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When a bubble bursts at the surface of a liquid, it creates a jet that may break up and produce jet droplets.
This phenomenon has motivated numerous studies due to its multiple applications, from bubbles in a glass of
champagne to ocean/atmosphere interactions. We simulate the bursting of a single bubble by direct numerical
simulations of the axisymmetric two-phase liquid-gas Navier-Stokes equations. We describe the number, size
and velocity of all the ejected droplets, for a wide range of control parameters, defined as non-dimensional
numbers, the Laplace number which compares capillary and viscous forces and the Bond number which com-
pares gravity and capillarity. The total vertical momentum of the ejected droplets is shown to follow a simple
scaling relationship with a primary dependency on the Laplace number. Through a simple evaporation model,
coupled with the dynamics obtained numerically, it is shown that all the jet droplets (up to fourteen) produced
by the bursting event must be taken into account as they all contribute to the total amount of evaporated water.
A simple scaling relationship is obtained for the total amount of evaporated water as a function of the bubble
size and fluid properties. This relationship is a first important step toward building a physics-based model of the
ocean-atmosphere water vapour fluxes controlled by bubbles bursting at the surface.

I. INTRODUCTION

The production of droplets due to bubbles bursting at the surface of a liquid has long been considered as a fundamen-
tal mechanism controlling larger-scale fluxes between the liquid and the gas. This is particularly true in a geophysical
context, with the pioneering studies on aerosol generation of Woodcock and Blanchard [1, 2]. Blanchard was the first
to measure the size of the droplets produced by a bursting bubble [3]. In a follow-up article [4] they estimated the
height of the ejected droplets. The overall importance of this mechanism for large-scale atmospheric (bio)physics was
further underlined by Blanchard and collaborators in subsequent articles [5, 6]. After a relatively quiet interval, the
topic was revived in the 1990s by the important experimental studies of Spiel, who obtained statistics on the number,
sizes and velocities of the droplets produced by bubbles bursting in water [7] and in salt water [8]. More recently, this
process was also studied in the context of the spread of aroma of sparkling beverages, in particular Champagne wine
[9, 10].

From a theoretical perspective, recent advances in the description of two-phase interfacial flows coupled with the
development of accurate numerical methods have led to a much-improved understanding of the experimental mea-
surements. The first direct numerical simulation of the axisymmetric bursting was carried out in our group in 2002
[11], and led to the discovery that the main parameter controlling the speed and size of the first ejected droplet is the
ratio of the surface tension and viscous forces (as estimated by the Laplace or Ohnesorge number). More specifically,
and somewhat counter-intuitively, this study showed that there exists an optimal viscosity (corresponding to a Laplace
number around 1000) for which jet focusing is most efficient and leads to the ejection of very fast, tiny droplets
(several tens of m/s for air in water). In the meantime, the use of high-speed cameras has also led to very detailed
and accurate experimental data on the size and velocity of the first droplet [12–14]. These experimental datasets,
combined with high-resolution numerical results obtained using the methods developed in our group [15, 16], now
give a very consistent picture of the behaviour of the jet focusing and first ejected droplet [17, 18], for the whole
range of controlling parameters. These results have been used very recently by Gañán-Calvo [19, 20] and Gordillo
and Rodriguez-Rodriguez [21] to propose scaling models able to describe accurately the size and velocity of the first
droplet, for Laplace numbers larger than the optimal value. Lai et al [22] reconciled such scalings with the cavity
collapse and jet formation described by inviscid inertio-capillary self-similar solutions, therefore providing universal
functional form for the dynamical process up to the ejection of the first drop.

While the behaviour of the first-ejected droplet can thus be considered as relatively well-understood, the number,
sizes and speeds of subsequent droplets are much more poorly documented. From our knowledge, the only experi-
mental datasets were obtained by Spiel [7, 8] for air bubbles in water and saltwater. Numerical results on subsequent
droplets are also scarce. When considering the integrated flux due to the entire history of bubble bursting, there is
no objective reason to assume that the dominant role is played by the first-ejected droplet. This observation was the
motivation behind Spiel’s 1994 experimental study.

The primary aim of the present article is to understand the behaviour of all the droplets produced, in the perspective
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FIG. 1. Shapes of a bubble at rest used to initialize the simulations. The shapes are obtained by solving the Young–Laplace equation
for varying Bond numbers. (a) Bo = 0.00094. b) Bo = 0.0088. c) Bo = 0.074. d) Bo = 0.63.

of being able to explain and predict the resulting fluxes due to the entire bubble bursting process. The main result used
to achieve this goal is an extensive dataset obtained through direct numerical simulations. After a brief summary of
the numerical setup (section II), we describe in detail the process of multiple droplet generation by a bursting bubble.
The numerical setup is validated through a systematic study of the first droplet behaviour, compared to experimental
and numerical results available from previous work (section III). Section IV constitutes the bulk of the study with
systematic data on the number, sizes and speeds of all droplets produced and an interpretation of these results. The
resulting vertical momentum is then discussed. Finally, in section V we show how these data can be used to build a
semi-empirical model able to explain and predict the total amount of water vapour transferred from water to air as a
function of the size of the bursting air bubble.

II. NUMERICAL METHOD

We consider two Newtonian, immiscible fluids separated by an interface with constant surface tension. We note
ρi and µi the density and viscosity of fluid i. γ stands for the surface tension coefficient and g is the acceleration of
gravity. The radius of the bursting bubble is denoted Rb. Four dimensionless numbers describe the problem fully.
We set the density and viscosity ratios to ρliq/ρgaz = 998 and µliq/µgaz = 55, which is close to the values for air and
water. For the two remaining numbers, we chose the Laplace number, La, which compares the capillary forces with
the viscous forces, and the Bond number, Bo, which compares the gravitational forces with the capillary forces. They
are defined as:

La =
ρliqγRb

µ2
liq

(1)

Bo =
ρliqgR

2
b

γ
. (2)

The initial condition is given by the shape of a bubble at rest below an horizontal interface. This temporary equi-
librium shape is due to the long drainage time of the thin liquid film separating the top of the bubble from the outside
gas phase, compared to the time taken to reach balance between surface tension forces and buoyancy. This balance
of forces is described by the Young–Laplace equation [12, 23] which we solve numerically [24]. Figure 1 represents
the different bubble shapes obtained when varying the Bond number (which is the only relevant parameter for the
Young–Laplace equation).

The 2D axisymmetric simulations are performed using the Basilisk open-source library [25], solving the two-phase
incompressible Navier–Stokes equations with surface tension. The principle of the method and the numerical schemes
are close to that used in our previous work [17, 22, 26–28] using the Gerris solver [15, 16], but their implementation is
new and benefits from the various improvements brought by the new Basilisk framework; in particular regarding the
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FIG. 2. Jet formation and ejection of multiple droplets by a bursting bubble for Bo = 0.0094 and La = 4847. Top graph:
evolution with time of the vertical position of the jet tip (black) and droplets (colors). Time is normalized by the capillary timescale
tc =

√
ρliqR3

b/γ. Bottom three panels: axisymmetric profiles of the jet and droplets at the three different times a), b) and c)
indicated in the top graph.

mesh adaptation methods. The adaptive mesh is critical to the success of these simulations as it allows fast solution
for discretisations with an equivalent resolution of up to 414 grid points.

While gravity is always taken into account to obtain the initial shape, its action is not taken into account in the
dynamics, for Bond numbers below 0.1. This approximation is justified as will be shown later when validating with
previous results.

Figure 2 summarises a typical sequence of droplet generation for a Bond and Laplace number of Bo=0.0094 and
La=4847 respectively. The bottom three panels give the axisymmetric profiles of the free surface and ejected droplets.
The top graph illustrates the evolution with time of the vertical position of the tip of the jet (black) and of each
generated droplets (colors), the vertical position normalized by the bubble radius Rb. The time is normalized by the
capillary timescale tc =

√
ρliqR3

b/γ. The position of the center of mass of the droplets is obtained by integrating
numerically over each subset of contiguous grid points, separated by the gas phase. The mass of each droplet is also
obtained in this way and is conserved accurately during their evolution.

Using this summary data, we can extract automatically the initial ejection speed, V , and volume of each generated
droplet. We define the capillary number:

Ca =
V µliq

γ
(3)

which compares the jet (or droplets) velocity with the visco-capillary velocity γ/µliq. Each droplet velocity will be
denoted Cadi with i the index of the droplet (1 for the first droplet, 2 for the second, etc).

III. FIRST DROP DYNAMIC STUDY

A. Velocity of the first droplet

As underlined in the introduction, the velocity of the first-ejected droplet, as a function of the control parameters, is
now well-known, both experimentally and numerically. To validate our numerical setup, as well as the new algorithms
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FIG. 3. (a) Dimensionless velocity of the first drop Ca as a function of the Laplace number. Data from Deike et al. [17] (open
triangles) and our numerical data (plain diamonds). The color scale indicates the Bond number of the simulation, varying from
10−3 to 1. The scaling law proposed by Gañàn-Calvo under the no-gravity assumption [19], given by eq. (4), and its asymptotic
scaling, Ca ∝ La−3/4 are shown in solid and dashed lines respectively. An equivalent scaling discussed by [21] is indicated. As
reported by Deike et al. [17], gravity starts to induce a correction in the first drop velocity forBo > 0.1. (b) Rescaled dataset using
the empirical relation proposed by Deike et al. [17], given by eq. (5). and adapted from Gañàn-Calvo [19]. Our new results are
fully consistent with existing literature and confirm that the jet velocity before droplet ejection measured in [17] is similar to the
first droplet ejection velocity.

in Basilisk, we first compare our results to previous numerical and experimental data. As pointed out in Deike et al.
[17], some care needs to be taken in the definition of the ejection speed in order to obtain meaningful comparisons.
We use the speed of the droplet just after its formation. This is comparable to the plateau in the jet velocity used in
Deike et al. [17].

Figure 3 illustrates the evolution of the first droplet dimensionless velocity Cad1 for a range of Laplace (500 to
500000) and Bond numbers (0.94 × 10−3 to 1). Both our data (filled diamonds) and data from Deike et al. [17]
(empty triangles) are represented. The data from Deike et al. were validated against experimental data from Ghabache
et al. [12]. Good agreement between the two datasets is obtained for the whole range of Laplace and Bond numbers.
A maximum in ejection speed of around three times the visco-capillary velocity is obtained for a Laplace around 1000
at low Bond numbers. At higher Bond numbers this maximum decreases (down to around 0.4 for Bo = 0.64) and the
value of the corresponding optimal Laplace number increases (up to around 4000 for Bo = 0.64).

Gañàn-Calvo [19] proposed a scaling law for the velocity of the first drop based on a balance of the momentum
equation terms during curvature reversal, which leads to the black curve in Figure 3(a), given by:

Ca = kv

(
La
(

La−1/2? − La−1/2
))−3/4

(4)

where La? ≈ 500 is the critical value of the Laplace number below which no droplet is produced and kv ≈ 16 is a
non-dimensional coefficient fitted to the data. Note that gravity is not taken into account in this scaling (Bo = 0).

Gordillo and Rodriguez-Rodriguez [21] discussed an alternative argument for the formation velocity of the jet at the
bottom of the cavity, considering the focusing of the capillary waves. This result is compatible with the present data
and equivalent in the asymptotic limit La� 1000, also indicated on fig. 3(a), as it reads Ca ∼ La−3/4.

The effect of gravity is taken into account empirically in the rescaling of the x-axis proposed by Deike et al. (2018),
which can be written:

Ca = kvDeike (1 + αBo)−3/4 La−3/4
(

La−1/2∗ − La−1/2
)−3/4

(5)

where α is a non-dimensional coefficient. We fitted α = 2.2 and kvDeike = 19 to the data to obtain the rescaling in
Figure 3(b). The rescaling seems to work reasonably well. Note that [20] discuss another scaling that accounts for the
effect of the gravity and appears fully compatible with the present empirical formula.
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FIG. 4. Droplet Laplace number Lad1 as a function of the bubble Laplace number La, with Bo color coded. The filled diamonds
are data from the present study. The open circles are experimental data from [14]. The filled squares are numerical data from [18]
and the empty squares are experimental data from the same study. An excellent match between all data is observed for all La and
Bo. The black curve is the scaling law from [19], Eq. 7, which describes well the data for La > 1000.

B. Size of the first droplet

We now study the size of the first droplet as a function of the control parameters. The droplet Laplace number is
defined as:

Lad =
ργRd

µ2
(6)

with Rd the droplet radius. The size of the i ejected droplet will then be denoted Ladi . Figure 4 illustrates the
dependency of Lad1 on the control parameters (bubble Laplace number La and Bond number Bo). The evolution
with Laplace number mirrors that of the droplet velocity, with a minimum obtained for the “optimal” Laplace number
around 1000. In contrast with the droplet velocity though, gravity seems to have a minimal influence on the size of
the first droplet. All experimental and numerical datasets are remarkably consistent. Gañàn-Calvo [19] proposed the
following scaling

Lad1 = kr

(
√

La

(√
La
La∗
− 1

))5/4

(7)

where kr is a non-dimensional coefficient fitted to the data. This relationship described the data extremely well
for Laplace numbers greater than the optimal value (1000), while not capturing the behavior below La=1000. We
emphasize the excellent match between the numerical and the experimental data from various groups [14, 18] for the
full range of Laplace and Bond numbers. This further confirms the clear understanding on the size of the first ejected
droplet for Laplace numbers above 1000 and validates our numerical setup against previous results. Note however that
a deeper understanding of the physics of the entire ejection process is still needed to correct the limitations observed
in the velocity and size models for low Laplace numbers, as pointed out in [29]. We now move on to a general study
of all the droplets.

IV. A SYSTEMATIC STUDY ON ALL THE DROPLETS

Using the same simulations as presented in the previous section we now characterize all the droplets produced by a
bursting bubble.
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FIG. 5. (a) Number of droplets (color-coded) as a function of the Laplace and Bond numbers. No droplet are formed for La < 500
at low Bond number and with a Bond number dependency for Bo > 0.1, Bo ∝ La3/2. The colored lines correspond to the
constant Morton numbers of the figure on the right. The red line stands for Mo = 2.63 × 10−11 (pure water), the blue one stands
for Mo = 4.3 × 10−10 (solution of 89.5% of water and 10.5% of ethanol), the green one stands for Mo =4.4 × 10−9 (66.6% of
water, 7.6% of ethanol and 25.5% of glycerin) and the purple one stands for Mo = 1.1×10−8 (55.3% of water, 4.9% of ethanol and
39.8% of glycerin). (b) Number of droplets as a function of the bubble Laplace number, for the constant Morton numbers indicated
in the color-coded legend. Numerical (plain diamonds) and experimental results are represented (empty circles [30] and stars [7]).
Good agreement is achieved between experimental and numerical data.

A. Number of droplets

Figure 5(a) shows the number (color-coded) of droplets produced by the jet, as a function of the Laplace and Bond
numbers. The dashed line on the left delimits the range of (La,Bo) for which no droplets are produced. This no-droplet
limit is in agreement with the results of Walls et al. [31] and Deike et al. [17], with no droplets for La < La∗ ≈ 500
and a Bond number dependency of this boundary for Bo > 0.1. In the range of droplet production, we observe between
1 to 14 droplets being ejected depending on the Laplace and Bond numbers. The maximum number of droplet (14) is
obtained close to the optimal Laplace number (La between 1000 and 2000) and for the smallest Bond numbers, which
coincides with the fastest jet and smallest first droplet. The number of ejected droplet then decreases with increasing
Bond number and increasing Laplace number.

To compare our numerical results with experimental data, we consider datasets for four different Morton numbers,

defined as Mo = BoLa−2 =
gµ4

liq

ρliqγ3 . The Morton number is constant for a given liquid in laboratory experiments as it is
set by the liquid properties only, namely the viscosity, density and surface tension coefficients. Figure 5(b) illustrates
the corresponding dependencies of the number of droplets as a function of Laplace number for various solutions of
water/glycerin/ethanol considered by Ghabache [30] and Spiel [7]. Both experimental (empty circles and crosses)
and numerical (plain diamonds) results are displayed. Given the intrinsically variable nature of the phenomenon, the
agreement between experiments and numerical results is remarkable. This plot confirms that the maximum number
of ejected droplet is observed for the optimal Laplace number (faster and thinner jet) and decreases with increasing
Laplace number. Note that, to the best of our knowledge [29], there is no theoretical understanding of the number of
ejected droplets as a function of the Laplace and Bond numbers.

B. Velocity of the droplets

Within our range of control parameters, between i = 0 and 14 droplets are ejected when a bubble bursts. We now
focus on the ejection velocity of the four droplets following the first one, namely i = 2 to 5, shown in fig. 6 (left
column) as functions of the bubble Laplace and Bond numbers. The scaling relation of Gañàn-Calvo [19], eq. (4),
describing the velocity of the first droplet (n = 1) at small Bond numbers is indicated for comparison in each panel.
All droplets follow a trend similar to that of the first droplet, but with an increasing scatter as the droplet number
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FIG. 6. (left column) Dimensionless velocity, Cadi , of droplets number i = 2 to 5 (top to bottom) as functions of the Laplace
and Bond numbers (color coded). The solid line reproduces the scaling relation of [19] for the first droplet, under the vanishing
Bond number assumption. (right column) Ratio of the dimensionless velocity of droplets number i = 2 to 5 (top to bottom) to the
velocity of the first droplet Cad1 .
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is increased. Increasing Bond numbers tends to decrease the velocity of the droplets, and even supress the creation
of droplets entirely for large enough values (which explains the absence of red symbols on the bottom two rows).
The large fluctuations in velocity obtained for droplets 4 and 5 (as well as subsequent droplets not shown here) are a
sign of the very nonlinear nature of the mechanisms producing these droplets. Preliminary studies have revealed, not
unexpectedly, possible bifurcations between multiple states, which requires a detailed statistical analysis, as already
hinted by Spiel 1994 [7]. This greatly complicates the analysis and detailed study of the breakup phenomenon and
will be the topic of a follow-up article.

Figure 6 (right column) displays the ejection velocity of the same droplets as in the left column (i = 2 to 5),
normalized by the velocity of the first one. These plots confirm that the velocity of the droplet i follows a similar trend
to that of the first droplet and also shows that the ejection velocity tends to decrease as i increases.

C. Size of the droplets

Figure 7(left column) presents the non-dimensionalized size of the drops n = 2 to 5, expressed as a droplet Laplace
number, Lad, as a function of the bubble Laplace number La for the whole range of Bond numbers (color coded).
The scaling relation of Gañàn-Calvo [19], eq. (7), that describes the size of the first droplet (n = 1) for any Bond
number (see Fig. 4) is given for comparison. The general trends are similar to those for the droplet velocities: an
overall dependency on the Laplace number matching that for the first droplet, increasing scatter as the droplet index is
increased and a slight increase in droplet size with increasing Bond number. As for velocity, a statistical study of the
size fluctuations would be necessary to properly quantify the variance.

The ratio of droplet size to the size of the first droplet, Figure 7(right column), reveals that close to the optimal
Laplace number (La ≈ 1000), subsequent droplets are significantly larger than the first droplet which suggests that the
finite-time curvature singularity approached by the collapsing bubble [11, 12, 17, 18] does not influence the drop size
selection process anymore.

D. Total vertical momentum

The primary motivation for studying the behavior of all the jet droplets is the estimation of the total transfer of
momentum, heat and eventually mass induced by the bursting of a single bubble [32]. Indeed, combining this in-
formation with statistical estimates (i.e. distributions) of bubble production, obtained from studies of e.g. breaking
waves (and their statistical distributions), could then be used to derive the large-scale fluxes controlling the coupled
ocean–atmosphere system [33]. In this section we focus on the vertical momentum transferred from a bubble bursting
via the drop ejection.

The total vertical momentum induced by bubble bursting is one of the potential candidates to explain the observed
reduction of the air-sea drag coefficient in hurricane-force winds [32]. We combine the information on the droplet size
and velocity to discuss the total vertical momentum related to jet droplets. We start by considering the non-dimensional

vertical momentum associated with the first droplet, say Fmd1 =
Vd1√
γ/(ρliqR)

(
Rd1

R

)3
, shown in figure 8(a), where the

droplet radius of the ith droplet is made non-dimensional by the bubble radius, and the velocity of the ith droplet is
made non-dimensional by

√
γ/(ρliqR) naturally coming from the characteristic time scale tc. We can combine the

two scalings proposed by Gañàn-Calvo [19], eqs.(4) and (7), and obtain:

Fmd1 =
Vd1√

γ/(ρliqR)

(
Rd1
R

)3

= k3dkv

(
La
(

La−1/2? − La−1/2
))3

La−5/2 (8)

The scaling in equation (8) is plotted with a black line on figure 8(a). As expected, the data for the first droplet follow
this prediction relatively well for La > 5000 since it combines the scalings for the velocity and size which closely
match the numerical (and experimental) data. The effect of the Bond number is negligible, since the momentum scales
like La3d1Cad1 and the droplet size/volume is almost independent from the Bond number, while the droplet velocity has
only a weak dependence on the Bond number. The theoretical scaling fails to describe the data close to La = 1000,
which is a consequence of the limitation of the scaling near the optimal point. The mismatch at that point appears to
be much higher compared to the one from figure 4, due to the fact that it scales in R3, which increases the apparent
difference on a logscale. Note that close to La = 1000, the ability of Gañán-Calvo’s theoretical scaling to capture the
correct velocity and size of the droplet relies on fitting coefficients, adjusted to a larger data set; while by construction



9

10
0

10
1

10
2

10
3

10
4

10
5

1000 10000 100000

L
a
d
2

La

0.001

0.01

0.1

1

B
o

10
-1

10
0

10
1

1000 10000 100000

R
d
2
/
R
d
1

La

0.001

0.01

0.1

1

B
o

10
0

10
1

10
2

10
3

10
4

10
5

1000 10000 100000

L
a
d
3

La

0.001

0.01

0.1

1

B
o

10
-1

10
0

10
1

1000 10000 100000

R
d
3
/
R
d
1

La

0.001

0.01

0.1

1

B
o

10
0

10
1

10
2

10
3

10
4

10
5

1000 10000 100000

L
a
d
4

La

0.001

0.01

0.1

1

B
o

10
-1

10
0

10
1

1000 10000 100000

R
d
4
/
R
d
1

La

0.001

0.01

0.1

1

B
o

10
0

10
1

10
2

10
3

10
4

10
5

1000 10000 100000

L
a
d
5

La

0.001

0.01

0.1

1

B
o

10
-1

10
0

10
1

1000 10000 100000

R
d
5
/
R
d
1

La

0.001

0.01

0.1

1

B
o

FIG. 7. (left column) Sizes of the droplets i = 2 to 5 (top to bottom), Ladi as functions of the bubble Laplace number, La, and
Bond number (color coded). The black line is the scaling relation eq. (7) for the size of the first droplet, from [19]. (right column)
Ratio of the size of droplets i = 2 to 5 to the size of the first droplet.
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FIG. 8. (a) Non-dimensional vertical momentum, defined asR3
d1
Vd1 for the first ejected droplet together with the scaling prediction

(eq. (8)) obtained by combining the scalings for the first droplet velocity (eq. (4)) and size (eq. (7)). (b) Total vertical momentum
for all the ejected droplets, Fmtotal =

∑
iR

3
di
Vdi . The asymptotic scaling Fmtotal ∝ La1/2 is indicated by the red dashed line. The

scaling of the first droplet is displayed with the black continuous line which shows that the contributions of all droplets must be
taken into account.

it cannot capture the physics for La < 1000. To address this limitation, Gordillo and colleagues [21, 34], propose a
different scaling law close to La = 1000, based on the collapse dynamics due to the focusing of the capillary waves,
which also contains two fitting coefficients; the behavior for La < 1000 being described by yet another physical
argument. These uncertainties in the precise mechanism around La = 1000, and variations in the fitting coefficients,
explain the mismatch between the empirical data (either our numerical data or experimental data described in the
papers cited above) and the scaling relationships for both the size of the first drop and its velocity. Further discussion
is also provided in [29].

We now consider the total vertical momentum, Fmtotal =
∑
i F

m
di

, with Fmdi the vertical momentum for droplet number
i normalized in a similar way as before. Figure 8(b) shows Fmtotal as a function of the Laplace and Bond numbers. The
influence of the Bond number is now more apparent, with an overall decreasing vertical momentum for increasing
Bond number. This effect is clear for the highest Bond numbers (Bo> 0.5) and close to the optimal Laplace number,
La ≈ 1000, which can be attributed to the large differences in number of ejected droplets (see Fig. 5) combined with
the relatively large droplet size for i > 1 (see Fig. 7) in this range of control parameter.

Remarkably, by summing the vertical momentum of all the droplets, the data align along a line over almost the full
range of Laplace numbers, reasonably well approximated by Fmtotal ∝ La1/2, represented by the red dashed line. This
relation is the asymptotic scaling at high Laplace number of eq. (8). The singular behavior close to La = 1000 is
smoothed out by the large number of droplets being ejected and by their large size. At low enough Laplace numbers,
viscous dissipation causes a decrease in the total vertical momentum and this trend is visible on Figure 8(b) for
La < 1000. This simple scaling can be combined with bubble distribution in order to obtain an estimation of the
effects of spray on the air-sea momentum flux for instance.

V. EVAPORATION OF THE DROPLETS

The large majority of previous studies on bubble bursting only considered the first droplet [11, 14, 18, 20], arguing
that the influence of following droplets might be negligible in the evaporation process [13]. Here, we obtained the size
and the velocity for all the droplets, which was not previously reported in the literature. The results presented in the
previous sections cast doubt on this assumption. Indeed, while the ejection velocity decreases quickly with droplet
number, droplet sizes can be up to 10 times larger than that of the first droplet. With the number, velocity and size
of all the ejected droplets, we can now consider an evaporation model taking into account all the droplets generated
by a bubble bursting and, consequently, estimate the total amount of liquid transferred from the droplets to the air by
evaporation during a bubble bursting event.
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A. A simple evaporation model

We consider the trajectory of a droplet in still air while taking into account the drag, the action of gravity and
the loss of mass due to the evaporation. The model we use has been fully described by Ghabache et al. (2016)
[13], and compared successfully for the first ejected drop to laboratory data.The model assumes immediate thermal
equilibrium between the water and air phases once droplets are ejected. The ejected droplet follows an essentially
ballistic trajectory (with drag corrections) and its flight time is thus controlled mainly by its initial velocity and gravity
(i.e. Bond number).

The initial conditions for each ejected droplet are given by the results discussed earlier in the paper, namely the
ejection size and velocity of the droplets. The evaporation model then consists on the following coupled system,
solving for the time evolution of each droplet radius rd(t) and velocity vd(t),

4

3
ρlπr

3
d

∂vd
∂t

= −1

2
ρairπr

2
dv

2
dCD −

4

3
πρlr

3
dg (9)

∂r2d
∂t

= −2j0
(
1 + 0.3Sc

1
3 Re

1
2

)
(10)

with CD the drag coefficient of the droplet, Sc = µair
ρairD

the Schmidt number and Re = ρairvdrd
µair

the Reynolds number.
D is the diffusion coefficient of vapor in air and j0 is the evaporation parameter [35, 36].

Equation (9) describes the evolution of the velocity of the droplet. Here CD is the drag coefficient on a rigid sphere,
in a steady motion. The Reynolds number of the ejected droplets ranges from zero to a hundred. Therefore we cannot
use the Stokes approximation for drag forces on a sphere. Empirical studies approximates the drag coefficient as a
function of the Reynolds number [37], and we use CD = 24

Re

(
1 + 0.15Re0.687

)
valid for Re< 800 for solid spheres in

the air [38].
Equation (10) describes the evolution of the radius of the droplet under quasi-steady conditions. Since we consider

low gas temperature (20◦C), we assume that the evaporation parameter j0 is only driven by diffusion. This leads
to j0 = ρair

ρl
D
(
Y surf

vap − Y∞vap

)
, neglecting the Stefan flow [14, 35]. We define Yvap as the mass fraction of the vapor

in the air: Yvap =
ρvap

ρair
. Its value at the surface and in the far-field are considered. Equation (10) is derived using

the assumption that the mass transfer may be modeled as occurring by diffusion within a spherical shell of thickness
rd/(0.3Sc1/3Re1/2). As a consequence, it is the combination of the d2 law for the evaporation of a motionless droplet
in air, which follows the equation dr2d

dt = −2j0 [39, 40], together with the drop motion which is taken into account
using the standard Ranz and Marshall empirical mass transfer correlations for a moving sphere [41]; 1+0.3Sc1/3Re1/2.

The external thermodynamical parameters are the humidity ratio in the air and the temperature in the whole system,
which set the values of the evaporation parameter (see [13] for details). For the resolution of the equations 10 and 9,
we consider water droplets evaporating in air. The air and water are considered both at 20◦C, and the humidity rate at
infinity is taken at 80%. Solving this system leads to a shrinking droplet moving up and then back into the main liquid
pool, or to a complete evaporation in the air.

This simple model of Ghabache et al. [13] was shown to give accurate predictions of the experimentally-observed,
non-trivial trajectories of the evaporating droplets. These trajectories are non-trivial because they depend on the vari-
ations of the drag force due to the varying size of the droplet as it evaporates. The good agreement with experimental
trajectories thus indirectly validates the evaporation model in the context of the experiments of Ghabache et al. [13],
i.e. laboratory conditions with water and ethanol solutions without air or water turbulent flows.

The simulations now provide all the necessary information on the droplet dynamics to use this simple evaporation
model, i.e. the initial size and velocity of all ejected droplets. We obtain the total volume of evaporated liquid per
droplet, say for droplet i, V evap

di
. Figure 9(a) shows the evaporated volume for the first droplet, normalized by the initial

volume of the first droplet, as a function of the Laplace and Bond number. We observe that for vanishing Bond number,
the entire droplet is being evaporated. Then for higher Bond number, the normalized evaporated mass decreases as the
Laplace number increases and seems to reach a constant value that depends on the Bond number. The Bond number
has thus a crucial influence on the drop evaporation, probably due to the effect of gravity and the decrease in the
ejection velocity.

Figures 9(b),(c),(d) show respectively the evaporated volume of the second, third and fourth droplets compared to
the evaporated volume of the first drop. It shows first that, for Laplace number larger than 2000, the evaporated volume
is smaller but stays comparable to the first one, and varies with the control parameters following the same trend as the
first drop. Second that, for La<2000 the droplets i>1 evaporate more than the first one. These results are important as
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FIG. 9. (a) Evaporated volume of the first drop normalized by the ejected volume of the first drop, V evap
d1

/
4πR3

d1
3

as a function
of the Laplace number. For vanishing Bond number the total mass evaporates while for large Laplace number and increasing
Bond number, only a fraction of the ejected mass evaporates. (b) Evaporated volume of the second drop compared to the first one,
V evap
d2

/V evap
d1

. The evaporated mass of the second droplet is comparable to the first one at high Laplace, and larger for La close to
1000, as a consequence of the results discussed regarding the droplet sizes. (c,d) Evaporated volume of the third and fourth drop
compared to the first one, V evap

d3
/V evap

d1
(c), and V evap

d4
/V evap

d1
(d) show similar results than the second droplet, with more scatter. (e)

Total evaporated volume,
∑
i V

evap
di

normalized by V evap
d1

as a function of Bond and Laplace number. The total evaporated volume
can be orders of magnitude larger than the evaporated volume from the first drop. This effect becomes less important for larger
Bond number since increasing Bond number both reduces the number of ejected droplets and the flight time of the droplets in the
air. (f) Total evaporated volume compare to the total ejected volume in the air. For high Bond number, we evaporate all the liquid.
As the Bond number increase, the volume that evaporate is smaller compare to the total ejected volume. The data suggest that this
is independent from the Laplace number and that the only effect acting on the evaporated volume is the gravity, which controls the
flight time of the droplet in the air.
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FIG. 10. (a) Total evaporated volume for all the droplet normalized by the original volume of the bubble
∑
i V

evap
di

/Vbubble as a
function of the Bond number and the Laplace number (color coded). This graph shows a high dependence in Bond number of the
evaporated volume, ∝ Bo−1 (indicated in dashed line) and a small dependency with the Laplace number. (b) The total evaporated
volume per bubble expressed as a function of our scaling: (La−1/4(

√
La/La∗ − 1)−1/2/Bo (see eq. 12), with a good collapse of

the data on a 1:1 line except for the largest Bond number.

they show that the evaporation of the subsequent droplets can not be neglected : it is comparable to the first one and at
La around 1000 it even becomes dominant.

These results are confirmed in fig. 9(e), which shows the sum of the evaporated volumes of all the droplets compared
to the first one

∑
i V

evap
di

/V evap
d1

, as a function of the control parameters. When there is more than just one ejected
droplet, we observe that the volume loss by the first drop is at least twice smaller than the total evaporated volume. At
Laplace close to 1000, it can even be several orders of magnitude larger. This effect decreases with increasing Bond
number, in particular because the number of ejected droplets is reduced.

Finally, figure 9(f) shows the total evaporated volume for all the droplets normalized by total ejected volume,∑
i V

evap
di

/( 43πR
3
di). This figure further confirms that the Bond number mainly controls the ratio between the evapo-

rated and ejected volume, while it appears almost independent of the Laplace number. Note that, the influence of the
Bond number is even stronger when the evaporation is summed over all the droplets than just considering the first one
(Fig. 9(a)).

In order to further explore the influence of the control parameters on the total evaporated volume of the drops, it
is plotted on figure 10 (a) as a function of Laplace and Bond numbers, normalized by the initial bubble volume. We
observe a strong Bond number dependency of the total evaporated volume, with an overall

∑
i V

evap
di

/Vbubble ∝ Bo−1

as shown by the dashed line, with a weaker Laplace number dependence.
These scalings can be retrieved using the approximation proposed in Ghabache et al. (2016) [13]. We consider the

limit case where the trajectory can be approximated by a parabola: z(t) = vdt− 1/2gt2 and vd = gTfly/2 with Tfly the
drop time of flight. Equation 10 can then be integrated between 0 and Tfly [13] and, introducing our non-dimensional
numbers, the normalized evaporated volume of the drop i can be approximated by:

V evap
i

Vbubble
= 3

µair

µliq
Sc−1

(
Y svap − Y∞vap

)
La−1

LadiCai
Bo

(
1 + 0.3Sc1/3

(
8

9

ρair

ρliq

µliq

µair

)1/2

(LadiCai)
1/2

)
(11)

In this equation 0.3Sc1/3
(

8
9
ρair
ρliq

µliq

µair

)1/2
is much smaller than one for classical couples of liquid and gas (0.06 for

water/air, or 0.09 for ethanol/air for instance). This suggests that evaporation does not depend much on droplet motion
and allows to neglect the second term: (LadiCai)1/2. Finally, this shows that the evaporated volume of an individual
droplet scales as La−1 (LadiCai) /Bo, thus retrieving the Bo−1 scaling observed numerically.

Now, by assuming that all droplets follow the same scaling as the first one, we can combine this expression of the
evaporated volume with the scaling laws proposed by Gañàn-Calvo (2017) [19] and we obtain the following scaling
for the total evaporated volume per bubble:



14

Ndrop∑
i=1

V evap
di

Vbubble
∼ La−1LadiCai

Bo
∼ La−1/4

Bo

(√
La
La?
− 1

)1/2

(12)

Figure 10 (b) presents
∑Ndrop
i=1

V evap
di

Vbubble
versus La−1/4

Bo

(√
La

La?
− 1
)1/2

for the whole range of the bubble controlling
parameters La and Bo. The points are reasonably consistent with a line of slope one, which confirms the validity of
the scaling. This relation has direct practical interest since it gives a good estimation of the liquid volume evaporated
when a bubble of a given size (Bo) bursts in a given liquid (La).

We note that in our simplified model the droplet velocity relative to the surrounding air is assumed to be identical
to the velocity relative to the static free surface. In reality, the air surrounding the droplets is an ascending gas jet
with a significant velocity in the vicinity of the axis. Numerical results indicate that the velocity of the droplet relative
to the surrounding air can be up to 50% less than the absolute velocity, depending on its position in the sequence of
ejected droplets. However, we have checked that these variations only have a minor influence on the total mass transfer
estimated with our model.

Note also that the coupled modelling of the dynamics of the interfaces, temperature and evaporation, while being
possible in principle, is a challenging computational problem given the wide range of scales involved. Numerical
schemes able to accurately perform this type of coupled thermodynamical modelling are a subject of active research.
The relative simplicity of the (experimentally-validated) evaporation-trajectory model used in the present study is at
present an advantage, compared to the complexity and cost of such future DNS, as it allows to investigate the effect
of multiple droplets on the total evaporation rate, which happens at time scales much larger than the present simulated
dynamics.

B. Applicability of the simple evaporation model for ocean-atmosphere applications

The evaporation model presented above does not take into account any small-scale atmospheric boundary layer
above the surface. As such it is more representative of laboratory conditions with essentially still air. The primary
influence of an atmospheric boundary layer will be on the flight time of the eject droplets which is expected to increase.
The evaporation should still be described by the d2 relation, however. Indeed, the transport of the particle by the air-
flow will decrease the relative Reynolds number between the droplet and the air. The flight time could also be corrected
according to the characteristics of the boundary layer and the droplet size as discussed by [32, 42].

Note also that we do not consider the limiting effects of surface tension and salinity of the water, which limits
evaporation for droplets smaller than 80µm, these effects preventing complete evaporation of the droplets.

VI. CONCLUSIONS AND PERSPECTIVES

We have presented direct numerical simulations of jet droplets produced by bursting bubbles for a wide range of
physical parameters summarised by the Laplace and Bond numbers. The results obtained for the first droplet confirm
earlier numerical and experimental studies: the first droplet velocity decreases above an optimal Laplace number close
to 1000 (which is Bond number dependent), while the first droplet size increases with a Laplace number above 1000,
and is largely independent from the Bond number, except regarding the so-called optimal values, which are Bond
dependent.

We then extended the numerical study to all the jet droplets produced by bubble bursting and discussed their number,
size and velocity as functions of the controlling parameters. We observe a systematic reduction of the droplet velocity
as their production number increases. The size of the subsequent droplets vary by less than an order of magnitude
except in the case of Laplace numbers close to 1000 at vanishing Bond numbers, where the fastest and thinnest jets
are produced. These cases also correspond to the largest numbers of ejected droplets. The ejection process of the
subsequent droplets present some internal variability, which should be studied systematically by a statistical analysis.
The present extensive numerical data set will nurture the active debate on the theoretical scalings for the number, size
and velocity proposed in the literature and the exact physical interpretation of the underlying mechanism for various
Laplace numbers [19–21, 29, 34], while also providing critical quantitative data on the relative importance of jet and
film drops in ocean spray production [23, 32].
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The total vertical momentum of the ejected droplets is shown to follow a simple La1/2 scaling for low-enough
Bond numbers and above the optimal Laplace number (1000), which is an interesting result when considering air-sea
momentum fluxes.

Combining these numerical results with a relatively simple evaporation model, we demonstrated that all the jet
droplets play a significant role in the total amount of water evaporated during a single bubble bursting event, in contrast
with what was assumed in previous studies where only the first droplet was considered. We also obtained a simple
scaling relationship, consistent with the simplified evaporation model, which describes the total amount evaporated as
a function of the bubble size and fluid properties.

The various scalings and results were obtained considering an idealized configuration of a single bubble bursting in a
quiescent liquid, neglecting various effects which could be of importance under realistic ocean-atmosphere conditions,
such as the influence of the wave field, the turbulent boundary layers in the air or water, collective effects or complex
physico-chemistry of the interface induced by surfactants. The evaporation model we use also presents limitations in
the case of sea water which would need to be considered when applying the proposed framework to ocean spray.
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