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 

Abstract—This article presents a dimensional-analysis 

supported scaling procedure applied to a mathematical model of 

electrochemical batteries. The main objective of this research is to 

allow for laboratory size-scaled and time-compressed 

experimental analysis of processes involving large physical 

magnitudes and evolving over long time spans. These situations 

are of interest when considering the sizing of battery packs and 

other components of energy systems, particularly smart grids, and 

further systems where battery storage is relevant, like hybrid 

vehicles and other standalone systems, as well as deciding 

management strategies on them. Voltage-, current- and time-

scaled models preserving the dynamic evolution of a group of 

relevant physical magnitudes are presented. These models have 

been validated through simulation and physical experiments on a 

test-bench designed and constructed on purpose. The physical 

implementation of the scaled models is not possible in the cases 

where some of the scaled model parameters cannot be met using 

real batteries. But, as the mathematical construction of the scaled 

models is always possible, this problem can be circumvented with 

a Hardware-in-the-loop approach: the scaled battery is 

numerically emulated on a programmable and controllable power 

source/sink system, which is run in real-time embedded in the test-

bench representing the whole system under study.  

 
Index Terms—Battery Models, Battery System Testing, 

Similarity, Scaled systems, Time Acceleration.  

I. INTRODUCTION 

ONDIMENSIONALIZATION of models of physical 

systems is a successful method used in science and 

engineering. Different application domains have developed 

different approaches for nondimensionalizing the systems 

object of their studies. Well known are, for instance, the 

normalization techniques yielding so-called “per unit” systems, 

which refer the values of the physical magnitudes to certain 

values of reference or base variables. This is the case in 

electrical engineering, where given values of power, voltage 

and angular frequency are used (in the study of electrical power 

systems, for instance, see [1]), or values of voltage, electrical 

current and rotational speed (when studying the dynamics of 

rotary electrical machines [2]). Widely spread in science and 
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engineering are the methods derived from dimensional analysis 

[3], [4], a technique based on the fact that the laws of physics 

must be independent of the units employed to assign values to 

the physical magnitudes. These methods, with –probably– 

fluid-dynamics being their most prominent realm of 

application, allow for reducing the number of physical 

parameters of a problem to a lesser number of dimensionless 

combinations of them (dimensionless groups), to establish 

functional relationships between certain properties of 

nondimensionalized variables and the dimensionless groups, to 

gain insight into general properties of similar systems on the 

sole dependency of these groups, and to conduct studies on 

scaled systems with results being transferable to the system of 

interest thanks to the property of similarity [5]. 

Nondimensionalization can be advantageously used on both, 

mathematical and physical models, in the former case, for 

instance, to properly determine negligible terms in 

mathematical expressions or to reduce the amount of 

computations when analyzing system behavior in parameter 

space and, in the latter case, to conduct experiments in physical 

scale models that replicate the behavior of the original systems. 

The coupling via actuators and smart sensors of physical 

systems with computing devices running algorithms in real 

time integrates these two originally separated application 

domains. This situation arises in the standard computer-

controlled systems and, lately at a dramatically increasing pace, 

in Hardware-In-the-Loop (HIL) systems [6]-[9], where for 

instance, prototype controllers are physically tested on 

experimental set-ups consisting either of the real plant to be 

controlled or of a scale model as its physical emulator, such as 

in reported in [10]. Scaling is necessary here as a means to 

adapt the amplitude of the magnitudes being handled at the 

interface between the physical system and the processors 

involved in the actuators and sensors. Also because of the 

numerical treatment of the data in these processors some sort 

of scaling is almost always mandatory. 

The motivation of the present study is to provide 

experimental analysis and validation tools for the design of 

engineering systems including electrochemical batteries as 
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storage components. These are model-related tools that should 

allow to develop test benches scaled in power, energy and/or 

time acting as physical emulators of the systems under study. 

The article focuses particularly on the scaling through 

dimensional analysis of a specific model of electrochemical Li-

Ion batteries, an ubiquitous storage component in smart grids 

with renewable sources, hybrid vehicles, airplanes, among 

others. As detailed later, the battery port-variables voltage and 

current, as well as time, are the scaled variables. 

A dimensional-analysis based scaling of a basic 

electrochemical battery model is presented in [11] in the 

context of design and evaluation of a Hybrid Electric Vehicle 

(HEV). In [6] a scaling procedure of a more complex model, 

where the dynamic behavior and nonlinearities of the battery 

are taken into account, is implemented in a HIL system and 

experimentally validated, but this procedure is done ad-hoc. In 

the particular context of vehicle powertrain simulation, a 

dimensional-analysis based method is developed in [10] to 

derive input/output scaling factors which, among other studies, 

is applied to a complex dynamic battery model simulation, 

experimentally complemented on actual hardware. 

Proceeding in a similar manner as in [10], this article 

formalizes the procedure of size scaling developed in [6] 

(though on a different, refined model) using dimensionless 

variables, as defined by the Pi-theorem [12]. This formalization 

assures the dimensional similarity of original and scaled 

models, which, among other advantages, allows for the easy 

extension of the procedure to time scaling. Results of both, 

numerical and physical experimental tests designed to validate 

these scaling procedures are reported. It is shown that the 

construction of a perfect physical emulator (physical scale 

model) of an electrochemical battery is not always possible due 

to the existence of physical constraints among the parameters 

of the model, that cannot be overcome by the degrees of 

freedom available to configure the physical emulator (there is 

no battery interconnection capable of reproducing some of the 

scaled parameters). Nevertheless, numerical emulation of the 

scaled model is always possible, what opens up the possibility 

of running the scaled model on-line in real-time on a computer 

associated to a programmable power source/sink, and thus to 

embed it on a HIL-system, see Fig. 1.  

The remainder of this work is organized as follows: In Section 

2 the battery model is specified and the dimensional-analysis 

supported scaling procedure is developed. In Section 3 the 

procedure is applied to obtain mathematical scale models 

which are validated via numerical simulation. Section 4 deals 

with the implementation of a physical scale model; first, the test 

bench setup is presented, then the scale procedure is applied to 

define the physical implementation and, finally, validation 

experiments are reported. Section 5 summarizes the main 

conclusions. 

II. SCALING OF ELECTROCHEMICAL BATTERY 

The aim of this research is reducing both component size and 

testing time on experimental studies related to smart grids 

problems (system sizing; grid architecture, topology and 

energy management definition; testing controller performance, 

etc.) Nevertheless, the results are applicable as well to many 

types of systems processing electric energy from embedded 

storages. Other phenomena not considered in the model used in 

this research can be as well handled with this time accelerated 

approach, for instance, changes in parameter values (capacity, 

internal resistance, etc.) due to the degradation of the battery 

(ageing/cycling). 

Energy storage systems are essential in providing energy 

management alternatives in smart electrical grids. They allow 

for increased integration to the grid of renewable energy 

sources as well as for improved reliability and stability of 

various systems [13]. Electrochemical batteries of diverse 

technologies such as Lead-Acid (Ld), Nickel-Cadmium (Ni-

Cd), Nickel-Metal Hydride (Ni-MH) and Lithium-Ion (Li-Ion) 

constitute the most widely used class of available storage 

systems [14]. As they are not only key but also rather expensive 

components of smart grids, engineering decisions concerning 

the integration of batteries into smart grids need the support of 

reliable experimental results, which can be best provided by 

emulation of these smart grids on physical scale models. 

A. Battery Model 

There are several battery models of diverse complexity and 

accuracy [15]. Here, the extension presented in [17] of the 

commonly used analytic semi-empiric Tremblay-Dessaint 

battery model [16] is used, which allows for an accurate 

reproduction of the battery output voltage without increasing 

the model complexity. It consists of the two port-variables 

Voltage and Current (essential magnitudes related to battery 

performance and control), the two state variables State of 

Charge (related to the battery usage and stored energy) and 

Filtered Current (captures a delay in voltage evolution), as well 

as 8 parameters. It can be summarized as follows: 

𝑑

𝑑𝑡
 𝑆𝑜𝐶 =  −

1

𝑄
 𝑖  

𝑑

𝑑𝑡
 𝑖∗ = −

1

𝑇𝑓
𝑖∗ +

1

𝑇𝑓
𝑖 (1) 

𝑣 = 𝐸0 + 𝐴𝑒−𝐵𝑄(1−𝑆𝑜𝐶) − 𝐾1𝑄 (
1

𝑆𝑜𝐶
− 1) − 𝑅𝑖                

− 𝐾2 𝑖∗  (
𝑖𝑠𝑑𝑐ℎ

𝑆𝑜𝐶
+

𝑖𝑠𝑐ℎ

1.1 − 𝑆𝑜𝐶
) 

 

where the variables are the battery discharge current i (A), the 

State of Charge SoC (-), the filtered discharge current i* (A) and 

 
Fig. 1.  Electric power system emulation schemes for: a) Complete physical 

emulation. b) Physical emulation with numerical emulation of the battery. 
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the battery voltage 𝑣 (V). The parameters are the battery 

capacity Q (Ah), the current-filter time constant Tf (s), the 

battery constant voltage E0 (V), the exponential-zone amplitude 

A (V), the exponential-zone inverse capacity B (Ah-1), the 

polarization constant K1 (V/Ah), the internal resistance R (Ω) 

and the polarization resistance K2 (Ω). The logic variables isdch, 

being 1 when the battery is discharging and 0 otherwise, and 

isch, being 1 when the battery is charging and 0 otherwise, have 

been introduced to condense notation.  

B. Dimensional analysis 

The scaling procedure presented next is justified by a 

dimensional analysis of the previous battery model, which 

provides a number of dimensionless variables or groups, or π-

groups. As known from similarity theory, two systems of the 

same nature have the very same behavior (under the same 

experimental conditions) provided that these π-groups have the 

same values for the two systems, which are then said to be 

dimensionally similar. This property allows studying the 

behavior of the system of interest experimenting on another 

one, similar to the former, on a more convenient physical scale. 

The nondimensionalization procedure, as described in [4], 

starts by identifying the set of relevant quantities, i.e., the 

physical quantities (constant, variables and parameters) used to 

describe the phenomenon under study. Analyzing (1) yields the 

following 13 relevant quantities (recall that the logic variables 

isdch and isch are not considered because they do not represent 

physicals variables or parameters): 

{𝐸0, 𝐵, 𝑄, 𝐴, 𝐾1, 𝑇𝑓 , 𝑅, 𝐾2, 𝑡, 𝑣, 𝑖, 𝑖∗, 𝑆𝑜𝐶} 

The dimensional formula of each quantity based on 

fundamental units (MKSA units) is: 

[𝐸0] = 𝑚2𝑘𝑔 𝑠−3𝐴−1; [𝐵] = 𝐴−1𝑠−1;          [𝑄] = 𝐴 𝑠 

[𝐴] = 𝑚2𝑘𝑔 𝑠−3𝐴−1; [𝑅] = 𝑚2𝑘𝑔 𝑠−3𝐴−2;  [𝑇𝑓] = 𝑠 

[𝐾1] = 𝑚2𝑘𝑔 𝑠−4𝐴−2; [𝐾2] = 𝑚2𝑘𝑔 𝑠−3𝐴−2; [𝑡] = 𝑠 

[𝑣] = 𝑚2𝑘𝑔 𝑠−3𝐴−1;  [𝑖] = 𝐴;  [𝑖∗] = 𝐴;  [𝑆𝑜𝐶] = 0 

(2) 

The number of fundamental dimensions are 4, but as 𝑚2 

and 𝑘𝑔 are always together, the combined unit 𝑚2𝑘𝑔 is used as 

a base unit reducing the number of dimensions to 3. Hence, 

according to the 𝜋-theorem [3], [4], [12], the number of non-

dimensional groups (π- groups) is 10 (13 – 3 = 10). 

Selecting E0, Q and Tf as repeating parameters the 

Dimensional Set Matrix of Table I is created, where the entries 

of matrices Bdim and Adim are the exponents of each dimension 

in the dimensional formulae given in (2). The matrices I10x10 

and Crp allow to set the π-groups; Crp is calculated as 𝑪𝒓𝒑 =

−(𝑨𝒅𝒊𝒎
−𝟏 𝑩𝒅𝒊𝒎)

𝑻
. Table I yields the following π-groups: 

𝜋1 =
𝐴

𝐸0

        𝜋2 = 𝐵𝑄       𝜋3 =
𝐾1𝑄

𝐸0

        𝜋4 =
𝑅𝑄

𝑇𝑓𝐸0

  

𝜋5 =
𝐾2𝑄

𝑇𝑓𝐸0

    𝜋6 =
𝑖 𝑇𝑓

𝑄
      𝜋7 =

𝑖∗ 𝑇𝑓

𝑄
      𝜋8 =

𝑣

𝐸0

     (3) 

 𝜋9 =
𝑡

𝑇𝑓

         𝜋10 = 𝑆𝑜𝐶  

Two different π-groups can be distinguished: The               π-

parameters (π1,…, π5) and the π-variables (π6,…, π10).  

Substituting the previous π-groups (3) in (1) the following 

dimensionless system model is obtained: 

𝑑

𝑑𝜋9

𝜋10 =  −𝜋6  

𝑑

𝑑𝜋9

𝜋7 = −𝜋7 + 𝜋6 (4) 

𝜋8(𝜋10,𝜋7,𝜋6) = 𝜋1 + 𝜋2𝑒−𝜋2(1−𝜋10) − 𝜋3 (
1

𝜋10

− 1)

− 𝜋4𝜋6 − 𝜋5𝜋7 (
𝑖𝑠𝑑𝑐ℎ

𝜋10

+
𝑖𝑠𝑐ℎ

1.1 − 𝜋10

) 

 

C. Scaling method 

The objective of the scaling method is to obtain a new set of 

parameters for the battery model in order to produce scaled 

evolutions of the variables indicated below, while the other 

system variables remain unchanged: 

Voltage scaling: Voltage will be affected by a factor of 𝑘𝑣. 

Current scaling: Current will be affected by a factor of 𝑘𝑖. 

Time scaling: The four system variables will conserve their 

form but evolving 𝑘𝑡-times faster. 

These objectives can be summarized as 

𝑣𝑠𝑐𝑎𝑙𝑒𝑑(𝑡) ≜ 𝑘𝑣 𝑣𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑘𝑡𝑡)

𝑖𝑠𝑐𝑎𝑙𝑒𝑑(𝑡) ≜ 𝑘𝑖  𝑖𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑘𝑡𝑡)

𝑖𝑠𝑐𝑎𝑙𝑒𝑑
∗ (𝑡) ≜ 𝑘𝑖  𝑖𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙

∗ (𝑘𝑡𝑡)

𝑆𝑜𝐶𝑠𝑐𝑎𝑙𝑒𝑑(𝑡) ≜ 𝑆𝑜𝐶𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙(𝑘𝑡𝑡)

 (5) 

where the symbol ≜ represents the expected identity to be 

achieved by parameter adaptation and t is the scaled model 

time. If this adaptation is done correctly both systems will be 

dimensionally similar, i.e., the π-groups (3) in the original 

model and the scaled model will be the same. The following 

equations exemplify the procedure of parameter adaptation. 

𝜋8,𝑜𝑟𝑖 =
𝑣𝑜𝑟𝑖

𝐸0,𝑜𝑟𝑖

≜ 𝜋8,𝑠𝑐𝑎 =
𝑘𝑣𝑣𝑜𝑟𝑖

𝐸0,𝑠𝑐𝑎

⇒ 𝐸0,𝑠𝑐𝑎 = 𝑘𝑣𝐸0,𝑜𝑟𝑖 

𝜋9,𝑜𝑟𝑖 =
𝑘𝑡𝑡

𝑇𝑓,𝑜𝑟𝑖𝑙

≜  𝜋9,𝑠𝑐𝑎 =
𝑡

𝑇𝑓,𝑠𝑐𝑎

⇒  𝑇𝑓,𝑠𝑐𝑎 = 𝑇𝑓,𝑜𝑟𝑖/𝑘𝑡 

⋮ 
 

Proceeding in the same way for the rest of the π-groups 

yields the re-parameterization formulae presented in Table II.  

TABLE II  

TABLE I  

DIMENSIONAL SET MATRIX 
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PARAMETER CALCULATION OF SCALED MODEL TO ACHIEVE DIMENSIONAL 

SIMILARITY 

Parameter Original model Voltage-, Current- and Time-

scaled model 

𝑄 𝑄𝑜𝑟𝑖 𝑄𝑜𝑟𝑖 𝑘𝑖 𝑘𝑡⁄  

𝐸0 𝐸0,𝑜𝑟𝑖 𝐸0,𝑜𝑟𝑖𝑘𝑣 

𝐾1 𝐾1,𝑜𝑟𝑖 𝐾1,𝑜𝑟𝑖𝑘𝑣 𝑘𝑡 𝑘𝑖⁄  

𝐴 𝐴𝑜𝑟𝑖 𝐴𝑜𝑟𝑖𝑘𝑣 

𝐵 𝐵𝑜𝑟𝑖 𝐵𝑜𝑟𝑖 𝑘𝑡 𝑘𝑖⁄  

𝑅 𝑅𝑜𝑟𝑖 𝑅𝑜𝑟𝑖 𝑘𝑣 𝑘𝑖⁄  

𝐾2 𝐾2,𝑜𝑟𝑖 𝐾2,𝑜𝑟𝑖 𝑘𝑣 𝑘𝑖⁄  

𝑇𝑓 𝑇𝑓𝑜𝑟𝑖 𝑇𝑓𝑜𝑟𝑖 𝑘𝑡⁄  

III. MATHEMATICAL SCALE MODELS 

In the previous section parameter values of the scaled model 

were calculated in order to achieve dimensional similarity with 

the original model. The scaled system can be either numerically 

constructed (aiming at numerical simulation) or physically 

implemented. Clearly, any parameter value can be specified in 

a numerical model -hereafter called mathematical scale model-

, so this numerical implementation is always possible. But 

when it comes to the physical implementation, or construction 

of the physical scale model, the situation can arise where a 

parameter value is not attainable because of technological 

restrictions. This situation happens in the time-scaling case of 

the battery model, as will be seen more precisely later on this 

article. The validation of the re-parameterization or scaling 

procedure is performed next via simulation of the mathematical 

scale model.  

A. Validation of the mathematical scale model 

The original set of model parameters, given in Table III, 

corresponds to the parameterization of the lithium-ion cell, 

VL45E [18]. Three scale models were obtained applying 

voltage (kv = 13), current (ki = 17) and time (kt = 100) 

scaling procedures, respectively. Four simulation tests for 

validation are presented: first, the simulation of the original 

model with the original set of parameters, and then the 

simulations for each of the three scale models (voltage-, 

current-, and time-scaling). The current profile chosen for 

validation is a realistic two-day current demand profile of an 

isolated micro smart grid where the battery array is the storage 

associated to a photovoltaic source. The evolution of all the 

variables of interest behave as expected, i.e., they are identical, 

as shown by Fig. 2 (the simulation outputs have been back-

scaled using the corresponding factor in each case). 
TABLE III 

PARAMETER SET OF ORIGINAL MATHEMATICAL MODEL FOR VALIDATION 

Parameter 
𝑄 

(𝐴ℎ) 
𝐸0 

(𝑉) 
 𝐾1 

(𝑚𝑉/𝐴ℎ) 
𝐴 

(𝑚𝑉) 
𝐵 

(𝐴ℎ−1) 
𝑅 

(𝑚𝛺) 
𝐾2 

(𝑚𝛺) 
𝑇𝑓 

(s) 

X_ori 45 3.42 0.24 630.8 0.041 3.53 0.24 30 

IV. PHYSICAL SCALE MODELS 

In order to test and analyse the physical implementation of 

the scaled models, the link between the battery cell model and 

the battery system model should be taken into account.  

 

 

 

 
A battery system is composed of an array of parallel and/or 

series connected battery cells. It can be demonstrated that a 

defined ratio between the parameter sets of both models exists.  

Voltage scaling. For batteries in series connection veq(t)=nsv(t) 

and ieq(t)=i(t) do hold. Additionaly Qeq=Q implying 

SoCeq(t)=SoC(t). From these variables equalities follow that a 

series connection is equivalent to voltage scaling the original 

model by a factor kv=ns. 

Current scaling. Similarly as in the case of voltage scaling, 

it can be easily shown that the case of current scaling with a 

relation ki=np is equivalent to a parallel connection of np 

batteries. 

Time scaling. None of the previous connections (neither 

series nor parallel) yields a time scaling procedure. This can be 

easily seen in the fact that the current filter time constant, Tf, 

that inherently represents electrochemical dynamics, will not 

be affected. This introduces the problems in physical emulation 

discussed ahead in § IV-D.3. 

 
Fig.  2a.  Voltage, current and SoC evolutions of the original mathematical 

model under chosen input-current profile. 

 
Fig.  2b.  Voltage (magenta axis scale), current and SoC evolutions of the 

voltage scale model (superindex “v”) compared with the original model under 
chosen input-current profile. 

 
Fig. 2c.  Voltage, current (right red axis scale) and SoC evolutions of the 
current scale model (superindex “i”) compared with the original model under 

chosen input-current profile. 

 
Fig. 2d.  Voltage, current and SoC evolutions of the time scale model (lower 

black axis scale) (superindex “t”) compared with the original model (upper 
blue axis scale) under chosen input-current profile. 
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A. Design of experiments 

In order to test the scaling procedure four configurations 

have been implemented. While the first three configurations are 

used to validate voltage- and current-scaling procedure, the last 

configuration serves to test the time-scaling procedure and 

exhibits the physical emulation problem in time contraction. 

 Configuration I: 1 branch of 6 batteries in series (1x6 

configuration→ 𝑘𝑣 = 6 ∧ 𝑘𝑖 = 1) 

 Configuration II: 2 branches of 3 batteries in series (2x3 

configuration→ 𝑘𝑣 = 3 ∧ 𝑘𝑖 = 2) 

 Configuration III: 3 branches of 2 batteries in series (3x2 

configuration→ 𝑘𝑣 = 2 ∧ 𝑘𝑖 = 3) 

 Configuration IV: 5  batteries  in  parallel  (5x1 

configuration→ 𝑘𝑣 = 1 ∧ 𝑘𝑖 = 5) 

These configurations have been determined by the available 

number of batteries and current probes, as well as by the current 

limitation of the controllable power sources used in the 

experimental set-up described next. 

B. Test bench 

In order to test a battery (or battery array up to 6 Lithium Ion 

(LiFePo4) batteries - Mottcell 3.2V 39Ah) a remote 

controllable bidirectional source of voltage/current (configured 

by a Power source PSI 9080-510 and a Controlled Load ELR 

9080-510) is used with configurable charge and discharge 

profiles (achieved using a dSPACE system). Over- and under-

voltage protections, as well as thermal protection are 

implemented. To obtain more accurate and faster sampling rate 

a SEFRAM Data acquisition System with 3 Clamps on probe 

HIOKI 3274 is used. This test bench allows for voltage and 

current control of user defined profiles, and measurements of 

each battery voltage, up to 3 currents and several temperatures 

(environment, terminals, body, etc.). 

C. Current profiles tested 

The battery systems were tested under two different current 

profiles: the HPPC profile and the FTP profile. The HPPC 

profile was designed in order to measure the dynamic power 

capability over a device’s usable charge and voltage range 

[19],[20]. It consists in a series of discharge and charge pulses 

of constant current at different 𝑆𝑜𝐶, see Fig. 4. Pulse duration 

and intensity depend on test objectives and, as suggested in [17] 

it is used to identify model parameters. 

 
1 See Sensitivity Analysis in Appendix A. 

 
The FTP profile is a realistic current profile for battery-

powered electric vehicles subject to the commonly used FTP-

75 driving cycle. It was extracted from [21] and adapted for the 

battery configuration under study, see Fig. 5.  

 
Complementary to the HPPC profile, the FTP profile has 

been selected for validation of the scaled models due to its rich 

dynamic contents, as it reflects the diversity of solicitations to 

batteries embedded in EV, HEV and PHEV [22]. It seems also 

relevant in terms of frequency dynamics for other fields of 

applications. 

D. Validation of the physical scale model 

1) Base Model Identification 

The scaling procedure was applied to a battery cell whose 

model is considered as the original system. Its parameters have 

been estimated averaging six sets of data obtained running the 

HPPC profile on six batteries of the same type and identifying 

each parameter set following a method given in [17]. Each 

parameter of this base average model –to be scaled in voltage, 

current and time– is the mean value of the corresponding 

parameters of the six sets. In this way the effect of the battery 

dispersion is reduced. The resulting set is given in Table IV. 
TABLE IV 

PARAMETER SET OF BASE AVERAGE MODEL FOR ONE BATTERY CELL.  

Parameter 
𝑄 

(𝐴ℎ) 
𝐸0 

(𝑉) 
 𝐾1 

(𝑚𝑉/𝐴ℎ) 
𝐴 

(𝑚𝑉) 
𝐵 

(𝐴ℎ−1) 
𝑅 

(𝑚𝛺) 
𝐾2 

(𝑚𝛺) 
𝑇𝑓 

(s) 

X_base 36.82 3.259 0.240 74.50 0.033 6.362 0.747 88.33 

2) Voltage- and current-scaling 

According to the scaling method, starting from the base 

model parameters, the equivalent models for the battery 

systems for Configuration I, II and III were calculated. 

Afterwards, each physical realization was tested under the 

HPPC profile and parameters were identified and compared 

with the previously calculated parameters, see Table V. Even 

though a notorious discrepancy exists among some of the 

parameters (up to 628% for the worst case), the dynamic 

evolution of the variables are not appreciably affected. This is 

due to the fact that the battery voltage sensitivity associated to 

those parameters is low1.  

 
Fig. 4.  Extract of the HPPC profile: a cyclic charge/discharge process 

followed by 𝑆𝑜𝐶 variation. 

 
Fig. 5.  Current profile demanded to the battery system of a battery-powered 
electric vehicle to complete FTP-75 speed profile. 

 
Fig. 3.  Battery test bench developed at LAPLACE Laboratory. 
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This can be corroborated comparing  the results of the 

physical tests and the scale models simulations under the FTP 

profile, Figs. 6, 7 and 8. 

Fig. 6 shows the voltage response under the FTP current 

profile of Fig. 5. It can be seen that the calculated scaled model 

reproduces the voltage dynamics for the complete test. The 

Root Mean Square Error (RMSE) is 56mV and the Maximal 

Absolute Error (MAE) is 1V (~5%𝐸0 ).  

Similar calculations were done after  testing Configuration 

II and III –with results shown in Figs. 7 and 8– giving RMSE 

of 20.31mV and 19.71mV, respectively, and MAE of 208mV 

and 176mV, respectively.  

These results validate the statement of equivalence between 

series and parallel connection with voltage and current scaling 

procedure and, as a consequence, the achievement of 

dimensional similarity among the three configurations. 

3) Time-scaling 

The focus in this scaling process is to accelerate the physical 

emulation of the batteries, i.e., to reduce the testing time. For 

this purpose Configuration IV (5 batteries connected in 

parallel) is considered as the original system (instead of a single 

battery to be scaled, as done in the other configurations). In 

order to reduce the test time by a factor of 5, the parameters are 

scaled (see Table I) with 𝑘𝑖 = 1,  𝑘𝑣 = 1 and 𝑘𝑡 = 5. In this 

case, there is no possible battery combination (series or parallel 

connections) yielding a model with the same parameter values 

than the calculated by the time-scaling method. The closest 

physical realization of this parameterization using the given 

batteries is a single battery, see Table VI.  

The validation tests consisted in two physical tests and a 

simulation run. In the first test a 10 hours length FTP profile 

was used for Configuration IV (blue curve on Fig. 9) while a 

compressed 2 hours length FTP profile (accelerated profile) 

was used for both single battery physical model test (black 

curve on Fig. 9) and the simulation test of the scaled 

mathematical model corresponding to Configuration IV (red 

curve on Fig. 9). The voltage outputs of these three tests are 

mathematical model corresponding to Configuration IV (red 

curve on Fig. 9). The voltage outputs of these three tests are 

shown in Fig. 9. A simple axis compression of the 10hours test 

is shown on the blue curve for comparison with the accelerated 

ones. It can be seen that the mathematical scale model fits much 

better the original, uncompressed, system than the closest 

physical realization 

The validation tests consisted in two physical tests and a 

simulation run. In the first test a 10 hours length FTP profile 

was used for Configuration IV (blue curve on Fig. 9) while a 

compressed 2 hours length FTP profile (accelerated profile) 

was used for both single battery physical model test (black 

curve on Fig. 9) and the simulation test of the scaled 

mathematical model corresponding to Configuration IV (red 

 
Fig. 6.  Voltage response in Configuration I under FTP current profile. 

 
Fig. 7.  Voltage response in Configuration II under FTP current profile. 

 
Fig. 8.  Voltage response in Configuration III under FTP profile. 

TABLE V 
PARAMETER VALUES CALCULATED (CAL) BY SCALING METHOD, ESTIMATED (EST) BY PHYSICAL BATTERY TESTING, AND THE RELATIVE ERROR (ERR) BETWEEN 

THEM FOR CONFIGURATION I, II AND III. 

Parameter 𝑄 (𝐴ℎ) 𝐸0 (𝑉)  𝐾1 (𝑚𝑉/𝐴ℎ) 𝐴 (𝑚𝑉) 𝐵 (𝐴ℎ−1) 𝑅 (𝑚𝛺) 𝐾2 (𝑚𝛺) 𝑇𝑓 (𝑠) 

X_C-I_cal 36.82 19.553 1.438 446.97 0.033 38.172 4.481 88.33 

X_C-I_est 36.79 19.593 1.427 405.89 0.032 38.184 4.429 87.94 

X_C-I_err -0.08% 0.20% -0.82% -9.19% -4.04% 0.03% -1.14% -0.44% 

X_C-II_cal 73.64 9.776 0.360 223.49 0.017 9.543 1.120 88.33 

X_C-II_est 72.80 9.756 0.321 269.12 0.015 9.346 1.040 71.06 

X_C-II_err -1.14% -0.21% -10.80% 20.42% -9.42% -2>06% -7.17% -19.55% 

X_C-III_cal 110.45 6.518 0.160 148.99 0.011 4.241 0.498 88.33 

X_C-III_est 112.36 6.616 0.222 115.92 0.081 4.535 0.573 68.10 

X_C-III_err 1.73% 1.51% 39.00% -22.20% 628.06% 6.93% 15.05% -22.90% 
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curve on Fig. 9). The voltage outputs of these three tests are 

shown in Fig. 9. A simple axis compression of the 10hours test 

is shown on the blue curve for comparison with the accelerated 

ones. It can be seen that the mathematical scale model fits much 

better the original, uncompressed, system than the closest 

physical realization. 

Comparing the voltage response of both physical tests an 

important difference is noticed. The RMSE is 195.47mV 

(~6%E0) and MAE is 702.8mV (~22%E0). This voltage error is 

mainly due to the fact that the battery resistances are 5 times 

bigger than desired and the voltage sensitivity to those 

parameters is considerable.  

On the other hand, the comparison between the tests on the 

original Configuration IV and the mathematical scale model 

shows that the RMSE is reduced to 12.48mV (~0.4% E0) and 

the MAE to 60.3mV (~2% E0).  

TABLE VI.  

SET OF PARAMETER VALUES OF CONFIGURATION IV  (BLUE CURVE), SINGLE 

BATTERY MODEL (BLACK CURVE) AND TIME-SCALED MODEL (RED CURVE). 

Parameter 
𝑄 

(𝐴ℎ) 
𝐸0 

(𝑉) 
 𝐾1 

(𝑚𝑉/𝐴ℎ) 
𝐴 

(𝑚𝑉) 
𝐵 

(𝐴ℎ−1) 
𝑅 

(𝑚𝛺) 
𝐾2 

(𝑚𝛺) 
𝑇𝑓 

(s) 

X_C-IV 2 184.09 3.259 0.048 74.50 0.007 1.272 0.149 88.33 

X_C-IV_sca  36.82 3.259 0.240 74.50 0.033 1.272 0.149 17.67 

X_Single-

Bat 36.82 3.259 0.240 74.50 0.033 6.362 0.747 88.33 

V. CONCLUSIONS 

This article applied the concept of dimensional similarity to 

a battery model in order to scale a battery system in size and 

time. Even though this battery model is nonlinear, a re-

parameterization is possible in order to achieve a perfect 

voltage-, current- and time-scaling in the mathematical scale 

model. Even if not as flexible as mathematical scale models, 

physical scale models are most interesting and useful because 

they allow to study also the influence of unmodeled physics 

such as the influence of temperature, auto-discharge and/or 

ageing effects in this application case. In the case of voltage- 

and current-scaling the physical scale model could be 

implemented using series and parallel connections of the same 

 
2 Set of parameters of Configuration IV calculated using the base battery 

model parameterization and the current scaling procedure (ki=5) validated  

base battery. This is useful to conduct experiments with 

reduced power size of a battery bank. It is worth mentioning 

that physical scaling is limited to an integer-number scaling of 

the base battery. 

In the particular case of time-scaling, a perfect physical 

implementation is not possible using the same base battery of 

the original system. This is due to the physical constraints 

imposed on the parameters of a given battery. This problem 

certainly hinders the physical emulation in compressed time of 

just a battery or battery pack, but is not an obstacle for the 

emulation of a system involving batteries. Indeed, as the 

mathematical scale model can always be achieved for the three 

scaling methods without restrictions in the scale factors, it can 

be implemented and run in real time on a computer device 

embedded in a physical set up completed with the physical 

emulator of the rest of the system under study, i.e., a HIL-

approach solves the problem. This mixed physical-numerical 

approach allows designers to emulate  any kind of electric 

networks involving generation, storage and/or load devices and 

to take benefit of time contraction effects to realize tests with 

reduced virtual time scale. This reveals that the usefulness for 

simulation of this method lies mainly in the rea l-time 

implementation of the numerical emulators as part of the HIL-

system. As wind turbines and photovoltaic panels (as well as 

any other component of a power system) can be scaled with this 

technique (an issue being subject of ongoing research), their 

numerical scale models could also be integrated in a HIL-

system for the experimental study on a test-bench, for instance, 

of the behavior of a smart grid being part of a distributed 

generation system. 

APPENDIX 

A. SENSITIVITY ANALYSIS 
TABLE A  

SENSITIVITY COEFFICIENT OF BATTERY VOLTAGE FUNCTION 

𝑺𝒐𝑪  𝝋𝑸  𝝋𝑬𝟎
  𝝋𝑲𝟏

  𝝋𝑨  𝝋𝑩  𝝋𝑹  𝝋𝑲𝟐
 

1.05 0.002 0.976 0.000 0.024 0.001 0.070 0.165 

0.85 -0.004 0.982 0.000 0.019 -0.003 0.071 0.033 

0.65 -0.008 0.987 0.001 0.015 -0.006 0.071 0.019 

0.45 -0.011 0.992 0.003 0.012 -0.008 0.071 0.019 

 
Fig.  9.  Battery voltage evolution under FTP current profile of Configuration IV (blue time axis), single battery , and exact time-scaled model simulation. 
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0.25 -0.016 0.999 0.008 0.009 -0.008 0.072 0.034 

0.05 -0.063 1.046 0.054 0.007 -0.009 0.075 0.177 

Given a function, 𝑣, the sensitivity coefficient 𝜑𝑋𝑖
 for a 

particular parameter 𝑋𝑖 can be calculated as 

 𝜑𝑖 =  
𝜕𝑣

𝜕𝑋𝑖

 
𝑋𝑖

𝑣
|

𝑣=𝑣𝑘

 

where the quotient, 𝑋𝑖/𝑣, normalizes the coefficient. 

Table A resumes the calculations of the voltage sensitivity 

for the parameters in five different 𝑆𝑜𝐶 and considering 𝑖 =
𝑖∗ = 𝑖𝑛𝑜𝑚. 
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