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This paper revisits dynamic soaring on the basis of a nonlinear point-mass �ight

dynamics model previously used for scale-model aircraft to design path-following au-

topilots endowed with theoretically and experimentally demonstrated stability and

convergence properties. The energy-harvesting process associated with speci�c ma-

neuvers of a glider subjected to horizontal wind, and on which dynamic soaring relies,

is explained at the light of this model. Expressions for the estimates of various variables

involved in dynamic soaring along inclined circular paths crossing a thin wind shear

layer, as experienced by model glider pilots over the world, are derived via approxi-

mate integration of the model equations. Given a glider's path and a wind pro�le, this

model also presents the asset of yielding an explicit ordinary di�erential equation that

entirely characterizes the time-evolution of the modeled glider's state along the path,

thus allowing for an easy simulation of dynamic soaring over a large variety of oper-

ating conditions. We view this simulation facility as a tool that usefully complements

other studies of dynamic soaring that focus on trajectory optimization via dynamic

programming. Its usefulness is here illustrated by �rst validating the aforementioned

estimates in the case of circular trajectories crossing a thin wind shear layer, then by

showing how it applies to other examples of trajectories and ocean wind pro�le models
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commonly considered in studies about the dynamic soaring abilities of albatrosses.

Nomenclature

Rn = n-dimensional real vector space.

I = {O; ı0, 0,k0} = inertial frame.

E3 = 3D Euclidean vector space with I the associated reference frame.

Vectors in E3 are denoted with bold letters.

|x| = Euclidean norm of x ∈ Rn.

|x| (= |x|) = Euclidean norm of x ∈ E3.

xi (i = 1, . . . , n) = ith component of x ∈ Rn.

P = aircraft center of mass (CoM)

B = {P ; ı, ,k} = body-�xed frame with ı taken on the zero-lift body-axis of the aircraft.

m = vehicle's mass.

v = aircraft CoM's velocity with respect to I.

a (= v̇) = aircraft CoM's acceleration with respect to I.

g = g0 k0 = gravitational acceleration.

vw = ambient wind velocity with respect to I.

va = v − vw = aircraft air-velocity with respect to I.

x.y = inner product of x ∈ E3 and y ∈ E3.

ξ = coordinate vector of ξ ∈ E3 in the body-�xed frame B,

i.e. ξ = [ξ1, ξ2, ξ3]>, ξ1 = ξ.ı, ξ2 = ξ., ξ3 = ξ.k, ξ = ξ1ı+ ξ2+ ξ3k.

I. Introduction

Since the pioneering investigation by Lord Rayleigh in 1883 [1] about the mechanisms involved

in long-range �ights of birds over the ocean, the possibility for a bird, or a man-made glider,

of harvesting energy by repeatedly crossing a wind shear layer, in order to stay aloft for a long

time, has motivated many studies. Over the years a large amount of data has been gathered by
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naturalists who observed large birds, albatrosses in particular, which mastered this type of �ight.

One may for instance consult [2, 3] for a digest of these �ndings. More recently the subject has

also attracted the interest of engineers who analyze dynamic soaring (DS) on the basis of �ight

dynamics and ocean-wind pro�le mathematical models. Among early seminal contributions of this

type one may cite [2, 4�6] where the authors combine observations about the �ight of albatrosses

with dynamics modeling equations and the support of numerical simulation to explain the principle

of DS. Calculation of optimal DS trajectories via dynamic programming was initiated by Sachs [4]

and became a common factor of many recent engineering-oriented DS studies [2, 3, 7�11]. The

adjacent issues of sensory state estimation and control for a glider to automatically follow a desired

(possibly optimal) path and/or take advantage of wind gusts have also been addressed in several

studies of DS [7, 10, 12�14]. The DS research theme is concomitant with experiments conducted

by enthusiastic model glider pilots who make their gliders perform fast circular �ights near the top

of a ridge subjected to a strong wind on one side and to nearly dead still air on the other side; an

activity that led to an informal race of breaking speed records, the impressive one in date of April

13, 2017 being of 519 mph (835 km/h). It is further boosted by the rapidly expanding market of

drones and the mid-term perspective of motorized gliders that could �y autonomously over long

distances by using DS in complementation of more classical energy harvesting techniques (solar

charged batteries, thermal and slope upwind currents).

The present study revisits DS by exploiting a �ight dynamics model previously used to work

out nonlinear autopilots for scale-model airplanes [15�18]. A di�erence with models considered in

other engineering-oriented DS studies is that this model does not explicitly involve a wind-frame,

with associated attack and slide-slip angles, nor �ight-path, bank, and heading angles commonly

used in aircraft dynamics equations and for control design. These angle representations present

singularities and add, from experience, useless complexities to �ight control design and analysis. The

approach here adopted also departs from other studies on DS, which focus on the characterization

of trajectories that are optimal in terms of energy use. Search of optimality is here left aside for the

development of new means of computer simulation allowing for easy testing of any glider traveling

along any (mathematically speci�ed) trajectory and confronted to any (mathematically speci�ed)
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wind pro�le. We believe that such a simulation facility, even though it is not perfect because it

relies on a simpli�ed model of aerodynamic forces acting on the vehicle, is useful to more thoroughly

grasp the possibilities o�ered by DS.

The paper is organized as follows. Section II presents the point-mass �ight dynamics model

subsequently used to simulate and analyze the �ight of a glider along a path that intersects a wind

shear layer, and derives energy-related equations that enlightens the process of energy-harvesting

associated with speci�c �ight maneuvers. Section III is devoted to the study of DS along an inclined

circular path, i.e. a model of what is commonly called a Rayleigh cycle, and to the estimation,

based on approximations, of various �ight and environmental variables associated with DS. For

small inclinations of the circle with respect to (w.r.t.) the horizontal plane, some of these estimates,

namely the maximum glider airspeed as a function of the wind speed, and the corresponding circle's

radius, essentially coincide with estimates previously derived by Richardson [19]. These estimates are

of interest because they account for the impressive performance obtained by pilots of radio-controlled

(RC) gliders. The technical arguments on which Richardson's calculations rely are obviously related

to those used here. Being more elaborate our approach further allows us to work out estimates of

other physical variables (speed increase after each cycle and minimal wind speed for sustained

DS �ight, in particular) that have not, to our knowledge, been derived elsewhere. Although the

nonlinear �ight dynamics model equations cannot be integrated explicitly, it is proved in Section

IV that the corresponding state equations, given a mathematical expression of the followed �ight-

path as a function of the curvilinear abscissa and a mathematical expression of the wind pro�le

in 3D-space, can be written in the form of an ordinary di�erential equation (ODE); an equation

that can in turn be numerically integrated using a standard numerical integration package. This

possibility is much related to the model of aerodynamic forces here considered. Simulation of DS

along three di�erent paths are subsequently considered for illustration purposes. The �rst path is

the inclined circle considered in the previous section. It also serves to compare simulated values

with values calculated with the estimates derived in this section, and observe their good concordance

over a large spectrum of operating conditions. The second path is an inclined Lissajous curve whose

eight shape is reminiscent of albatrosses closed trajectories evoked in various studies (see, [3, 5],
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Fig. 1 Frames and forces

for instance). The third path is an inclined sinusoidal open curve, also reminiscent of observed

albatrosses trajectories, for which simulated sustained �ight results are reported for di�erent angles

between the wind direction and the overall path direction. Finally, a short summary of the original

contributions presented in this paper is given in the concluding Section V.

II. Modeling issues

A. Aerodynamic forces

The resultant aerodynamic force Fa applied to a rigid body moving with air-velocity va is

traditionally decomposed into the sum of a drag force FD along the direction of va and a lift force

FL perpendicular to this direction, i.e.

Fa = FD + FL (1)

The intensities of drag and lift forces are essentially proportional to |va|2 modulo variations charac-

terized by two dimensionless functions CD and CL, which depend in the �rst place on the orientation

of va w.r.t. the body, but also on the Reynolds number Re and Mach number M . These dimen-

sionless functions are called the aerodynamic characteristics of the body, or drag coe�cient and lift

coe�cient respectively. More precisely

FD = −ηa|va|CD va , FL = ηa|va|CL v⊥a (2)

with v⊥a denoting some vector perpendicular to va and such that |v⊥a | = |va|, and ηa := ρΣ
2 with ρ

the free stream air density, and Σ an area germane to the body shape.
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It is well known that the norm of aerodynamic forces are commensurate with the squared norm

of the air velocity so that one can safely assume that there exists two positive numbers c and d such

that

|Fa| < c+ d|va|2 (3)

Let us de�ne ı as the unit vector in the zero-lift direction of the aircraft, i.e. the direction of

the air velocity perpendicular to the main wing's axis for which no lift force is produced, and k

the unit vector perpendicular to ı and to the main wing's axis (see Fig. 1). With this choice of

the body frame the direction of va can be characterized by two angles α and β such that va =

|va|(cosα(cosβ ı+ sinβ ) + sinαk) with α = arcsin(va,3/|va|) and β = arctan(va,2/va,1) denoting

the angle of attack (here chosen equal to zero when the air velocity direction coincides with the

aircraft zero-lift direction) and side-slip angle respectively. For this study of wind soaring we propose

to work with the model of aerodynamic forces previously used in [17] for the design of scale-model

aircraft autopilots. This model is:

Fa = −(c0va,1ı+ c̄0va,3k)|va|+ va,2O(va) (4)

with c0 and c1 denoting positive numbers, c̄0 = c0 + 2c1, and O(va) any Euclidean vector-valued

function such that the ratio |O(va)|
|va| is bounded. For instance, in [16] we have used O(va) = −c0|va|

for a model of a disc-shaped aircraft. A noticeable feature of this model is that it avoids the

introduction of various angles, with the singularities associated with them, to parametrize the glider's

attitude. In this respect it is su�cient to consider the rotation matrix associated with the body frame

B and whose columns are formed by the vectors of coordinates of the unit Euclidean vectors ı,  and

k. As required by physics, relation (4) is compatible with the assumed aircraft symmetry about the

plane (G; ı,k). Note that if the drag coe�cient c0 were equal to zero then, in the case of zero side-slip

angle (i.e. va,2 = β = 0), the resultant aerodynamic force would be orthogonal to the zero-lift plane

with an amplitude proportional to sinα|va|2. This model is also compatible with relations (1) and

(2). Indeed, one veri�es that, in this case, v⊥a = − |va|cosαk + tanαva, CD(α) = (c0 + 2c1 sin2 α)/ηa,

and CL(α) = c1 sin 2α/ηa. For small angles of attack the drag coe�cient CD is thus approximately

equal to c0
ηa

and the lift coe�cient CL is approximately proportional to the angle of attack with the
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coe�cient of proportionality given by 2c1
ηa

. This is coherent with conventional models of aerodynamic

forces exerted on an aircraft, and with experimental data performed on a variety of wing pro�les

and axisymmetric bodies [20].

From now on we will assume that the glider is controlled so as to maintain a balanced �ight,

i.e. with no slide-slip or, equivalently, such that va,2 = 0 [? ]. Under this assumption the resultant

aerodynamic force (4) simpli�es to

Fa = −(c0va,1ı+ c̄0va,3k)|va| (5)

Remark: This equation may, at �rst glance, look too simple to correctly model the aerodynamic

forces acting on a glider. In fact, for small angles of attack, it closely matches other models used

in the literature to model and analyze dynamic soaring. For instance, linear approximation about

α = 0 of the lift and drag coe�cients associated with this model yields the commonly used relation

CD = CD0 + kC2
L [2�6, 11] with, in this case, CD0 = c0/ηa and k = 0.5ηa/c1. Compared to classical

models of lift that are linear or polynomial w.r.t. the angle of attack, the nonlinear model (5)

also presents the advantage of complying with the physical property of zero lift when α = ±π/2.

This latter feature is useful to the design of controllers for scale-model aircraft which, due to their

small size and inertia, are particularly sensitive to wind gusts and thus to large angle of attack

excursions. For the present study of DS, a complementary interesting feature of this model is that

it yields motion equations along pre-speci�ed geometric paths that can be written in the form of

easily (numerically) integrable ODEs. Using this property to simulate DS is detailed further on.

B. Dynamic equations and energy considerations

The aircraft dynamics related to the motion of the aircraft CoM are given by the classical

Newton equation

ma = mg + Fa (6)

so that, assuming a balanced �ight and in view of (5)

ma = mg0k0 −
(
c0(va.ı)ı+ c̄0(va.k)k

)
|va| (7)
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The dynamic equation (7) points out the importance of the coe�cients c0 and c̄0 to characterize

the �ight properties of the glider. In particular, the maximum glide rate of the aircraft, i.e. its glide

ratio here denoted as gr, is a simple function of these coe�cients. Indeed

gr = supα
|FL(α)|
|FD(α)| = supα

|CL(α)|
|CD(α)| (8)

with

CL(α)

CD(α)
=

2c1
c̄0 tan(α) + c0 cot(α)

(9)

whose derivative w.r.t the angle of attack is

∂

∂α

CL(α)

CD(α)
= −2c1

c̄0/ cos2(α)− c0/ sin2(α)

(c̄0 tan(α) + c0 cot(α))2

The largest value of |CL(α)|/|CD(α)| is obtained by zeroing this derivative, i.e. for tan(α) =
√

c0
c̄0
.

Using this latter relation, and 2c1 = c̄0 − c0, in (9) yields

gr =
c̄0 − c0
2
√
c0c̄0

(10)

Because c0 is typically much smaller than c̄0 in the case of �xed-wing aircraft, a good approxi-

mation of the previous expression of gr is

gr ≈ 0.5
√
c̄0/c0 (11)

As for the corresponding gliding speed vgr, i.e. the aircraft speed along the optimal gliding path (in

terms of the longest traveled distance before touching ground), using again c0 � c̄0 one �nds that

vgr ≈
√
mg0/(c0c̄0)0.25 (12)

The corresponding sink rate is thus given by vsink ≈ vgr/gr ≈ 2
√
mg0c

0.25
0 /c̄ 0.75

0 . Conversely, c̄0

and c0 can be calculated from gr and vgr according to

c̄0 ≈
2gr

v2
gr

mg0 , c0 ≈
mg0

2gr v2
gr

(13)

Now, let z denote the glider's altitude and E := 0.5m|v|2+mg0z the total (kinematic+potential)

energy of the glider. Because ż = −k0.v, the inner product of both members of the equality (7) by

v yields

Ė = −
(
c0(va.ı)(v.ı) + c̄0(va.k)(v.k)

)
|va| (14)
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Sustained �ight requires E to be bounded from below. This in turn implies that losses of energy

during some parts of the �ight must be compensated by energy increases during other parts of

the �ight. It is well known that such increases can be obtained by taking advantage of ascending

thermal currents, i.e. when vw contains an upward vertical component. Dynamic soaring poses

the question of whether energy increases can also be obtained when the wind blows horizontally

during some parts of the �ight. In this respect equation (14) is important to understand the energy

production/dissipation process associated with dynamic soaring. First this equation shows that in

the absence of wind, i.e. when vw = 0, Ė = −
(
c0(v.ı)2 + c̄0(v.k)2

)
|v| < 0. The total energy of

the glider thus always decreases in this case �a physically coherent property implying that a glider

maintaining its speed in still air constantly loses altitude. Then it shows that, when the angle of

attack is small (which implies that |va.ı| ≈ |va|) and |vw| < |v|, the term −c0(va.ı)(v.ı)|va| is

negative and thus dissipates energy. Nevertheless, because c0 � c̄0 in the case of airplanes and

gliders, this term can be small compared to the second term −c̄0(va.k)(v.k)|va| in the right-hand

side of (14) so that, in the �rst approximation, the glider's energy varies according to

Ė ≈ −c̄0(va.k)(v.k)|va| (15)

Because the angle of attack is nominally positive and smaller than π/2, the scalar product va.k is

positive. Equation (14), or (15), indicates that the total energy of the glider can increase only when

va.k and v.k have opposite signs. Energy transfer issues are pointed out and discussed in all DS

studies, starting with [1] and, more recently, [4, 5, 7]. All explain that energy is gained when there is

wind and the glider performs speci�c maneuvers in relation to the wind's direction. However, to our

knowledge, the condition of energy increase has not previously been mathematically characterized by

the simple geometrical inequality (va.k)(v.k) < 0. A typical maneuver, evoked in most DS studies,

for which this inequality is satis�ed is a circular (quasi-horizontal) half-turn started by facing the

horizontal wind, and performed with enough speed so that the glider has to lean strongly into the

turn. Its main wing then tends to become vertical and uses the wind much alike the propulsive sail

of a sailing boat. Figure 2 shows a schematic representation of the projections on the circle's plane

of the involved velocities and of the unit vectors ı and k during such a maneuver. The part of the

circle where energy can be harvested from the wind, i.e. where v.k < 0 is colored in blue. However,
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Fig. 2 Variations of v.k along a circular horizontal path

v.k is positive when the glider follows the other part of the circle with the same horizontal wind,

and the energy balance over the whole circle is negative, implying that sustained level �ight is then

not possible. As a matter of fact this balance turns out to be worse than in the no-wind case. The

question then becomes to �nd out whether a reduction of the wind speed on this second part can

reduce the energy loss so that the balance can be reached over the complete cycle. In other words

can horizontal wind gradients be used to achieve a sustained �ight? This question brings us back to

studying Rayleigh's cycles evoked in all works on dynamic soaring, not only for theoretical reasons

but also to tentatively account for the impressive performances recently obtained by model glider

pilots.

III. Rayleigh's cycle and estimation of dynamic soaring characteristics

A Rayleigh cycle, �rst envisioned by Lord Rayleigh [1] who was interested in the �ight of large

birds without working their wings like the albatross, is sketched on Figure 3. The principle is as

follows: the glider descends downwind along a circular-like path, passes through a horizontal shear

boundary into a layer of slower or stationary air, turns upwind, passes again through the shear

boundary to face the wind, and so on. Alike many authors we will here model the path followed

by the glider by a circle of radius r inclined with an angle θ (6= 0) w.r.t the horizontal plane (see
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Fig. 3 Rayleigh cycle

Front view Side View

inclined circle

shear layer
θ

P
φ

k0 k0

0ı0

vw (6= 0)

vw = 0

Fig. 4 Circle, wind, and inertial frame vectors

Figure 4). The shear layer is supposed to be "thin" and it crosses the circle along a diameter. The

wind velocity vw above the shear layer is supposed constant and perpendicular to this diameter.

The corresponding wind speed, equal to |vw|, is denoted as vw to lighten the notation. Below the

shear layer the air is still. The wind's gradient w.r.t. the altitude between the shear boundaries can

be modeled by any smooth (say twice di�erentiable) monotonic function.

Because v̇a = a− v̇w one deduces from (7) that

mv̇a = −mg0k0 −
(
c0(va.ı)ı+ c̄0(va.k)k

)
|va| −mv̇w (16)

Using the facts that k0.vw = 0, because the wind blows horizontally by assumption, and |va|2 =

(va.ı)
2 + (va.k)2, because va,2 = 0 by assumption of a balanced �ight, the scalar product of both
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members of the equality (16) with va yields

mv̇a.va = −mg0(k0.v)−
(
c0(va.ı)

2 + c̄0(va.k)2
)
|va|

−mv̇w.va

= −mg0(k0.v)− c0|va|3 − 2c1(va.k)2|va|

+mv̇w.vw −mv̇w.v

(17)

De�ne the auxiliary energy function Ē := Ea − 0.5m|vw|2, with Ea := 0.5m|va|2 + mg0z denoting

the glider's total energy w.r.t. the moving ambient air. Note that Ē = E when the glider's inertial

velocity is perpendicular to the wind direction. The equality (17) may also be written as

˙̄E = −c0|va|3 − 2c1(va.k)2|va| −mv̇w.v (18)

Let us now evaluate the modi�cation of Ē or, equivalently, of E on a cycle, i.e. between a time-instant

t = 0 when the glider leaves the top of the circle and the time-instant T when it returns for the �rst

time to this position. From the de�nition of Ē and using the equalities v(0).vw(0) = v(T ).vw(T ) = 0

so that |va(T )|2 − |va(0)|2 = |v(T )|2 − |v(0)|2, and z(0) = z(T ), the integration of (18) on the time

interval [0, T ] yields

Ē(T )− Ē(0) = 0.5m(|v(T )|2 − |v(0)|2)

=
∫ T
t=0
−c0|va(s)|3ds

+
∫ T
t=0
−2c1(va(s).k(s))2|va(s)|ds

+
∫ T
t=0
−mv̇w(s).v(s)ds

(19)

Note that the �rst two integrals in the right-hand side of this equality are negative. They are energy

dissipative terms. Therefore, the third integral is the only one that can increase the energy and yield

a sustained �ight. The explicit calculation of these integrals is not possible. Instead, we propose

to estimate them by using approximations that are best justi�ed when the di�erence between |v|

and |va|, and the relative variations of |v| on the circle, are small. To this purpose we denote the

glider's average speed on the circle as v̄ so that T ≈ 2πr
v̄ and

∫ T
t=0
−c0|va(s)|3ds ≈ −c0T v̄3

≈ −2πrc0v̄
2

(20)

Concerning the third integral, let vdown (resp. vup) denote the glider speed when it crosses the

boundary layer going down (resp. going up). Let also t1 (resp. t1 + δ1) and t2 (resp. t2 + δ2) denote
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the time-instants when the glider enters (resp. leaves) the shear layer. Because the shear layer is

thin we may assume that the glider speed is almost unchanged when crossing it. Therefore

v(s) ≈


vdown(− cos(θ)0 − sin(θ)k0), s ∈ [t1, t1 + δ1]

vup(cos(θ)0 + sin(θ)k0), s ∈ [t2, t2 + δ2]

vw(t1) = −vw0, vw(t1 + δ1) = 0

vw(t2) = 0, vw(t2 + δ2) = −vw0

By further assuming that |v| is approximately constant (and approximately equal to the average

velocity v̄) on the upper part of the circle, using the circle's symmetry yields∫ T
t=0
−mv̇w(s).v(s)ds ≈ −m

(
v(t1).

∫ t1+δ1
t1

v̇w(s)ds

+v(t2).
∫ t2+δ2
t2

v̇w(s)ds
)

= m(vdown + vup)vw cos(θ)

≈ 2mv̄vw cos(θ)

(21)

This relation shows that the balance of kinetic energy increment due to crossing the shear layer is

approximately proportional to the wind speed above the shear layer, and decreases with the angle

of inclination of the circular path w.r.t. the horizontal plane.

Let us now estimate the second integral. By assuming that the glider speed is approximately

equal to the average speed v̄, the glider's acceleration a is approximately equal to v̄2

r ū with ū denot-

ing the unit vector pointing from the glider's CoM to the circle's center. Using this approximation

in the dynamic equation (7) yields

m
v̄2

r
ū−mg0k0 ≈ −

(
c0(va.ı)ı+ c̄0(va.k)k

)
|va|

Forming the squared norm of both members of this (near) equality then yields

m2
( v̄4

r2
+ g2

0 − 2g0
v̄2

r
(ū.k0)

)
≈
(
c20(va.ı)

2 + c̄20(va.k)2
)
|va|2

Because |va|2 = (va.ı)
2 + (va.k)2, we have also

m2
( v̄4

r2
+ g2

0 − 2g0
v̄2

r
(ū.k0)

)
≈ c20|va|4 + (c̄20 − c20)(va.k)2|va|2

Using again the approximation |va| ≈ v̄, and because c0 � c̄0, the previous relation yields (recall

also that c̄0 = 2c1 + c0 ≈ 2c1)

2c1(va.k)2|va| ≈
1

c̄0
(
m2

r2
− c20)v̄3 +

m2g2
0

c̄0v̄
− 2m2g0v̄

c̄0r
(ū.k0)
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Assuming a near constant speed, the integration of (ū.k0) on the circle vanishes. Integration of

both members of the previous (near) equality, with T ≈ 2πr
v̄ , yields

∫ T
t=0
−2c1(va(s).k(s))2|va(s)|ds ≈ − 2π

c̄0
(m

2

r − rc20)v̄2

− 2πrm2g20
c̄0v̄2

(22)

Using (20)-(22) in (19) with c0 � c̄0, and using also the fact that c0 � 1 in the case of airplanes

and gliders so that c20 � c0, then yields the following approximation

|v(T )|2 − |v(0)|2 ≈ 4
(

cos(θ)vwv̄ − π(
m

c̄0r
+
c0r

m
)v̄2 − πmg

2
0r

c̄0v̄2

)
(23)

Let ∆v := |v(T )| − |v(0)| denote the change of speed after the glider has completed one circle, so

that |v(T )|2 − |v(0)|2 ≈ 2v̄∆v. Then, in view of (23) an estimation of ∆v is

∆v ≈ 2
(

cos(θ)vw − π(
m

c̄0r
+
c0r

m
)v̄ − πmg

2
0r

c̄0v̄3

)
(24)

To our knowledge such an expression of the speed variation over a Rayleigh cycle has not been

derived before. Let v̄k denote the glider's average speed on the time period [Tk, Tk+1 = Tk + 2πr
v̄k

)

needed to travel one complete circle. The previous relation suggests that vk evolves approximately

according to

v̄k+1 = v̄k + 2
(

cos(θ)vw − π(
m

c̄0r
+
c0r

m
)v̄k − π

mg2
0r

c̄0v̄3
k

)
(25)

Figure 5 shows this evolution in the case where the parameters of Table 1 (given in the international

system of units (SI)) are used.

Table 1 A set of parameters

glider m = 3 kg, c0 = 0.001 kg/m, c1 = 2 kg/m

circle r = 50 m, θ = 0.2 rad

wind speed in upper layer vw = 10 m/s

The corresponding glide rate and gliding speed of the modeled glider, calculated from (11) and

(12), are gr = 31.6 and vgr = 21.6m/s.

Relation (24), taken as an equality, can in turn be used to estimate various dynamic soaring

characteristics on a Rayleigh's circle, namely the minimal wind speed vw,min for a given circle's

14
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radius and below which sustained �ight is not possible, the optimal radius ropt yielding the highest

possible speed for a given wind velocity, and the corresponding maximum speed v̄max.

Estimation of vw,min: Dynamic soaring on a Rayleigh cycle is possible if there exists a speed range

for which ∆v is positive or equal to zero. Therefore the maximum of ∆v w.r.t. v̄ must be positive

or equal to zero. From (24) one has

∂

∂v̄
∆v = 2π

(
− (

m

c̄0r
+
c0r

m
) +

3mg2
0r

c̄0v̄4

)
and the maximum of ∆v is obtained when ∂

∂v̄∆v = 0, i.e. for v̄ = v̄min with

v̄min =
( 3m2g2

0

(m
2

r2 + c0c̄0)

)0.25
(26)

This is also the (estimated) minimal average speed of a sustained �ight. In the case of the parameters

of Table 1 it is equal to 24m/s. Using the previous relation in (24) yields

∆vmax
v̄3

2
= cos(θ)vw

( 3m2g2
0

(m
2

r2 + c0c̄0)

)0.75 − 4πmg2
0r

c̄0

so that ∆vmax can be positive or equal to zero only if vw ≥ vw,min/ cos(θ) with

vw,min =
4πr

30.75c̄0
(
g0

m
)0.5(

m2

r2
+ c0c̄0)0.75 (27)

With the parameters of Table 1 this expression yields vw,min = 3.21m/s. This approximation of the

minimal wind speed, although slightly optimistic as we will later verify via simulation, is nonetheless

of interest because it points out that sustained �ight does not necessarily require a strong wind.
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Estimation of v̄max: This estimate is obtained by zeroing ∆v and it is the �nite limit �when it

exists� of the sequence v̄k (k ∈ N) of relation (25). This limit is easily computed numerically. It is

also the largest real solution to the fourth-degree polynomial equation in x

cos(θ)vwx
3 − π(

m

c̄0r
+
c0r

m
)x4 − πmg

2
0r

c̄0
= 0

In order to propose a simple explicit expression we propose an estimation obtained by assuming

that the constant term in the left-hand side of this equality is dominated by the other two terms

when the average soaring speed v̄ is large. This yields the following estimate of v̄max

v̄max ≈ cos(θ)
vw

πr
c̄0m

(m
2

r2 + c0c̄0)
(28)

whose accuracy should thus increase with the size of this estimate.

Estimation of ropt: The optimization of the circle's radius depends on the chosen criterion. An

option is to work out the radius for which sustained �ight is possible with the smallest minimal

wind speed vw,min given by (27). The corresponding solution is r = m√
2c0c̄0

. The other option, here

retained, is the radius yielding the fastest soaring speed, i.e. for which v̄max is the largest. In view

of (28) this is the value of r that minimizes r(m
2

r2 + c0c̄0), i.e.

ropt ≈
m√
c0c̄0

=
v2
gr

g0
(29)

with vgr the gliding speed given by (12). This radius is equal to 47.4m in the case of the glider

parameters of Table 1. The corresponding soaring speed is

v̄max|ropt ≈ cos(θ)
vw
2π

√
c̄0
c0

= cos(θ)
vw
π
gr (30)

with gr the glide rate given by (11), and the corresponding loop period is

Topt ≈
2πropt
v̄max|ropt

=
2πv2

gr

g0v̄max|ropt
(31)

Numerical values obtained with the glider parameters of Table 1 are v̄max|ropt ≈ 98.7m/s and

Topt ≈ 3s. At this point it is worth noting that, in the particular case where the angle θ is very small

so that cos(θ) can be approximated by one, these last two estimates coincide with those proposed by

Richardson [19] on the basis of a simpler model of the glider's dynamics. We anticipated this �nding
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which points out the compatibility of our respective approaches. Ours, being more elaborate, goes

with complementary predictions and a way of testing their accuracy via simulation.

Precise numerical integration of the glider's dynamic equations on the assigned path, compar-

ison of observed simulation results with the estimates derived previously, and simulation of other

operating conditions are addressed in the next Section.

IV. Simulation

A. Numerical integration of dynamic equations on a given arbitrary path

Consider a regular (at least twice di�erentiable) 3D-path C parametrized by its curvilinear

abscissa s and a running point P (s) on this curve whose Cartesian coordinates (x, y, z) w.r.t. to the

chosen inertial frame I = {O; ı0, 0,k0} are speci�ed either explicitly in terms of known functions

of s, or via the point P (0) complemented with coordinate-derivatives w.r.t. the curvilinear abscissa,

i.e. x′(s) = fx(x(s), y(s), z(s)), y′(s) = fy(x(s), y(s), z(s)), z′(s) = fz(x(s), y(s), z(s)). In this latter

case the functions fx, fy and fz are given and such that f2
x +f2

y +f2
z = 1 (normalization constraint).

The main issue then, given the initial position of P on the path, is to determine the curvilinear

abscissa at all time-instants, i.e. to numerically compute s(t), ∀t ≥ 0.

Let u(s) denote the unit vector tangent to the path at the point P (s), i.e.

u(s) = x′(s)ı0 + y′(s)0 + z′(s)k0 (32)

When the point P moves on the path, the time derivative of u is thus given by

u̇(s, ṡ) =
(
x′′(s)ı0 + y′′(s)0 + z′′(s)k0

)
ṡ (33)

The velocity of P w.r.t. the inertial frame is the vector v = ṡu. Now, de�ne the state vector

X := (x, y, z, s, ṡ)> and assume that the function gs(X, t) such that s̈ = gs(X, t) is known to

us, then the position of P and its velocity at any time-instant can be calculated by numerically
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integrating the ordinary di�erential equation (ODE)

Ẋ =



0 0 0 0 x′(s)

0 0 0 0 y′(s)

0 0 0 0 z′(s)

0 0 0 0 1

0 0 0 0 0


X +



0

0

0

0

gs(X, t)


(34)

from the initial condition X(0) = (x0, y0, z0, 0, |v̇0|)>. Using a standard numerical integration

package, simulation of �ight time-periods of several minutes then just takes a few seconds on an

average PC.

Remark: In the case where the coordinates of P are speci�ed in terms of known functions of the

curvilinear abscissa, it su�ces to de�ne the two-dimensional state X := (s, ṡ)> and numerically

integrate the corresponding ODE from the initial condition X(0) := (0, |v̇0|)>.

In the context of dynamic soaring the point P is the glider's CoM, and v is the glider's velocity

on the chosen path C. We show next that, given any continuous wind velocity function vw(x, y, z, t),

the function gs can be explicitly determined from the dynamic equation (7).

Determination of the function gs:

Because v = ṡu, one deduces that

a = s̈u+ ṡu̇

= s̈u+ ṡ2h

(35)

with h(s) :=
(
x′′(s)ı0 + y′′(s)0 + z′′(s)k0

)
. Using the fact that u̇, and thus h, are orthogonal to u

(because u is a unit vector), one deduces that

|a|2 = |s̈|2 + ṡ4|h|2 (36)

De�ne

ḡ := g − c̄0
m
va|va| (37)

with va(X, t) = ṡu(s) − vw(x, y, z, t). Because va = (va.ı)ı + (va.k)k for a balanced �ight, the
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dynamic equation (7) may also be written as

a− ḡ = 2
c1
m
|va|(va.ı)ı

which implies that

ı =
a− ḡ
|a− ḡ| (38)

Therefore

a− ḡ = 2
c1
m
|va|(va.(a− ḡ))

a− ḡ
|a− ḡ|2

which in turn implies that

|a− ḡ|2 = 2
c1
m
|va|(va.(a− ḡ))

or, equivalently

|a|2 − 2a.ḡ + |ḡ|2 = 2
c1
m
|va|(va.(a− ḡ))

By replacing a and |a|2 by their expressions (35) and (36) in the above equality, one gets

s̈2 + 2b(X, t)s̈+ c(X, t) = 0 (39)

with

b :=
( (c0+c1)

m |va|va − g
)
.u

c := 2ṡ2
( (c0+c1)

m |va|va − g
)
.h+ |ḡ|2 + ṡ4|h|2

+2 c1m |va|(va.ḡ)

(40)

It is not di�cult to verify that, of the two solutions to this quadratic equation in s̈, only the

one adding the squared-root discriminant is physically pertinent. The function gs involved in the

equation (34) is thus

gs := −b+
√
b2 − c (41)

Remark: Once s(t), ṡ(t), s̈(t) and the glider's position at the time-instant t are known, the glider's

orientation, i.e. the frame vectors (ı, ,k)(t), can also be numerically determined. Indeed, ı(t) is

given by (38) and (t) = ı(t)×va(t)
|ı(t)×va(t)| because this latter vector is orthogonal to both ı(t) and va(t)

in the case of a balanced �ight. The third vector is then the cross product of the other two vectors,

i.e. k(t) = ı(t)× (t).
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B. Application to a Rayleigh cycle

The path C is the inclined circle evoked in Section III and one may arbitrarily assume that its

center is the origin of the inertial frame I. One may also choose the glider's initial position at the

top-end of the circle, i.e. x(0) = 0, y(0) = r cos(θ), z(0) = r sin(θ). The initial glider speed |v(0)|

can be chosen arbitrarily, but large enough to yield an average speed, when going around the circle

for the �rst time, larger than the minimal value for which sustained dynamic soaring is possible, an

estimation of which is (26). The Cartesian coordinates of the glider's CoM on the circular path are
x(s) = −r sin(s/r)

y(s) = r cos(s/r) cos(θ)

z(s) = r cos(s/r) sin(θ)

and the (continuous) wind velocity is

vw(z) =


−vw0 if z ≥ ε

2

−vw(0.5 + z(s)
ε )0 if z ∈ (− ε

2 ,
ε
2 )

0 if z ≤ − ε
2

with ε > 0 the thickness of the shear layer (which may be chosen arbitrarily small) and vw the

constant wind speed above the shear layer.

C. Compared estimation and simulation results

Once the function gs associated with the inclined circular path is determined, the glider's

dynamics can be numerically integrated along this path. With the parameters of Table 1 and setting

the initial glider speed equal to 10m/s, the time-evolutions of the glider inertial and air speeds are

represented in Figure 6. The close resemblance of Figures 5 and 6 (similar speed growth rates and

maximum dynamic soaring speeds) is a �rst step to the validation of the estimates worked out in

Section III. Another test was to determine via simulation the minimal wind speed v̄w,min and the

minimal average speed v̄min of the glider for which sustained dynamic soaring is possible, in order to

compare them with their estimates of Section III. The values obtained via simulation with the same

glider parameters and same path are v̄w,min ≈ 3.28m/s and v̄min ≈ 25m/s. They are also close

to the previously estimated values of 3.21m/s and 24m/s. A third test was to change the circle's
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Fig. 6 Time-evolutions of the glider inertial and air speeds

angle of inclination from 0.2rad to 0.7rad and compare the maximal (asymptotic) average speeds

v̄max determined either via simulation or calculated from (28). The values 76m/s and 76.9m/s so

obtained are again close. A fourth test consisted in changing the circle's radius and verifying that

the optimal radius ropt yielding the largest average soaring speed v̄max was correctly estimated by

(29). Table 2 shows good concordance between simulated and estimated speeds obtained for three

di�erent radii and con�rms the optimality of the radius of 47.4m predicted by (29).

Table 2 Glider's average speed for di�erent radii

radius (m) v̄max (m/s, estimated) v̄max (m/s, simulation)

30 89.1 88.3

40 97.25 96

47.4 98.7 97.8

50 98.5 97.1

70 91.6 90.4

However, from the nature of the approximations used in Section III, the accuracy of the estimates

should degrade when the glider speed decreases, i.e. when the wind speed decreases. To get a more

precise evaluation of this degradation, we have determined by simulation and calculated from (28)

the maximal glider's average speed reached with various wind speeds ranging from 5m/s to 25m/s,

and gathered the results in Table 3 with relative error percentages. Except for the wind speed the
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other parameters are those of Table 1.

Table 3 Accuracy of estimated soaring speeds

vw (m/s) v̄max (m/s, estimated) v̄max (m/s, simulation) relative error (%)

5 49.3 48 2.7

10 98.5 97.1 1.4

15 147.8 146.3 1.0

20 197.5 196 0.76

25 246.3 245 0.53

This table con�rms the loss of accuracy of the estimates for low speeds, but also shows that the

accuracy remains acceptable (relative error smaller than 3%) for a large spectrum of velocities, and

becomes excellent (relative error smaller than 1%) when the wind speed exceeds 15m/s.

To summarize, we can assert that the estimates worked out in Section III are in good accordance

with simulation results in a large spectrum of operating conditions.

D. Application to other paths and wind pro�les

Sustained �ight along a Rayleigh cycle implies the possibility of overall motion along any hor-

izontal direction, even when this direction is opposite to the wind direction. Indeed, to this aim it

su�ces to slowly move the circle's center in the desired direction. This possibility is also simply

simulated by adding an arbitrary small horizontal component to the wind velocity vw = −vw0.

Now, another interest of simulation is to allow for testing operating conditions other than those as-

sociated with the Rayleigh cycle considered in Section III. Two examples illustrating this possibility

are reported next.

1. Closed eight-shape Lissajous curve

Coordinates of the running point P on this type of path are of the form

x = a1 sin(φ), y = a2 sin(2φ) cos(θ), z = a2 sin(2φ) sin(θ) (42)
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with a1 and a2 the parameters that delimit the dimensions of this planar curve, φ(s) ∈ R, and θ the

angle of inclination of the curve w.r.t. the horizontal plane. Figure 7 shows this curve in the case

where a1 = 80m, a2 = 30m, and θ = 0.2rad. Di�erentiating these coordinates w.r.t. the curvilinear

abscissa yields

x′(s) = a1 cos(φ(s))φ′(s)

y′(s) = 2a2 cos(2φ(s)) cos(θ)φ′(s)

z′(s) = 2a2 cos(2φ(s)) sin(θ)φ′(s)

Because 1 = x′(s)2 + y′(s)2 + z′(s)2 one deduces that φ′(s) = ±1/
√
a2

1 cos2(φ(s)) + 4a2
2 cos2(2φ(s)),

with the sign chosen according to the desired direction of motion along the curve. The unit vector

tangent to the curve at the point P is u(s) = x′(s)ı0 + y′(s)0 + z′(s)k0.

The other vector h(s) = x′′(s)ı0 + y′′(s)0 + z′′(s)k0 needed to calculate the functions b(X, t),

c(X, t) and gs(X, t) is obtained by di�erentiating the coordinates of P a second time, i.e. by using

x′′(s) = a1(− sin(φ(s))φ′(s)2 + cos(φ(s))φ′′(s)

y′′(s) = 2a2
(
− 2 sin(2φ(s))φ′(s)2 + cos(2φ(s))φ′′(s)

)
cos(θ)

z′′(s) = 2a2
(
− 2 sin(2φ(s))φ′(s)2 + cos(2φ(s))φ′′(s)

)
sin(θ)

with φ′′(s) = ±
(
(0.5a2

1 sin(2φ(s)) + 4a2
2 sin(4φ(s))

)
φ′(s)4.

In this case, because the coordinates x, y, and z are known functions of φ, it su�ces to de�ne
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the state vector X := (φ, s, ṡ) and calculate X(t) via numerical integration of the ODE

Ẋ =


0 0 φ′(s)

0 0 1

0 0 0

X +


0

0

gs(X, t)


For the glider parameters of Table 1, a two-layer wind model with thin shear layer at z = 0,

vw = −vw0 with vw = 10m/s above the shear boundary, and the Lissajous curve parameters

a1 = 80m, a2 = 30m, θ = 0.2rad, the glider's asymptotic average speed obtained in simulation is

v̄max = 83m/s. A slightly faster speed of 85m/s is obtained with a1 = 100m, a2 = 40m, and a

slower speed of 74m/s is obtained with a1 = 60m, a2 = 25m. Comparison of these speeds with those

obtained on a circular path tends to indicate that this latter path is slightly more energy-e�cient

than the eight-shape Lissajous path.

2. Open sinusoidal path

In order to move in some desired direction without making a loop one may consider a sinusoidal

open path centered on this direction. An example of such a path is the curve parametrized by the

x coordinate of P de�ned by

y = r cos(x/r) cos(θ), z = r cos(x/r) sin(θ)

with r > 0 and θ denoting again the angle of inclination of the path w.r.t. the horizontal plane (see

Figure 8 for which r = 50m, θ = 0.2rad). To simulate wind soaring along this path one �rst needs

to determine the variation of x w.r.t. the variation of the curvilinear abscissa s, i.e. x′(s). This is

obtained by using the equality

ds2 = dx2 + dy2 + dz2

= dx2(1 + ( dydx )2 + ( dzdx )2)

= dx2(1 + sin2(x/r))

and choosing one of the two solutions for x′ = dx
ds depending on the chosen variation of x w.r.t. the

curvilinear abscissa. For instance, if x must increase with s so that x′ must be positive, then

x′(s) = 1/

√
1 + sin2(x(s)/r) (43)
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Fig. 8 Inclined sinusoidal curve

The other two coordinate derivatives w.r.t the curvilinear abscissa are then

y′(s) = dy
dxx
′(s) = −1/

√
1 + sin2(x(s)/r) sin(x/r) cos(θ)

z′(s) = dz
dxx
′(s) = −1/

√
1 + sin2(x(s)/r) sin(x/r) sin(θ)

(44)

From there one determines the vector h(s) :=
(
x′′(s)ı0 + y′′(s)0 + z′′(s)k0

)
and, given the wind

pro�le vw(x, y, z, t), the functions b(X, t), c(X, t), and gs(X, t). In this case, because y and z are

functions of x, it is su�cient to work with the three-dimensional state vector X = (x, s, ṡ)> and

calculate X(t) via numerical integration of the ODE

Ẋ =


0 0 x′(s)

0 0 1

0 0 0

X +


0

0

gs(X, t)

 (45)

Table 4 shows the average asymptotic velocity v̄max obtained with the glider parameters of Table 1,

a path inclination angle θ = 0.2rad, a thin wind shear layer with boundary at z = 0, a constant wind

speed of 10m/s above the shear layer, and a set of di�erent wind directions given by −(sin(ψ)ı0 +

cos(ψ)0).
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Table 4 Glider's average speed for di�erent wind directions

wind direction ψ (rad) v̄max (m/s)

0 86.5

π/6 68

−π/6 80

π/4 50

−π/4 68.5

π/3.3 32.5

−π/3.3 58

−π/2.6 35

This table implicitly indicates that sustained �ight going "up" or "down" the wind is possible

when ψ ∈ [ψmin, ψmax] with extremal angles ψmin = − π
2.6rad and ψmax = π

3.3rad. For angles outside

this interval we observed that sustained �ight was no longer possible. Di�erent glider parameters

and wind speeds would of course yield other extremal angles. In particular, and as expected, faster

wind speeds yield larger direction angle intervals for which sustained �ight can be maintained. This

table also indicates that the fastest average velocity of the glider is obtained when the wind direction

is orthogonal to the overall path direction.

One may also test in simulation wind pro�les that di�er from the two-layer wind model consid-

ered so far. An example is the so-called logistic wind pro�le in the form

vw(z) =
vw,max

1 + exp(−(z − z0)/δ)
, (46)

considered, for instance, in [11]. When δ � 1 and z0 = 0 this model tends to the thin shear

layer model considered in Section III. This model, being di�erentiable w.r.t. the altitude, does not

involve strict layer boundaries. Nevertheless, it may be approximated by a linear two-layer model

whose shear layer is centered at z = z0, with a thickness ε = 4δ and wind speed above the shear

layer equal to vw,max. Table 5 shows the average asymptotic velocity v̄max obtained with this wind

pro�le centered at z0 = 0 for di�erent values of δ, the wind direction being orthogonal to the general

direction of motion, i.e. vw = −vw(z)0.
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Table 5 Glider's average speed for di�erent values of δ

δ (m) v̄max (m/s)

1 85.5

2.5 78.5

5 57

As expected the glider's performance in terms of velocity decreases when δ increases. For small

values of δ the performance is similar to the one obtained with a wind two-layer model with thin

shear layer.

Another popular wind pro�le is logarithmic and of the form

vw(z) = vw,ref
log
(
(z − zmin + z1)/z0

)
log
(
href/z0

) (47)

with z1 (≥ z0) denoting the glider's lowest altitude above the sea, and href (≥ z1) the glider's altitude

for which vw = vw,ref . In [2] Sachs uses this pro�le with z0 = 0.03m, z1 = 1.5m, href = 10m, and

applies trajectory optimization software to determine that, for an albatross weighting 8.5kg with

glide ratio equal to 20, an energy-neutral DS trajectory requires a minimum shear wind strength

vw,ref = 8.6m/s. For these wind pro�le values, the glider's parameters of Table 1, and the sinusoidal

path previously considered, one can observe from simulation that a sustained �ight is not possible

whatever the general path direction w.r.t. the wind direction. A sustained �ight in the most

favorable path direction, i.e. leeward with ψ ≈ −0.5rad, requires either a stronger wind velocity

vw,ref > 10.5m/s, or using a smaller value of z1 (< 0.55m), or adaptation (optimization) of the

�ight-path parameters by taking, for instance, r = 25m and θ = 0.5rad.

A better comparison with Sachs results requires to simulate the dynamics of a glider with �ying

characteristics close to those of an albatross. For instance, setting m = 9kg, c0 = 0.01, and c̄0 = 18

yields, by application of (11) and (12), a glide ratio equal to 21.21 and a gliding speed of 14.4m/s

that are close to values attributed to an average male albatross [2, 21]. Considering an inclined

sinusoidal trajectory with r = 17m, θ = 0.5rad and leeward direction ψ = −0.5rad, and using the

previously mentioned logarithmic wind pro�le with z0 = 0.03m, z1 = 0.75m (the minimum glider's
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altitude above the sea), and href = 10m, one �nds that the minimum (resp. maximum) wind-speed

at the lowest (resp. highest) point on the path is equal to 0.55 vw,ref (resp. 1.09 vw,ref ). By

Simulating this glider along this path and with this wind pro�le, one observes from simulation that

sustained DS �ight requires to use vw,ref ≥ 9.1m/s in the expression of the wind pro�le. With

the minimum value of 9.1m/s, the wind speed varies from 5.04m/s to 9.93m/s between the lowest

and highest points on the path. The glider's speed varies between 10.8m/s and 27.2m/s, the load

factor |FL|
mg0

varies from 0.9 to 4.4, and the period for traveling one path's cycle is about 7.2s. These

values are in the range of those observed by Pennycuick [21] for albatrosses. A smaller value of the

wind strength vw,ref would be obtained by further optimizing the path shape, but it is not clear

at this point that the gain would be important. This latter issue, related to DS "sensitivity w.r.t.

path optimization", has not (to our knowledge) been thoroughly addressed and would deserve to be

further explored. A perhaps sounder reason for modifying the path shape concerns the limitation

of the load factor to a maximum value, as imposed (or approximately imposed via the limitation of

the lift coe�cient CL) in most albatross trajectory optimization studies [2, 3, 6, 10].

V. Concluding remarks

In this paper dynamic soaring is studied on the basis of a nonlinear point-mass �ight dynamics

model previously used for the design of scale-model aircraft autopilots. This model is �rst used to

informally explain the energy-harvesting process involved in dynamic soaring and determine, via

calculus approximations, estimates of various variables involved in energy neutral circular paths

crossing a thin wind shear layer, i.e. so-called Rayleigh cycles. We then show that, given i) a set

of parameters characterizing the �ight properties of a glider, ii) a gliding path speci�ed in terms

of its curvilinear abscissa, and iii) a wind pro�le specifying the wind's strength and direction at

any point, this model yields dynamic equations on the path that can be written as a closed-form

�nite-dimensional ODE amenable to standard numerical integration. This property in turn infers

the possibility of simulating dynamic soaring easily for a large variety of operating conditions.

This simulation facility is then used to verify the validity of the aforementioned estimates in the

case of circular paths. It is also illustrated by considering two other types of paths (eight-shaped
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Lissajous curves and sinusoidal open curves) and two models of wind pro�le over the ocean (logistic-

exponential and logarithmic) proposed in several contributions studying albatrosses dynamic soaring

abilities.

As pointed out in the introduction, this study departs from other engineering-oriented studies

that focus on the calculation of optimal trajectories for dynamic soaring. Indeed, the �rst application

of the proposed simulation methodology is to test if a given glider will stay aloft inde�nitely by taking

advantage of dynamic soaring, given a wind pro�le and a pre-speci�ed trajectory that the glider has

to follow. Solving a constrained optimal control problem requires important computational power

and e�cient dedicated programs, whereas the aforementioned test only requires using a standard

numerical integration program and demands much less computational power. The two points of

view are thus di�erent. Nevertheless, they are also complementary. They both serve to evaluate the

possibilities o�ered by dynamic soaring.

Finally, let us mention that a practical interest of testing dynamic soaring along pre-speci�ed,

not necessarily optimal, paths resides in the existence of controllers (autopilots) capable of stabilizing

a (motorized) scale-model glider on such a path [7, 12, 14, 17, 18].
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