) — qr(u(t, Cmaxt))dt.
0
619 As all the f; are non decreasing (g, > 0) and all cpay Lipschitz: Vo € [0,1], k € RY,
1/Cmax d 1/¢max
Z/ |f1(ul) - fl(kz)|dt < CmaXZ/ |Ui<t70) - k’z|dt
/Cmax x/cmax i=1 0
x/cmax
+ Cmax/ nk(u(ta cmaxt))dt'
0
620 Following Kruzhkov’s method, the k;s can be replaced by the v;s and for all z in [0, 1]:
1/Cmax d 1/Cmax
Z/ | filui) — filvi)|dt < CmaxZ/ lui(t,0) — vi(t,0)|dt
/Cmaxfa:/cmax iil/ 0
+ cmax/ |w(t, emaxt) — v(t, Cmaxt)|dt.
0
621 As u, v satisfy the boundary condition on [0, 1/¢max], there exists a constant C(g, ¢max) depending on the Lipschitz

622 constant of g such that for all = in [0, 1]:
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d 1/Cmax
Z/ fi(wi) — fi(o)ldt < C(g, cmax) Sy ol/cmde lug(t,1) —v;(t, 1)|dt
1 1

i— /Cmax—Z/Cmax

T/Cmax
b e / (u(t, Conct) — V(2 o).
0

If ug = vg, we have seen that u and v coincide on 7. This implies that if ug = vy, v and v coincide on the segment

[0,1/cmax] X {1} and on the line (& = ¢paxt,t) for t < 1/cmax. As a consequence,

1/Cmax

d

/Cmax _w/cmax

By the monoticity of the f;s, v and v coincide on the triangle T, defined by

To:={(t,x) 0 <2 <1, z/cmax <t < 1/Cmax}-

To conclude, u and v coincide for ¢ < 1/cpax and repeating this argument, we can prove the uniqueness for all time.

This finishes the proof of the uniqueness.
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