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ABSTRACT

A new hyperspectral texture descriptor, Relocated Spec-
tral Difference Occurrence Matrix (rSDOM) is proposed.
It assesses the distribution of spectral difference in a given
neighborhood. For metrological purposes, rSDOM employs
Kullback-Leibler pseudo-divergence (KLPD) for spectral dif-
ference calculation. It is generic and adapted for any spectral
range and number of band. As validation, a texture classifica-
tion scheme based on nearest neighbor classifier is applied on
HyTexiLa dataset using rSDOM. The performance is close to
Opponent Band Local Binary Pattern (OBLBP) with classifi-
cation accuracy of 94.7%, but at a much-reduced feature size
(0.24% of OBLBP’s) and computational complexity.

Index Terms— hyperspectral, texture, non-uniformity,
metrology, Kullback-Leibler

1. INTRODUCTION

Nowadays, the application of hyperspectral imaging (HSI)
can be found everywhere. Ever since its deployment in re-
mote sensing in the 1970’s [1], HSI technology has been ex-
tended into many fields such as agriculture [2], medicine [3]
and food quality inspection [4]. With the growing integration
of HSI technology in our daily life, it becomes essential to
develop adapted metrological solutions based on the spectral
measurements. This is to ensure the reproducibility, accuracy
and all the other expected properties when precise measure-
ment are required for diagnosis, control or decision-making.

Texture or non-uniformity assessment was one of the first
tasks developed in image processing. It originates from the
psychophysical findings of Julesz which inspires the develop-
ment of Haralick’s texture features [5]. Since then, there has
been a long list of texture feature propositions [6, 7, 8]. Nev-
ertheless, texture evaluation for multivariate images (color,
multi- and hyperspectral) is still an open question. The most
direct solution is to perform assessment in a marginal way
(band by band) or in a cross-channel processing [9, 10]. Few
texture features are developed specifically for hyperspectral
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image processing such as 3D gray-level co-occurrence matrix
[11] and three-dimensional wavelet texture feature [12].

Hyperspectral image processing is often faced with the
curse of dimensionality due to the large number of spectral
bands. As such, dimensionality reduction [13, 14] or band
selection [15, 16] are usually performed prior to texture as-
sessment. Such approaches are data-dependent as the result
depends on the image content instead of the actually mea-
sured spectra. Hence, they are not adapted for metrological
purposes as results from different dataset are incomparable.

The rest of the article is organized as follows. Section 2
recalls the definition of an electromagnetic spectrum and its
similarity measure in a metrological context. Next, Section
3 details the hyperspectral texture descriptor. Section 4 then
presents a texture classification scheme with analysis and dis-
cussion. Finally, Section 5 provides the concluding remarks.

2. A METROLOGICAL CONSIDERATION

Under the point of view of signal and image processing, a
spectrum S is defined as a continuous function S = f(λ) over
the wavelengths λ. Due to sampling operation, its hyperspec-
tral acquisition is given by a discrete sequence of measure-
ments S = {s(λ), ∀λ ∈ [λmin, λmax]}. This causes spectra
to be considered as a set of independent measures, hence as
vectors, probability density functions or sequences and asso-
ciated with L2-norm for distance assessment.

The limits of such definition and of the use of L2-based
metrics in the context of metrological processing have been
shown in [17]. In order to obtain an adapted spectral dif-
ference respecting the metrological constraints, Kullback-
Leibler pseudo-divergence (KLPD) is introduced [18]. Con-
sidering two spectra S1 and S2, KLPD combines their shape
difference ∆G and intensity difference ∆W as:

dKLPD(S1, S2) = ∆G(S1, S2) + ∆W (S1, S2) (1)

where:

∆G(S1, S2) = k1 ·KL(S̄1‖S̄2) + k2 ·KL(S̄2‖S̄1)

∆W (S1, S2) = (k1 − k2) log

(
k1
k2

)
(2)



noting that the normalized spectrum S̄ is given by:

S̄ =

{
s̄(λ) =

s(λ)

k
, ∀λ ∈ [λmin, λmax]

}
(3)

with the normalization constant k:

k =

∫ λmax

λmin

s(λ) dλ (4)

and the KL divergence:

KL(S̄1‖S̄2) =

∫ λmax

λmin

S̄1(λ) · log
S̄1(λ)

S̄2(λ)
dλ (5)

For a demonstration of KLPD application, consider the
Food images from HyTexiLa hyperspectral texture dataset.
We split each image into 25 patches from which an average
spectrum is extracted a marginal way (Equation 10). Using
KLPD, we calculate their spectral difference with respect to
that of “Oregon”. This is shown in Figure 1a which illustrates
the average spectra (25 for each image) and Figure 1b which
plots the spectral shape and intensity differences.

3. MEASURING HYPERSPECTRAL TEXTURE

The first Julesz conjecture describes the pre-attentive discrim-
ination of textures based on second-order statistics [19]. Un-
der this context, we formulate a texture descriptor with refer-
ence to Haralick’s texture features and Local Binary Pattern
(LBP). To increase discrimination, we propose a joint spatial-
spectral formulation together with its similarity measure.

3.1. Spectral Difference Occurrence Matrix

The co-occurrence matrix in Haralick’s [5] gives precise tex-
ture description, but the subsequent reduction into moments
for similarity assessment leads to reduced efficiency. By con-
trast, LBP [8] provides weak texture characterization due to
the binarization, but its similarity measure using Kullback dis-
crimination is extremely efficient. Combining their strength
and considering the relationship between co-occurrence and
histogram of difference as defined by Unser [20], we intro-
duce the Spectral Difference Occurrence Matrix (SDOM):

M (l,θ)(∆G,∆W ) = Prob

(
dKLPD(Si, Sj) = (∆G,∆W )

)
,

∀i, j ∈ I, ‖−→ij ‖ = l, 6
−→
ij = θ

(6)

which is defined over hyperspectral image I . It expresses the
probability of finding a specific spectral difference (KLPD)
dKLPD(Si, Sj) = (∆G,∆W ) between two pixels separated
by a spatial vector with distance l and orientation θ. When
texture is stationary, SDOM is centered at the origin of ∆G−
∆W plane in a dense distribution as illustrated in Figure 2.

(a) Average spectra (25 for each image)

(b) Spectral differences with respect to “Oregon”

Fig. 1: A demonstration of KLPD application with Food im-
ages, each split into 25 patches and evaluated independently.

3.2. Kullback-Leibler divergence as similarity measure

Considering SDOM as a probability density function, Kullback-
Leibler (KL) divergence [21] has been identified as the most
efficient similarity measure [22]. As the direct calculation of
KL divergence is laborious, we proceed to model SDOM us-
ing bivariate normal distribution with mean µ and covariance
Σ. KL divergence can then be estimated as [23]:

KL(M1‖M2) =
1

2

[
log
|Σ2|
|Σ1|

+ tr
(
Σ−12 Σ1

)
−D (7)

+ (µ2 − µ1)TΣ−12 (µ2 − µ1)

]

where D = 2 is the data dimension. As KL divergence is not
symmetric, the SDOM similarity measure is expressed as:

dKL(M1,M2) = KL(M1‖M2) +KL(M2‖M1) (8)



3.3. Relocated Spectral Difference Occurrence Matrix

By construction, SDOM is invariant to spectral information
as it considers only the spatial variability. For a joint spatial-
spectral formulation, we modify SDOM into Relocated Spec-
tral Difference Occurrence Matrix (rSDOM) that considers
spatial variability around the average spectrum Sµ:

M̂ (l,θ) = {Sµ,M (l,θ)} (9)

where Sµ is defined over image with N pixels as:

Sµ =

{
sµ(λ) =

1

N

N∑
i=1

s(λ),∀λ ∈ [λmin, λmax]

}
(10)

Essentially, rSDOM is SDOM displaced in the ∆G − ∆W
plane in accordance to the spectral difference of the aver-
age spectrum dKLPD(Sµ1, Sµ2) = (∆Gµ,∆Wµ). Conse-
quently, the KL divergence in Equation 7 can be modified as:

KLR(M̂1‖M̂2) =
1

2

[
log
|Σ2|
|Σ1|

+ tr
(
Σ−12 Σ1

)
− 2

+

[
∆Gµ
∆Wµ

]T
Σ−12

[
∆Gµ
∆Wµ

] ] (11)

noting that µ is close to zero for stationary textures. The rS-
DOM similarity measure is then expressed as:

dKLR
(M̂1, M̂2) = KLR(M̂1‖M̂2) +KLR(M̂2‖M̂1) (12)

We have thus fully defined our proposed hyperspectral texture
descriptor rSDOM with its similarity measure in a metrolog-
ical framework.

4. EXPERIMENT AND DISCUSSION

To assess the efficiency of rSDOM, we apply a classification
scheme on a hyperspectral texture dataset. We analyze and
discuss the performance of rSDOM with reference to Oppo-
nent Band Local Binary Pattern (OBLBP). We also list down
the limitations of our approach for future improvements.

4.1. Classification using nearest neighbor

HyTexiLa [10] is a hyperspectral texture dataset consists of
112 images from five categories: Food (10 images), Stone
(4 images), Textile (65 images), Vegetation (15 images) and
Wood (18 images). The spectral range is 405.37 nm− 995.83
nm, spanning the visible and near infrared (NIR) parts of
the electromagnetic spectrum. Each image measures N =
1024 × 1024 with L = 186 spectral bands. The interest of
using HyTexiLa is that there exists a complete ground truth

(a) coffee (b) milkcoffee

Fig. 2: sRGB-rendered image and Spectral Difference Occur-
rence Matrix (SDOM) of “Coffee” and “Milkcoffee”.

as each pixel is associated with a known texture. This is un-
like other datasets such as Pavia University, Indian Pines and
Salinas-A for which a part of the pixels is manually labeled.

Following the setting in [10], we split each image into
25 patches, using 12 of them for training and 13 for testing.
Considering each image as a class on its own, we perform
classification using nearest neighbor which assigns the query
image to class in the training set which has the minimum dis-
tance with. This is to address the lack of global stationarity
that is common in natural scenes, hence improving robust-
ness of the classification scheme. Both intra-categorical and
inter-categorical (denoted as All) classification are performed
using T = 10 trials with random selection of training and
testing sets. The average accuracy and standard error are re-
ported, with the later defined as standard deviation/

√
T . All

calculation is performed using l = 3 and θ = 0.

4.2. Result and analysis

Figure 2 depicts the sRGB rendering (only a quarter of the full
image is displayed) and SDOM for “Coffee” and “Milkcof-
fee”. Visually, “Coffee” is identified by its coarser structure
while “Milkcoffee” exhibits a smoother surface. Clearly,
SDOM (and hence rSDOM) is able to capture this texture
difference in an easily understandable manner. On shape
difference ∆G, both shows identical distribution which is
explainable from the fact that they are of the same food origin
albeit at different processing level. On intensity difference



∆W , “Coffee” is more pronounced than “Milkcoffee” which
is expected due to their difference in granular size. Evidently,
“Coffee” is grainier and its high surface non-uniformity
promotes various kinds of light reflection, inducing differ-
ent shades of color varying from very dark to very light
brownish-like appearance. On the other hand, “Milkcoffee”
is powder-like with very fine particle size, making it a perfect
light diffuser for uniform surface appearance.

To demonstrate efficiency of the joint spatial-spectral for-
mulation of rSDOM, we present three results in Table 1 that
represents classification based on spectral information (aver-
age spectrum, A. Spec.), spatial variability (SDOM) and both
(rSDOM). It can be observed that rSDOM performs best in all
classification (except in Food), with accuracy ranging from
85.9 to 99.7% which is considered excellent. Expectedly,
SDOM registers poorer performance (47.1 - 79.9%) as it dis-
regards spectral information which plays an important role in
texture discrimination. On the other hand, it is interesting to
note that the performance of average spectrum is quite high
(79.0 - 98.7%). This may be attributed to the fact that Hy-
TexiLa is a relatively small dataset with limited spectral and
spatial variety for hyperspectral texture assessment.

From the intra-categorical classification, it can be seen
that the rSDOM misclassification in All is mainly due to Veg-
etation and Wood images. For this, we identify three reasons.
Firstly, the texture are predominantly green for Vegetation
and brown for Wood, therefore limiting discrimination from
each other. Secondly, the choice of l = 3 prevents rSDOM
from assessing texture with larger texton (repeating geomet-
rical structure) size. This explains the better classification of
Food, Stone and Textile which consist of mainly fine textons,
but reduced performance in classification of Wood and Vege-
tation with larger texton size. Thirdly, rSDOM is only able
to assess texture varying in vertical direction but not in oth-
ers with the unitary choice of θ = 0. This is acceptable for
isotropic textures, but not adapted for anisotropic ones such
as those found in Vegetation and Wood.

4.3. Discussion and future work

In [10], a texture classification scheme is applied on HyTex-
iLa using Opponent Band Local Binary Pattern (OBLBP). A
maximum score of 98.76% (with 18 principal components)
on the inter-categorical classification is reported, while the
intra-categorical results are unavailable. In comparison, the
performance of rSDOM is slightly lower (94.7%) although in
the same efficiency range. This is possibly due to the fact that
rSDOM cannot assess texture directionality. While rSDOM
evaluates texture in one direction, OBLBP is able to do so in
eight directions, hence the better performance of the later.

Nevertheless, we would like to highlight the fact that rS-
DOM is extremely lightweight compared to OBLBP. The fea-
ture size of OBLBP is L2 · 2P for L spectral bands and tex-
ture evaluation in P directions. For 18 principal components

Category A. Spec. (%) SDOM (%) rSDOM (%)
Food 96.3 ± 0.4 79.9 ± 0.7 91.5 ± 0.6
Stone 87.9 ± 2.2 75.2 ± 1.5 94.6 ± 1.1
Textile 98.7 ± 0.1 79.7 ± 0.4 99.7 ± 0.1

Vegetation 84.7 ± 0.5 47.1 ± 0.6 88.9 ± 0.4
Wood 79.0 ± 0.6 51.4 ± 0.8 85.9 ± 0.8

All 92.0 ± 0.2 62.1 ± 0.3 94.7 ± 0.1

Table 1: Classification performance on HyTexiLa dataset.

and texture assessment in 8 directions, OBLBP has a size of
182 · 28 = 82944. In comparison, rSDOM is represented us-
ing D + D2 + L = 2 + 4 + 186 = 196 scalar values which
is about 0.24% of OBLBP’s, where D + D2 is due to the
bivariate (D = 2) normal approximation. Such significant
difference is also reflected in the computational complexity.
Considering an image of N pixels, the rSDOM complexity is
O(N ·L) in contrast to OBLBP’sO(N ·P ·2L). For each patch
of N = 204×204 in the HyTexiLa classification scheme, the
rSDOM computational time is about two seconds.

One of the limitations in our work lies in the assumption
that rSDOM is normally distributed. In fact, this is not ex-
actly the case and statistical transformation may be required
to conform better to the normality assumption. On the other
hand, Gaussian Mixture Model (GMM) could be used to im-
prove rSDOM modeling for multi-modal distribution of spec-
tral difference. Last but not least, rSDOM would benefit too
from a future multi-scale and multi-direction implementation.

5. CONCLUSION

We have proposed a new hyperspectral texture descriptor
named Relocated Spectral Difference Occurrence Matrix (rS-
DOM). It assesses the distribution of spectral difference in a
given neighborhood around the average spectrum. For spec-
tral distance calculation, rSDOM employs Kullback-Leibler
pseudo-divergence (KLPD). Adapted for any spectral range
and number of band, it is suitable for industrial and medical
applications whereby precision, reproducibility and metro-
logical traceability are of utmost importance. Thanks to its
distance-based construction, the curse of dimensionality is
solved without requiring any spectral band reduction, there-
fore preserving all the metrological properties.

The performance of rSDOM has been assessed via a tex-
ture classification scheme on HyTexiLa dataset. The obtained
results confirms the efficiency of its joint spatial-spectral for-
mulation, with performance exceeding discrimination based
on spatial variability or spectral information alone. The per-
formance is also close to Opponent Band Local Binary Pat-
tern (OBLBP), even though rSDOM is processed only for one
spatial distance and direction. Besides, rSDOM is extremely
lightweight with feature about the size of number of spectral
bands, or about 0.24% of OBLBP’s in this work.
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