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Heat transport in stagnant lid convection with 
temperature- and pressure-dependent Newtonian 
or non-Newtonian rheology 

Caroline Dumoulin, Marie-Pierre Doin, and Luce Fleitout 
Laboratoire de G6ologie, CNRS, URA 1316, Ecole Normale Sup6rieure, Paris 

Abstract. A numerical model of two-dimensional Rayleigh-B6nard convection is 
used to study the relationship between the surface heat flow (or Nusselt number) 
and the viscosity at the base of the lithosphere. Newtonian or non-Newtonian, 
temperature- and pressure-dependent rheologies are considered. In the high Ray- 

ß ß •/3 -4/3 leigh number time-dependent regime, calculations ymld Nu or RaBL bef f , where 
b•f• is the effective dependence of viscosity with temperature at the base of the 
upper thermal boundary layer and RasL is the Rayleigh number calculated with the 
viscosity veu (or the effective viscosity) at the base of the upper thermal boundary 
layer. The heat flow is the same for Newtonian and non-Newtonian rheologies if the 
activation energy in the non-Newtonian case is twice the activation energy in the 
Newtonian case. In this chaotic regime the heat transfer appears to be controlled 
by secondary instabilities developing in thermal boundary layers. These thermals 
are advected along the large-scale flow. The above relationship is not valid at low 
heat flow where a stationary regime prevails and for simulations forced into steady 

r• 1/5 sta•e. In these c•ses the Nusselt number follows • trend Nu or z•a•L b• for • 
Newtonian rheology, as predicted by the boundary layer theory. We argue that the 
equilibrium lithospheric thickness beneath old oceans or continents is controlled by 
the development of thermals detaching from the thermal boundary layers. Assuming 
this, we can estimate the viscosity at the base of the stable oceanic lithosphere. If 
the contribution of secondary convection to the surface heat flux amounts to 40 
to 50 mW m -2, the asthenospheric viscosity is predicted to be between 10 •s and 
2x 1019 Pa s. 

1. Introduction 

A heat supply at the base of the lithospheric plates 
seems necessary to explain the equilibrium thickness of 
the oceanic and continental lithospheres and the flatten- 
ing of the seafloor at old ages [e.g., Doin and Fleitout, 
1996; Parsons and Sclater, 1977]. Secondary convection 
can be a good explanation for this heat source [Fleitout 
and Yuen, 1984a]. Here we present a parameteriza- 
tion of the heat carried by secondary convection using 
a temperature- and pressure-dependent, Newtonian or 
non-Newtonian rheology. 

In the past, scaling relations for the heat transport in 
Rayleigh-B6nard settings (heated from below) at large 
or infinite Prandtl numbers have been theoretically, nu- 
merically, and experimentally studied, for isoviscous or 
temperature-dependent viscosity fluids. 

Copyright 1999 by the American Geophysical Union. 
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For isoviscous stationary flows, the asymptotic bound- 
ary layer theory predicts a relationship between the 
Nusselt number Nu and the Rayleigh number Ra, yield- 
ing either Nu cr Ra 1/3 for free slip boundary condi- 
tions [Turcotte and Oxburgh, 1967], or Nu cr Ra 1/5 for 
rigid boundary conditions [Roberts, 1979]. Numerous 
theories proposed various scaling relations for turbu- 
lent isoviscous flows which prevail at high Ra. The 
mixing length theory [Kraichnan, 1962] and the bound- 
ary layer stability analysis [Howard, 1964] both yield 
Nu • Ra 1/3. For rigid boundary conditions, the slope 
• in Nu cr Ra • is therefore predicted to increase from 
stationary to turbulent flows. Indeed, analogical experi- 
ments with high Prandtl numbers (greater than 30) and 
high Rayleigh numbers yield values of/• around 0.283 
[e.g., Somerscales and Gazda, 1968] or 1/3 [e.g., Dropkin 
and $omerscales, 1965; Goldstein et al., 1990], whereas 
steady state numerical experiments yield lower values of 
/•, around 0.223 IDeschamps, 1997; Frick et al., 1983], 
closer to the asymptotic boundary layer prediction. For 
free slip boundary conditions, predicted slopes are the 
same for stationary and high Rayleigh number flows. 

12,759 
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Thus steady state numerical experiments from Chris- 
tensen [1984a], Deschamps [1997], Jarvis and Peltlet 
[1982], and Schubert and Anderson [1985] yield/• close 
to 0.32, in good agreement with the asymptotic bound- 
ary layer theory [Olson, 1987]. By comparison, turbu- 
lent time-dependent convection shows a similar expo- 
nent/3- 0.315 [Hansen et al., 1992]. 

For a strongly temperature-dependent viscosity, the 
Rayleigh number has been defined either with the vis- 
cosity horizontally averaged at the top boundary [e.g., 
Booker, 1976; Christensen, 1989] or at the middle height 
of the box [e.g., Christensen, 1984b; Larsen et al., 1995], 
or calculated for the averaged temperature of the box 
[e.g., Natal and Richter, 1982] (see Figure 1). This 
choice strongly affects the Nu versus Ra parameteri- 
zation [Christensen, 1985]. However, neither choice is 
really adapted to the parameterization with rigid lid 
boundary condition. Honda [1996] showed the useful- 
ness of the locally defined Ra and Nu for a convec- 
tion with temperature-dependent viscosity. Morris and 
Canright [1984] and Davaille and Jaupart [1993] intro- 
duced an effective temperature drop 5Tefr which drives 
the convection, proportional to STy - (-01nv/OT) -1 = 
b -• where b is the dimensionless temperature depen- 
dence of the viscosity. Davaille and Jaupart [1993], for 
transient cooling experiments, and Grasset and Par- 
mentier [1998], for numerical simulations of a fluid 
heated from within, showed that 5Te• - 2.23b -1. In the 
rigid lid regime, the asymptotic boundary layer analy- 
sis leads to Nu cr b-•Ra}/5 where Rai is the Rayleigh 
number defined by the viscosity in the interior of the cell 
[Fowler, 1985]. This relationship is verified by numer- 
ical experiments resulting in stationary flows [Moresi 
and $olomatov, 1995]. However, analogical experiments 
give Nu cr b-4/aRa}/a [Davaille and Jaupart, 1993], in 
good agreement with the boundary layer stability anal- 
ysis first developed by Howard [1964]. Howard [1964] as- 
sumed that boundary layers are in a marginal stability 

state maintained by a cyclic process: Thermals detach 
occasionally from the thermal boundary layers when the 
Rayleigh number defined locally at the base of the litho- 
sphere grows beyond the critical Rayleigh number. This 
analysis yields Nu - (Rai/Racr) •/a. For a viscosity de- 
pending exponentially on temperature, Racr crb 4 [see 

r•"l/3b-4/3 [Solo- Stengel et al., 1982], one gets Nu cr •i 
matov, 1995]. 

Only a few studies have been done on parameteriza- 
tions with temperature- and pressure-dependent viscos- 
ity. Simulations with a rigid upper boundary of Fleitout 
and Yuen [1984b] and with a moving upper boundary of 
Doin et al. [1997] show that the surface Nusselt number 
varies with the viscosity at the base of the lithosphere 
and is not directly sensitive to the viscosity pressure de- 
pendence. Doin et al. [1997] have also shown that the 
presence of primary convection does not strongly affect 
the heat transport through the base of the lithosphere. 
Therefore we shall analyze the relation between the sur- 
face Nusselt number and the viscosity at the base of the 
upper thermal boundary layer (UTBL) for a fixed upper 
boundary. 

For fluids with "isoviscous" Newtonian and non-New- 

tonian rheologies, the Nu versus Ra relationship does 
not depend on the stress exponent n, provided that the 
Rayleigh number is defined with a judiciously chosen 
effective viscosity [Parmentier and Morgan, 1982; Par- 
mentier et al., 1976]. Christensen [1984a] and Cserepes 
[1982] compared the patterns of the steady state flows 
for temperature-dependent non-Newtonian and Newto- 
nian rheologies. Christensen [1984a] shows that the 
characteristics of steady state flows are similar if one 
divides the activation energy and volume for the non- 
Newtonian rheology by 2 or 3. However, in time- 
dependent simulations, the temporal variability of the 
flow is highly increased in the non-Newtonian rheology 
[e.g., Christensen and Yuen, 1989; Fleitout and Yuen, 
1984a; Larsen et al., 1997]. 

Rigid lid fiTeft T v 
! ! ..o 

z 3 
z z 

Figure 1. When the viscosity strongly depends on temperature, a conductive rigid lid develops at 
the top of the box. The temperature drop below the lid is then reduced to 5Teff. The viscosity (u) 
and temperature (T) used to define the Rayleigh number, can be evaluated either at depth Zl (base 
of the lithosphere), or at z2 (middepth) or at zs (bottom of the box). Process I illustrates large- 
scale stationary convection as has been described theoretically by Fowler [1985]. Process 2 illustrates 
small-scale destabilization of the lid as has been observed Davaille and Jaupart's [1993] experiments and 
described theoretically by $olomatov [1995]. 
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In the present work, the theologies used are Newto- 
nian or non-Newtonian with temperature- and pressure- 
dependent viscosity. A wide range of Rayleigh num- 
bers (defined with the viscosity at the base of the litho- 
sphere) is explored and, therefore, the obtained results 
go from a steady state to a "chaotic" regime: The scal- 
ing laws for the heat transport for the two regimes are 
searched for. The Rayleigh number exponent is looked 
at, from the stationary regime to the turbulent regime, 
in order to explain when the different predictions of the 
asymptotic boundary layer theory and the boundary 
layer stability analysis apply. Another purpose is to in- 
clude the eli•ct of the pressure dependence of viscosity 
in the parameterization. At last, we explore a parame- 
terization in the non-Newtonian case, an attempt which 
has never been done so far on the basis of numerical 

periments. 

2. Model and Boundary Conditions 

The convection code built by Christensen [1983, 1984a] 
is used in this study. We consider a two-dimensional 
convection in a Boussinesq fluid with an infinite Prandtl 
number which is heated from below. The code solves the 

equations of conservation of mass, energy, and momen- 
tum. We neglect internal heating and viscous dissipa- 
tion. Calculations are dimensionless. The temperature 
is fixed at the bottom (TB -- 1) and at the top (TT -- 0). 
To insure that the heat transfer rate is representative of 
the rigid lid regime, we choose high viscosity contrasts 
and a no-slip boundary condition at the top of the box. 
Other boundary conditions on the bottom and sides of 
the box are free slip. We assume that the strain rate 
•ij depends on the deviatoric stress aij according to 

•ij - A-•a•-•aij exp(bT - cz) (1) 

where n = i for diffusion creep and n = 3 for disloca- 
tion creep, A is a constant, b and c are, respectively, 
the coe•cients characterizing the nondimensional tem- 
perature and depth dependence of viscosity, and aii is 
the second invariant of the stress tensor. The effective 

viscosity is written as follows: 

* Yeff •I exp(-- + •z) (2) 
n n 

where •I is the second invariant of the strain tensor. 
The nondimensional effective viscosity is 

•e• --A-• * (•)-[1-(x)] (3) 

where • is •he Chermal diffusiviW and H Che heigh• of 
Che box. The (effective) viscosiW characterizing con- 
vecfion is here defined a• •he base of Che liChosphere. 
In Che case of a NewConian rheology, •he dimension- 
less viscosiW aC Che base of •he liChosphere is given by 
• = exp(-bTi +czar) where Ti is the horizontally av- 
eraged temperature at middepth and z• is the thick- 

ness of the lithosphere (z•3•. - Ti/Nu, assuming that 
the temperature gradient is constant in the lithosphere, 
where Nu is the surface Nusselt number). In the case 
of non-Newtonian rheology, Ueef-BL is the minimum of 
the horizontal mean of the logarithm of the effective 
viscosity for the box (except for c - 0, where ueef-BL 

I (Zmax -{- ZBL) where Zmax is the is evaluated at z - • , 
depth of the local maximum of temperature beneath 
the UTBL). 

Various definitions of the Rayleigh number are used. 
In the Newtonian case we define RaBL-N as 

- apgATH• = Raov• (4) Ra•_• 
where • is thermal expansion coe•cient, p is the den- 
sity, g is the gravity acceleration, AT is the temper- 
ature drop across the box, y• is the viscosity at the 
base of the lithosphere, and Rao is the Rayleigh num- 
ber calculated with the surface viscosity A. For the non- 
Newtonian theology, two different Rayleigh numbers are 
defined. The effective Rayleigh number at the base of 
the lithosphere, which can be compared to Ra•_N, is 
written as follows: 

•pgATH • 
Ra•L-eg- = Rao%•_•L (5) 

Kv•_• 

where v•n_• is the effective viscosity at the base of the 
lithosphere. However, the only free parameter is the 
non-Newtonian Rayleigh number (n - 3). It is evalu- 
ated with the viscosity at the base of the lithosphere: 

•pgATH•/• 
RaBL-nN 

K1/3A1/3 exp(-•Ti + •ZBL) 

= exp(. - (6) 3 

Most calculations are time-dependent but, for some 
others, the flow is forced toward a steady state (time 
dependence is not allowed, time variations are strongly 
damped using an underrelaxation factor larger than 
0.75). For time-dependent calculations the box is di- 
vided into 121x25 cells and has an aspect ratio of 4. 
The spacing of the grid is uniform in the horizontal di- 
rection, while in the vertical direction the grid is denser 
at the base of the lithosphere and in the hot thermal 
boundary layer in order to increase the accuracy. For 
steady state calculations the box is divided into 70x60 
or into 100x60 cells and has an aspect ratio of 1 for 
Newtonian rheology and of 2 for non-Newtonian rheol- 
ogy. To estimate the accuracy on Nu and Ra• ob- 
tained with numerical simulations, a convergence test 
is performed in the time-dependent case of NewtonJan 
rheology, Rao - 9900, b- 13.0, and c- 4.2 (see Table 
1). It shows that when the vertical grid is of 25 points 
and refined in active boundary layers, the obtained Nu 
and Ra• values are very close to those obtained with 
a 61 vertical grid with a regular spacing. The compari- 
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Table 1. Convergence Test Done in Newtonian Rheology for Rao - 9900, b = 13.0, 
and c = 4.2 

Grid (Aspect Ratio of 4) Nu RaBL-N 

121x21 a 9.20 1.78x108 
121x41 a 9.62 1.61x108 
121x61 • 9.54 1.53x108 
181x37 b 9.49 1.69x108 
241x37 b 9.41 1.66x108 
121x25 b'c 9.56 1.55 x 108 

•Uniform grid spacing vertically. 
bVertical grid denser at the base of the lithosphere. 
CGrid used for the result presented in this study. 

son of the results with a 121x25 grid and with a 241x37 
grid (both refined on thermal boundary layers) yields a 
rough error estimate of 0.15 for Nu (1.5%) and of 8% 

r• 1/3 
for RasL (3% for t•asL ). 

Our purpose is to relate the surface Nusselt number 
to the effective viscosity at the base of the lithosphere. 
The results of time-dependent and steady state calcu- 
lations are given in Tables 2 and 3. In these tables, b 
and c are the coefficients characterizing the dimension- 
less temperature and depth dependence of the viscos- 
ity, gmax is the maximum value of the strain rate, and 
vAMS is the RMS of the velocity vector. The standard 
deviation of Nu, CrNu, measures the variability of Nu 
with time. The numerical error on Nu (-•0.15) plus the 
noise due to limited time averaging of chaotic fluctua- 
tions (< 0.20) is therefore less than 0.35. 

3. Description of the Flow for 
Time-Dependent Calculations 

For time-dependent calculations and for small Ray- 
leigh numbers, a real steady state is obtained, for both 
Newtonian and non-Newtonian theologies: Each vari- 
able reaches a constant value and remains stable. Small- 

scale instabilities are not observed. We obtain four large 
symmetrical convective cells in the case of Newtonian 
theology (see Figure 2a) and two in the case of non- 
Newtonian theology. 

On the other hand, for high Rayleigh numbers, the 
convection becomes highly time-dependent. A statisti- 
cally stationary regime is reached, when time averages 
of variables (such as the internal temperature and the 
surface and bottom heat flows) have reached an asymp- 
totic value independent of time. At this stage of quasi- 
equilibrium, the mean surface heat flow is equal to the 
mean bottom heat flow. In chaotic states, cyclic varia- 
tions both at short and intermediate timescales are no- 

ticeable in the temporal evolution of heat flux, temper- 
ature, viscosity, etc. For the non-Newtonian theology, 
the relative amplitude of the short-term variations can 
reach 10% for the surface heat flow and 3% for the inter- 

nal temperature (see Figure 3). In Figure 4 the surface 
heat flow and the effective viscosity at the bottom of the 
UTBL, Ve•-S•, are low-pass filtered to eliminate short- 
term variations by a convolution with a Gaussian func- 
tion. The width of the Gaussian function depends on 
the frequency of the short-term variations (the width is 
about 10 times the periods of short-term variations). At 
intermediate timescales, cyclic variations of the Nusselt 
number as a function of /YBL around an average point 
(NU,•BL) are also observed (see Figure 4). In the New- 
tonian case the variations have a smaller amplitude. 

The pattern of convection in these simulations and 
the power spectrum of the flow are similar to those of 
isoviscous turbulent flows [Hansen et al., 1990]. Insta- 
bilities or thermals are generated at the base of the 
stagnant lid and at the bottom thermal boundary layer 
(see Figure 2b). These instabilities are carried away by 
a large-scale circulation. Thermals are advected toward 
main downwellings or upwellings, feeding them at inter- 
mediate Rayleigh numbers, or sometimes breaking be- 
fore reaching them at higher Rayleigh numbers. These 
collisions result in a pulse-like behavior of the large- 
scale circulation generated by the large upwellings and 
downwellings. This corresponds to the short-timescale 
fluctuations. The long-timescale fluctuations may be 
due to a modification of the number and of the local- 

ization of the large convective cells. Such superposi- 
tion of two scales of convection has already been no- 
ticed in turbulent isoviscous convection either numeri- 

cally at infinite or finite Prandtl number [Hansen and 
Ebel, 1988; Hansen et al., 1990; Jarvis, 1984; $irovich 
et al., 1989], or experimentally at Prandtl number of 
the order of unity [Castaing et al., 1989; Krishnamufti 
and Howard, 1981]. At low Prandtl number the large- 
scale flow is held responsible for the exponent/3 - 2/7 
in Nu = Ra/• [Castaing et al., 1989]. Convective flows 
without a lower thermal boundary layer, either in tran- 
sient cooling experiments [Davaille and Jaupart, 1993] 
or in a fluid heated from within [Grasset and Parmen- 
tier, 1998; Parmentier et al., 1994] show only small-scale 
destabilization. For all cases of this study, a lid is ob- 
served above the convective cells: The viscosity contrast 



DUMOULIN ET AL.' HEAT TRANSPORT IN STAGNANT LID CONVECTION 12,763 

Table 2. Table of Results for a Newtonian Rheology for Both Time-Dependent 
and Steady State Calculations 

b c Rao RaBL_N Nu YBL ZBL Ti •max VRMS grNu 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

13.0 

16.0 

16.0 

16.0 

16.0 

16.0 

16.0 

16.0 

16.0 

16.0 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

11.08 

13.0 

13.0 

13.0 

13.0 

16.0 

Time-Dependent Calculations 

0.0 7 1.07xlO ø 1.69 10 -4'19 0.51 0.870 320 30 
0.0 21.5 4.50x 100 2.20 10 -4'32 0.41 0.898 680 75 
0.0 50 1.07x106 2.65 10 -4'33 0.40 0.900 1,130 130 
0.0 115 2.52x106 3.19 10 -4'34 0.28 0.902 1,850 225 
0.0 400 9.47x106 4.25 10 -4'3? 0.21 0.909 4,300 590 
0.0 1,350 3.02x107 6.40 10 -4'30 0.14 0.904 11,800 1,300 
0.0 3,200 7.32x10 ? 8.25 10 -4'36 0.11 0.906 20,800 2,250 
0.0 4,900 1.10x108 9.52 10 -4'30 0.09 0.904 27,520 2,910 
0.0 6,000 1.29x 108 10.36 10 -4'33 0.09 0.900 31,850 3,250 
0.0 7,500 1.59x l0 s ll.10 10 -4'33 0.08 0.899 37,450 3,740 
0.0 9,000 1.89x108 11.95 10 -4'32 0.08 0.898 42,500 4,125 
0.0 11,000 2.30X108 12.65 10 -4'32 0.07 0.898 46,830 4,670 
4.2 350 7.85X10 ø 3.11 10 -3'30 0.36 0.793 590 76 
4.2 500 1.53X106 3.38 10 -3'38 0.34 0.792 760 95 
4.2 840 2.43x106 3.80 10 -3'46 0.30 0.799 1,130 130 
4.2 1,680 4.46x106 4.31 10 -3'43 0.28 0.782 1,730 235 
4.2 6,720 1.57x107 5.80 10 -3'37 0.21 0.749 3,940 550 
4.2 16,800 4.09x 107 7.73 10 -3'39 0.14 0.740 9,770 1,000 
4.2 25,000 6.54x107 8.35 10 -3'42 0.13 0.744 15,400 1,100 
0.0 37 4.70x 106 3.20 10 -ø'1ø 0.28 0.904 2,740 320 
0.0 125 1.93x l07 4.51 10 -ø'19 0.20 0.919 7,680 800 
0.0 295 4.55x107 5.68 10 -ø'19 0.16 0.919 13,100 1,480 
0.0 600 9.26x107 7.19 l0 -ø'19 0.13 0.919 22,670 2,370 
0.0 1,100 1.61x108 9.18 10 -ø'17 0.10 0.915 33,240 3,430 
0.0 1,600 2.22x108 10.59 10 -ø'14 0.09 0.911 41,800 3,960 
0.0 2,100 2.99x 108 11.75 10 -ø'14 0.08 0.910 50,100 4,660 
4.2 1,550 2.88x 107 5.14 10 -4'27 0.16 0.807 7,700 580 
4.2 2,480 4.11x107 6.28 10 -4'22 0.13 0.788 8,540 680 
4.2 9,900 1.55 x 108 9.56 10 -4'19 0.08 0.769 23,900 1,520 
4.2 19,000 2.71x10 s 11.59 10 -4'1ø 0.07 0.757 35,700 2,130 
0.0 12 3.73x 107 4.05 10 -6'49 0.23 0.934 9,500 1,010 
0.0 20 6.73x107 4.55 10 -6'02 0.21 0.939 12,900 1,510 
0.0 30 1.01x108 5.53 10 -6'49 0.17 0.934 19,700 1,960 
0.0 43 1.28x108 6.42 10 -6'48 0.15 0.932 25,400 2,360 
0.0 72 2.12x108 7.64 10 -6'47 0.12 0.931 35,900 3,460 
0.0 140 3.75x108 9.83 10 -6'40 0.09 0.928 55,160 5,100 
0.0 240 6.32x 108 11.50 10 -6'42 0.08 0.924 71,300 6,630 
4.2 300 8.84x107 6.35 10 -0'47 0.13 0.821 12,704 980 
4.2 600 1.67x l0 s 7.74 10 -0'44 0.10 0.811 20,990 1,490 

Steady State Calculations 

0.0 7 1.11 x 100 1.69 10 -4'19 0.52 0.871 330 30 
0.0 115 2.51 x 106 3.19 10 -4'33 0.28 0.900 1,870 220 
0.0 400 9.86x106 4.35 10 -4'38 0.21 0.911 3,970 580 
0.0 1,350 3.72x107 5.79 10 -4'43 0.16 0.921 8,360 1,400 
0.0 3,200 9.31x107 7.06 10 -4'46 0.13 0.926 14,860 2,570 
0.0 4,900 1.49x 108 7.77 10 -4'48 0.12 0.930 20,770 3,450 
4.2 350 7.93x 100 3.12 10 -3'30 0.25 0.792 590 80 
4.2 840 2.42x 10 6 3.85 10 -3'40 0.21 0.796 1,080 130 
4.2 6,720 3.21x107 6.31 10 -3'67 0.13 0.812 4,650 550 
4.2 25,000 1.65x108 8.59 10 -3'81 0.10 0.829 15,040 1,430 
0.0 125 2.09x 107 4.35 10 -0'22 0.21 0.925 5,630 820 
0.0 600 1.14x 108 6.27 10 -0'28 0.15 0.935 14,080 2,580 
0.0 1,600 3.29x10 s 7.82 10 -ø'3x 0.12 0.941 32,490 5,150 
0.0 2,100 4.37x108 8.30 10 -0'32 0.11 0.942 39,500 6,210 
0.0 240 1.01x 109 7.95 10 -6'62 0.12 0.953 60,080 1,430 

0.00 

0.00 

0.00 

0.00 

0.01 

0.05 

0.11 

0.13 

0.10 

0.13 

0.14 

0.13 

0.00 

0 O0 

0 O0 

0 O8 

0 O8 

010 

0 O6 

0.02 

0.02 

0.02 

0.05 

0.06 

0.11 

0.08 

0.04 

0.08 

0.15 

0.21 

0.03 

0.06 

0.04 

0.05 

0.03 

0.05 

0.12 

0.04 

0.03 
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Table 3. Table of Results for a Non-Newtonian Rheology and Either Time-Dependent or Steady State Cal- 
culations 

b/3 c/3 Rao RaBL-nN RaBL_eff Nu //eff-BL ZBL Ti •max VRMS erNu 

Time-Dependent Calculations 

11.08 4.2 5 78.4 0.00 1.00 10 -1'37 0.40 0.400 0 0 0.00 
11.08 4.2 10 1.571104 8.711105 2.43 10 -4'94 0.32 0.787 1,370 110 0.02 
11.08 4.2 15 3.361104 4.131106 3.06 10 -5'44 0.27 0.795 2,930 190 0.03 
11.08 4.2 25 5.541104 1.21107 3.64 10 -5'6s 0.22 0.776 6,470 300 0.04 
11.08 4.2 35 7.841104 2.211107 4.52 10 -5'sø 0.19 0.760 8,040 370 0.16 
11.08 4.2 56 1.141105 4.061107 5.03 10 -5's6 0.16 0.744 12,970 570 0.04 
11.08 4.2 65 1.391105 5.231107 5.32 10 -5'91 0.14 0.745 14,150 680 0.05 
11.08 4.2 100 2.141105 1.12110 s 6.51 10 -6'ø5 0.11 0.735 24,400 970 0.06 
9.0 0.0 5 2.301104 1.991106 2.00 10 -5'6ø 0.47 0.938 1,830 170 0.02 
9.0 0.0 10 4.641104 5.371105 2.66 10 -5'73 0.48 0.938 1,350 420 0.01 
9.0 4.2 30 4.411103 8.261104 2.05 10 -3'44 0.48 0.718 430 50 0.00 
9.0 4.2 40 9.391103 4.491105 2.54 10 -4'ø5 0.29 0.743 890 80 0.00 
9.0 4.2 65 1.431104 1.271106 2.98 10 -4'29 0.25 0.711 1,580 120 0.00 
9.0 4.2 95 2.201104 2.681106 3.61 10 -4'45 0.22 0.711 3,070 180 0.09 
9.0 4.2 148 3.891104 5.761106 4.49 10 -4'6o 0.19 0.691 4,800 270 0.10 
9.0 4.2 176 4.441104 7.681106 4.78 10 -4'64 0.18 0.681 5,740 310 0.08 
9.0 4.2 230 5.881104 1.451107 5.33 10 -4'sø 0.13 0.675 7,830 390 0.12 
7.3 0.0 130 1.091105 3.121107 6.19 10 -5'3s 0.19 0.922 17,500 1,740 0.08 
7.3 4.2 95 4.81103 1.221105 2.56 10 -3'11 0.42 0.693 430 50 0.00 
7.3 4.2 176 9.121103 5.831105 3.23 10 -3'52 0.19 0.658 1,190 90 0.00 
7.3 4.2 256 1.241104 1.141106 3.61 10 -3'65 0.19 0.634 1,540 120 0.10 
7.3 4.2 400 1.791104 2.151106 4.40 10 -3'73 0.15 0.599 2,890 180 0.16 
7.3 4.2 475 2.261104 3.361106 4.82 10 -3's5 0.12 0.601 3,451 210 0.17 
7.3 4.2 620 3.211104 5.531106 5.40 10 -3'95 0.11 0.605 5,140 270 0.20 

Steady State Calculations 

11.08 4.2 3 2.901102 0.00 1.00 
11.08 4.2 10 2.121104 1.051106 2.23 
11.08 4.2 15 3.781104 2.381106 2.50 
11.08 4.2 25 6.971104 5.601106 2.87 
9.0 4.2 30 4.471103 8.261104 2.05 
9.0 4.2 65 2.531104 1.391106 2.90 
9.0 4.2 148 6.331104 5.011106 3.49 
7.3 4.2 55 2.991102 0.00 1.00 
7.3 4.2 95 4.801103 1.221105 2.56 
7.3 4.2 176 1.281104 5.961105 3.09 
7.3 4.2 256 2.051104 !.23x106 3.40 
7.3 4.2 400 3.481104 2.641106 3.80 

10-0.93 
10-5 02 
10-5 20 
10-5 35 
10-3 44 
10-4 33 
10-4 53 
10-o 35 
10-3 11 
10-3 53 
10-3.68 
10-3.82 

0.55 0.546 0 0 

0.37 0.833 !,080 100 
0.33 0.833 1,610 160 
0.29 0.825 2,570 240 
0.35 0.720 430 50 

0.27 0.790 1,490 140 
0.22 0.777 2,840 260 
0.55 0.546 0 0 

0.27 0.693 430 50 

0.23 0.721 1,040 100 
0.21 0.723 1,500 140 
0.19 0.721 2,200 200 

is so high that the upper part of the box is not convect- 
ing. 

4. Results for a Newtonian Rheology 
Calculations are carried out for different values of 

the parameter b which characterizes the temperature 
dependence of the viscosity (b = 11.08, b = 13.0, or 
b - 16.0, corresponding to a total viscosity contrast 
ranging from 6.5 x 104 to 8.9x 106) and for two different 
values of the parameter ½ which characterizes the depth 
dependence of the viscosity (c = 0.0 or c = 4.2, corre- 
sponding to a total viscosity contrast ranging from 1 to 

66.7). Some calculations have been done with c = 7.0, 
but in those cases, the total viscosity drop across the 
UTBL is so small that there is no longer a rigid lid, and 
the viscosity is very high in the lower part of the box. 
Therefore these simulations have been withdrawn. 

4.1. Identification of Two Different Regimes 

In Figure 5 the Nusselt number Nu is plotted versus 
b_4/3,• 1/3 (relationship obtained with the bound- I•aBL_ N 
ary layer stability analysis [Davaille and Jaupart, 1993; 
Doin et al., 1997; $olomatov, 1995]). We note that 
for chaotic simulations at high Nusselt numbers, the 
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Figure 2. Stream function, temperature, viscosity, and strain rate fields for a Newtonian rheology (a) 
with Rao = 350, b = 11.08, and c = 4.2, and (b) with Rao = 2480, b = 13.0, and c = 4.2. Variables are 
dimensionless and divided to be bracketed by 0.0 and 1.0. 

fit between the numerical results and the prediction 
of the boundary layer analysis is good (Nusselt root- 
mean-square misfit of 0.40). However, this law does not 
apply for the low Nusselt number cases corresponding 
to a steady state flow (Nusselt root-mean-square misfit 
of 0.70). In order to check whether this difference of 

behavior between the points at high and low Nusselt 
number was due to the transition between steady state 
and time-dependent regimes, we performed some calcu- 
lations at high Nusselt number in a forced steady state 
(using the overrelaxation option of the numerical code). 
The results from the steady state runs and the results 

i 

3.0 • 
0.10 

Surface 

Bottom 

0.20 0.30 0.40 

Time 

Figure 3. Example of surface (thick line) and bottom (thin line) Nusselt numbers versus dimensionless 
time in the turbulent regime for a non-Newtonian rheology, with Rao = 176, b = 9.0, and c = 4.2. 
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5.00 

4.90 

z 

I 

•.70 

I 

VBL-eff 

Figure 4. Average over short-term fluctuations of surface Nusselt number versus effective viscosity at 
the base of the upper thermal boundary layer (UTBL) drawn as function of time. It indicates a chaotic 
behavior (case with a non-Newtonian rheology, Rao • 176, b = 9.0, and c • 4.2). 

of time-dependent calculations at low Nusselt number 
(showing no alestabilization) follow the same trend. For 

,• z/5 
these steady state runs, we obtain Nu oc /•aBL_N , as 
predicted by Fowler [1985] and Morris and Canright 
[1984]. 

4.2. Turbulent Regime 

We now analyze the Nusselt-Rayleigh number rela- 
tionship for the runs characterized by a time-dependent 
regime at high Nusselt number. In the experiments 
of Davaille and Jaupart [1993], the exponent of b was 
found equal to (-4/3), but only one thermal bound- 
ary layer was present, the bottom of the box being 
adiabatic. Therefore only the alestabilization process 
at the base of the UTBL was operating. In the sim- 
ulations described here, the instabilities interact with 
the large-scale flow bounding the two boundary layers. 
The large-scale flow creates a shear stress at the bot- 
tom of the upper thermal boundary layer and could 
modify locally the critical Rayleigh number for the on- 
set of instability and change the heat transfer law. To 
see wether tile exponent (-4/3) in b applies here, we 
compute the values of/•(b) q- ertl(b ) with a linear regres- 

r-, ]./3 
sion in the form Nu --/•(b)•q;aBL_N separately for each 
value of b = 11.08, 13.0, 16.0, and for c - 0.0. The 
function 0.52b 4/3 fits well, within the error bars, fi(b). 
Therefore the interaction between the two scales of con- 

vection, the large-scale and the secondary flows, does 
not significantly change the exponent of b in the scal- 
ing relation for the heat transport. We note that the 

Nu - 0.52b-4/3Ra•f_N relationship is also the same 
as that obtained by Doin et al. [1997]. 

The pressure dependence of the viscosity should be 
taken into account in the law characterizing the heat 
transport in the turbulent regime. The effective vis- 
cous temperature scale is the temperature drop required 
for an increase of viscosity by e at the base of the up- 
per thermal boundary layer. It must be increased for a 
given temperature gradient to offset the increase of vis- 
cosity with depth: The inverse of this effective viscous 
temperature scale is beff. Assuming a constant temper- 
ature gradient given by the Nusselt number within the 
UTBL, we get 

c 

/)eft- b Nu ('7) 
However, the temperature profile may not be linear 
at the base of the lithosphere (see Figure 6). Sleep 
[1994] suggested that the thermal gradient in the active 
boundary layer is about half the conductive gradient in 
the lid. Therefore the corrective term in pressure, a, is 
not necessarily equal to 1. We search for a value of bee 
of the form 

c 

/)eft -- b - oz N-• (8) 
A linear regression is done with the points in the chaotic 
regime and the points of Doin et al. [1997]. It yields 
a = 1.0 q-0.1 (see Figure 7). Thus a is not significantly 
different from 1.0: The temperature gradient across the 
UTBL is almost linear. However, this will not be true 
in the non-Newtonian case. 

Once this correction is taken into account (see Figure 
8), we obtain a good agreement of the results in the 
turbulent regime with the following law (Nusselt root- 
mean-square misfit of 0.35): 
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[3 b=13.0 }sølid: c=4.2 A b=l 6.0 open' c=0.0 
black=time-dependent calc. 
gray=steady state calc. 

J 

J 

J 

J 
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J 

J 

0.0 10.0 20.0 30.0 
1/3. b-4/3 RaBL_N 

,-• •/3 b -4/3 A linear regression of Figure 5. The surface Nusselt number is plotted as a function of .ttaBL_N . 
the form y -- a•x for the turbulent regime yields at - 0.52 (short-dashed line). Nonlinear curve fitting 
of the form y - a•.x a3 for the stationary regime yields a•. - 1.28 and as - 0.59 (long-dashed line). Black 
symbols are used for time-dependent calculations and gray for steady state calculations. Open symbols 
represent calculations with no pressure dependence of the viscosity (c - 0.0), and solid symbols represent 
calculations with a pressure dependence c - 4.2. Circles are plotted for calculations with a temperature 
dependence of the viscosity b - 11.08, squares for b - 13.0, and triangles for b - 16.0. 

1/3 ( C ) --4/3 Nu - 0.52RaBL_N b- 1.0•u (9) 
The previous analysis does not work if the Rayleigh 

number is calculated with the viscosity at the bottom 
or at the middle of the box (Nusselt root-mean-square 
misfit of 1.7 with cr taken as a free parameter). This, 
together with the exponent 1/3 for the Rayleigh num- 
ber, seems to indicate that destabilization at the base 
of the upper thermal boundary layer does control the 
heat transfer. 

The heat transfer through a "continental lithosphere" 
znoving above a convecting mantle (data of Doin et al. 
[1997]) fits this law very well, even at low Nusselt num- 
ber (see Figure 9). This indicates that the thickness 
of the continental lithosphere is controlled by the devel- 
opment of instabilities at its base. Therefore whatever 

the thermal state of the Earth (i.e., whatever Ra), rela- 
tion (9) will well describe the heat transfer through the 
lithosphere at equilibrium. 

Real Case Theoretical Case 
T=O T=O 

Nu 

................... i-•ndary 
+_ convection 

T=T. T=T. 
1 1 

z=0 

Z=Zbl 

Figure 6. Dimensionless temperature gradients through the UTBL for a theoretical and a real case. 
The temperature gradient q) - Nu[o• in the destabilized layer can be different from the surface Nusselt 
number Nu. This effect should be taken into account when (dln•,/dT)BL across the destabilized layer is 
calculated. 
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k...j 

ß non-Newtonian rheology: a=2.6 -+ 0.2 

.El Newtonian rheology } ß •:,'•? Doin et al. (1997) or= 1.0 + O. 1 

0.5 • I , I 
0.00 0.10 0.20 

c/(Nu*b) 
,-• 1/3 r Figure 7. Linear regressions performed to compute a in Nu = •ttaBL_effi[2/(n + 1)](b-o•c/Nu)} -4/3 

for turbulent flows. The rheology is Newtonian for open circles (this study) or asterisks [Doin et al., 
1997], and non-Newtonian for solid circles. 

4.3. Stationary Regime 

The same correction in pressure of the "viscous" tem- 
perature scale is applied. The steady state data re- 
suiting either from time-dependent calculations or from 
steady state calculations fit the scaling relation (10) (see 
Figure 10) (Nusselt root-mean-square misfit of 0.16 for 
time-dependent calculations): 

•/5 ( c)-• Nu- 2.0RaBL_N b- 1.0•u u (10) 

This relationship a•rees well with the data of Moresi 
and Solomatov [1995] and the prediction of the asymp- 
totic boundary layer theory by Fowler [1985]. It differs 
from that of Morris and Canright [1984], who predicted 
a different exponent for b (Nu o< Ra•/5b-6/5). Fowler 

400.0 

200.0 

O b=11.08 } solid: c=4.2 El b= 13.0 open: c=0.0 
Ab=16.0 

black=time-dependent calc. 
gray=steady state calc. 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

0.0 200.0 400.0 600.0 800.0 1000.0 

RaBL_N 1/3 
•, z/3 . A linear regression of the form y = azx for the Figure 8. Nu(b- 1.0c/Nu) 4/3 plotted versus z-taBL_N 

turbulent regime yields a• = 0.52 (short-dashed line). Nonlinear curve fitting of the form y = a•.x '•3 for 
the stationary regime yields a•. = 2.91 and a3 = 0.68 (long-dashed line). For the remaining symbols, see 
Figure 5. 
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-• Doin et al. (I 997) 
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c¾ X-'x- • • 
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o.o 2o%q 
RaBL_N 

400.0 

Figure 9. Detail of Figure 8. Added points (asterisks) from Doin et al. [1997] correspond to the heat 
transfer through a continental lithosphere moving above a convecting mantle (b - 11.08 to 17.1, c = 0.0 
to 6). 

[1985] and Moresi and $olornatov [1995] did not include 
the pressure dependence of the viscosity. They used a 
Rayleigh number calculated with the bottom viscosity. 
We notice here that when values of c are different from 

0, the fit is not good with a Rayleigh number calculated 

with the bottom viscosity or with the middepth viscos- 
ity. This is somewhat surprising but confirms mean field 
results obtained by Fleitout and Yuen [1984b]: Heat 
transfer for pressure-dependent stationary convection is 
also controlled by VBL. 

10.0 

8.0 

6.0- 

4.0 

2.0 

0.0 

¸ b=l 1.08 } solid: c=4.2 • b= 13.0 open: c=0.0 Ab=16.0 

black=time-dependent calc. 
gray=steady state calc. 

• I , I , I • I , 

1.0 2.0 3.0 4.0 
(1/5) 1) RASE_ N beff (- 

5.0 

,-,,• 1/5 Figure 10. Nusselt number plotted versus •.BL_Nbeff, for stationary flows resulting from either time- 
dependent or steady state calculations. Long dashed line is Fowler [1985]'s prediction and dotted line 
represents Moresi and Solomatov's [1995] results (symbols as in Figure 5). 
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4.4. Domains of the Two Regimes 

Based on linear stability analysis, $tengel et al. [1982] 
suggested that a rigid lid develops at the surface when 
the total viscosity contrast Av is larger than exp(8). We 
checked that our simulations present a rigid conductive 
lid (the velocity at lid half-depth (zB•,/2) is < 0.005 
times the interior velocity). Therefore our heat transfer 
pararneterization should be the same as that obtained 
with stress-free experiments in the rigid lid regime. 
However, in the latter experiments, the conditions nec- 
essary to obtain a stagnant lid at the surface are still not 
well constrained [Giannandrea and Christensen, 1993; 
Grasset and Parmentier, 1998; Ogawa et al., 1991]. 
This may explain why Deschamps [1997], using steady 
state numerical calculations, with free boundary condi- 
tions, obtained in the stagnant lid regime a parameter- 
ization very different from equation (9) and from that 
of Moresi and $olomatov [1995]. 

Using our data, we are now able to divide the stag- 
nant lid regime into a steady state regime and a tur- 
bulent regime (see Figure 11). Of course, the limit 
between these two new domains would be better de- 

fined with more results. If we assume that at the 

transition, the "stationary" Nusselt number equals the 
"turbulent" Nusselt number (equations (9) and (11)), 
then the value of ti•aBL--N at the transition is given by 
RaBL-:V = 2.4 x 104[b- c/Nu] 5/2 (dotted-dashed curve 
in Figure 11). It corresponds to a viscosity at the base 
of the lithosphere of 9.3 x 10 •s Pa s for a height of 670 

km and other parameters defined in Table 2. If we sup- 
pose that the viscosity in the asthenosphere is 1 order 
of •nagnitude smaller than the mean upper mantle vis- 
cosity (which appears to be of the order of 3x 109'ø Pa 
s [e.g., Lainbeck et al., 1998; Ricard and I/igny, 1989]), 
then the Earth is in the turbulent regime. Note that 
Moresi and Solornatov's results are mostly in the sta- 
tionary domain (see Figure 11). 

5. Interpretation for a Non-Newtonian 
Rheology 

As in the case of a Newtonian rheology, time-depen- 
dent calculations are performed for different values of 
the temperature dependence of the viscosity (b = 21.9, 
b - 27.0, or b - 33.24) and for two different values 
of the depth dependence of the viscosity (c - 0.0 or 
c - 12.6). In some time-dependent calculations, Rao 
(the surface Rayleigh number) has been continuously 
increased during the run. This increase as a function of 
time is slow enough to allow the convection to be in a 
quasi-static equilibrium (short-term average of bottom 
and surface heat flow are equal). For those special runs, 
variables are smoothed like in Figure 4 (see section 3). 

5.1. Comparison With the Newtonian Rheology 
Almost all the results obtained in the case of a non- 

Newtonian rheology with time-dependent calculations 
depend strongly on time. Therefore results are plotted 
using the turbulent regime's law found for the Newto- 

8.0 

6.0 

4.0 

2.0 

Ti =0.8 

No Convection 

Stagnant Lid 
/ /regime 
/ , 

I II //, I 
I' ,I •ll• •" 

No Lid regime 

0.0 2.0 4.0 6.0 8.0 10.0 

Loglo (RaBL_N) 
Figure 11. Regimes of convection identified in a two-dimensional (2-D) plot (effective viscosity contrast 
versus RaBL-:v). The results of time-dependent calculations in Newtonian theology are represented in 
the steady state regime by open circles, at the transition by asterisks, and in the turbulent regime by 
solid circles. Dotted lines give the critical Rayleigh number based on the viscosity at Ti = 0.8 and at 
Ti = 0.9. Black line from $tengel et al. [1982] separates the stagnant lid regime from the no-lid regime. 
Dashed area is the domain of Moresi and $olomatov's [1995] study. Dash-dotted line is the transition 
found between the stationary and the turbulent regime (see text). 
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nian rheology: 

iV .4/3 ,-• 1/3 
UOeff O( /•aBL_e ff (11) 

The use of RaBL-eff enables one to compare non-Newto- 
nia.n and NewtonJan simulations. 

The same correction in pressure is done for beff: beff - 
b-c•c/Nu. By a linear regression, c• is found to be equal 
to 2.6:k0.2 (see Figure 7). Thus • in the non-Newtonian 
case is larger than in the NewtonJan case. This seems 
to indicate that the curvature of the temperature gra- 
dient is larger in the case of a non-Newtonian rheology. 
However, for small Nusselt numbers (Nu < 2), this cor- 
rective term is too high and the relation between Nu 
and RaBL-efr (equation (11)) does not apply. 

Christensen [1983] showed that the properties of non- 
Newtonian flow can be closely imitated by a Newtonian 
fluid with a reduced value of the activation energy 
and 7 - 0.3- 0.5. The analysis of our results for a 
non-Newtonian rheology fits the following law (Nusselt 
root-mean-square misfit of 0.34) (see Figure 12): 

•/3 (b - 2.6 Nu- 0.48RaBL_e ff Nu 
--4/3 

(12) 

Therefore non-Newtonian results superimpose on New- 
tonian results if the activation energy is divided by 2 
(• - 0.5). 

5.2. Non-Newtonian Parameterization 

Proposed by Solomatov 

Solomatov [1995] extended the boundary layer sta- 
bility analysis to the non-Newtonian rheology and ob- 
tained 

n 

Nu o( Racr (13) 
where 

Racr - Racr-is 4(n q- 1) 
2(n+z) 

C__) (b-O• Nu ,• (14) 

Rac•-is is the critical Rayleigh number for an isovis- 
cous case and is tentatively estimated as Racr-is - 
15681/n20 (n--1)/n. Note that in the expression of Racr, 
we replace b by beg - b- c•c/Nu. A fit through our 
data yields, for n- 3 

3/5 C --8/5 
Nu - 0.89RasL_nN(b -- Ct•uu ) (15) 

orNu--O.75(RaBL-nN) 3/5 /i•acr (16) 
Figure 13 shows us that a few points resulting from 

time-dependent calculations do not follow this law. The 
Nusselt root-mean-square misfit using (15) without these 
points is 0.22. These simulations either do not show 

I I I I 

ß b/3=11.08 } solid: c/3=4.2 ß b/3=9.0 
& b/3=7.3 open' c/3=0.0 

200.0 --- b/3=9.0, c/3=0.0 • • - 
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.... ;;•-..:•--' 
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-• • "...:?' 
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.. ,.,...•¾//.. :::.: .... . . 
0.0 /' ' ' ' ' 
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RaBL_eff 

z • z/3 for a non-Newtonian rheology, with time- Figure 12. Nu x •(b- 2.6c/Nu) 4/3 plotted versus •taBL_• ff 
dependent and steady state calculations. A linear regresszon of the form y: a zx for the turbulent 
regime yields az = 0.48 (short-dashed line). Nonlinear curve fitting of the form y = a•.x • for the 
stationary regime yields a•. : 0.75 and as: 0.87 (long-dashed line). Black symbols are pictured for 
time-dependent calculations and gray symbols for steady state calculations. Open symbols represent 
simulations done with no pressure dependence of the viscosity. Solid symbols show simulations done 
with c/3: 4.2. Circles represent results calculated with a temperature dependence of the viscosity of 
b/3 - 11.08, squares are calculated with b/3 = 9.0, and triangles are calculated with b/3: 7.3. Solid, 
heavily shaded, and lightly shaded lines represent simulations for which Rao has been increased slowly, 
with a temperature dependence of the viscosity of b/3 = 11.08, b/3 = 9.0, and b/3 = 7.3, respectively. 
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Figure 13. Nusselt number plotted according to the boundary layer stability analysis extended by 
$olomatov [1995]: (RaBL_nN/Racr) s/5 (Racr is defined in the text). A linear regression of the form 
y = alx for the turbulent regime yields al = 0.75 (short-dashed line). Nonlinear curve fitting of the form 
y = a2x • for the stationary regime yields a2 - 1.00 and as - 0.57 (long-dashed line). Other symbols 
and curves are defined in Figure 12. 

destabilization at the base of the lithosphere and do not 
depend on time (stable cases), or do not vary much with 
time (their temperature, viscosity, and stream function 
fields are only slightly time-dependent). Therefore re- 
sults of steady state calculations are also plotted on Fig- 
ure 13. In this graph, one can easily define two trends. 
At low Nusselt number, the results of time-dependent 
calculations join the steady state curve. It is also easy 
to identify results in the transition between the turbu- 
lent regime and the stationary regime. Both trends also 
exist in Figure 12; however, they are not so clearly dis- 
tinct. Therefore the same two regimes as in Newtonian 
theology exist in non-Newtonian rheology, a turbulent 
regime characterized by a strong dependence with time 
and destabilization of the thermal boundary layers and, 
at small Nusselt numbers, a stationary regime charac- 
terized by no dependence with time and only one scale 
of convection, the large-scale flow. Reese and Solomatov 
[1998] extended the asymptotic boundary layer theory 
to non-Newtonian stationary flows with a stagnant lid. 

r• 1/3 •---1 
They proposed two fitting formulas, Nu c• •aBL_nNV 

•/• -4/• (fiat roof) how- (large lid slope) or Nu c• RaBL_nNb ; 
ever, our steady state results do not follow any of them. 
We found no explanation for this discrepancy. 

5.3. Domains of the Two Regimes 

Solomatov [1995] extended the analysis of Stengel 
et al. [1982] to a non-Newtonian rheology with stress 
exponent n. He found a stagnant lid regime for b • 

4(n + 1). This transition between the stagnant lid 
regime and the whole layer convection regime has been 
drawn in Figure 14. Some numerical experiments with 
a strongly temperature-dependent viscosity have been 
done by Solomatov and Moresi [1997] to identify the 
small viscosity contrast regime, the transitional regime, 
and the stagnant lid regime as in the Newtonian case. 
Here, we only study the stagnant lid regime. In Figure 
14 the transition between the stationary domain (only 
one scale of convection) and the turbulent regime (two 
scales of convection) is broad (as denoted by transition 
points shown by asterisks). The limit between these two 
domains is uncertain given the scarcity of our points in 
steady state. It may depend on both the Rayleigh num- 
ber and b. As the law for steady state calculations is 
not known, the transition cannot also be derived theo- 
retically. 

6. Discussion 

Two-dimensional convection has been studied with 

either Newtonian or non-Newtonian temperature- and 
pressure-dependent rheology, and with either time-de- 
pendent calculations or steady state calculations. The 
main findings of this study are as follows: 

1. Our data concerning the relationship between Nus- 
selt and Rayleigh number in the chaotic regime yield 

..• 1/3 ,--4/3 
Nu -- 0.OZ_rtaBL_effOeff . This is very close to the law 
proposed by Davaille and Jaupart [1993] with transient 
cooling experiments and by Doin et al. [1997] with a 
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Figure 14. Regimes of convection identified on a 2-D plot (effective viscosity contrast versus RaBL-nN). 
Points presented here are results of time-dependent calculations in the case of a non-Newtonian theology. 
Symbols are defined in Figure 11. Dotted lines give the critical Rayleigh number based on the viscosity 
at Ti = 0.7, Ti = 0.8, and Ti -- 0.9 (dashed lines are extrapolated from dotted lines). The solid line 
separates the stagnant lid regime from the no-lid regime [$olomatov, 1995]. 

continental lithosphere moving above a convecting man- 
tle. 

2. We introduce a corrective term in pressure for 
the calculation of (-0ln•/0T) -x - beff - b- •c/Nu BL 

where ct - 1.0 + 0.1 for the Newtonian rheology and 
ct - 2.6 + 0.2 for the non-Newtonian theology. 

3. The same heat flow is obtained in non-Newtonian 

and Newtonian theologies if the activation energy is di- 
vided by 2 and the activation volume is divided by 0.8. 

4. In both theologies, the stationary and the turbu- 
lent regimes are shown to be characterized by different 
Nu = f(Ra) parameterizations corresponding to the 
asymptotic boundary layer theory and the boundary 
layer stability analysis, respectively. The transition be- 
tween both regimes has been identified. 

Of course, parameterizations obtained with three- 
dimensional (3-D) simulations would be more appropri- 
ate to the Earth. However, the Nu versus Ra relation- 
ship in a 3-D, rigid lid regime, and strongly temperature- 
dependent viscosity, has until now been restricted to 
steady state cases [Ratcliff et al., 1995, 1996, 1997], 
whereas we show that the turbulent regime has a very 
different parameterization. 

There are two main limitations when our parameter- 
ization of the turbulent regime is applied to the Earth 
secondary convection beneath the lithosphere. First, 
plate tectonics is not taken into account in this work. 
However, Doin et al. [1997] imposed velocities at the 
surface of a convecting box in order to mimic plate tec- 
tonics. As shown previously, the heat transfer through 
the continental lithosphere in their experiments fits our 

relationship in the turbulent regime well. Therefore 
this relationship describes accurately the intensity of 
secondary convection. Second, our simulations do not 
include internal heat generation, the geometry of the 
mantle flow at large depth, that is, the physics of the 
material flow across the 670 km discontinuity, nor the 
Earth's curvature. Then, if the Earth's convection is 
layered, it is more appropriate to scale our results to the 
upper mantle. However, the surface heat flow, obtained 
when equations (9), (11), and (15) are dimensionalized, 
depends on local parameters at the base of the UTBL, 
such as the effective viscosity and rheology, but does not 
depend on the height of the convective layer. Therefore 
our law should be valid whatever the geometry of the 
convective flow at depth. 

The studies of Grasset and Parmentier [1998], with 
a fluid heated from within, or Davaille and Jaupart 
[1993], with transient cooling experiments, yield param- 
eterization in the turbulent regime very similar to ours 

h--4/3 (Nu - O.47Ral/gvefe versus Nu - 0.52Ra •/31•-4/3 
The difference between our simulations and theirs is the 

presence (or absence, respectively) of a lower thermal 
boundary layer and therefore of a large-scale flow. We 
believe that on the Earth there is interaction between 

at least two scales of convection. Plate tectonics is the 

expression of a large-scale convection in the mantle. Al- 
though the latter has a different nature than the large- 
scale flow present in our experiments, it also introduces 
a shearing of thermal boundary layers and should also 
carry away small-scale instabilities. Moreover, the pres- 
ence of hot spots associated with intraplate volcanism 
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Table 4. Values of the Earth Constants Used to Dimensionalize the Equations 

Constant Symbol Value 

Total temperature drop 
Internal temperature 
Thermal conductivity 
Thermal diffusivity 
Thermal expansion coefficient 
Density 
Universal gas constant 

AT 1800 K 

Ti 1573 K 
k 3.1 W m -• K -• 
K 8x10 -7 m 2 -• s 

c• 3.5x 10 -• K -• 
p 3300 kg m-a 
R 8.31 J mol -• K -• 

suggests that a hot lower thermal boundary layer exists 
either at the 670 km discontinuity or at the bottom of 
the mantle. The mechanism of interaction between this 

hot boundary layer and the lithosphere is still not well 
known. The relative importance of thermals originating 
from either the lower thermal boundary layer or the up- 
per thermal boundary layer is not well quantified. How- 
ever, the influence of plumes might mostly be to feed 
the asthenosphere with hotter material, therefore de- 
creasing its viscosity and enhancing small-scale convec- 
tion [Moore et al., 1998; Yuen and Fleitout, 1985]. The 
comparison of this work with those of Grasset and Par- 
mentier [1998], Davaille and Jaupart [1993], and Doin 
et al. [1997] shows that the interaction between the vari- 
ous scales of convection that may exist in the Earth does 
not significantly influence the heat transfer through the 
lithosphere at equilibrium. 

Let us now assume that a secondary flow at the base 
of the oceanic lithosphere is the heat source responsi- 
ble for the flattening of the seafloor at old ages. One 
estimates this average heat transfer to about 40 to 50 

mW m -2 [Doin and Fleitout, 1996]. We have shown 
that this heat transfer is controlled by local parameters 
and follows the equations established in the turbulent 
regime. Using a dimensional form of equations (9) and 
(11), constants listed in Table 4, and extrapolating to 
an Arrhenius rheology, 

•- A-lo'nexp ( Ea* + Va*p) (17) RT 

we calculate values of the effective viscosity at the base 
of the lithosphere corresponding to a surface heat flow 
of 40 to 50 mW/xn 2. The results are given in Table 
5 for both rheologies and for activation energies (Ea*) 
and volumes (Va*) measured in the laboratory on dry 
and wet olivine. These values show that with our hy- 
pothesis, a zone of low viscosity exists at the base of 
the lithosphere with a viscosity of the order of 5 x 10 ls 
Pa s. Similar asthenospheric viscosities are reflected by 
postglacial rebound data away from shield areas and 
for small ice sheets. Values in the range 101s-102ø Pa s 
are found by Kaufmann and Wolf [1996] for the vis- 

Table 5. Calculated Viscosities v and Preexponential Constants A for NewtonJan and Non- 
Newtonian Rheologies and Calculated Strain Rate • for Non-Newtonian Rheology in the As- 
thenosphere 

Newtonian Rheology Non-Newtonian Rheology 

Dry Olivine Wet Olivine Dry Olivine Wet Olivine 

Ea*, kJ mol-1 300 240 540 430 
Va*, c•n a mol -• 6 5 15 10 

/]40, Pa s 2.8x1018 6.8x10 •8 7.7x10 •8 1.6xlO •9 
•'•o, Pa s 1.4x10 •8 3.4x10 •8 3.2x10 •8 7.2x10 •8 
g4o, s -• ...... 1.6x10 -•4 1.1x10 -•4 
g•o, s -1 ...... 2.8x 10 -•4 1.9x 10 -•4 

A•aoo, Pa w s 2.3x10 ? 7.3x10 9 3.1x10 8 2.7x10 •a 
A•a5o, Pa w s 6.4x10 7 1.7x10 TM 2.1x10 9 1.4x10 TM 

A•ar•to% Pa w s 5.2x10 •øb 1.7x10 •b 1.3x10 •2c 2.6x10 TM 

Here /]40 and y•o (•4o and g5o) are calculated for Ti = 1300øC and a surface heat flow of 40 and 50 
mW m -2, respectively. A•aoo and A•a•o are computed for a heat flow of 50 mW m -2, and an internal 
temperature of 1300 ø and 1350øC, respectively. 

•The preexponential constant is computed from Karato and Wu [1993]. 
b A grain size of I mm is used. 
•A shear stress of 10 MPa is used. 



DUMOULIN ET AL.: HEAT TRANSPORT IN STAGNANT LID CONVECTION 12,775 

cosity of the asthenosphere under the continental mar- 
gin in the Svalbard Archipelago. Models consistent 
with the observed rate of uplift and palaeoshorelines 
in Fennoscandia strongly suggest that the Earth's man- 
tle has a low-viscosity asthenosphere of less of 7.0x 10 •ø 
Pa s [Fjeldskaar, 1994], whereas the study of the very 
fast postglacial rebound in Iceland reveals that the as- 
thenosphere's viscosity beneath Iceland is 1.x10 •ø Pa s 
or less [Sigmundsson, 1991]. Dynamic modeling using 
geoid, topography, and plate velocity data also favors 
asthenospheric viscosity comparable to ours (O. Cadek 
and L. Fietrout, A global geoid model with imposed 
plate velocities and partial layering, submitted to Jour- 
nal of Geophysical Research, 1999). Conditions in the 
uppermost mantle may be close to the transition be- 
tween dislocation creep (non-Newtonian case) and dif- 
fusion creep (Newtontan case). For grain sizes greater 
than I mm and stresses greater than I MPa, dislocation 
creep should dominate [Karato and Wu, 1993; Ranalli, 
1991]. In the case of a non-Newtonian rheology, we cal- 
culate the value of the strain rate at the base of the 

lithosphere, using equations (11) and (15). Results for 
dry and wet olivine, and a surface heat flow of 40 or 50 
mW m -2, are given in Table 5. The strain rate due to 
the secondary convection is not negligible compared to 
the strain rate due to plate tectonics (roughly estimated 
as 10 -•4 s -•). We also compute the preexponential con- 
stant in the viscosity law A for a surface heat flow of 
50 mW m -2 and an internal temperature of 1573 or 
1623 K. (The internal temperature has more influence 
on A than the surface heat flow.) The obtained values 
of A are compared to the values measured in the labora- 
tory (e.g., those listed by Karato and Wu [1993]). They 
compare well with the measured values for wet olivine 
(in good agreement with Hirth and Kohlstedt [1996]), 
but are 3 orders of magnitude below measured values 
for dry olivine. However, we have to consider these re- 
sults with caution because the preexponential constant 
of viscosity varies a lot with small changes of mantle 
chemistry. Moreover, the apparent activation energy 
may depend on the partial pressure of oxygen. Indeed, 
the power law creep in natural olivine is proportional to 
(p02)•/6 [e.g., Jaoul et al., 1980]. Furthermore, Blundy 
et al. [1991] argued that the oxygen fugacity (assimi- 
lated to oxygen partial pressure) is buffered by mantle 
silicate-carbon-fluid equilibria, leading to a strong de- 
pendence of log(fo•.) on temperature, that is, p02 cr 
exp(-1.5 x 10-2T). Thus the effective temperature 
scale is reduced to {[2/(n+ 1)](Ea/RT•)+2.5 x 10-a} -• 
in K. This effect corresponds to an activation energy in- 
crease of 80 to 140 kJ mol -• and lowers the predicted 
viscosity by a factor of 2 or 3. 
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