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Abstract
We develop a spectral-spatial feature, Relative Spectral Dif-

ference Occurrence Matrix (RSDOM) for hyperspectral texture

recognition. Inspired by Julesz’s conjecture, the proposed feature

is based on spectral difference approach and respects the metro-

logical constraints. It simultaneously considers the distribution

of spectra and their spatial arrangement in the hyperspectral im-

age. The feature is generic and adapted for any number of spec-

tral bands and range. We validate our proposition by applying

a classification scheme on the HyTexiLa database. An accuracy

comparable to local binary pattern approach is obtained, but at

a much reduced cost due to the extremely small feature size.

Introduction
Hyperspectral imaging (HSI) has become increasingly pop-

ular with the advance of sensor technology and computational

speed. Due to the ability of HSI in capturing the entire electro-

magnetic spectrum at hundreds of contiguous, narrow spectral

bands, it allows non-destructive assessment of material with far

superior discrimination. As such, hyperspectral texture analy-

sis has received considerably attention and its application can be

found in many fields including biomedical, industrial and remote

sensing. For instances, hyperspectral texture analysis have been

used in classification of biopsy samples [1, 2], food quality in-

spection [3, 4] and ground classification of aerial imagery [5, 6].

Many assessment of hyperspectral texture are the direct out-

growth of approaches originally adapted for monospectral (in-

tensity) images [7, 8, 9]. Facing the complexity of hyperspectral

data, the common strategy is band selection [10, 11, 12] or di-

mensionality reduction [13, 14, 15] using Principal Component

Analysis (PCA), Non-Negative Matrix Factorization (NMF) and

others. Then, the multivariate texture assessment is performed in

a marginal way (band by band) or cross-channel processing [16].

Such approach is data dependent and consequently, results from

different dataset are not incomparable. Besides, the act of fea-

ture transformation in dimensionality reduction could corrupt a

part of the physical content of the dataset [17]. For metrological

purposes, all physical content need to be preserved so that the

processing accuracy, uncertainty, and bias are quantifiable [18].

In this work, we attempt to develop a spectral-spatial feature

for hyperspectral texture analysis. We begin by considering the

Julesz conjecture, which states that human discrimination is pos-

sible between textures differing in low order statistics [19, 20].

We next take inspiration from the pioneering work of Haralick

and Ojala in texture analysis, namely Co-occurrence matrix [21]

and Local Binary Pattern (LBP) [22]. We remark that the texture

description using Co-occurrence matrix is complete, but its re-

duction into moments for similarity measure causes information

losses. For LBP, the binarization provides a weak characteriza-

tion of texture, but its similarity measure is extremely efficient.

Following the work of [23] which relates Co-occurrence matrix
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Figure 1: An illustration of RSDOM, combining spectral and

spatial features

and histogram of differences, we combine the strength of both

approaches and adapt it for HSI processing while respecting the

metrological constraints. For enhanced discrimination, we incor-

porate the spectral feature in the texture assessment, thus induc-

ing a spectral-spatial feature.

The rest of the article is organized in the following manner.

We next describe our proposed spectral-spatial feature as well as

its similarity measure. Then, we propose an experiment to test

the feature with analysis and discussion, along with suggestions

for future work. Finally, we present the conclusion for this work.

Proposed method
We are interested in a spectral-spatial feature for hyperspec-

tral texture recognition that has the following properties: (I) com-

putationally efficient; adapted for any spectral count and range,

(II) metrological; conform to the science of measurement, and

(III) compact; for concise representation. In the following, we

describe the formulation of the feature in terms of its expected

properties as well as its measure of similarity.

A spectral-spatial feature

We consider the description of hyperspectral texture from

both spatial and spectral perspectives. The spatial feature exam-

ines the spatial arrangement in the image that gives rise to ideas

such as smoothness, coarseness and pattern repeatability [24].

On the other hand, the spectral feature assesses the spectral in-

formation in the image that induces concepts such as intensity,

saturation and purity. When combined, the spectral-spatial fea-

tures provide a complete description of hyperspectral texture.

We begin by first considering the formulation of spatial fea-

ture Mspa.. Following Julesz’s conjecture on texture discrimina-

tion based on low order statistics [19, 20], we describe the spa-

tial arrangement in a hyperspectral image H via the distribution

of spectral difference between pixel pairs separated by a spatial

vector ~v. Suppose that ~v is specified by distance d and direction



θ , Mspa. is expressed as a probability density function given by:

M
(d,θ)
spa. (∆S) = Prob

(

d(Si,S j) = ∆S

)

, ∀i, j ∈ H,

‖−→i j ‖= d,∠
−→
i j = θ

(1)

where d(Si,S j) = ∆S is the spectral difference between spectra

Si and S j of pixels i and j respectively, separated by~v.

Next, we consider the formulation of spectral feature Mspe..

We characterize the spectral variation in H via spectral differ-

ence d(Si,Sr), where i ∈ H and Sr is a chosen reference. Doing

so, we are able to reduce the description from a P-dimensional

spectral space to a p-dimensional difference space, where p≪ P.

Expressed as a probability density function, Mspe. is given by:

Mspe.(∆Sr) = Prob

(

d(Si,Sr) = ∆Sr

)

,∀i ∈ H (2)

where d(Si,Sr) = ∆Sr is the spectral difference between each

pixel in the image and the reference. The choice of Sr is made

such that it lies just outside the convex hull of the spectral distri-

bution [25] of the entire image set. This is to maximize discrim-

ination between the textured images.

Combining Mspa. and Mspe., we obtain the spectral-spatial

feature M as joint probability density function given by:

M(d,θ)(∆S,∆Sr) = Prob

(

d(Si,S j) = ∆S, d(Si,Sr) = ∆Sr

)

,

∀i, j ∈ H,‖−→i j ‖= d,∠
−→
i j = θ

(3)

termed as Relative Spectral Difference Occurrence Matrix (RS-

DOM). An illustration of RSDOM is shown in Figure 1.

To explain further on the choice of Sr , consider the work-

ing example in Figure 2. Suppose there are two textured images

(each with distinct spectral distribution S1 and S2) and three

possible choices of Sr (Sr1, Sr2 and Sr3). The task is to select

an optimal Sr so that the discrimination between S1 and S2 is

the maximum in the difference space. Referring to Figure 3 for

expression in the difference space, Sr1 is obviously a bad choice

as it would have “perceived” S1 and S2 to be equidistant in the

difference space. Both Sr2 and Sr3 lie outside the convex hull

C of the spectral distribution, but Sr2 would have been a better

choice as Sr3 may risk “perceiving” S1 and S2 to be equally

far in the difference space. For maximized discrimination, it is

thus evident that Sr has to chosen such that it lies just outside the

convex hull of the entire spectral distribution.

Metrological calculation of spectral difference
A spectrum is essentially a continuous function S = f (λ )

defined over a spectral range λmin to λmax that characterizes an

electromagnetic radiation [26]. Due to the sampling operation

during acquisition, a spectrum is represented as a sequence of

measurements S = {s j(λ ), ∀λ ∈ [λmin,λmax]} with spectral res-

olution depending on the sensor. Due to its discrete representa-

tion, a spectrum is often treated as if it were a set of independent

measures, hence as vectors, probability density functions or se-

quences [27]. This leads to the usage of L2 norms in accessing

spectral difference, for instances spectral angle mapper [28] and

various divergence measures [29, 30, 31].

��
�����	�

��
���

�	
��

��

1
2
Sr1
Sr2
Sr3

Figure 2: Representation in P-dimensional spectral space

(a) Sr1 (b) Sr2 (c) Sr3

Figure 3: Representation in p-dimensional difference space

However, the limits of such approach has been pointed out

in [32]. While our formulation of RSDOM is not limited to any

spectral difference formula, in this work we seek to express spec-

tral difference based on the fact that spectrum is a function. As

such, we use Kullback-Leibler pseudo-divergence (KLPD) [33]

which is inspired from Kullback-Leibler divergence. Consider

two spectra S1 and S2, the KLPD is defined as the sum of spec-

tral shape difference ∆G and intensity difference ∆W as:

dKLPD(S1,S2) = ∆G(S1,S2)+∆W (S1,S2) (4)

where:

∆G(S1,S2) = k1 ·KL(S̄1‖S̄2)+k2 ·KL(S̄2‖S̄1) (5)

∆W (S1,S2) = (k1 −k2) log

(

k1

k2

)

(6)

as the normalized spectra S̄ is expressed as:

S̄ j =

{

s̄ j(λ ) =
s j(λ )

k
, ∀λ ∈ [λmin,λmax]

}

, j ∈ {1,2} (7)

with the normalization constant given by:

k j =
∫ λmax

λmin

s j(λ ) dλ , j ∈ {1,2} (8)

Employing KLPD, RSDOM is now a four dimensional joint

probability density function given by:

M(d,θ)(∆G,∆W,∆Gr,∆Wr) =

Prob

(

dKLPD(Si,S j) = (∆G,∆W ), dKLPD(Si,Sr) = (∆Gr,∆Wr)

)

,

∀i, j ∈ H,‖−→i j ‖= d,∠
−→
i j = θ

(9)



Representation using Gaussian Mixture Model
Considering RSDOM as probability density function, f-

divergence is well adapted for to access the similarity between

them [34]. Among all, Kullback-Leibler (KL) divergence has

been identified as the most efficient similarity measure [35]. The

KL divergence [36] KL(P‖Q) assess the quantity of information

lost when Q is used to estimate P:

KL(P‖Q) =
∫ ∞

−∞
p(x)ln

p(x)

q(x)
dx (10)

where p and q are the respective densities of P and Q. In the

particular case of multivariate normal distributions with mean µ
and variance-covariance matrix Σ, KL divergence can be directly

calculated by [37]:

KL(P‖Q) =
1

2



 log

∣

∣ΣQ

∣

∣

|ΣP|
+ tr(Σ−1

Q ΣP)−D

+(µQ −µP)
T Σ−1

Q (µQ −µP)





(11)

where D is the dimension of data. As KL divergence is not sym-

metric, a similarity measure is defined as:

dKL(P,Q) = KL(P‖Q)+KL(Q‖P) (12)

Due to spectral variability and sensor noise, RSDOM is

understandably huge and is approximately the size of the im-

age. The direct calculation of KL divergence is therefore, com-

putationally expensive, not to mention the huge size of RS-

DOM which induces problems in storage and transmission. We

thus proceed to model RSDOM using Gaussian mixture model

(GMM):

M =
K

∑
i=1

φiN (µi,Σi) (13)

where φ is the mixture weight and each Gaussian component is

modeled using µ ∈ R
D and Σ ∈ R

D×D. Hence, RSDOM can be

represented using just K × (D +D2) scalar values with D = 4

which is extremely compact.

As there is no closed form solution for KL divergence be-

tween two GMMs, we resort to using variational approximation

[38] KLV , defined as:

KLV (M‖M′) =∑
i

φi log
∑i′ φi′e

−KL(Mi‖Mi′ )

∑ j φ ′
je
−KL(Mi‖M′

j)
(14)

as the two RSDOMs are given by M = ∑i φiMi and M′ =
∑ j φ ′

jM
′
j . Hence, the similarity measure is given by:

dKL(M,M′) = KLV (M‖M′)+KLV (M
′‖M) (15)

At this point, it is worth mentioning that as KLPD is a dis-

tance measure that takes no account in direction. This causes the

distribution of RSDOM to be one-sided in the ∆G-∆W plane.

This induces imperfection in the modeling as GMM assumes

Figure 4: Several images (rendered in RGB) taken from HyTex-

iLa dataset

double sided distribution. Therefore, we introduce a sign op-

erator sign(τ) where τ is defined to be positive when Si is further

from Sr compared to S j , or negative otherwise:

τ = dKLPD(Si,Sr)−dKLPD(S j,Sr) (16)

Hence, the final formulation of RSDOM is given by:

M(d,θ)(∆G,∆W,∆Gr,∆Wr) =

Prob

(

sign(τ) ·dKLPD(Si,S j) = (∆G,∆W ), dKLPD(Si,Sr) = (∆Gr,∆Wr)

)

,

∀i, j ∈ H,‖−→i j ‖= d,∠
−→
i j = θ

(17)

Experiment and discussion
To access the performance of RSDOM in hyperspectral tex-

ture recognition, we apply a classification scheme on a hyper-

spectral texture dataset. As comparison, we benchmark our per-

formance against local binary pattern based approach [16]. We

analyze the result and lists down the suggestions for future work.

The HyTexiLa dataset
HyTexiLa (Hyperspectral Texture images acquired in Lab-

oratory) [16] is a hyperspectral reflectance image dataset con-

sisting of N=112 textured images from five categories: food (10

images), stone (4 images), textile (65 images), vegetation (15 im-

ages) and wood (18 images). The spectral count is 186, ranging

from 405.37 nm to 995.83 nm at 3.19 nm interval, hence span-

ning both visible and near infrared region. Each image measures

1024×1024×186 and is acquired using the HySpex VNIR-1800

hyperspectral camera. Several images from the dataset, rendered

in RGB format, are presented in Figure 4.

Classification using nearest neighbor
We perform the classification using nearest neighbor (NN)

approach. In NN, the query (test) image is compared against the

training images of all classes and is assigned to the class which



Figure 5: Choosing the reference for HyTexiLa dataset

have the highest similarity with. In the context of our classifica-

tion scheme, each image, regardless of its categories, is consid-

ered a class. Following the setting in [16], each images is split

into n=25 patches, each measuring 204×204×186, of which 12

is used for training and 13 for testing. We first perform the clas-

sification on the entire dataset (denoted as “All”) and later, intra-

categorical classifications as some category is different from oth-

ers in terms of texture directionality and spectral distinctness. If

the query image is classified to its own class, the classification

is marked correct or otherwise false. The classification accu-

racy is therefore defined as the ratio of correct classification to

the total number of classification. To complement the classifica-

tion result, we also report the F1-score, defined as the ratio of

2(precision× recall) to (precision+ recall). To avoid any bias,

we repeat all classification using 10 trials with random selection

of training set and testing set in each trial. We report the average

accuracy and F1-score along with standard error, with is standard

deviation divided by
√

T where T is the number of trials.

Choice of parameters
In [16], a local binary pattern (LBP) based approach is used

with d = 1 on a neighborhood of 8 pixels. This is roughly equiva-

lent to accessing spectral variation across three pixels. Therefore,

we choose d = 3 in the calculation of RSDOM for equal com-

parison. Since RSDOM is a uni-directional texture descriptor,

we arbitrary choose θ = 0. For GMM modeling, we empirically

determine that K = 4 is optimal for RSDOM representation.

We next consider the choice of reference. Let Sµ be the

average spectrum from each patch of m pixels, defined as:

Sµ =

{

sµ (λ ) =
1

m

m

∑
i=1

s(λ ),∀λ ∈ [λmin,λmax]

}

(18)

and Sµ,global be the global average spectrum of the entire image

set containing N images with n patches , defined as:

Sµ,global =
1

N ×n

N

∑
i=1

n

∑
j=1

Sµ,i, j (19)

where Sµ,i, j is the average spectrum for the jth patch from the ith

image. For simplicity, we consider d(Sµ ,Sµ,global ) to obtain an

rough representation of the spectral distribution for the dataset.

To choose Sr, we recall that it has to chosen such that it lies

just outside the convex hull of the spectral distribution of the en-

tire image set. However, we decide to adapt the rule considering

(a) coffee (b) milkcoffee

(c) RSDOM, coffee (d) RSDOM, milkcoffee

Figure 6: Representation of RSDOM for two textured images in

the ∆W -∆G plane

the large number of images (112) with varying texture complex-

ity between the categories. In fact, we could divide the images

into two groups. Group I, enclosed by convex hull C1, considers

food, stone, vegetation and wood which are natural and com-

plex textures. Group II, enclosed by convex hull C2, consists of

textile which are man-made and relatively simple textures. For

balanced performance, we choose to focus more on the classifi-

cation of Group I. Consequently, we choose Sr such that it lies

just outside C1 as illustrated in Figure 5. By trial and error, we

determine a choice of Sr that fulfills such requirement as:

Sr = 3

(

0.5+0.5erf
(

(λ −µλ )/σλ

)

)

(20)

where erf is the error function. µλ and σλ are given by:

µλ = (λmax −λmin)/2 (21)

σλ = (λmax −λmin)/3 (22)

Result and analysis
Figure 6 illustrates RSDOM representation in the ∆G-∆W

plane for two textured images, “coffee” and “milkcoffee”. It can

be seen that their spectral shape ∆G variation are similar, ex-

plainable from the fact that both “coffee” and “milkcoffee” are

of the same food origin differing only on the processing level.

On the spectral intensity ∆W , “coffee” exhibits higher variation

than “milkcoffee” due to the fact that the former is coarser than

the latter. This demonstrates that RSDOM is able to capture the

textural properties in an easily understandable manner.

Table 1 presents the classification accuracy and F1-score us-

ing RSDOM. The classification result is excellent, with accuracy

and F1-score above 90 % in all cases. For the entire dataset, the



Category Accuracy (%) F1-score (%)

All 95.6 ± 0.2 95.8 ± 0.2

Food 97.5 ± 0.4 97.5 ± 0.3

Stone 98.3 ± 0.5 98.3 ± 0.5

Vegetation 93.7 ± 0.5 94.1 ± 0.5

Wood 90.8 ± 0.7 91.2 ± 0.7

Textile 98.6 ± 0.1 98.7 ± 0.1

Table 1: Classification accuracy and F1-score on HyTexiLa

database

classification accuracy reaches 95.6 %. To further analyze this

result, we refer to the normalized confusion matrix as shown in

Figure 7. As there are too many class (112 in total) which would

rendered examination difficult, we display the confusion matrix

in two parts. Figure 7(a) shows the confusion matrix with textile

(T) classes clustered together, while Figure 7(b) shows the con-

fusion matrix with food (F), stone (S), vegetation (V) and wood

(W) classes clustered together. It is clear that the misclassifica-

tion is largely due to two categories: wood and vegetation. This

is also supported from the intra-categorical classification result

in Table 1 which shows their lower accuracy compared to others.

We highlight three reasons to explain the misclassification.

Firstly, the texture are mainly green for vegetation and brown for

wood. Therefore, the makes discrimination within the categories

more difficult. Secondly, our unitary choice of d = 3 prevents

us from assessing texture with varying texton [39] size. This ex-

plains our higher score in food, stone and textile which consist

of uniform and fine textons, but lower score in wood and vege-

tation which has varying texton size. Thirdly, our unitary choice

of θ allows us to only evaluate texture in one direction. In fact,

for θ = 0 we are only able to assess texture varying in verti-

cal direction but not in other directions. This is acceptable for

isotropic texture, but not adapted for anisotropic texture such as

those found in vegetation and wood categories.

In comparison to [16] which reports an accuracy of 98.76

% using Opponent Band Local Binary Pattern (OBLBP), our per-

formance is lower although in the same efficiency range. The dif-

ference in performance can be attributed to the fact that OBLBP

assesses texture in eight directions while RSDOM evaluates just

one. However, it is worthwhile to mention that the feature size

of RSDOM is extremely small. While OBLBP consists of 82944

scalar values, the size of RSDOM is only K × (D +D2) = 80

scalar values or 0.1 % of OBLBP’s. Even if RSDOM is adapted

to assess texture in eight directions as in the case of OBLBP,

its feature size only increases to 8×K × (D+D2) = 640 scalar

values. This presents RSDOM as an extremely compact feature

descriptor for rapid processing and storage.

Limitations and future work

The choice of d = 3 remain questionable, as it is possibly

susceptible to image noise and it is expected that a larger d value

could present better result. In fact, as texture varies in scale and

direction, RSDOM could benefit from a multi-scale and multi-

direction implementation. On the other hand, the choice of us-

ing variational approximation in this work to evaluate divergence

between two RSDOM which are GMMs remains to be justified.

Other methods ought to be studied in order to determine the best

distance measure. ast but no least, other approaches of modeling

RSDOM such as Generalized Gaussian Distribution (GGD) or

shape descriptions (Fourier Descriptor, Zernike moments, Cur-

vature Scale Space etc.) are also worth being studied.
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Figure 7: Normalized confusion matrix for HyTexiLa classifica-

tion (F=food, S=stone, V=vegetation, W=wood, T=textile)

Conclusion

We have proposed a spectral-spatial feature, Relative Spec-

tral Difference Occurrence Matrix (RSDOM) for hyperspectral

texture recognition. The proposed feature is in full accordance

with psychophysical experiments on texture. It simultaneously

considers the distribution of spectra and their spatial arrangement

in the hyperspectral image. It is generic and adapted for any num-

ber of spectral bands and range. Thanks to its operation in the dif-

ference space, the curse of dimensionality is overcome without

requiring band selection or dimensionality reduction techniques,

therefore preserving the metrological properties. Its performance

has been evaluated by applying a classification scheme on the

HyTexiLa dataset with excellent accuracy (95.6%). The result is

comparable to Local Binary Pattern (LBP) based approaches, but

at a much smaller feature size (0.1 % of the LBP-based feature).
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