
Resources management for
controlling dynamic loads in
clouds environments. The
Wolphin project experience.

Ahmed Amamou (Member IEEE)
Gandi SAS - France

Martin Camey
Objectif Libre - France

Christophe Cérin (Member IEEE)
Université Sorbonne Paris Nord - France - christophe.cerin@univ-paris13.fr

Jonathan Rivalan
Alter Way - France

Julien Sopena
Sorbonne Université, LIP6 - France

Abstract—This article presents the Wolphin joint R&D effort between French labs (LIP6, LIPN)
and companies (Alter Way, Objectif Libre, Gandi) to tackle the management and scheduling
optimization problems in an unknown context, yet critical due to their exponential usage, of
containers based infrastructures. The project ran from Jan 2017 to Feb 2019. First, we analyze
the differential factors from the legacy VM (Virtual Machine) virtualization and scheduling
principles to their containers counterpart. Second, this article showcases research and
industrial strategies to optimize resource management for elastic loads, with offline and online
demands and model-based approaches. Last, we provide with insights through an Open Source
prototype implementation and we synthesis the research papers we published during the project
duration. Finally, the paper concludes with some perspectives for the future and discusses
lessons learned from the joint effort. Overall, the paper is reporting the Wolphin experience and
results, a project managed by industrialists. It serves as a crossroad between academic
researchers and software professionals in cloud technologies.

CURRENT trends in software development
and delivery are aiming for shorter iterations
between the software engineers teams and the
system administrators ones, both in packaging
and deploying new versions of the applications,
pushed for a technological change at the vir-

tualization level. Strategies of cloud providers
are also evolving into the direction of serving
any types of workload. Alibaba for instance,
serves both online services (aka long running
applications) and batch workloads colocated in
every machine in the cluster. Over the past year,
in Alibaba clusters, the scale of colocation of

c© 2020 1



View from the Cloud

online services and batch workloads have greatly
increased, resulting in the improvement of the
overall resource utilization.

Virtualization through virtual machines [1],
found limitations within its core design. Verti-
cal elasticity (extending the resources of a VM
on one server) is limited by the physical layer
(optimized in regards of a provision planning)
and by the ability of the OS installed in the VM
to acknowledge, at runtime, this addition. In a
similar manner, the time to achieve the horizontal
scalability (adding more VMs instances on the
hypervisor) is strongly tied to the storage speed,
as well as the VM image size, ranging from
hundreds of MB to few GB.

The vertical elasticity and horizontal scalabil-
ity limitations outline a lack of resource manage-
ment dynamicity in the VM technology, amplified
by the need to package a full Operating System
(OS) along with dedicated system libs in the
deployment workflow. The difficulty is addressed
through a mandatory complex image build phase,
whose duration limits update iterations, opening
a risk for possible security flaws.

LXC (Linux containers) and their modern
higher level implementations [2], such as Docker,
Kubernetes, Mesos, provide a broad new ap-
proach in leveraging these aspects. Based on the
host kernel, limiting the virtualization layer to
cgroup isolation, the Docker engine provides a
layered file-system enabling the declarative de-
scription of an application stack with Docker
images. Services executed through the Docker
engine are known as containers. The Docker
layered feature enables fast provisioning for an
application, since the building time is limited to
either downloading the images and bind them, or
only binding them if they already exist on the
host system.

Modern container systems [2] rely also on
key components, among them the components
for storing data. Union file systems (UnionFS),
are file systems that operate by creating layers,
making them very lightweight and fast.

On the application architecture side, descrip-
tion of system libs dependencies through a YML
declaration, has the advantage to provide an im-
mutable description for the application depen-
dencies, limiting the risk for undesired system
updates, possible source for a shift in internal sys-

tem APIs that could result in undesired behaviors
or bugs. Such mechanism facilitates the spawn of
a new application instance on any infrastructure
node.

Consequently, the container technology of the
Wolphin project is based on Docker. Docker also
offers horizontal elasticity through native load
balancing, and also vertical elasticity thanks to
system-based process management and service
discovery.

The contributions of this paper address the
weakness of the current containers systems and
challenges for a better consideration of dynamic
loads. Starting with the taxonomy of container-
based cluster orchestration systems as introduced
by Rodriguez and Buyya in [3], the Wolphin
project contributes at the following levels:

• Cluster manager: we propose a novel view
of requests scheduling based on multi-criteria
approaches (exact and approximated) and also
based on qualitative and quantitative criteria,
hence a contribution for resource and QoS
requirements for requests;

• Resource monitor: we propose a new mecha-
nism for controlling the memory usage hence
a contribution at the level of resource require-
ments in the kernel. We also propose some
integrated metrology approaches.

The organization of the paper is as follows.
In Section Problem and constraints we introduce
the elasticity problem we are faced to, and some
methodological elements. Section Proposals of
Wolphin members in detail sketches the propos-
als of all the Wolphin project members. Section
Summary and comments on the contributions is
dedicated to a deep comment of quantifiable
results. Section Conclusion draws perspectives.

Problem and constraints

Elasticity
Containers approaches induce counterparts

[4,5] that could put applications or infrastructures
at risk, without a proper architecture taking into
account the various defunct scenarios, dynamic
elasticity of resources consumption being the
most notable. Although the idea of a service,
consuming the exact needed resources and scal-
ing them up or down graciously, is elegant, the

2



downside, from a scheduling point of view, is its
complexity.

By default, the Docker engine accepts any
new micro service provision request within its
host. In this situation there is no warranty that
the host may offer sufficient resources to fulfill
every micro services needs when they will reach
a peak of activity or will flip to a regular scenario.
In extreme situations, the lack of warranty not
only implies a degradation of services quality or
uptime, but may also result in an out of memory
exception (OOME), hence a fault.

Moreover, available strategies within the
scheduling Docker ecosystem components are
limited to only three strategies: random, which
will place the service on any of the available
nodes ; spread, that will try to optimize the
resources of the less used nodes by placing con-
tainers equally on the cluster; and finally Binpack
that uses an optimization algorithm in order to
pack as many containers as possible on each
node, reducing fragmentation and therefore using
fewer servers. None of the strategies solve the
dynamicity problem.

Optimization One of the problems we faced
within the Wolphin project, was to actually offer
optimizations to the placement problem, mainly
build up on unknown elements or uncertainties
for the resources usage [6].

First of all, the inability to finely define
needed resources for a given container, is based
on the observations that, at the placement time,
the requests number, the sizes and the resulting
computational needs are not known to the user
submitting the request. The classical approach is
an empirical one, where the user, most likely a
system administrator, defines resources from a
prior experience with a similar service or type of
service. Another approach, is to actually limit re-
sources to their minimum and gradually increase
them as the container will not boot up, until it
meets its requirements.

Both approaches have inherent downsides.
First, they reduce the domain customization by
applying opinional parameters based on a human
expertise; second, they could end up in reserving
more resources than needed for the service. Third,
the approach may actually limit the container
efficiency by not providing sufficient resources to

serve a medium level of services.
In summary, limiting resource settings of con-

tainers by configuration is counter productive in
most cases, and does not take advantage of their
inherent elasticity characteristics; conversely, not
providing limits, even in a known application
context, will indubitably result in a risk for in-
frastructure failures.

Methodological Elements and Industrial domain
specific

As a service provider, whose expertise is in
providing its customers with resilient web plat-
forms based on Open Source solutions, Alter Way
provided a specific use case for the Wolphin
project. How to achieve a 99% availability at
the lowest possible cost, meaning that the fewest
possible resources were to be consumed, both by
optimizing containers resources consumption and
provide consolidation by limiting, at best, their
fragmentation on the infrastructure.

On the other hand, academics participants in
the R&D effort, specifically researchers at LIPN,
had a very different use case, as they able to find
the best possible placement in order to compute
scientific workloads in the shortest time. They
developed a custom scheduling framework for the
Grid’5000 computing infrastructure mutualised
between scientific entities.

On top of these two different objectives (avail-
ability versus computational time), other parame-
ters were to be taken into account in the Wolphin
project. First, the different SLAs that Alter Way
could propose to its customers or more likely
infrastructure options, could also require to add
constraints to the scheduling efforts, such as disk
type and available bandwidth. Second, the val-
orisation map used as a billing driver should be
fixed in advance, as it was the case and still is
in most hosting providers. The billing can also
be a combination between fixed and dynamic,
assessing the customer with both a minimum
guaranteed support or quality of service, and
scalable options to ensure quality of experience
to its customers.

Proposals of Wolphin members in detail
This section introduces significant contribu-

tions obtained both by academic actors and indus-
trialists actors. This section is a general discus-

February 2020 3



View from the Cloud

sipon and it also considers cooperative work done
between the actors. Then, in a dedicated section
we comment the quantifiable results.

Academic proposals
Scheduling and Allocation Framework for

Containers (SAFC) [8, 9, 10, 11] is a tool to
experiment with our ideas for scheduling con-
tainers. This tool, originated at the LIPN labora-
tory, allows emulation, not simulation, in creating
LXC containers, on demand. The starting point
of our scheduling mechanism is on relying on
the assumption that the user is not an expert
in the choice of the number of resources to
allocate to his job/container. For her/him, the
SAFC system computes the exact number of
resources, dynamically. The user specifies a class
of service (Premium, Advanced and Best effort)
for qualitative and quantitative criteria, and the
SAFC decides for her/him, for instance, to al-
locate between 8 and 12 cores. Notice that our
scheduling principle is based on a range a values
and no more on a fixed quantity of resource as
with AWS, Alibaba and many other clouds. Our
technique allows to relax the constraints on the
underlying optimization problem which is, given
a set of user requests, to find an allocation such
that the number of resources is minimized and
such that the user satisfaction is maximized.

The idea is that the system could properly
answer the question ”how many resources are
required to satisfy a request?” and better than
any user. This is one of the motivations of the
work, the other being the ”navigation” between
the compromises that are offered to the user. We
may ask if the system could do better than an
experienced user. We argue that in such a multi-
criteria context a human will never be capable of
deciding in an optimal way.

The LIP6 laboratory focused on the dynamic
allocation of memory resources, with an emphasis
on the memory sizing of the containers. In effect,
Linux uses free memory as a disk cache, which
means that it does not always need to access the
(hard) drive, to fetch some data. It is therefore
crucial to be able to correctly size his cache so
that the performance of the applications is not
degraded. We are, at first, interested in a metric
already present in the Linux kernel, the ”refault
distance” that could help determine whether a

container would benefit from being made larger.
If the idea to use this metric is taken by many
authors, we have highlighted that it has too much
imprecision to help the sizing of containers.

In consequence, we developed an algorithm to
decide the precise amount of additional memory
the container needs. After theoretically proving
bounds on its accuracy, we experimentally val-
idated our new metric on specific applications,
as well as on the benchmarks of the literature,
namely Sysbench [12] and Perfkit [13]. We then
developed, via the sysfs file system, a textual
interface allowing the Linux kernel to expose
users to the computed metric values over mul-
tiple temporal windows (default: 1min, 5mins,
15mins).

Industrialists proposals
Alter Way and Gandi contributed at the

metrology level and implemented a set of com-
ponents that can be used to collect metrics and
data from Docker-based clusters. The innovation
addressed of this item is the possibility of col-
lecting service data (containers) running during
very short amounts of time (on the order of a few
milliseconds), thereby escaping the conventional
mechanisms of information collection.

Post-mortem metrology Alter Way pro-
posed to leverage this limiting factor through a
”post-mortem” implementation, meaning the ex-
traction of the data relating to a service, not over a
defined time range (the frequency of collection)
but at its time destruction by the system. Alter
Way’s work on this issue has resulted in an im-
plementation in the original ContainerD project1

The problem addressed by their implementation
is linked to the heart of the Wolphin project: the
precise measurement of resources consumed, in
order to report information to the customer and
charge them.

The current implementation integrates with
the collection mechanisms already present in
ContainerD. This is meant to collect data from
Linux cgroups and then expose them to the next
inspection of the agent. This implementation has
the advantage to keep the formalism of the data
already exposed in Containerd, which avoids hav-

1 https://github.com/containerd/containerd/pull/1586

4



ing to make a specific implementation to process
them.

Data management The data storage issues
related to the metrology deliverable were ad-
dressed in order to avoid design errors as well as
to facilitate the integration of components from
the various teams involved. We quickly identified
the main difficulties, and concerns are the interop-
erability with current monitoring solutions, their
performance in compliance with a specific type
of query, latency, elasticity, the maturity and the
community support. In order to get confidence
into the state-of-the-art systems, we evaluated
the InfluxDB, RRDTool, Elasticsearch, Graphite,
Prometheus, DalmatinerDB, OpenTSDB and Ri-
akTS solutions. The comparison of these solu-
tions is available online2.

The current architecture uses a Postgres
(Timescale) extension that provides optimizations
for time series. Timescale authors also provide
two open source projects for using Timescale as
a Prometheus external data storage3. The possible
pipeline for Wolphin are now as follows (where
the arrows depicting the flux of information be-
tween the components):

1) Telegraf (collector) ← Prometheus ↔
p prom adapter ↔ Timescale

2) Telegraf → Timescale
3) Telegraf→ InfluxDB→ ETL→ Timescale

(non recommended)

Resource monitor In a container based archi-
tecture, the optimization of every entity’s bound-
aries is primordial. To address this issue, we
developed Autorange, a Docker feature that dis-
cover and apply limits (CPU%, RAM) to a given
container. Implemented directly into the collector
module of the docker daemon, the feature consists
of a patch of docker components.

The approach is as follows. From the metrics
we collect, time series are generated in regards of
some key values, including highest, lowest rate
of change. These values are then used as weights
to generate our predictions, which are added to
a prediction array. Time collection, as well as

2https://spreadshare.co/spreadsheet/open-source-time-series-
db-comparison-2

3https://github.com/timescale/prometheus-postgresql-adapter
and https://github.com/timescale/pg prometheus

the number of time series taken into account are
tied to the evolution of the consumption. Finally,
we use our predicted values to generate optimal
limits to be applied.

The efficiency of the solution primarily de-
pends on the workload type. In most cases involv-
ing single core tasks, benchmarks have shown the
the algorithm did not cause any drop in perfor-
mance. The difference between lowest and high-
est latency was lightly impacted, but the average
remained stable with limits. The CPU intensive
tasks were impacted the most, but remained still
very close to the performance without limitations.

Billing The upgrade of the CloudKitty solu-
tion (OpenStack official component) to a con-
tainer context has been investigated through the
evolution of the collection engine, the storage
backend, and the authorization layer. In short, the
Objective Libre company, within the framework
of the Wolphin project, has provided a rating
solution and chargeback for container metrics
for the purpose of billing. Valuation reports are
generated from the various measurements from
the resource consumption of the containers.

It was decided that the approach selected by
Objectif Libre would be based on the OpenStack
chargeback and rating component, namely Cloud-
kitty which is a free software (Apache v2 license),
and originally created by Objective Libre. Several
features desired for the Wolphin project, such
as the valuation of a consumption or exporting
reports, were already present in Cloudkitty.

Additional developments were accomplished
to extend the range of metrics that can be ma-
nipulated Cloudkitty in order to switch from an
OpenStacks centric model to a more generic one.
This new model has been tested according to
various metrics, used in the project and in live
and post-mortem contexts.

The collecting part of Cloudkitty was also
extended and redesigned to embrace a large scope
of data storage engine used/tested at some point
of the Wolphin Project: Prometheus, Postgres and
KairosDB.

Summary and comments on the
contributions

Academic contributions on containers
scheduling have been published in [8, 9, 10,

February 2020 5



View from the Cloud

11]. In [10] we presented a new scheduling and
resource management allocation system based on
an economic model. The goal of the proposed
system is to address the problems of companies
that manage a private infrastructure of machines,
and would like to optimize the scheduling of
several requests submitted online by users. The
economic model used in this paper is based
only on two SLAs (Service Level Agreements)
classes (a qualitative one and a quantitative one).
The novelty of the system is that it allocates
dynamically, for each selected request, a set of
computing cores according to the user economic
model.

In [8] we introduced a variant of the prob-
lem of resource allocation. The two qualitative
classes represent the satisfaction time criterion,
and the reputation criterion. Moreover, the two
quantitative classes represent the criterion over
the number of resources that must be allocated to
execute a container and the redundancy (number
of replicas) criterion. The novelty of this work is
also based on the possibility to adapt, dynami-
cally, the scheduling and the resources allocation
of containers according to the different qualitative
and quantitative SLA classes.

The difference between the papers [8] and
[10] is that in [8] the framework is proposed in the
context of containers unlike the system proposed
in [10] which is designed to schedule requests. In
[8] the economic model is proposed with more
SLAs classes than in [10].

In [11] we described in details how to give
the possibility to specify ranges on the resources
demand for containers, instead of specifying a
fixed amount of resource. The novelty of the
paper is in relaxing strict constraints on the
requested number of resources and on letting
the system to adjust the amount of resources
according to the execution context, such as the
peaks of activities. Moreover, the number of re-
sources allocated for each container is comprised
between hard and soft lower/upper bounds of
cores. The hard lower/upper bounds of cores are
set statically according to the selected service in
the quantitative SLA class and the configuration
of the cloud nodes. The soft lower/upper bounds
of cores which are taken ”inside” the hard bounds,
are set dynamically according to the global load
of cloud nodes. The goal of the bounds on cores

is to improve the quality of scheduling and to be
compliant with the different SLA classes.

The difference between [11] and [8] is that
in [11] the number of allocated cores is set
according to a hard and soft lower/upper bounds
unlike the framework proposed in [8] for which
the number of cores is set according to hard
lower/upper bounds only. In [11], the framework
is experiment with LXC containers. However, in
[8], the framework is experiment with Docker
containers. Under the experimental conditions of
[11] we get a degradation of the execution time
of around 3% but a use of 10% less cores.

In [9] we introduced new multi-objectives
scheduling strategies. The novelty of this pa-
per is to introduce personalized multi-objectives
scheduling strategies adapted for Cloud Com-
puting environments. The principle of the pro-
posed strategies consists to select a node which
has a good compromise between multi-objectives
criteria to execute a container. The proposed
scheduling strategies are based on PROMETHEE
and Kung multi-objectives decision algorithms in
order to place containers. The implementation
inside Docker Swarmkit and experiments show
the potential of our approach under different
scenarios such as burst mode for submissions.
Using PROMETHEE and Kung strategies we
demonstrated that the load of work in each node
is greater than with the native spread strategy of
Swarmkit. This means that the strategies enforce
a better use of nodes to keep them more loaded.

Open Source software contributions are
available at URL https://gitlab.com/wolphin. A
showcase site presenting the functionalities of
the project is also available at the URL
http://wolphin.gitlab.io/. It refers to the project
source code, documentation and allows to request
for access to the platform. These sites expose the
different parts of the work that we have above-
mentioned in this paper. For instance, readers will
find the contributions according to the Telegraf,
Fluend, Prometheus and Timescale tools for col-
lecting ”log events”. Readers will also find the
Cloudkitty modifications for the Wolphin project
in two branches, namely docker-cloudkitty and
cloudkitty. Least, but not last, you will find the
source codes of the Wolphin frontend, the Wol-
phin CLI (Command Line Interface) and a sim-
ple Wolphin administration tool (Wolphin.admin)

6



Figure 1. Architecture of the Wolphin system

which is a Docker image that could implement a
GUI (Graphical User Interface) to manage Wol-
phin services in the future.

The architecture of the system that has been
built is depicted on Figure 1. Since the Wolphin
project focuses on the Docker technology, this
architecture is fully implemented on top of this
technology.

The modifications that Wolphin brings to
Docker ”native” are as follows (see Figure 1) and
they consider the monitoring of events and the
billing pipeline. Each Docker node runs now two
agents located on the top of Figure 1:

- The metric agent collects both host and
container metrics with Telegraf, and makes them
available to Prometheus through HTTP.

- The event collector exports Docker events
(creation/removal of container and networks) to
a Fluend instance, which can optionally collect
host and container logs as well.

On the monitor node, located in the bot-
tom of Figure 1, the metrics are retrieved by
Prometheus, and a subset of them is relayed to
the Timescale RDBMS using the pg adapter and
pg prometheus extension. Once there, Cloudkitty
applies the pricing rules and makes them available
in aggregated form to the Wolphin API. The

event logs are used to add the metadata which
could not be gathered by Prometheus (notably,
the network attach/detach events). The Wolphin
frontend synthesizes all the information from the
rated data frames and its metadata, and includes
the outstanding alerts from the Alert manager
component which complements Prometheus.

Conclusion
In this article we summarized the problems

and solutions implemented within the Wolphin
project which aimed to control dynamic loads in
clouds [6]. The project ran from Jan 2017 to Feb
2019 and it has already been evaluated positively
by the funders. The project has resulted in many
software developments and we refer the reader
to the project URLs as mentioned above. The
outcome is also with academic publications; see
the bibliography. There are many prospects and
we have already identified some leads.

In a particular container platform, it may be
necessary to terminate applications that behave
erratically. A new container can then be created
on a different host, and a memory leak can
be avoided without requiring costly debugging.
To this end, developers or system operators can
apply maximum limits to the resources granted to
each container or service, but they must measure
and calculate themselves the desired limits for
each service. In this general context, the Wolphin
project has yet started to develop a system to au-
tomatically predict the optimal limits for memory
and CPU utilization. The calculated limits can
then be sent to the system metric collector. A
better approximation allows the Scheduler con-
tainer to better plan the placement on each host,
in order to maximize the number of containers
for each server. The result of this ongoing work
was yet proposed in the form of a set of patches
to the following projects and many works are still
to be done:

1) Docker CLI:
https://github.com/docker/cli/pull/1664

2) Swarmkit: https://github.com/docker/swarm-
kit/pull/2818

3) Moby/docker engine:
https://github.com/moby/moby/pull/38706

Indeed, for recognition of any Open Source
software development work, the community is

February 2020 7



View from the Cloud

sensitive to contributions in the form of pull
request, in new branches, or in well-established
projects. It is a mark of success. In the academic
sector, recognition is not done by producing lines
of code in large projects, but by lines of text that
are peer-reviewed. We hope that our article will
bring together the different points of view related
to the management of dynamic loads in clouds
environment, and for a better mutual understand-
ing between the industry and academic sectors.
And for that issue, we adopted a style close to an
industry/academic report or, much more simply,
a project report.

Acknowledgment
The authors wish to thank the funders

and main facilitators, Banque Publique
d’Investissement (BPI), Région Ile-de-France
and our respective universities (Paris 13 and
Sorbonne Université). We also express are
sincere thanks to all the project members, among
them Valentin Daviot, Tarek Menouer, Étienne
Leclerc, Frédéric Roupin, Damien Carver,
Maxime Bittan, Marco Mariani, Danilo Cerovic,
Claire Gayan, Christophe Sauthier.

Least but not last, we thank Jean-Luc Gaudiot
from the university of California at Irvine for his
valuable comments, notably those accomplished
during his stay at Paris 13 university as an invited
professor. Some experimental work has been con-
ducted on the Grid’5000 testbed, and we are
grateful to the team for their help accessing the
machines. Grid’5000 is supported by a scientific
interest group (GIS) hosted by INRIA and includ-
ing CNRS, RENATER and several Universities as
well as other organizations.

REFERENCES
1. Paul Barham, Boris Dragovic, Keir Fraser, Steven

Hand, Tim Harris, Alex Ho, Rolf Neugebauer, Ian

Pratt, and Andrew Warfield. 2003. Xen and the art

of virtualization. In Proceedings of the nineteenth

ACM symposium on Operating systems principles

(SOSP ’03). ACM, New York, NY, USA, 164-177. DOI:

https://doi.org/10.1145/945445.945462

2. Pahl, Claus & Brogi, Antonio & Soldani, Jacopo &

Jamshidi, Pooyan. (2017). Cloud Container Technolo-

gies: a State-of-the-Art Review. IEEE Transactions on

Cloud Computing. PP. 1-1. 10.1109/TCC.2017.2702586.

3. Maria Alejandra Rodriguez, Rajkumar Buyya: Container-

based cluster orchestration systems: A taxonomy and

future directions. Softw., Pract. Exper. 49(5): 698-719

(2019)

4. Herbst, Nikolas; Samuel Kounev; Ralf Reussner (2013).

Elasticity in Cloud Computing: What It Is, and What It Is

Not. Proceedings of the 10th International Conference on

Autonomic Computing (ICAC 2013), San Jose, CA, June

2428.

5. Georgiana Copil, Daniel Moldovan, Hong-Linh Truong,

Schahram Dustdar. Specifying, Monitoring, and Con-

trolling Elasticity of Cloud Services, Proceedings of

the 11th International Conference on Service Ori-

ented Computing. Berlin, Germany, 25 December 2013.

doi=10.1007/978-3-642-45005-1 31

6. W. Lin, S. Xu, J. Li, L. Xu, and Z. Peng. Design and the-

oretical analysis of virtual machine placement algorithm

based on peak workload characteristics. Soft Comput.,

21(5):1301-1314, Mar. 2017.

7. The NIST Definition of Cloud Computing. Peter

Mell and Timothy Grance, NIST Special Publication

800-145 (September 2011). National Institute

of Standards and Technology, U.S. Department

of Commerce. Publication available online at

https://csrc.nist.gov/publications/detail/sp/800-145/final

8. Tarek Menouer, Christophe Cérin, Walid Saad, Xuan-

hua Shi: A Resource Allocation Framework with Qualita-

tive and Quantitative SLA Classes. Euro-Par Workshops

2018: 69-81

9. Tarek Menouer, Christophe Cérin, Étienne Leclercq:

New Multi-objectives Scheduling Strategies in Docker

SwarmKit. ICA3PP(3) 2018: 103-117

10. Tarek Menouer, Christophe Cérin: Scheduling and Re-

source Management Allocation System Combined with

an Economic Model. ISPA/IUCC 2017: 807-813

11. Tarek Menouer, Christophe Crin, Congfeng Jiang,

Jonathan Rivalan: SAFC: Scheduling and Allocation

Framework for Containers in a Cloud Environment. In-

ternational Conference on High Performance Computing

& Simulation (HPCS 2019), Jula 15-19, Dublin, Ireland

12. Kopytov A., SysBench manual, MySQL AB, 2012,

source: https://github.com/akopytov/sysbench ; manual:

https://www.yumpu.com/en/document/read/17130663/-

sysbench-manualpdf

13. Perfkit Benchmarker. Project home page:

https://github.com/GoogleCloudPlatform/PerfKitBench-

marker

8



Ahmed Amamou (Member IEEE) is head of re-
search engineer at GANDI SAS. He received a Ph.D.
degree in network and computer science from the
University of Pierre and Marie Curie in 2013, Paris,
France. His research interests are Cloud computing,
virtualization technologies and machine learning. E-
mail: ahmed@gandi.net

Martin Camey is a cloud consultant who is working
with Objectif Libre. Holder of a master in computer
science he joined Objectif Libre as a python software
developer for Cloudkitty, the rating solution that is
developed by the company under the OpenStack’s
umbrella. E-mail: martin.camey@objectif-libre.com

Christophe Cérin (Member IEEE) has been a
professor of computer science at the Université Sor-
bonne Paris Nord (former name Université Paris 13),
France since 2005. His research focuses on High
Performance Computing, including Grid and Cloud
Computing and he develops middleware, algorithms,
tools and methods for distributed systems. E-mail:
christophe.cerin@univ-paris13.fr

Jonathan Rivalan is currently a R&D manager with
Alter Way, Jonathan pursues, with his team, techno-
logical enhancement in innovative fields such as op-
timization for micro-services based cloud computing,
and workflow automation through machine learning.
E-mail: jonathan.rivalan@alterway.fr

Julien Sopena obtained his PhD in 2008 at the
University Pierre et Marie Curie (UPMC). His re-
search interests include operating system, resource
management, distributed algorithms and sat solver.
E-mail: julien.sopena@lip6.fr

February 2020 9


	Problem and constraints
	Elasticity
	Optimization

	Methodological Elements and Industrial domain specific

	Proposals of Wolphin members in detail
	Academic proposals
	Industrialists proposals
	Post-mortem metrology
	Data management
	Resource monitor
	Billing


	Summary and comments on the contributions
	Conclusion
	REFERENCES
	Biographies
	Ahmed Amamou (Member IEEE)
	Martin Camey
	Christophe Cérin (Member IEEE)
	Jonathan Rivalan
	Julien Sopena


