Jean-Marie Kai 
email: kai@i3s.unice.fr
  
Tarek Hamel 
email: thamel@i3s.unice.fr
  
Claude Samson 
email: claude.samson@inria.fr
  
Ph D Candidate 
  
  
  
  
  
A novel approach to dynamic soaring modeling and simulation

This paper revisits dynamic soaring on the basis of a nonlinear point-mass ight dynamics model previously used for scale-model aircraft to design path-following autopilots endowed with theoretically and experimentally demonstrated stability and convergence properties. The energy-harvesting process associated with specic maneuvers of a glider subjected to horizontal wind, and on which dynamic soaring relies, is explained at the light of this model. Expressions for the estimates of various variables involved in dynamic soaring along inclined circular paths crossing a thin wind shear layer, as experienced by model glider pilots over the world, are derived via approximate integration of the model equations. Given a glider's path and a wind prole, this model also presents the asset of yielding an explicit ordinary dierential equation that entirely characterizes the time-evolution of the modeled glider's state along the path, thus allowing for an easy simulation of dynamic soaring over a large variety of operating conditions. We view this simulation facility as a tool that usefully complements other studies of dynamic soaring that focus on trajectory optimization via dynamic programming. Its usefulness is here illustrated by rst validating the aforementioned estimates in the case of circular trajectories crossing a thin wind shear layer, then by showing how it applies to other examples of trajectories and ocean wind prole models

commonly considered in studies about the dynamic soaring abilities of albatrosses.

Nomenclature

R n

= n-dimensional real vector space. I = {O; ı 0 ,  0 , k 0 } = inertial frame.

E 3 = 3D Euclidean vector space with I the associated reference frame.

Vectors in E 3 are denoted with bold letters. v w = ambient wind velocity with respect to I.

v a = vv w = aircraft air-velocity with respect to I.

x.y = inner product of x ∈ E 3 and y ∈ E 3 . ξ = coordinate vector of ξ ∈ E 3 in the body-xed frame B, i.e. ξ = [ξ 1 , ξ 2 , ξ 3 ] , ξ 1 = ξ.ı, ξ 2 = ξ., ξ 3 = ξ.k, ξ = ξ 1 ı + ξ 2  + ξ 3 k.

I. Introduction

Since the pioneering investigation by Lord Rayleigh in 1883 [START_REF] Rayleigh | The soaring of birds[END_REF] about the mechanisms involved in long-range ights of birds over the ocean, the possibility for a bird, or a man-made glider, of harvesting energy by repeatedly crossing a wind shear layer, in order to stay aloft for a long time, has motivated many studies. Over the years a large amount of data has been gathered by naturalists who observed large birds, albatrosses in particular, which mastered this type of ight.

One may for instance consult [START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF][START_REF] Bonnin | From albatross to long range UAV ight by dynamic soaring[END_REF] for a digest of these ndings. More recently the subject has also attracted the interest of engineers who analyze dynamic soaring (DS) on the basis of ight dynamics and ocean-wind prole mathematical models. Among early seminal contributions of this type one may cite [START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF]46] where the authors combine observations about the ight of albatrosses with dynamics modeling equations and the support of numerical simulation to explain the principle of DS. Calculation of optimal DS trajectories via dynamic programming was initiated by Sachs [START_REF] Sachs | Minimaler windbedarf für den dynamischen segelug der albatrosse[END_REF] and became a common factor of many recent engineering-oriented DS studies [START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF][START_REF] Bonnin | From albatross to long range UAV ight by dynamic soaring[END_REF]711]. The adjacent issues of sensory state estimation and control for a glider to automatically follow a desired (possibly optimal) path and/or take advantage of wind gusts have also been addressed in several studies of DS [START_REF] Langelaan | Gust energy extraction for mini-and micro-unhabited aerial vehicles[END_REF][START_REF] Bower | Boundary layer dynamic soaring for autonomous aircraft: design and validation[END_REF]1214]. The DS research theme is concomitant with experiments conducted by enthusiastic model glider pilots who make their gliders perform fast circular ights near the top of a ridge subjected to a strong wind on one side and to nearly dead still air on the other side; an activity that led to an informal race of breaking speed records, the impressive one in date of April 13, 2017 being of 519 mph (835 km/h). It is further boosted by the rapidly expanding market of drones and the mid-term perspective of motorized gliders that could y autonomously over long distances by using DS in complementation of more classical energy harvesting techniques (solar charged batteries, thermal and slope upwind currents).

The present study revisits DS by exploiting a ight dynamics model previously used to work out nonlinear autopilots for scale-model airplanes [1518]. A dierence with models considered in other engineering-oriented DS studies is that this model does not explicitly involve a wind-frame, with associated attack and slide-slip angles, nor ight-path, bank, and heading angles commonly used in aircraft dynamics equations and for control design. These angle representations present singularities and add, from experience, useless complexities to ight control design and analysis. The approach here adopted also departs from other studies on DS, which focus on the characterization of trajectories that are optimal in terms of energy use. Search of optimality is here left aside for the development of new means of computer simulation allowing for easy testing of any glider traveling along any (mathematically specied) trajectory and confronted to any (mathematically specied) wind prole. We believe that such a simulation facility, even though it is not perfect because it relies on a simplied model of aerodynamic forces acting on the vehicle, is useful to more thoroughly grasp the possibilities oered by DS.

The paper is organized as follows. Section II presents the point-mass ight dynamics model subsequently used to simulate and analyze the ight of a glider along a path that intersects a wind shear layer, and derives energy-related equations that enlightens the process of energy-harvesting associated with specic ight maneuvers. Section III is devoted to the study of DS along an inclined IV that the corresponding state equations, given a mathematical expression of the followed ightpath as a function of the curvilinear abscissa and a mathematical expression of the wind prole in 3D-space, can be written in the form of an ordinary dierential equation (ODE); an equation that can in turn be numerically integrated using a standard numerical integration package. This possibility is much related to the model of aerodynamic forces here considered. Simulation of DS along three dierent paths are subsequently considered for illustration purposes. The rst path is the inclined circle considered in the previous section. It also serves to compare simulated values with values calculated with the estimates derived in this section, and observe their good concordance over a large spectrum of operating conditions. The second path is an inclined Lissajous curve whose eight shape is reminiscent of albatrosses closed trajectories evoked in various studies (see, [START_REF] Bonnin | From albatross to long range UAV ight by dynamic soaring[END_REF][START_REF] Barnes | How ies the albatross-The ight mechanics of dynamic soaring[END_REF],

Fig. 1 Frames and forces for instance). The third path is an inclined sinusoidal open curve, also reminiscent of observed albatrosses trajectories, for which simulated sustained ight results are reported for dierent angles between the wind direction and the overall path direction. Finally, a short summary of the original contributions presented in this paper is given in the concluding Section V.

II. Modeling issues

A. Aerodynamic forces

The resultant aerodynamic force F a applied to a rigid body moving with air-velocity v a is traditionally decomposed into the sum of a drag force F D along the direction of v a and a lift force F L perpendicular to this direction, i.e.

F a = F D + F L (1) 
The intensities of drag and lift forces are essentially proportional to |v a | 2 modulo variations characterized by two dimensionless functions C D and C L , which depend in the rst place on the orientation of v a w.r.t. the body, but also on the Reynolds number R e and Mach number M . These dimensionless functions are called the aerodynamic characteristics of the body, or drag coecient and lift coecient respectively. More precisely

F D = -η a |v a |C D v a , F L = η a |v a |C L v ⊥ a (2)
with v ⊥ a denoting some vector perpendicular to v a and such that |v ⊥ a | = |v a |, and η a := ρΣ 2 with ρ the free stream air density, and Σ an area germane to the body shape.

It is well known that the norm of aerodynamic forces are commensurate with the squared norm of the air velocity so that one can safely assume that there exists two positive numbers c and d such that

|F a | < c + d|v a | 2 (3) 
Let us dene ı as the unit vector in the zero-lift direction of the aircraft, i.e. the direction of the air velocity perpendicular to the main wing's axis for which no lift force is produced, and k the unit vector perpendicular to ı and to the main wing's axis (see Fig. 1). With this choice of the body frame the direction of v a can be characterized by two angles α and β such that v a = |v a |(cos α(cos β ı + sin β ) + sin α k) with α = arcsin(v a,3 /|v a |) and β = arctan(v a,2 /v a,1 ) denoting the angle of attack (here chosen equal to zero when the air velocity direction coincides with the aircraft zero-lift direction) and side-slip angle respectively. For this study of wind soaring we propose to work with the model of aerodynamic forces previously used in [START_REF] Kai | A nonlinear global approach to scale-model aircraft path following[END_REF] for the design of scale-model aircraft autopilots. This model is:

F a = -(c 0 v a,1 ı + c0 v a,3 k)|v a | + v a,2 O(v a ) (4) 
with c 0 and c 1 denoting positive numbers, c0 = c 0 + 2c 4) is compatible with the assumed aircraft symmetry about the plane (G; ı, k). Note that if the drag coecient c 0 were equal to zero then, in the case of zero side-slip angle (i.e. v a,2 = β = 0), the resultant aerodynamic force would be orthogonal to the zero-lift plane with an amplitude proportional to sin α|v a | 2 . This model is also compatible with relations (1) and

(2). Indeed, one veries that, in this case,

v ⊥ a = -|va| cos α k + tan αv a , C D (α) = (c 0 + 2c 1 sin 2 α)/η a ,
and C L (α) = c 1 sin 2α/η a . For small angles of attack the drag coecient C D is thus approximately equal to c0 ηa and the lift coecient C L is approximately proportional to the angle of attack with the coecient of proportionality given by 2c1 ηa . This is coherent with conventional models of aerodynamic forces exerted on an aircraft, and with experimental data performed on a variety of wing proles and axisymmetric bodies [START_REF] Pucci | Nonlinear feedback control of axisymmetric aerial vehicles[END_REF].

From now on we will assume that the glider is controlled so as to maintain a balanced ight, i.e. with no slide-slip or, equivalently, such that v a,2 = 0 [? ]. Under this assumption the resultant aerodynamic force (4) simplies to

F a = -(c 0 v a,1 ı + c0 v a,3 k)|v a | (5) 
Remark: This equation may, at rst glance, look too simple to correctly model the aerodynamic forces acting on a glider. In fact, for small angles of attack, it closely matches other models used in the literature to model and analyze dynamic soaring. For instance, linear approximation about α = 0 of the lift and drag coecients associated with this model yields the commonly used relation [START_REF] Bousquet | Dynamic soaring in nite-thickness wind shears: an asymptotic solution[END_REF] with, in this case, C D0 = c 0 /η a and k = 0.5η a /c 1 . Compared to classical models of lift that are linear or polynomial w.r.t. the angle of attack, the nonlinear model ( 5) also presents the advantage of complying with the physical property of zero lift when α = ±π/2. This latter feature is useful to the design of controllers for scale-model aircraft which, due to their small size and inertia, are particularly sensitive to wind gusts and thus to large angle of attack excursions. For the present study of DS, a complementary interesting feature of this model is that it yields motion equations along pre-specied geometric paths that can be written in the form of easily (numerically) integrable ODEs. Using this property to simulate DS is detailed further on.

C D = C D0 + kC 2 L [26,

B. Dynamic equations and energy considerations

The aircraft dynamics related to the motion of the aircraft CoM are given by the classical Newton equation

ma = mg + F a (6) 
so that, assuming a balanced ight and in view of ( 5)

ma = mg 0 k 0 -c 0 (v a .ı)ı + c0 (v a .k)k |v a | (7) 
The dynamic equation ( 7) points out the importance of the coecients c 0 and c0 to characterize the ight properties of the glider. In particular, the maximum glide rate of the aircraft, i.e. its glide ratio here denoted as gr, is a simple function of these coecients. Indeed

gr = sup α |F L (α)| |F D (α)| = sup α |C L (α)| |C D (α)| (8) 
with

C L (α) C D (α) = 2c 1 c0 tan(α) + c 0 cot(α) (9) 
whose derivative w.r.t the angle of attack is

∂ ∂α C L (α) C D (α) = -2c 1 c0 / cos 2 (α) -c 0 / sin 2 (α) (c 0 tan(α) + c 0 cot(α)) 2
The largest value of |C L (α)|/|C D (α)| is obtained by zeroing this derivative, i.e. for tan(α) = c0 c0 .

Using this latter relation, and

2c 1 = c0 -c 0 , in (9) yields gr = c0 -c 0 2 √ c 0 c0 (10) 
Because c 0 is typically much smaller than c0 in the case of xed-wing aircraft, a good approxi- mation of the previous expression of gr is

gr ≈ 0.5 c0 /c 0 (11) 
As for the corresponding gliding speed v gr , i.e. the aircraft speed along the optimal gliding path (in terms of the longest traveled distance before touching ground), using again c 0 c0 one nds that

v gr ≈ √ mg 0 /(c 0 c0 ) 0.25 (12) 
The corresponding sink rate is thus given by v sink ≈ v gr /gr ≈ 2 √ mg 0 c 0.25 0 /c 0.75 0 . Conversely, c0

and c 0 can be calculated from gr and v gr according to

c0 ≈ 2gr v 2 gr mg 0 , c 0 ≈ mg 0 2gr v 2 gr (13)
Now, let z denote the glider's altitude and E := 0.5m|v| 2 +mg 0 z the total (kinematic+potential) energy of the glider. Because ż = -k 0 .v, the inner product of both members of the equality (7) by

v yields Ė = -c 0 (v a .ı)(v.ı) + c0 (v a .k)(v.k) |v a | (14) 
Sustained ight requires E to be bounded from below. This in turn implies that losses of energy during some parts of the ight must be compensated by energy increases during other parts of the ight. It is well known that such increases can be obtained by taking advantage of ascending thermal currents, i.e. when v w contains an upward vertical component. Dynamic soaring poses the question of whether energy increases can also be obtained when the wind blows horizontally during some parts of the ight. In this respect equation ( 14) is important to understand the energy production/dissipation process associated with dynamic soaring. First this equation shows that in the absence of wind, i.e. when

v w = 0, Ė = -c 0 (v.ı) 2 + c0 (v.k) 2 |v| < 0.
The total energy of the glider thus always decreases in this case a physically coherent property implying that a glider maintaining its speed in still air constantly loses altitude. Then it shows that, when the angle of attack is small (which implies that |v a .ı|

≈ |v a |) and |v w | < |v|, the term -c 0 (v a .ı)(v.ı)|v a | is
negative and thus dissipates energy. Nevertheless, because c 0 c0 in the case of airplanes and gliders, this term can be small compared to the second term -c 0 (v a .k)(v.k)|v a | in the right-hand side of ( 14) so that, in the rst approximation, the glider's energy varies according to

Ė ≈ -c 0 (v a .k)(v.k)|v a | (15) 
Because the angle of attack is nominally positive and smaller than π/2, the scalar product v a .k is positive. Equation ( 14), or [START_REF] Hua | A novel approach to the automatic control of scale model airplanes[END_REF], indicates that the total energy of the glider can increase only when v a .k and v.k have opposite signs. Energy transfer issues are pointed out and discussed in all DS studies, starting with [START_REF] Rayleigh | The soaring of birds[END_REF] and, more recently, [START_REF] Sachs | Minimaler windbedarf für den dynamischen segelug der albatrosse[END_REF][START_REF] Barnes | How ies the albatross-The ight mechanics of dynamic soaring[END_REF][START_REF] Langelaan | Gust energy extraction for mini-and micro-unhabited aerial vehicles[END_REF]. All explain that energy is gained when there is wind and the glider performs specic maneuvers in relation to the wind's direction. However, to our knowledge, the condition of energy increase has not previously been mathematically characterized by the simple geometrical inequality (v a .k)(v.k) < 0. A typical maneuver, evoked in most DS studies, for which this inequality is satised is a circular (quasi-horizontal) half-turn started by facing the horizontal wind, and performed with enough speed so that the glider has to lean strongly into the turn. Its main wing then tends to become vertical and uses the wind much alike the propulsive sail of a sailing boat. Figure 2 shows a schematic representation of the projections on the circle's plane of the involved velocities and of the unit vectors ı and k during such a maneuver. The part of the circle where energy can be harvested from the wind, i.e. where v.k < 0 is colored in blue. However,
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Fig. 2 Variations of v.k along a circular horizontal path v.k is positive when the glider follows the other part of the circle with the same horizontal wind, and the energy balance over the whole circle is negative, implying that sustained level ight is then not possible. As a matter of fact this balance turns out to be worse than in the no-wind case. The question then becomes to nd out whether a reduction of the wind speed on this second part can reduce the energy loss so that the balance can be reached over the complete cycle. In other words can horizontal wind gradients be used to achieve a sustained ight? This question brings us back to studying Rayleigh's cycles evoked in all works on dynamic soaring, not only for theoretical reasons but also to tentatively account for the impressive performances recently obtained by model glider pilots.

III. Rayleigh's cycle and estimation of dynamic soaring characteristics

A Rayleigh cycle, rst envisioned by Lord Rayleigh [START_REF] Rayleigh | The soaring of birds[END_REF] who was interested in the ight of large birds without working their wings like the albatross, is sketched on Figure 3. The principle is as follows: the glider descends downwind along a circular-like path, passes through a horizontal shear boundary into a layer of slower or stationary air, turns upwind, passes again through the shear boundary to face the wind, and so on. Alike many authors we will here model the path followed by the glider by a circle of radius r inclined with an angle θ ( = 0) w.r.t the horizontal plane (see 4). The shear layer is supposed to be "thin" and it crosses the circle along a diameter. The wind velocity v w above the shear layer is supposed constant and perpendicular to this diameter.

The corresponding wind speed, equal to |v w |, is denoted as v w to lighten the notation. Below the shear layer the air is still. The wind's gradient w.r.t. the altitude between the shear boundaries can be modeled by any smooth (say twice dierentiable) monotonic function.

Because va = avw one deduces from (7) that

m va = -mg 0 k 0 -c 0 (v a .ı)ı + c0 (v a .k)k |v a | -m vw (16) 
Using the facts that k 0 .v w = 0, because the wind blows horizontally by assumption, and

|v a | 2 = (v a .ı) 2 + (v a .k) 2
, because v a,2 = 0 by assumption of a balanced ight, the scalar product of both members of the equality ( 16) with v a yields

m va .v a = -mg 0 (k 0 .v) -c 0 (v a .ı) 2 + c0 (v a .k) 2 |v a | -m vw .v a = -mg 0 (k 0 .v) -c 0 |v a | 3 -2c 1 (v a .k) 2 |v a | +m vw .v w -m vw .v (17) 
Dene the auxiliary energy function Ē := E a -0.5m|v w | 2 , with E a := 0.5m|v a | 2 + mg 0 z denoting the glider's total energy w.r.t. the moving ambient air. Note that Ē = E when the glider's inertial velocity is perpendicular to the wind direction. The equality [START_REF] Kai | A nonlinear global approach to scale-model aircraft path following[END_REF] may also be written as

Ė = -c 0 |v a | 3 -2c 1 (v a .k) 2 |v a | -m vw .v (18) 
Let us now evaluate the modication of Ē or, equivalently, of E on a cycle, i.e. between a time-instant t = 0 when the glider leaves the top of the circle and the time-instant T when it returns for the rst time to this position. From the denition of Ē and using the equalities v(0).v w (0

) = v(T ).v w (T ) = 0 so that |v a (T )| 2 -|v a (0)| 2 = |v(T )| 2 -|v(0)| 2
, and z(0) = z(T ), the integration of ( 18) on the time interval [0, T ] yields

Ē(T ) -Ē(0) = 0.5m(|v(T )| 2 -|v(0)| 2 ) = T t=0 -c 0 |v a (s)| 3 ds + T t=0 -2c 1 (v a (s).k(s)) 2 |v a (s)|ds + T t=0 -m vw (s).v(s)ds (19) 
Note that the rst two integrals in the right-hand side of this equality are negative. They are energy dissipative terms. Therefore, the third integral is the only one that can increase the energy and yield a sustained ight. The explicit calculation of these integrals is not possible. Instead, we propose to estimate them by using approximations that are best justied when the dierence between |v| and |v a |, and the relative variations of |v| on the circle, are small. To this purpose we denote the glider's average speed on the circle as v so that T ≈ 2πr v and

T t=0 -c 0 |v a (s)| 3 ds ≈ -c 0 T v3 ≈ -2πrc 0 v2 (20) 
Concerning the third integral, let v down (resp. v up ) denote the glider speed when it crosses the boundary layer going down (resp. going up). Let also t 1 (resp. t 1 + δ 1 ) and t 2 (resp. t 2 + δ 2 ) denote the time-instants when the glider enters (resp. leaves) the shear layer. Because the shear layer is thin we may assume that the glider speed is almost unchanged when crossing it. Therefore

v(s) ≈        v down (-cos(θ) 0 -sin(θ)k 0 ), s ∈ [t 1 , t 1 + δ 1 ] v up (cos(θ) 0 + sin(θ)k 0 ), s ∈ [t 2 , t 2 + δ 2 ] v w (t 1 ) = -v w  0 , v w (t 1 + δ 1 ) = 0 v w (t 2 ) = 0, v w (t 2 + δ 2 ) = -v w  0
By further assuming that |v| is approximately constant (and approximately equal to the average velocity v) on the upper part of the circle, using the circle's symmetry yields

T t=0 -m vw (s).v(s)ds ≈ -m v(t 1 ). t1+δ1 t1 vw (s)ds +v(t 2 ). t2+δ2 t2 vw (s)ds = m(v down + v up )v w cos(θ) ≈ 2mvv w cos(θ) (21) 
This relation shows that the balance of kinetic energy increment due to crossing the shear layer is approximately proportional to the wind speed above the shear layer, and decreases with the angle of inclination of the circular path w.r.t. the horizontal plane.

Let us now estimate the second integral. By assuming that the glider speed is approximately equal to the average speed v, the glider's acceleration a is approximately equal to v2 r ū with ū denoting the unit vector pointing from the glider's CoM to the circle's center. Using this approximation in the dynamic equation [START_REF] Langelaan | Gust energy extraction for mini-and micro-unhabited aerial vehicles[END_REF] yields

m v2 r ū -mg 0 k 0 ≈ -c 0 (v a .ı)ı + c0 (v a .k)k |v a |
Forming the squared norm of both members of this (near) equality then yields

m 2 v4 r 2 + g 2 0 -2g 0 v2 r ( ū.k 0 ) ≈ c 2 0 (v a .ı) 2 + c2 0 (v a .k) 2 |v a | 2 Because |v a | 2 = (v a .ı) 2 + (v a .k) 2
, we have also

m 2 v4 r 2 + g 2 0 -2g 0 v2 r ( ū.k 0 ) ≈ c 2 0 |v a | 4 + (c 2 0 -c 2 0 )(v a .k) 2 |v a | 2
Using again the approximation |v a | ≈ v, and because c 0 c0 , the previous relation yields (recall

also that c0 = 2c 1 + c 0 ≈ 2c 1 ) 2c 1 (v a .k) 2 |v a | ≈ 1 c0 ( m 2 r 2 -c 2 0 )v 3 + m 2 g 2 0 c0 v - 2m 2 g 0 v c0 r ( ū.k 0 )
Assuming a near constant speed, the integration of ( ū.k 0 ) on the circle vanishes. Integration of both members of the previous (near) equality, with T ≈ 2πr v , yields

T t=0 -2c 1 (v a (s).k(s)) 2 |v a (s)|ds ≈ -2π c0 ( m 2 r -rc 2 0 )v 2 - 2πrm 2 g 2 0 c0 v2 (22) 
Using ( 20)-( 22) in ( 19) with c 0 c0 , and using also the fact that c 0 1 in the case of airplanes and gliders so that c 2 0 c 0 , then yields the following approximation 

|v(T )| 2 -|v(0)| 2 ≈ 4 cos(θ)v w v -π( m c0 r + c 0 r m )v 2 -π mg 2 0 r c0 v2 ( 
∆v ≈ 2 cos(θ)v w -π( m c0 r + c 0 r m )v -π mg 2 0 r c0 v3 (24) 
To our knowledge such an expression of the speed variation over a Rayleigh cycle has not been derived before. Let vk denote the glider's average speed on the time period

[T k , T k+1 = T k + 2πr vk )
needed to travel one complete circle. The previous relation suggests that v k evolves approximately according to

vk+1 = vk + 2 cos(θ)v w -π( m c0 r + c 0 r m )v k -π mg 2 0 r c0 v3 k (25)
Figure 5 shows this evolution in the case where the parameters of Table 1 (given in the international system of units (SI)) are used. The corresponding glide rate and gliding speed of the modeled glider, calculated from [START_REF] Bousquet | Dynamic soaring in nite-thickness wind shears: an asymptotic solution[END_REF] and [START_REF] Patel | Control law design for improving UAV performance using wind turbulence[END_REF], are gr = 31.6 and v gr = 21.6m/s. Relation (24), taken as an equality, can in turn be used to estimate various dynamic soaring characteristics on a Rayleigh's circle, namely the minimal wind speed v w,min for a given circle's Estimation of v w,min : Dynamic soaring on a Rayleigh cycle is possible if there exists a speed range for which ∆v is positive or equal to zero. Therefore the maximum of ∆v w.r.t. v must be positive or equal to zero. From (24) one has

∂ ∂v ∆v = 2π -( m c0 r + c 0 r m ) + 3mg 2 0 r c0 v4
and the maximum of ∆v is obtained when ∂ ∂ v ∆v = 0, i.e. for v = vmin with vmin = 3m 2 g 2 0

( m 2 r 2 + c 0 c0 ) 0.25 (26) 
This is also the (estimated) minimal average speed of a sustained ight. In the case of the parameters of Table 1 it is equal to 24m/s. Using the previous relation in (24) yields

∆v max v3 2 = cos(θ)v w 3m 2 g 2 0 ( m 2 r 2 + c 0 c0 ) 0.75 - 4πmg 2 0 r c0 so that ∆v max can be positive or equal to zero only if v w ≥ v w,min / cos(θ) with v w,min = 4πr 3 0.75 c0 ( g 0 m ) 0.5 ( m 2 r 2 + c 0 c0 ) 0.75 (27) 
With the parameters of Table 1 this expression yields v w,min = 3.21m/s. This approximation of the minimal wind speed, although slightly optimistic as we will later verify via simulation, is nonetheless of interest because it points out that sustained ight does not necessarily require a strong wind.

Estimation of vmax : This estimate is obtained by zeroing ∆v and it is the nite limit when it exists of the sequence vk (k ∈ N) of relation ( 25). This limit is easily computed numerically. It is also the largest real solution to the fourth-degree polynomial equation in x

cos(θ)v w x 3 -π( m c0 r + c 0 r m )x 4 -π mg 2 0 r c0 = 0
In order to propose a simple explicit expression we propose an estimation obtained by assuming that the constant term in the left-hand side of this equality is dominated by the other two terms when the average soaring speed v is large. This yields the following estimate of vmax

vmax ≈ cos(θ) v w πr c0m ( m 2 r 2 + c 0 c0 ) (28) 
whose accuracy should thus increase with the size of this estimate.

Estimation of r opt : The optimization of the circle's radius depends on the chosen criterion. An option is to work out the radius for which sustained ight is possible with the smallest minimal wind speed v w,min given by ( 27). The corresponding solution is r = m √ 2c0 c0

. The other option, here retained, is the radius yielding the fastest soaring speed, i.e. for which vmax is the largest. In view of (28) this is the value of r that minimizes r( m 2 r 2 + c 0 c0 ), i.e.

r opt ≈ m √ c 0 c0 = v 2 gr g 0 ( 29 
)
with v gr the gliding speed given by ( 12). This radius is equal to 47.4m in the case of the glider parameters of Table 1. The corresponding soaring speed is

vmax|ropt ≈ cos(θ) v w 2π c0 c 0 = cos(θ) v w π gr (30) 
with gr the glide rate given by [START_REF] Bousquet | Dynamic soaring in nite-thickness wind shears: an asymptotic solution[END_REF], and the corresponding loop period is

T opt ≈ 2πr opt vmax|ropt = 2πv 2 gr g 0 vmax|ropt (31) 
Numerical values obtained with the glider parameters of Table 1 are vmax|ropt ≈ 98.7m/s and T opt ≈ 3s. At this point it is worth noting that, in the particular case where the angle θ is very small so that cos(θ) can be approximated by one, these last two estimates coincide with those proposed by

Richardson [START_REF] Richardson | High-speed dynamic soaring[END_REF] on the basis of a simpler model of the glider's dynamics. We anticipated this nding which points out the compatibility of our respective approaches. Ours, being more elaborate, goes with complementary predictions and a way of testing their accuracy via simulation.

Precise numerical integration of the glider's dynamic equations on the assigned path, comparison of observed simulation results with the estimates derived previously, and simulation of other operating conditions are addressed in the next Section.

IV. Simulation

A. Numerical integration of dynamic equations on a given arbitrary path Consider a regular (at least twice dierentiable) 3D-path C parametrized by its curvilinear abscissa s and a running point P (s) on this curve whose Cartesian coordinates (x, y, z) w.r.t. to the chosen inertial frame I = {O; ı 0 ,  0 , k 0 } are specied either explicitly in terms of known functions of s, or via the point P (0) complemented with coordinate-derivatives w.r.t. the curvilinear abscissa, i.e. x (s) = f x (x(s), y(s), z(s)), y (s) = f y (x(s), y(s), z(s)), z (s) = f z (x(s), y(s), z(s)). In this latter case the functions f x , f y and f z are given and such that f

2 x + f 2 y + f 2 z = 1 (normalization constraint).
The main issue then, given the initial position of P on the path, is to determine the curvilinear abscissa at all time-instants, i.e. to numerically compute s(t), ∀t ≥ 0.

Let u(s) denote the unit vector tangent to the path at the point P (s), i.e.

u(s) = x (s)ı 0 + y (s) 0 + z (s)k 0 (32)
When the point P moves on the path, the time derivative of u is thus given by

u(s, ṡ) = x (s)ı 0 + y (s) 0 + z (s)k 0 ṡ (33)
The velocity of P w.r.t. the inertial frame is the vector v = ṡu. Now, dene the state vector X := (x, y, z, s, ṡ) and assume that the function g s (X, t) such that s = g s (X, t) is known to us, then the position of P and its velocity at any time-instant can be calculated by numerically integrating the ordinary dierential equation (ODE)

Ẋ =                 0 0 0 0 x (s) 0 0 0 0 y (s) 0 0 0 0 z (s) 0 0 0 0 1 0 0 0 0 0                 X +                 0 0 0 0 g s (X, t)                 (34)
from the initial condition X(0) = (x 0 , y 0 , z 0 , 0, | v0 |) . Using a standard numerical integration package, simulation of ight time-periods of several minutes then just takes a few seconds on an average PC.

Remark: In the case where the coordinates of P are specied in terms of known functions of the curvilinear abscissa, it suces to dene the two-dimensional state X := (s, ṡ) and numerically integrate the corresponding ODE from the initial condition X(0) := (0, | v0 |) .

In the context of dynamic soaring the point P is the glider's CoM, and v is the glider's velocity on the chosen path C. We show next that, given any continuous wind velocity function v w (x, y, z, t), the function g s can be explicitly determined from the dynamic equation [START_REF] Langelaan | Gust energy extraction for mini-and micro-unhabited aerial vehicles[END_REF].

Determination of the function g s :

Because v = ṡu, one deduces that

a = su + ṡ u = su + ṡ2 h (35) 
with h(s) := x (s)ı 0 + y (s) 0 + z (s)k 0 . Using the fact that u, and thus h, are orthogonal to u (because u is a unit vector), one deduces that

|a| 2 = |s| 2 + ṡ4 |h| 2 (36) Dene ḡ := g - c0 m v a |v a | (37)
with v a (X, t) = ṡu(s)v w (x, y, z, t). Because v a = (v a .ı)ı + (v a .k)k for a balanced ight, the dynamic equation ( 7) may also be written as

a -ḡ = 2 c 1 m |v a |(v a .ı)ı which implies that ı = a - ḡ |a -ḡ| (38) Therefore a -ḡ = 2 c 1 m |v a |(v a .(a -ḡ)) a - ḡ |a -ḡ| 2 which in turn implies that |a -ḡ| 2 = 2 c 1 m |v a |(v a .(a -ḡ))
or, equivalently

|a| 2 -2a.ḡ + |ḡ| 2 = 2 c 1 m |v a |(v a .(a -ḡ))
By replacing a and |a| 2 by their expressions ( 35) and (36) in the above equality, one gets

s2 + 2b(X, t)s + c(X, t) = 0 (39) with b := (c0+c1) m |v a |v a -g .u c := 2 ṡ2 (c0+c1) m |v a |v a -g .h + |ḡ| 2 + ṡ4 |h| 2 +2 c1 m |v a |(v a .ḡ) (40) 
It is not dicult to verify that, of the two solutions to this quadratic equation in s, only the one adding the squared-root discriminant is physically pertinent. The function g s involved in the equation ( 34) is thus

g s := -b + b 2 -c (41) 
Remark: Once s(t), ṡ(t), s(t) and the glider's position at the time-instant t are known, the glider's orientation, i.e. the frame vectors (ı, , k)(t), can also be numerically determined. Indeed, ı(t) is given by (38) and (t) = ı(t)×va(t) |ı(t)×va(t)| because this latter vector is orthogonal to both ı(t) and v a (t)

in the case of a balanced ight. The third vector is then the cross product of the other two vectors, i.e. k(t) = ı(t) × (t).

B. Application to a Rayleigh cycle

The path C is the inclined circle evoked in Section III and one may arbitrarily assume that its center is the origin of the inertial frame I. One may also choose the glider's initial position at the top-end of the circle, i.e. x(0) = 0, y(0) = r cos(θ), z(0) = r sin(θ). The initial glider speed |v(0)| can be chosen arbitrarily, but large enough to yield an average speed, when going around the circle for the rst time, larger than the minimal value for which sustained dynamic soaring is possible, an estimation of which is (26). The Cartesian coordinates of the glider's CoM on the circular path are

               x(s) = -r sin(s/r) y(s) = r cos(s/r) cos(θ) z(s) = r cos(s/r) sin(θ)
and the (continuous) wind velocity is

v w (z) =                -v w  0 if z ≥ 2 -v w (0.5 + z(s) ) 0 if z ∈ (-2 , 2 ) 0 if z ≤ -2
with > 0 the thickness of the shear layer (which may be chosen arbitrarily small) and v w the constant wind speed above the shear layer.

C. Compared estimation and simulation results

Once the function g s associated with the inclined circular path is determined, the glider's dynamics can be numerically integrated along this path. With the parameters of Table 1 and setting the initial glider speed equal to 10m/s, the time-evolutions of the glider inertial and air speeds are represented in Figure 6. The close resemblance of Figures 5 and6 (similar speed growth rates and maximum dynamic soaring speeds) is a rst step to the validation of the estimates worked out in Section III. Another test was to determine via simulation the minimal wind speed vw,min and the minimal average speed vmin of the glider for which sustained dynamic soaring is possible, in order to angle of inclination from 0.2rad to 0.7rad and compare the maximal (asymptotic) average speeds vmax determined either via simulation or calculated from (28). The values 76m/s and 76.9m/s so obtained are again close. A fourth test consisted in changing the circle's radius and verifying that the optimal radius r opt yielding the largest average soaring speed vmax was correctly estimated by (29). Table 2 shows good concordance between simulated and estimated speeds obtained for three dierent radii and conrms the optimality of the radius of 47.4m predicted by (29). However, from the nature of the approximations used in Section III, the accuracy of the estimates should degrade when the glider speed decreases, i.e. when the wind speed decreases. To get a more precise evaluation of this degradation, we have determined by simulation and calculated from (28) the maximal glider's average speed reached with various wind speeds ranging from 5m/s to 25m/s, and gathered the results in Table 3 with relative error percentages. Except for the wind speed the other parameters are those of Table 1. This table conrms the loss of accuracy of the estimates for low speeds, but also shows that the accuracy remains acceptable (relative error smaller than 3%) for a large spectrum of velocities, and becomes excellent (relative error smaller than 1%) when the wind speed exceeds 15m/s.

To summarize, we can assert that the estimates worked out in Section III are in good accordance with simulation results in a large spectrum of operating conditions.

D. Application to other and wind proles

Sustained ight along a Rayleigh cycle implies the possibility of overall motion along any horizontal direction, even when this direction is opposite to the wind direction. Indeed, to this aim it suces to slowly move the circle's center in the desired direction. This possibility is also simply with the sign chosen according to the desired direction of motion along the curve. The unit vector tangent to the curve at the point P is u(s) = x (s)ı 0 + y (s) 0 + z (s)k 0 .

The other vector h(s) = x (s)ı 0 + y (s) 0 + z (s)k 0 needed to calculate the functions b(X, t), c(X, t) and g s (X, t) is obtained by dierentiating the coordinates of P a second time, i.e. by using

x (s) = a1(-sin(φ(s))φ (s) 2 + cos(φ(s))φ (s)

y (s) = 2a2 -2 sin(2φ(s))φ (s) 2 + cos(2φ(s))φ (s) cos(θ) z (s) = 2a2 -2 sin(2φ(s))φ (s) 2 + cos(2φ(s))φ (s) sin(θ)
with φ (s) = ± (0.5a 2 1 sin(2φ(s)) + 4a 2 2 sin(4φ(s)) φ (s) 4 .

In this case, because the coordinates x, y, and z are known functions of φ, it suces to dene the state vector X := (φ, s, ṡ) and calculate X(t) via numerical integration of the ODE

Ẋ =         0 0 φ (s) 0 0 1 0 0 0         X +         0 0 g s (X, t)        
For the glider parameters of Table 1, a two-layer wind model with thin shear layer at z = 0, v w = -v w  0 with v w = 10m/s above the shear boundary, and the Lissajous curve parameters a 1 = 80m, a 2 = 30m, θ = 0.2rad, the glider's asymptotic average speed obtained in simulation is vmax = 83m/s. A slightly faster speed of 85m/s is obtained with a 1 = 100m, a 2 = 40m, and a slower speed of 74m/s is obtained with a 1 = 60m, a 2 = 25m. Comparison of these speeds with those obtained on a circular path tends to indicate that this latter path is slightly more energy-ecient than the eight-shape Lissajous path.

Open sinusoidal path

In order to move in some desired direction without making a loop one may consider a sinusoidal open path centered on this direction. An example of such a path is the curve parametrized by the

x coordinate of P dened by y = r cos(x/r) cos(θ), z = r cos(x/r) sin(θ) with r > 0 and θ denoting again the angle of inclination of the path w.r.t. the horizontal plane (see Figure 8 for which r = 50m, θ = 0.2rad). To simulate wind soaring along this path one rst needs to determine the variation of x w.r.t. the variation of the curvilinear abscissa s, i.e. x (s). This is obtained by using the equality

ds 2 = dx 2 + dy 2 + dz 2 = dx 2 (1 + ( dy dx ) 2 + ( dz dx ) 2 ) = dx 2 (1 + sin 2 (x/r))
and choosing one of the two solutions for x = dx ds depending on the chosen variation of x w.r.t. the curvilinear abscissa. For instance, if x must increase with s so that x must be positive, then 

x (s) = 1/ 1 + sin 2 (x(s)/r) (43) 
z (s) = dz dx x (s) = -1/ 1 + sin 2 (x(s)/r) sin(x/r) sin(θ) (44) 
From there one determines the vector h(s) := x (s)ı 0 + y (s) 0 + z (s)k 0 and, given the wind prole v w (x, y, z, t), the functions b(X, t), c(X, t), and g s (X, t). In this case, because y and z are functions of x, it is sucient to work with the three-dimensional state vector X = (x, s, ṡ) and calculate X(t) via numerical integration of the ODE

Ẋ =         0 0 x (s) 0 0 1 0 0 0         X +         0 0 g s (X, t)         (45) 
Table 4 shows the average asymptotic velocity vmax obtained with the glider parameters of Table 1, a path inclination angle θ = 0.2rad, a thin wind shear layer with boundary at z = 0, a constant wind speed of 10m/s above the shear layer, and a set of dierent wind directions given by -(sin(ψ)ı 0 + cos(ψ) 0 ). wind speeds yield larger direction angle intervals for which sustained ight can be maintained. This table also indicates that the fastest average velocity of the glider is obtained when the wind direction is orthogonal to the overall path direction.

One may also test in simulation wind proles that dier from the two-layer wind model considered so far. An example is the so-called logistic wind prole in the form

v w (z) = v w,max 1 + exp(-(z -z 0 )/δ) , (46) 
considered, for instance, in [START_REF] Bousquet | Dynamic soaring in nite-thickness wind shears: an asymptotic solution[END_REF]. When δ 1 and z 0 = 0 this model tends to the thin shear layer model considered in Section III. This model, being dierentiable w.r.t. the altitude, does not involve strict layer boundaries. Nevertheless, it may be approximated by a linear two-layer model whose shear layer is centered at z = z 0 , with a thickness = 4δ and wind speed above the shear layer equal to v w,max . Table 5 shows the average asymptotic velocity vmax obtained with this wind prole centered at z 0 = 0 for dierent values of δ, the wind direction being orthogonal to the general direction of motion, i.e. v w = -v w (z) 0 . 1, and the sinusoidal path previously considered, one can observe from simulation that a sustained ight is not possible whatever the general path direction w.r.t. the wind direction. A sustained ight in the most favorable path direction, i.e. leeward with ψ ≈ -0.5rad, requires either a stronger wind velocity v w,ref > 10.5m/s, or using a smaller value of z 1 (< 0.55m), or adaptation (optimization) of the ight-path parameters by taking, for instance, r = 25m and θ = 0.5rad.

A better comparison with Sachs results requires to simulate the dynamics of a glider with ying characteristics close to those of an albatross. For instance, setting m = 9kg, c 0 = 0.01, and c0 = 18 yields, by application of ( 11) and ( 12), a glide ratio equal to 21.21 and a gliding speed of 14.4m/s that are close to values attributed to an average male albatross [START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF][START_REF] Pennycuick | Gust soaring as a basis for the ight of petrels and albatrosses (Procellariiformes)[END_REF]. Considering an inclined sinusoidal trajectory with r = 17m, θ = 0.5rad and leeward direction ψ = -0.5rad, and using the previously mentioned logarithmic wind prole with z 0 = 0.03m, z 1 = 0.75m (the minimum glider's altitude above the sea), and h ref = 10m, one nds that the minimum (resp. maximum) wind-speed at the lowest (resp. highest) point on the path is equal to 0.55 v w,ref (resp. 1.09 v w,ref ). By

Simulating this glider along this path and with this wind prole, one observes from simulation that sustained DS ight requires to use v w,ref ≥ 9.1m/s in the expression of the wind prole. With the minimum value of 9.1m/s, the wind speed varies from 5.04m/s to 9.93m/s between the lowest and highest points on the path. The glider's speed varies between 10.8m/s and 27.2m/s, the load factor |F L | mg0 varies from 0.9 to 4.4, and the period for traveling one path's cycle is about 7.2s. These values are in the range of those observed by Pennycuick [START_REF] Pennycuick | Gust soaring as a basis for the ight of petrels and albatrosses (Procellariiformes)[END_REF] for albatrosses. A smaller value of the wind strength v w,ref would be obtained by further optimizing the path shape, but it is not clear at this point that the gain would be important. This latter issue, related to DS "sensitivity w.r.t.

path optimization", has not (to our knowledge) been thoroughly addressed and would deserve to be further explored. A perhaps sounder reason for modifying the path shape concerns the limitation of the load factor to a maximum value, as imposed (or approximately imposed via the limitation of the lift coecient C L ) in most albatross trajectory optimization studies [START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF][START_REF] Bonnin | From albatross to long range UAV ight by dynamic soaring[END_REF][START_REF] Lissaman | Wind energy extraction by birds and ight vehicles[END_REF][START_REF] Bower | Boundary layer dynamic soaring for autonomous aircraft: design and validation[END_REF].

V. Concluding remarks

In this paper dynamic soaring is studied on the basis of a nonlinear point-mass ight dynamics model previously used for the design of scale-model aircraft autopilots. This model is rst used to informally explain the energy-harvesting process involved in dynamic soaring and determine, via calculus approximations, estimates of various variables involved in energy neutral circular paths crossing a thin wind shear layer, i.e. so-called Rayleigh cycles. We then show that, given i) a set of parameters characterizing the ight properties of a glider, ii) a gliding path specied in terms of its curvilinear abscissa, and iii) a wind prole specifying the wind's strength and direction at any point, this model yields dynamic equations on the path that can be written as a closed-form nite-dimensional ODE amenable to standard numerical integration. This property in turn infers the possibility of simulating dynamic soaring easily for a large variety of operating conditions. This simulation facility is then used to verify the validity of the aforementioned estimates in the case of circular paths. It is also illustrated by considering two other types of paths (eight-shaped Lissajous curves and sinusoidal open curves) and two models of wind prole over the ocean (logisticexponential and logarithmic) proposed in several contributions studying albatrosses dynamic soaring abilities.

As pointed out in the introduction, this study departs from other engineering-oriented studies that focus on the calculation of optimal trajectories for dynamic soaring. Indeed, the rst application of the proposed simulation methodology is to test if a given glider will stay aloft indenitely by taking advantage of dynamic soaring, given a wind prole and a pre-specied trajectory that the glider has to follow. Solving a constrained optimal control problem requires important computational power and ecient dedicated programs, whereas the aforementioned test only requires using a standard numerical integration program and demands much less computational power. The two points of view are thus dierent. Nevertheless, they are also complementary. They both serve to evaluate the possibilities oered by dynamic soaring.

Finally, let us mention that a practical interest of testing dynamic soaring along pre-specied, not necessarily optimal, paths resides in the existence of controllers (autopilots) capable of stabilizing a (motorized) scale-model glider on such a path [START_REF] Langelaan | Gust energy extraction for mini-and micro-unhabited aerial vehicles[END_REF][START_REF] Patel | Control law design for improving UAV performance using wind turbulence[END_REF][START_REF] Bird | Closing the loop in dynamic soaring[END_REF][START_REF] Kai | A nonlinear global approach to scale-model aircraft path following[END_REF][START_REF] Kai | Design and experimental validation of a new guidance and ight control system for scale-model airplanes[END_REF].

  |x|= Euclidean norm of x ∈ R n .|x|(= |x|) = Euclidean norm of x ∈ E 3 . x i (i = 1, . . . , n) = ith component of x ∈ R n . P = aircraftcenter of mass (CoM) B = {P ; ı, , k} = body-xed frame with ı taken on the zero-lift body-axis of the aircraft. m = vehicle's mass. v = aircraft CoM's velocity with respect to I. a (= v) = aircraft CoM's acceleration with respect to I. g = g 0 k 0 = gravitational acceleration.
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  Figure4). The shear layer is supposed to be "thin" and it crosses the circle along a diameter. The

  23) Let ∆v := |v(T )| -|v(0)| denote the change of speed after the glider has completed one circle, so that |v(T )| 2 -|v(0)| 2 ≈ 2v∆v. Then, in view of (23) an estimation of ∆v is
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  circular path, i.e. a model of what is commonly called a Rayleigh cycle, and to the estimation, based on approximations, of various ight and environmental variables associated with DS. For small inclinations of the circle with respect to (w.r.t.) the horizontal plane, some of these estimates,

namely the maximum glider airspeed as a function of the wind speed, and the corresponding circle's radius, essentially coincide with estimates previously derived by Richardson

[START_REF] Richardson | High-speed dynamic soaring[END_REF]

. These estimates are of interest because they account for the impressive performance obtained by pilots of radio-controlled (RC) gliders. The technical arguments on which Richardson's calculations rely are obviously related to those used here. Being more elaborate our approach further allows us to work out estimates of other physical variables (speed increase after each cycle and minimal wind speed for sustained DS ight, in particular) that have not, to our knowledge, been derived elsewhere. Although the nonlinear ight dynamics model equations cannot be integrated explicitly, it is proved in Section

Table 1 A

 1 set of parameters

Table 2

 2 

		Glider's average speed for dierent radii	
	radius (m)	vmax (m/s, estimated)	vmax (m/s, simulation)
	30	89.1	88.3
	40	97.25	96
	47.4	98.7	97.8
	50	98.5	97.1
	70	91.6	90.4

Table 3

 3 Accuracy of estimated soaring speeds

	vw (m/s)	vmax (m/s, estimated)	vmax (m/s, simulation)	relative error (%)
	5	49.3	48	2.7
	10	98.5	97.1	1.4
	15	147.8	146.3	1.0
	20	197.5	196	0.76
	25	246.3	245	0.53

Table 4

 4 Glider's average speed for dierent wind directions

	wind direction ψ (rad)	vmax (m/s)
	0	86.5
	π/6	68
	-π/6	80
	π/4	50
	-π/4	68.5
	π/3.3	32.5
	-π/3.3	58
	-π/2.6	

35

This table implicitly indicates that sustained ight going "up" or "down" the wind is possible when ψ ∈ [ψ min , ψ max ] with extremal angles ψ min = -π 2.6 rad and ψ max = π 3.3 rad. For angles outside this interval we observed that sustained ight was no longer possible. Dierent glider parameters and wind speeds would of course yield other extremal angles. In particular, and as expected, faster

Table 5

 5 Glider's average speed for dierent values of δ

	δ (m)	vmax (m/s)	
	1	85.5	
	2.5	78.5	
	5	57	
	As expected the glider's performance in terms of velocity decreases when δ increases. For small
	values of δ the performance is similar to the one obtained with a wind two-layer model with thin
	shear layer.		
	Another popular wind prole is logarithmic and of the form	
	v w (z) = v w,ref	log (z -z min + z 1 )/z 0 log h ref /z 0	(47)

with z 1 (≥ z 0 ) denoting the glider's lowest altitude above the sea, and h ref (≥ z 1 ) the glider's altitude for which v w = v w,ref . In

[START_REF] Sachs | Minimum shear wind strenght required for dynamic soaring of albatrosses[END_REF] 

Sachs uses this prole with z 0 = 0.03m, z 1 = 1.5m, h ref = 10m, and applies trajectory optimization software to determine that, for an albatross weighting 8.5kg with glide ratio equal to 20, an energy-neutral DS trajectory requires a minimum shear wind strength v w,ref = 8.6m/s. For these wind prole values, the glider's parameters of Table